Summary of available data for data-limited species in the Gulf of Mexico Reef Fish Fishery Management Plan that have never been assessed

Prepared by Skyler R. Sagarese, J. Jeffery Isely, Matthew W. Smith, and Adyan B. Rios November 3, 2016 NOAA Fisheries Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, FL 33149

Table of Contents

1.	BACKGROUND AND NEED
1.1	SPECIES NOT YET ASSESSED
2	LIFE HISTORY
3	COMMERCIAL FISHERY STATISTICS
3.1	COMMERCIAL LANDINGS 4
3.2	COMMERCIAL DISCARDS AND BYCATCH
4	RECREATIONAL FISHERY STATISTICS
4.1	RECREATIONAL LANDINGS
4.1.	1 SOUTHEAST REGIONAL HEADBOAT SURVEY (SRHS)
4.1.	2 MARINE RECREATIONAL FISHERY STATISTICS SURVEY (MRFSS) 6
4.2	RECREATIONAL DISCARDS
5	COMPARISON OF COMMERCIAL VERSUS RECREATIONAL LANDINGS
6	MEASURES OF TRENDS IN POPULATION ABUNDANCE
6.1	FISHERY-INDEPENDENT SURVEYS7
6.2	FISHERY-DEPENDENT SURVEYS7
7	LENGTH COMPOSITION
8	AGE COMPOSITION
9	OVERVIEW OF POTENTIAL MODELING APPROACHES
10	SYNTHESIS OF AVAILABLE DATA BY SPECIES
10.1	Scamp9
10.2	2 Warsaw Grouper 10
10.3	3 Yellowfin Grouper

10.4	Blackfin Snapper
10.5	Cubera Snapper
10.6	Gray Snapper 10
10.7	Queen Snapper 11
10.8	Silk Snapper 11
10.9	Blueline Tilefish
10.10	Goldface Tilefish11
10.11	Banded Rudderfish11
11	ACKNOWLEDGEMENTS 12
12	LITERATURE CITED
13	TABLES
14	FIGURES

1. BACKGROUND AND NEED

Recent legislation in the United States mandating scientifically-derived annual catch limits (ACLs) is particularly challenging to meet in regions such as the Southeast US (Berkson and Thorson 2015, Newman et al. 2015), where species biodiversity exceeds that of other marine ecosystems (e.g., Northeast US; Fautin et al. 2010). The ability to determine ACLs differs among regions and species primarily due to the quantity and quality of available data. Conventional fisheries stock assessments cannot be conducted when basic information is lacking such as relative abundance, composition data, and/or biological characteristics (e.g., growth). Nationally, nearly 60% of stocks are considered data-poor (Newman et al. 2015), meaning there is insufficient data to conduct a statistical assessment that yields meaningful information on reference points (e.g., overfished or overfishing). The Gulf of Mexico Fishery Management Council manages 35 fish stocks (excluding species not in the management unit), 74% of which are managed as data-poor (Newman et al. 2015). Stock assessments in the region are developed through the Southeast Data Assessment and Review process (SEDAR; <u>www.sedarweb.org</u>).

SEDAR 49, the most recent stock evaluation of data-poor species in the Gulf of Mexico, employed the Data-Limited Methods Toolkit (DLMtool; Carruthers et al. 2014, Carruthers et al. 2015) as the primary modeling platform. This software program allows evaluation of the performance of multiple data-limited assessment methods in a simulation environment using management strategy evaluation (MSE). MSE allows for the comparison of the relative effectiveness for achieving management objectives of different combinations of data collection schemes, methods of analysis and subsequent processes leading to management actions (Punt et al. 2014).

Currently, over 84 methods are available within DLMtool. The data inputs range from a simple time series of total removals (i.e., catch) to indices of abundance or length compositions utilized

in more data-moderate methods such as indicator-based methods (e.g., Geromont and Butterworth 2014) or mean length-based mortality methods (e.g., Gedamke and Hoenig 2006). Based on the data available for a given species, only certain method types are feasible (Figure 1). For example, if available data include a time series of total removals and an index of relative abundance, both catch-based and index-based methods are feasible methods for developing catch recommendations. In addition to the existing methods within DLMtool, a mean length estimator approach assuming nonequilibrium conditions was utilized to estimate total mortality when length-frequency data were available.

1.1 SPECIES NOT YET ASSESSED

This report provides an overview of the data available for species in the management unit in the Gulf of Mexico Reef Fish Fishery Management Plan (FMP) that have never been assessed (Table 1). Specifically, this report is focused on those species which have not undergone stock assessment (Table 2). Species which were removed from the Reef Fish FMP in 2012 through the Generic ACL/AM amendment due to low landings data were excluded from this data review (Table 3; see GMFMC 2011 for details). Of 11 species in the Reef Fish FMP in the Gulf of Mexico that have never been assessed, ten of the species fall within Tier 3A of the Gulf Acceptable Biological Catch Control Rule. Only one species, Warsaw Grouper, falls within Tier 3B (Table 4; see GMFMC 2011).

2 LIFE HISTORY

Life-history parameters (e.g., mortality, growth, and maturity) represent key data inputs for a variety of data-limited methods such as the mean length-based mortality estimator (Gedamke and Hoenig 2006). A literature review was conducted to compile all available life history information for the 11 species that have never been assessed. Additional details on specifics of the literature review are provided in Adams et al. (2016). It is important to highlight that the life history information documented herein has not been scrutinized by the life history subject matter experts. However, the information presented in this report can be used to evaluate reliability and identify best estimates for these species, as done during SEDAR 49 (SEDAR 2016d).

Life history information was available for the majority of the species (Table 5). No life history information was obtained for either Banded Rudderfish or Goldface Tilefish. Although life history parameter estimates were provided for both species in Farmer et al. (2016), the data sources specified therein (i.e., <u>www.fishbase.org</u>) could not be used to verify the original source of the parameters. Available life history information is provided for von Bertalanffy growth parameters and maximum age (Table 6), maturity parameters (Table 7), length-weight relationship parameters (Table 8), length-length relationship parameters (Table 9), mortality estimates (Table 10), and steepness parameters (Table 11). An estimate of steepness was solely available for Blueline Tilefish from a previous assessment conducted on the South Atlantic stock (SEDAR 2013b). Due to the paucity of information on steepness, steepness estimates for similar species were included within the literature review as proxies.

3 COMMERCIAL FISHERY STATISTICS

Commercial fishery statistics were available from the landings and discards data reported in the Southeast Fisheries Science Center's Accumulated Landings System (ALS). Additional data related to commercial discards were available from the Shark Bottom Logline Observer Program, Directed Reef Fish Observer Program, and the commercial Shrimp Trawl Fishery Observer Program.

3.1 COMMERCIAL LANDINGS

Annual commercial landings estimates for the years 1986 to 2015 were available from the ALS logbook data. Although sporadic landings data are available back to 1962 for some of the species, these landings were considered highly uncertain.

Of the 11 species, five were consistently available on the commercial logbook reporting forms beginning in 1990 (Table 12). Six of the species were not available on the forms in all years, including Banded Rudderfish (absent from 1990-91 and 1993), Blackfin Snapper and Blueline Tilefish (both absent from 1990-1993), Warsaw Grouper (absent in 1994 and 2000-09), Cubera Snapper (present only in 1994), and Goldface Tilefish (absent all years).

Annual commercial landings estimates were available for all 11 species for the majority of years between 1986 and 2015 (Table 13). Total landings were highest for Scamp (8.90 million pounds total) and Gray Snapper (7.36 million pounds total) and lowest for Cubera Snapper (34,657 pounds total). Median landings ranged from nearly 300,000 pounds per year for Scamp to 1,400 pounds per year for Cubera Snapper (Figure 2). Median landings for most of the species well below 50,000 pounds per year.

Commercial landings for most species were predominantly from one gear. The majority of Blueline Tilefish (89%), Goldface Tilefish (61%), and Yellowfin Grouper (56%) were landed by the longline fleet (Figure 2). The majority of Banded Rudderfish (94%), Gray Snapper (73%), and Scamp (54%) were landed by the handline fleet (Figure 2). For the remaining species, the percentage of landings was relatively similar between both longline and handline gear (range of 0.3% to 11% difference), with the exception of Warsaw Grouper where the landings from the "Other" fishery (37%) were similar to the landings using handline gear (39%).

3.2 COMMERCIAL DISCARDS AND BYCATCH

Self-reported discards from commercial logbooks were available from 2002-2014. Table 14 provides a summary of the percentage of trips with discards and the total volume of fish discarded. At the SEDAR 49 Data Workshop, a threshold of 2.5 percent of sets reporting discards was selected as a cut-off by the Total Removals Working Group as a criterion for justifying inclusion or exclusion of discards. Given this criteria, calculating discards could be recommended for the following species-gear combinations:

- Scamp commercial diving (mean of 2.8% over 10 years);
- Scamp handline fleet (mean of 4.3% over 13 years);
- Gray Snapper commercial diving (mean of 7.8% over 8 years); and
- Blueline Tilefish commercial longline (mean of 3.4 over 8 years)

These recommendations could change after further considering expert opinion related to discard mortality as occurred for Almaco Jack during SEDAR 49 (i.e., the percent of sets with discards exceeded 2.5% but the Total Removals Working Group decided that the mortality associated with discards was sufficiently low that it would lead to negligible total dead discards).

Observer reported discards were available from the bottom longline observer program and the reef fish observer program since 2006 and from the shrimp observer program since 1997 (Table 15). Species occurring as discards in more than 2.5% of sets were similar to those presented in the commercial logbooks and included Scamp (commercial bandit, handline, and longline fleets), Gray Snapper (commercial bandit, handline, and longline fleets), and Blueline Tilefish (commercial longline fleet) (Table 16).

Shrimp bycatch estimates for the species that have not yet been assessed could be estimated using the approach developed by Nichols (Nichols 2004a, b) and used in SEDAR 7 Gulf of Mexico Red Snapper assessment (SEDAR 2005a). A detailed description of methods and data sources is available in Isely (2016). However, initial evaluation of the shrimp observer data indicated that none of the 11 species were represented in the bycatch in sufficient numbers (>2,000 individuals in > 400 tows) to warrant formal estimation of bycatch in the shrimp fishery (Table 17).

4 RECREATIONAL FISHERY STATISTICS

Recreational fisheries statistics were available from the following sampling programs: 1) Marine Recreational Fisheries Statistics Survey (MRFSS) and the Marine Recreational Information Program (MRIP); 2) Southeast Region Headboat Survey (SRHS); 3) Texas Parks and Wildlife Department (TPWD); and the 4) Louisiana Creel Survey.

4.1 RECREATIONAL LANDINGS

MRFSS/MRIP provides a long time series of estimated catch-per-unit effort, total effort, landings, and discards for six two-month periods (waves) each year and covers coastal Gulf of Mexico states from Florida to Louisiana. The state of Texas was included in the survey from 1981-1985, although not all modes and waves were covered. MRFSS/MRIP provides estimates for three recreational fishing modes: shore-based fishing (SH), private and rental boat fishing (PR), and for-hire charter and guide fishing (CH). When the survey first began in Wave 2 (Mar/Apr), 1981, headboats were included in the for-hire mode, but were excluded after 1985 in the South Atlantic and Gulf of Mexico to avoid overlap with the Southeast Region Headboat Survey (SRHS).

The SRHS estimates annual landings and effort for headboats. The program started in the South Atlantic in 1972 and in the Gulf of Mexico in 1986. Mississippi headboats were added to the survey

in 2010. The South Atlantic and Gulf of Mexico Headboat Surveys generally include 70-80 vessels participating in each region annually.

The TPWD Sport-boat Angling Survey was implemented in May 1983 and samples fishing trips made by sport-boat anglers fishing in Texas marine waters. All sampling takes place at recreational boat access sites. The survey is designed to estimate landings and effort by high-use (May 15-November 20) and low-use seasons (November 21-May 14). TPWD surveys private and charterboat fishing trips.

The Louisiana Department of Wildlife and Fisheries (LDWF) began conducting the Louisiana Creel (LA Creel) survey program for monitoring marine recreational fishery catch and effort on January 1, 2014. LDWF samples private and charter modes of fishing.

4.1.1 SOUTHEAST REGIONAL HEADBOAT SURVEY (SRHS)

Landings from recreational headboats were available for most species for the majority of years between 1986 and 2015 (Table 18). However, the majority of species that have not yet been assessed were infrequently encountered by headboats, with total landings below 25,000 pounds for the entire time series (Table 18). Landings were highest for Gray Snapper (2.17 million pounds total) and lowest for Goldface Tilefish (177 pounds total). Average pounds ranged from 72,500 pounds per year for Gray Snapper to 18 pounds per year for Goldface Tilefish.

4.1.2 MARINE RECREATIONAL FISHERY STATISTICS SURVEY (MRFSS)

Recreational landings from MRFSS were available between 1981 and 2015 for all species except Goldface Tilefish (Table 19). Landings were highest for Gray Snapper (53.73 million pounds total) and lowest for Blackfin Snapper (1,725 pounds total).

Combined recreational landings (MRFSS + SRHS) ranged from nearly 1.40 million pounds per year for Gray Snapper to 2 pounds per year for Queen Snapper (Figure 4). Median landings for the majority of species were below 10,000 pounds per year.

Recreational landings for many of the species were predominantly from the private fishing mode (Figure 5). Exceptions were noted for Banded Rudderfish and Blackfin Snapper which were predominantly caught by the charterboat and headboat fishing modes, respectively. The percentage of landings for Scamp was relatively similar between the charterboat and private fishing modes.

4.2 RECREATIONAL DISCARDS

Recreational discards (in number) were available from MRFSS for all species except Goldface Tilefish for at least part of the time series between 1986 and 2015 (Table 20). Discards were highest

for Gray Snapper, with more than 100,000,000 fish discarded in total. Both Scamp and Banded Rudderfish were discarded on the order of ~500,000 fish overall.

5 COMPARISON OF COMMERCIAL VERSUS RECREATIONAL LANDINGS

The majority of species were more prevalent in commercial landings than recreational landings (Figure 6). Recreational landings exceeded commercial landings for Cubera Snapper, Gray Snapper, Silk Snapper, and Banded Rudderfish. Landings for Warsaw Grouper were similar in magnitude between commercial and recreational fisheries.

6 MEASURES OF TRENDS IN POPULATION ABUNDANCE

Multiple data sources were explored to determine the feasibility of developing a candidate index of abundance for each species. Fishery-independent sources which were evaluated included:

- 1. SEAMAP Summer Groundfish Survey
- 2. SEAMAP Ichthyoplankton Survey
- 3. NMFS Small Pelagics Survey
- 4. NMFS Bottom Longline Survey
- 5. NMFS Reef Fish Video Survey
- 6. NMFS Panama City Laboratory Trap and Camera Survey

Fishery-dependent data sources included:

- 1. Commercial Logbook
- 2. Marine Recreational Fishery Statistics Survey
- 3. Texas Parks and Wildlife Department Sport-boat Angling Survey
- 4. Southeast Regional Headboat Survey

6.1 FISHERY-INDEPENDENT SURVEYS

The SEAMAP Reef Fish and Panama City Video Surveys frequently encountered Scamp (Table 21) and Gray Snapper (Table 22), with mean percent occurrence ranging from 10% to 42% of survey sites. Survey catches of the remaining species were consistently low across data sources, with mean percent occurrences lower than 1% of survey sites for all surveys (Tables 23-31). Given the low occurrence of these species, the development of an index of abundance from a fishery-independent source seems unfeasible. For SEDAR 49, an index of abundance was attempted for Yellowmouth Grouper, a species which displayed a mean annual percent occurrence of 5% (Campbell et al. 2016). Ultimately, this index was not selected for consideration in the assessment due to concerns over data limitations such as the low percent occurrence and small sample size.

6.2 FISHERY-DEPENDENT SURVEYS

Overall, feasibility of developing indices of abundance from fishery-dependent sources was also limited, with annual indices of abundance potentially feasible for Scamp, Warsaw Grouper, Gray Snapper, Silk Snapper, and Blueline Tilefish using the Commercial logbook data (Table 32). All species that have not yet been assessed were relatively rare in the MRFSS, TPWD, and the SRHS surveys (Tables 33-34). Although indices using commercial sources appear feasible based on sample sizes, these data have not been scrutinized by subject matter experts for potential biases due to changes in fishing behavior or regulations. During SEDAR 49, indices of abundance derived from the commercial longline data for both Snowy Grouper and Speckled Hind were not recommended for consideration due to a shift in fisher distribution into deeper waters following the implementation of IFQs for snappers, grouper, and tilefish. An accompanying shift in selectivity towards larger individuals inhabiting deeper waters was suspected to impact the reliability of the trend in the resource.

7 LENGTH COMPOSITION

The SEFSC Trip Intercept Program (TIP) collects biological data including length measurements. The TIP data include length samples for all 11 species between 1984 and 2015 (Tables 35-36). Scamp and Gray Snapper had the largest number of length observations with annual means of 1,335 for the Commercial Longline and 1,113 for the Commercial Handline, respectively (Table 35). Species and gear combinations with mean annual observations greater than 100 included:

- Blueline Tilefish Commercial Longline;
- Queen Snapper Commercial Handline,
- Silk Snapper Commercial Handline; and
- Banded Rudderfish Commercial Handline.

Fewer annual observations were reported for both Blackfin Snapper (mean of 92 observations per year) and Warsaw Grouper (mean of 65 observations per year) for Commercial Handline. Low overall sample sizes (<25 mean observations per year) will likely limit the utility of length observations for Yellowfin Grouper, Cubera Snapper, and Goldface Tilefish (Table 35).

8 AGE COMPOSITION

Otoliths have been collected for all 11 species although the quantity varied substantially between species (Table 37). The largest collection of otoliths was evident for Scamp and Gray Snapper, with fewer than 5,000 otoliths collected overall for the remaining species. It is important to note that the availability of age data for assessment would require substantial resources and time to process samples and validate annual band increments to ensure accurate age assignments. Aging efforts are currently underway for the assessment of Gulf of Mexico Gray Snapper in 2017 (SEDAR 51) and a planned assessment for Gulf of Mexico Scamp in 2018.

9 OVERVIEW OF POTENTIAL MODELING APPROACHES

Available method types in the DLMtool range from simple catch-only models to length-based mortality estimator approaches which require length composition and life history parameters (Figure 1). At a minimum, catch-only methods similar to the status quo method currently implemented by the Gulf of Mexico Fishery Management Council can be employed for all 11 species (Table 38). Given current data limitations, catch-based methods appear to be the only feasible method type for Yellowfin Grouper, Cubera Snapper, Goldface Tilefish, and Banded Rudderfish due to their rare occurrence in surveys sampling both abundance and composition. However, it is possible that an index of abundance could be developed for Banded Rudderfish from the Panama City Video Survey, which just missed the cut-off criteria for index development.

Available data suggest that either an index of abundance and/or an index of mean length could be developed for many of the species that have not yet been assessed, which would enable the implementation of simple index-based or length-based methods described in Geromont and Butterworth (2014). However, it is important to note that the quality of both the index and length data must be vetted by subject matter experts to ensure these data are justifiable for consideration. Some of the candidate indices and length data may be deemed inappropriate for use due to significant changes in the fishery, as observed during SEDAR 49 for the commercial longline index developed for both deep-water grouper species.

The availability of both life history data and length composition may enable the mean length-based mortality estimator approach of Gedamke and Hoenig (2006) for the majority of the species that have not yet been assessed (Table 39). A method which links the estimate of F derived using the length-based mortality estimator to a recent catch history to produce an estimate of the overfishing limit has been developed by M. Bryan and colleagues at the Southeast Fisheries Science Center.

Although various methods may appear feasible based on data availability, their utility may change once the data quality is assessed by subject matter experts. More complex methods such as depletion-based (e.g., Depletion-Corrected Average Catch; MacCall 2009) methods remain unfeasible due to the lack of estimates of stock depletion. Given the widespread usage of such methods (e.g., Carruthers et al. 2014), it would be beneficial to investigate whether estimates of stock depletion could be developed from other sources (e.g., expert opinion).

10 SYNTHESIS OF AVAILABLE DATA BY SPECIES

10.1 Scamp

Of the managed species in the Gulf of Mexico Reef Fish FMP which have not yet undergone stock assessment, Scamp represent a more data-moderate species as evident by the availability and quantity of data including life history, removals, relative abundance, and size composition (Figure 7). Based on criteria used during SEDAR 49, estimating discards may be necessary to capture additional sources of removals. It appears possible to develop indices using both fishery-independent and -dependent data sources due to frequent encounters of Scamp. An average of 1,000 or more length observations per year exist for both the commercial handline and longline fisheries. Many method types in the DLMtool appear feasible for Scamp, although feasibility of

these methods may change after further evaluating available data and method assumptions. An age-structured benchmark assessment for Scamp is scheduled for 2018.

10.2 Warsaw Grouper

Warsaw Grouper are infrequently encountered in many of the data sources analyzed (Figure 8). Although an index of abundance may be developed from the commercial logbook data, it remains to be seen whether derived indices using either longline or handline gear will suffer from the same concerns as those for Snowy Grouper and Speckled Hind during SEDAR 49. Annual length composition is available for Warsaw Grouper, however, the data need to be analyzed to determine if sample sizes are appropriate for utilizing the mean length estimator or other length-based indicator methods.

10.3 Yellowfin Grouper

Very little data are available for Yellowfin Grouper from the data source analyzed (Figure 9). As a result, the lack of auxiliary data such as an index of abundance or size composition data will limit feasible methods to catch-only methods.

10.4 Blackfin Snapper

Similarly, very little data are available for Blackfin Snapper from the data sources analyzed (Figure 10). Although annual length composition is available for Blackfin Snapper, the data need to be analyzed to determine if the sample sizes are appropriate for utilizing the mean length estimator or other length-based indicator methods in addition to catch-only methods.

10.5 Cubera Snapper

Data are also very sparse for Cubera Snapper from all data sources analyzed (Figure 11). Without auxiliary data such as an index of abundance or size composition data, feasible methods are limited to catch-only methods.

10.6 Gray Snapper

Similar to Scamp, Gray Snapper are data-moderate due to the availability and quantity of data including life history, removals, relative abundance, and size composition (Figure 12). Based on criteria used during SEDAR 49, the estimation of discards may be required to capture additional sources of removals. Index development appears likely using both fishery-independent and - dependent data sources due to frequent encounters of Gray Snapper. An average of more than 1,000 length observations per year exists for the commercial handline fishery. Many method types

are feasible in the DLMtool for Gray Snapper, although feasibility of these methods may change after further evaluating available data and method assumptions. An age-structured benchmark assessment for Gulf of Mexico Gray Snapper is on the schedule for 2017 under SEDAR51.

10.7 Queen Snapper

Very little data are available for Queen Snapper from the data sources analyzed (Figure 13). Indexbased assessment methods are not feasible since no index of abundance appears possible due to a low percent of occurrences. However, because of the available length composition and life history information, other methods may be feasible such as the mean length estimator and other lengthbased indicator methods in addition to catch-only methods.

10.8 Silk Snapper

Data for Silk Snapper are infrequent in the data sources analyzed (Figure 14). Although developing an index of abundance from the commercial logbook data may be possible, changes in effort and targeting may lead to similar issues brought up for the Snowy Grouper and Speckled Hind indices which were not recommended for use during SEDAR 49. An average of more than 150 length observations per year for the commercial handline fishery means that the mean length estimator and/or other length-based indicator methods may be feasible.

10.9 Blueline Tilefish

Similar to Scamp and Gray Snapper, Blueline Tilefish are data-moderate due to the large quantity of data including life history, removals, relative abundance, and size composition (Figure 15). Based on criteria used during SEDAR 49, the estimation of discards may be required to capture additional sources of removals. Many method types are feasible in the DLMtool for Blueline Tilefish, although feasibility of these methods may change after further evaluating available data and method assumptions. Based on recent evidence of connectivity between the Gulf of Mexico and the Atlantic Coast, a joint stock assessment may be considered during SEDAR 50.

10.10 Goldface Tilefish

Goldface Tilefish is one of the most data-limited species of the managed species in the Gulf of Mexico Reef Fish FMP that have not been assessed (Figure 16). The absence of auxiliary data such as an index of abundance or size composition data will limit feasible methods to catch-only methods.

10.11 Banded Rudderfish

Banded Rudderfish is also one of the more data-limited species (Figure 17). However, if an index of abundance can be developed from the Panama City Video survey for the recent years, which fell just below the criteria, index-based methods could be feasible, in addition to the catch-based methods which are similar to the status quo. No life history information is available.

11 ACKNOWLEDGEMENTS

We are grateful for all the data collectors and providers, analysts, and researchers who provided the data discussed in this report.

12 LITERATURE CITED

- Adams, M. S., S. R. Sagarese, and A. B. Rios. 2016. Gulf of Mexico Data-Limited Species Life History Compilation. SEDAR49-DW-05, SEDAR, North Charleston, SC. 36 pp.
- Ault, J., J. Bohnsack, and G. A. Meester. 1998. A retrospective (1979–1996) multispecies assessment of coral reef fish stocks in the Florida Keys. Fishery Bulletin **96**:395-414.
- Ault, J. S., S. G. Smith, J. Luo, M. E. Monaco, and R. S. Appeldoorn. 2008. Length-based assessment of sustainability benchmarks for coral reef fishes in Puerto Rico. Environmental Conservation 35:221-231.
- Báez-Hidalgo, M., and L. Álvarez-Lajonchere. 1980. La pesquería de gerridos (Pisces: Gerreidae) en Tunas de Zaza, Cuba. Revista de investigaciones marinas **3**:117-152.
- Berkson, J., and J. T. Thorson. 2015. The determination of data-poor catch limits in the United States: is there a better way? ICES Journal of Marine Science **72**:237-242.
- Beverton, R., and S. Holt. 1956. A review of methods for estimating mortality rates in exploited fish populations, with special reference to sources of bias in catch sampling. Rapports et procès-verbaux des réunions **140**:67-83.
- Beverton, R. J. H., and S. J. Holt. 1957. On the Dynamics of Exploited Fish Populations, London, UK.
- Bullock, L. H., and G. B. Smith. 1991. Seabasses (Pisces: Serranidae). Florida Marine Research Institute, St. Petersburg, Florida. 206 pp.
- Burton, M. L. 2001. Age, growth, and mortality of gray snapper, *Lutjanus griseus*, from the east coast of Florida. Fishery Bulletin **99**:254-254.
- Campbell, M. D., K. R. Rademacher, P. Felts, B. Noble, J. Salisbury, J. Moser, and R. Caillouet. 2016. SEAMAP Reef Fish Video Survey: Relative Indices of Abundance of Yellowmouth Grouper. SEDAR49-DW-21, SEDAR, North Charleston, SC. 17 pp.
- Carruthers, T., L. Kell, D. Butterworth, M. Maunder, H. Geromont, C. Walters, M. McAllister,
 R. Hillary, P. Levontin, T. Kitakado, and C. Davies. 2015. Performance review of simple management procedures. ICES Journal of Marine Science 73:464-482.
- Carruthers, T. R., A. E. Punt, C. J. Walters, A. MacCall, M. K. McAllister, E. J. Dick, and J. Cope. 2014. Evaluating methods for setting catch limits in data-limited fisheries. Fisheries Research (Amsterdam) 153:48-68.
- Claro, R. 1983. Ecología y ciclo de vida de la rabirrubia, *Ocyurus chrysurus* (Bloch), en la plataforma cubana. II. Edad y crecimiento, estructura de poblaciones y pesquerias.

Reporte de investigacion del Instituto de Oceanologia, Academia de Ciencias de Cuba **19**:1-33.

- Claro, R., and Garcia-Arteaga. 1994. Crecimiento. Pages 321-402 *in* R. Claro, editor. Ecologia de los Peces Marinos de Cuba. Instituto de Oceanología Academia de Ciencias de Cuba, Centro de Investigaciones de Quintana Roo in Cuba, Quintana Roo, Mexico.
- Claro, R., and J. Garcia-Arteaga. 2001. Growth patterns of fishes of the Cuban shelf. Pages 149-178 in R. Claro, K. C. Kindeman, and L. R. Parenti, editors. Ecology of the Marine Fishes of Cuba. Smithonian Institution Press, Washington, DC., USA.
- Claro, R., K. C. Lindeman, and L. R. Parenti. 2001. Ecology of the marine fishes of Cuba. Smithsonian Institution Press, Washington DC.
- Cooper, W., A. Collins, J. O'Hop, and D. Addis. 2014. SEDAR 37: the 2013 Stock Assessment Report for Hogfish in the South Atlantic and Gulf of Mexico. Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL. 573 pp.
- Cushion, N. M. 2010. Growth, reproductive life-history traits and energy allocation in *Epinephelus guttatus* (red hind), *E. striatus* (Nassau grouper), and *Mycteroperca venenosa* (yellowfin grouper)(Family Serranidae, Subfamily Epinephelinae). Ph.D. dissertation. University of Miami, Coral Gables, FL.
- Domeier, M. L., C. Koenig, and F. Coleman. 1996. Reproductive Biology of the Gray Snapper (*Lutjanus griseus*), with Notes on Spawning for other Western Atlantic Snappers (Lutjanidae). Pages 189-201 in F. Arreguin-Sanchez, J. Munro, M. C. Balgos, and D. Pauly, editors. Biology, Fisheries, and Culture of Tropical Groupers and Snappers, ICLARM Conference Proceedings 48.
- Espinosa, L., and E. Pozo. 1982. Edad y crecimiento del sesi (*Lutjanus buccanella* [Cuvier, 1828]) en la plataforma nororiental de Cuba. Revista cubana de investigaciones pesqueras **9**:9-20.
- Farmer, N. A., R. P. Malinowski, M. F. McGovern, and P. J. Rubec. 2016. Stock complexes for fisheries management in the Gulf of Mexico. Marine and Coastal Fisheries **8**:177-201.
- Faunce, C. H., and J. E. Serafy. 2007. Nearshore habitat use by gray snapper (*Lutjanus griseus*) and bluestriped grunt (*Haemulon sciurus*): environmental gradients and ontogenetic shifts. Bulletin of Marine Science **80**:473-495.
- Fautin, D., P. Dalton, L. S. Incze, J.-A. C. Leong, C. Pautzke, A. Rosenberg, P. Sandifer, G. Sedberry, J. W. Tunnell Jr, and I. Abbott. 2010. An overview of marine biodiversity in United States waters. PLoS ONE 5:e11914.
- Fischer, A. J., M. S. Baker Jr, C. A. Wilson, and D. L. Nieland. 2005. Age, growth, mortality, and radiometric age validation of gray snapper (*Lutjanus griseus*) from Louisiana. Fishery Bulletin **103**:307-319.
- Frota, L., P. Costa, and A. Braga. 2004. Length-weight relationships of marine fishes from the central Brazilian coast. NAGA, WorldFish Center Quarterly **27**:20-26.
- García-Cagide, A., R. Claro, and B. V. Koshelev. 1994. Reproduction. Pages 187-262 *in* R. Claro, editor. Ecologia de los Peces Marinos de Cuba. Instituto de Oceanología Academia de Ciencias de Cuba, Centro de Investigaciones de Quintana Roo in Cuba, Quintana Roo, Mexico.
- García-Cagide, A., and T. García. 1996. Reproducción de *Mycteroperca bonaci* y *Mycteroperca venenosa*. Revista de Biologia Tropical **44**:771-780.

- Gedamke, T., and J. M. Hoenig. 2006. Estimating mortality from mean length data in nonequilibrium situations, with application to the assessment of goosefish. Transactions of the American Fisheries Society **135**:476-487.
- Geromont, H., and D. Butterworth. 2014. Generic management procedures for data-poor fisheries: forecasting with few data. ICES Journal of Marine Science **72**:251-261.
- GMFMC. 2011. Final Generic Annual Catch Limits/Accountability Measures Amendment for the Gulf of Mexico Fishery Management Council's Red Drum, Reef Fish, Shrimp, Coral and Coral Reefs, Fishery Management Plans (Including Environmental Impact Statement, Regulatory Impact Review, Regulatory Flexibility Analysis, Fishery Impact Statement). Gulf of Mexico Fishery Management Council, Tampa, FL. 378 pp.
- Gobert, B., A. Guillou, P. Murray, P. Berthou, M. D. O. Turcios, E. Lopez, P. Lorance, J. Huet, N. Diaz, and P. Gervain. 2005. Biology of queen snapper (*Etelis oculatus*: Lutjanidae) in the Caribbean. Fishery Bulletin 103:417-425.
- Gomez, G. J., R. A. Guzman, and L. A. Marcano. 1996. Biological aspects of the yellow eye snapper (*Lutjanus vivanus*) (Pisces: Lutjanidae) from the Los Hermanos Islands, eastern Venezuela. Pages 51-58 in F. Arreguin-Sanchez, J. Munro, M. C. Balgos, and D. Pauly, editors. Biology, Fisheries and Culture of Tropical Groupers and Snappers. ICLARM Conference Proceedings 48.
- Harris, P. J., D. M. Wyanski, and P. T. Powers Mikell. 2004. Age, growth, and reproductive biology of blueline tilefish along the southeastern coast of the United States, 1982–1999. Transactions of the American Fisheries Society 133:1190-1204.
- Harris, P. J., D. M. Wyanski, D. B. White, and J. L. Moore. 2002. Age, growth, and reproduction of scamp, *Mycteroperca phenax*, in the southwestern North Atlantic, 1979–1997. Bulletin of Marine Science **70**:113-132.
- Heyman, W., B. Kjerfve, R. Graham, K. Rhodes, and L. Garbutt. 2005. Spawning aggregations of *Lutjanus cyanopterus* (Cuvier) on the Belize Barrier Reef over a 6 year period. Journal of Fish Biology 67:83-101.
- Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin **82**:898-903.
- Isely, J. J. 2016. Shrimp fishery bycatch estimates for Gulf of Mexico data limited species. SEDAR49-DW-01, SEDAR, North Charleston, SC. 20 pp.
- Johnson, A. G., L. A. Collins, and C. Keim. 1994. Age-size structure of gray snapper from the Southeastern United States: a comparison of two methods of back-calculating size at age from otolith data. Proceedings of the Southeastern Association of Fish and Wildlife Agencies **48**:592-600.
- Kolmos, K. J., S. Falk, D. M. Wyanski, and M. A. Schmidtke. 2016. A preliminary assessment of reproductive parameters for Blueline Tilefish in Atlantic waters from Virginia to Florida. SEDAR50-DW03, SEDAR, North Charleston, SC. 15 pp.
- Lombardi-Carlson, L. A., M. Cook, H. Lyon, B. Barnett, and L. Bullock. 2012. A Description of Age, Growth, and Reproductive Life History Traits of Scamps from the Northern Gulf of Mexico. Marine and Coastal Fisheries 4:129-144.
- MacCall, A. D. 2009. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations. ICES Journal of Marine Science **66**:2267-2271.
- Manooch III, C., and R. Matheson III. 1981. Age, growth and mortality of gray snapper collected from Florida waters. Proceedings of the Southeastern Association of Fish and Wildlife Agencies **35**:331-344.

- Manooch III, C. S., and D. L. Mason. 1987. Age and growth of the Warsaw grouper and black grouper from the Southeast region of the United States. Northeast Gulf Science **9**:65-75.
- Martinez-Andrade, F. 2003. A comparison of life histories and ecological aspects among snappers (Pisces: Lutjanidae). Ph.D. dissertation. Louisiana State University, Baton Rouge, LA.
- Matheson III, R. H., G. R. Huntsman, and C. S. Manooch III. 1986. Age, growth, mortality, food and reproduction of the scamp, *Mycteroperca phenax*, collected off North Carolina and South Carolina. Bulletin of Marine Science **38**:300-312.
- Muller, R. G., M. D. Murphy, J. de Silva, and L. R. Barbieri. 2003. SEDAR 3: A stock assessment of yellowtail snapper, *Ocyurus chrysurus*, in the Southeast United States.
 FWC-FMRI Report: IHR 2003-10, Florida Fish and Wildlife Conservation Commission, Florida Marine Research Institute, St. Petersburg, FL. 330 pp.
- Munro, J. 1983. Chapter 17: Biological and ecological characteristics of Caribbean reef fishes. Pages 223-231 in J. Munro, editor. Caribbean Coral Reef Fishery Resources, ICLARM Studies and Reviews 7. International Center for Living Aquatic Resources Management, Manila, Philippines.
- Munro, J. 1999. Marine protected areas and the management of coral reef fisheries. 41 pp.
- Munro, J. J., and D. D. Williams. 1985. Assessment and management of coral reef fisheries: biological, environmental and socio-economic aspects. Proceedings of the 5th International Coral Reef Symposium **4**:545-581.
- Murray, P., L. Chinnery, and E. Moore. 1992. The recruitment of the queen snapper *Etelis oculatus* Val., into the St. Lucian fishery: Recruitment of fish and recruitment of fishermen. Proceedings of the Gulf and Caribbean Fisheries Institute **41**:297-303.
- Murray, P., and E. Moore. 1992. Some morphometric relationships in *Etelis oculatus* Valenciennes (queen snapper), landed in St. Lucia. Proceedings of the Gulf and Caribbean Fisheries Institute **41**:416-421.
- Murray, P., and J. D. Neilson. 2012. A method for the estimation of the von Bertalanffy growth rate parameter by direct examination of otolith microstructure. Proceedings of the Gulf and Caribbean Fisheries Institute **53**:516-525.
- Myers, R. A., N. Barrowman, R. Hilborn, and D. G. Kehler. 2002. Inferring Bayesian priors with limited direct data: applications to risk analysis. North American Journal of Fisheries Management **22**:351-364.
- Newman, D., J. Berkson, and L. Suatoni. 2015. Current methods for setting catch limits for datalimited fish stocks in the United States. Fisheries Research (Amsterdam) **164**:86-93.
- Nichols, S. 2004a. Some Bayesian approaches to estimation of shrimp fleet bycatch. SEDAR7-DW-3, NOAA Southeast Fisheries Science Center, Pascagoula Laboratory. 57 pp.
- Nichols, S. 2004b. Update for the Bayesian estimation of shrimp fleet bycatch. SEDAR7-DW-54, NOAA Southeast Fisheries Science Center, Pascagoula Laboratory. 10 pp.
- O'Hop, J., R. G. Muller, and D. T. Addis. 2015. SEDAR 15A Update: Stock Assessment of Mutton Snapper (*Lutjanus analis*) of the U.S. South Atlantic and Gulf of Mexico through 2013. FWC Report IHR2014-005, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL. 144 pp.
- O'Hop, J., M. Murphy, and D. Chagaris. 2012. SEDAR 27A: The 2012 stock assessment report for yellowtail snapper in the South Atlantic and Gulf of Mexico. Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL. 341 pp.

- Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Journal du Conseil / Conseil Permanent International pour l'Exploration de la Mer **39**:175-192.
- Pozo, E., and L. Espinosa. 1982. Estudio de la edad y crecimiento del pargo del alto (*Lutjanus vivanus*) en la plataforma suroriental de Cuba. Revista cubana de investigaciones pesqueras **7**:1-23.
- Pozo, E., L. Espinosa, and R. Quevedo. 1983. Edad y crecimiento del pargo del alto (*Lutjanus vivanus* [Cuvier, 1828]) en el talud de la plataforma nororiental de Cuba. Revista cubana de investigaciones pesqueras 8:30-40.
- Punt, A. E., D. S. Butterworth, C. L. Moor, J. A. De Oliveira, and M. Haddon. 2014. Management strategy evaluation: best practices. Fish and Fisheries.
- Ralston, S. 1987. Mortality rates of snappers and groupers. Pages 375-404 *in* J. J. Polovina and S. Ralston, editors. Tropical snappers and groupers: biology and fisheries management. Westview Press, Boulder, Colorado, USA.
- Randall, J. E. 1962. Tagging reef fishes in the Virgin Islands. Proceedings of the Gulf and Caribbean Fisheries Institute **14**:201-241.
- Rose, K. A., J. H. Cowan, K. O. Winemiller, R. A. Myers, and R. Hilborn. 2001. Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish and Fisheries 2:293-327.
- Ross, J. L., and G. R. Huntsman. 1982. Age, growth, and mortality of blueline tilefish from North Carolina and South Carolina. Transactions of the American Fisheries Society 111:585-592.
- Ross, J. L., and V. Merriner. 1983. Reproductive biology of the blueline tilefish, *Caulolatilus microps*, off North Carolina and South Carolina. Fishery Bulletin **81**:553-568.
- Schmidtke, M., and C. M. Jones. 2016. Description of age and growth for blueline tilefish, *Caulolatilus microps*, caught north and south of Cape Hatteras, NC. SEDAR50-DW07, SEDAR, North Charleston, SC. 17 pp.
- SEDAR. 2004. Stock Assessment of the Deepwater Snapper-Grouper Compex in the South Atlantic. SEDAR4-SAR1, SEDAR, Charleston, SC. 594 pp.
- SEDAR. 2005a. SEDAR 7: Gulf of Mexico Red Snapper Stock Assessment Report. SEDAR, Charleston, SC. 480 pp.
- SEDAR. 2005b. SEDAR 8: Caribbean Yellowtail Snapper Stock Assessment Report. SEDAR, Charleston, SC. 179 pp.
- SEDAR. 2007. SEDAR 14: Caribbean Yellowfin Grouper Stock Assessment Report. SEDAR, North Charleston, SC. 163 pp.
- SEDAR. 2008a. SEDAR 15: South Atlantic Greater Amberjack Stock Assessment Report 2. SEDAR, North Charleston, SC. 379 pp.
- SEDAR. 2008b. SEDAR 15A: South Atlantic and Gulf of Mexico Mutton Snapper Stock Assessment Report 3. SEDAR, North Charleston, SC. 410 pp.
- SEDAR. 2008c. SEDAR 17: South Atlantic Vermilion Snapper Stock Assessment Report. SEDAR, North Charleston, SC. 450 pp.
- SEDAR. 2010a. SEDAR 19: Gulf of Mexico and South Atlantic Black Grouper Stock Assessment Report. SEDAR, North Charleston, SC. 661 pp.
- SEDAR. 2010b. SEDAR 19: South Atlantic Red Grouper Stock Assessment Report. SEDAR, North Charleston, SC. 612 pp.

- SEDAR. 2010c. SEDAR 24: South Atlantic Red Snapper Stock Assessment Report. SEDAR, North Charleston, SC. 524 pp.
- SEDAR. 2011a. SEDAR 9 Update: An Alternative SSASPM Stock Assessment of Gulf of Mexico Vermilion Snapper that Incorporates the Recent Decline in Shrimp Effort. Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL. 104 pp.
- SEDAR. 2011b. SEDAR 22: Gulf of Mexico Tilefish Stock Assessment Report. SEDAR, North Charleston, SC. 467 pp.
- SEDAR. 2011c. SEDAR 22: Gulf of Mexico Yellowedge Grouper Stock Assessment Report. SEDAR, North Charleston, SC. 423 pp.
- SEDAR. 2011d. SEDAR 23: South Atlantic and Gulf of Mexico Goliath Grouper Stock Assessment Report. SEDAR, North Charleston, South Carolina. 248 pp.
- SEDAR. 2011e. SEDAR 25: South Atlantic Tilefish Stock Assessment Report. SEDAR, North Charleston, SC. 330 pp.
- SEDAR. 2012. SEDAR 17 Update: Stock Assessment of Vermilion Snapper off the Southeastern United States. Southeast Fisheries Science Center, National Marine Fisheries Service. 110 pp.
- SEDAR. 2013a. SEDAR 31: Gulf of Mexico Red Snapper Stock Assessment Report. SEDAR, North Charleston, SC. 1103 pp.
- SEDAR. 2013b. SEDAR 32: South Atlantic Blueline Tilefish Stock Assessment Report. SEDAR, North Charleston, SC. 378 pp.
- SEDAR. 2013c. SEDAR 36: South Atlantic Snowy Grouper Stock Assessment Report. SEDAR, North Charleston, SC. 146 pp.
- SEDAR. 2014a. SEDAR 10 Update: Stock Assessment of Gag off the Southeastern United States. Southeast Fisheries Science Center, Beaufort, NC. 112 pp.
- SEDAR. 2014b. SEDAR 31 Update: Stock Assessment of Red Snapper in the Gulf of Mexico 1872-2013 - With Provisional 2014 Landings. Southeast Fisheries Science Center, Miami, FL. 242 pp.
- SEDAR. 2014c. SEDAR 33: Gulf of Mexico Gag Stock Assessment Report. SEDAR, North Charleston, SC. 609 pp.
- SEDAR. 2014d. SEDAR 33: Gulf of Mexico Greater Amberjack Stock Assessment Report. SEDAR, North Charleston, SC. 499 pp.
- SEDAR. 2015a. SEDAR42: Gulf of Mexico Red Grouper Stock Assessment Report. SEDAR, North Charleston, SC. 612 pp.
- SEDAR. 2015b. SEDAR 42: Gulf of Mexico Red Grouper Data Workshop Report. SEDAR, North Charleston, SC. 286 pp.
- SEDAR. 2015c. SEDAR 43: Gulf of Mexico Gray Triggerfish Stock Assessment Report. SEDAR, North Charleston, SC. 193 pp.
- SEDAR. 2016a. SEDAR 45: Gulf of Mexico Vermilion Snapper Stock Assessment Report. SEDAR, North Charleston, SC. 188 pp.
- SEDAR. 2016b. SEDAR 47: Southeastern U.S. Goliath Grouper Stock Assessment Report. SEDAR, North Charleston, SC. 206 pp.
- SEDAR. 2016c. SEDAR 49: Gulf of Mexico Data-limited Species: Red Drum, Lane Snapper, Wenchman, Yellowmouth Grouper, Speckled Hind, Snowy Grouper, Almaco Jack, and Lesser Amberjack Stock Assessment Report. SEDAR, North Charleston, SC. 174 pp.

- SEDAR. 2016d. SEDAR 49: Gulf of Mexico Data-limited Species: Red Drum, Lane Snapper, Wenchman, Yellowmouth Grouper, Speckled Hind, Snowy Grouper, Almaco Jack, Lesser Amberjack Data Workshop Report. SEDAR, North Charleston, SC. 298 pp.
- SEFSC. 2009. Steepness of spawner-recruit relationships in reef fishes of the Southeastern U.S.: A prior distribution for possible use in stock assessment. SEDAR19-DW-06, Southeast Fisheries Science Center, Beaufort, NC. 10 pp.
- SEFSC. 2010. Spawner-recruit relationships of demersal marine fishes: Prior distribution of steepness for possible use in SEDAR stock assessments. SEDAR24-AW06, Southeast Fisheries Science Center, Beaufort, NC. 15 pp.
- Shertzer, K. W., and P. B. Conn. 2012. Spawner-recruit relationships of demersal marine fishes: prior distribution of steepness. Bulletin of Marine Science **88**:39-50.
- Sylvester, J., and A. Dammann. 1973. Contribution to the Biology of the Silk Snapper Lutjanus vivanus from the Virgin Islands. Transactions of the American Fisheries Society 102:843-845.
- Tabash, F., and L. Sierra. 1996. Assessment of *Lutjanus vivanus* and *Lutjanus buccanella* in the north Caribbean coast of Costa Rica. Naga, the ICLARM Quarterly **19**:48-51.
- Taylor, R. G., and R. H. McMichael. 1983. The wire fish-trap fisheries in Monroe and Collier counties, Florida. Florida Marine Research Publications 39, Miami. 19 pp.
- Thompson, R., and J. Munro. 1978. Aspects of the biology and ecology of Caribbean reef fishes: Serranidae (hinds and groupers). Journal of Fish Biology **12**:115-146.
- Tuz-Sulub, A., T. Brulé, K. Cervera-Cervera, and J. Espinoza-Mendez. 2006. Evidence for sexual dichromatisms in spawning aggregations of yellowfin grouper *Mycteroperca venenosa* and tiger grouper *Mycteroperca tigris* from the southern Gulf of Mexico. Journal of Fish Biology 69:1744-1755.

13 TABLES

Table 1. Assessment history (most recent) for managed species in the Reef Fish Fishery Management Plan of the Gulf of Mexico. – indicates no stock assessment for species. *Yellowmouth Grouper was considered for stock assessment but was excluded from analyses due to severe data limitations relating to species misidentification.

Family	Common name	Scientific name	Assessed
Balistidae	Gray Triggerfish	Balistes capriscus	SEDAR (2015c)
Carangidae	Greater Amberjack	Seriola dumerili	SEDAR (2014d)
-	Lesser Amberjack	Seriola fasciata	SEDAR (2016c)
	Almaco Jack	Seriola rivoliana	SEDAR (2016c)
	Banded Rudderfish	Seriola zonata	-
Labridae	Hogfish	Lachnolaimus maximus	Cooper et al. (2014)
Malacanthidae	Goldface Tilefish	Caulolatilus chrysops	-
	Blueline Tilefish	Caulolatilus microps	-
	Golden Tilefish	Lopholatilus chamaeleonticeps	SEDAR (2011b)
Serranidae	Speckled Hind	Epinephelus drummondhayi	SEDAR (2016c)
	Yellowedge Grouper	Hyporthodus flavolimbatus	SEDAR (2011c)
	Atlantic Goliath Grouper	Epinephelus itajara	SEDAR (2016b)
	Red Grouper	Epinephelus morio	SEDAR (2015b)
	Warsaw Grouper	Hyporthodus nigritus	-
	Snowy Grouper	Hyporthodus niveatus	SEDAR (2016c)
	Black Grouper	Mycteroperca bonaci	SEDAR (2010a)
	Yellowmouth Grouper	Mycteroperca interstitialis	SEDAR (2016c)*
	Gag	Mycteroperca microlepis	SEDAR (2014c)
	Scamp	Mycteroperca phenax	-
	Yellowfin Grouper	Mycteroperca venenosa	-
Lutjanidae	Queen Snapper	Etelis oculatus	-
	Mutton Snapper	Lutjanus analis	O'Hop et al. (2015)
	Blackfin Snapper	Lutjanus buccanella	-
	Northern Red Snapper	Lutjanus campechanus	SEDAR (2014b)
	Cubera Snapper	Lutjanus cyanopterus	-
	Grey Snapper	Lutjanus griseus	-
	Lane Snapper	Lutjanus synagris	SEDAR (2016c)
	Silk Snapper	Lutjanus vivanus	-
	Yellowtail Snapper	Ocyurus chrysurus	O'Hop et al. (2012)
	Wenchman	Pristipomoides aquilonaris	SEDAR (2016c)
	Vermilion Snapper	Rhomboplites aurorubens	SEDAR (2016a)

Species	Scientific Name	ITIS code	ITIS_COMMON_NAME
Scamp	Mycteroperca phenax	167763	SCAMP
Warsaw Grouper	Hyporthodus nigritus	167704	GROUPER, WARSAW
Yellowfin Grouper	Mycteroperca venenosa	167764	GROUPER, YELLOWFIN
Blackfin Snapper	Lutjanus buccanella	168852	SNAPPER, BLACKFIN
Cubera Snapper	Lutjanus cyanopterus	168847	SNAPPER, CUBERA
Gray Snapper	Lutjanus griseus	168848	SNAPPER, GRAY
Queen Snapper	Etelis oculatus	168902	SNAPPER, QUEEN
Silk Snapper	Lutjanus vivanus	168861	SNAPPER, SILK
Blueline Tilefish	Caulolatilus microps	168543	TILEFISH, BLUELINE
Goldface Tilefish	Caulolatilus chrysops	168544	TILEFISH, GOLDFACE
Banded Rudderfish	Seriola zonata	168693	RUDDERFISH, BANDED

Table 2. Managed species in the Reef Fish Fishery Management Plan that have not yet been assessed. For information on the ITIS code, see <u>http://www.itis.gov/</u>.

Table 3. Species removed from the Reef fish Fishery Management Plan in 2012 due to "small" or "nil" catches as documented in the Generic ACL/AM amendment (GMFMC 2011).

Species	Scientific Name	ITIS code	ITIS_COMMON_NAME
Nassau grouper	Epinephelus striatus	167706	GROUPER, NASSAU
Misty grouper	Epinephelus mystacinus	167703	GROUPER, MISTY
Rock hind	Epinephelus adscensionis	167696	HIND, ROCK
Red hind	Epinephelus guttatus	167700	HIND, RED
Dwarf sand perch	Diplectrum bivittatum	167796	PERCH, DWARF SAND
Sand perch	Diplectrum formosum	167793	PERCH, SAND
Schoolmaster	Lutjanus apodus	168850	SCHOOLMASTER
Dog snapper	Lutjanus jocu	168857	SNAPPER, DOG
Mahogany snapper	Lutjanus mahogoni	168858	SNAPPER, MAHOGANY
Anchor tilefish	Caulolatilus intermedius	168542	TILEFISH, ANCHOR
Blackline tilefish	Caulolatilus cyanops	168541	TILEFISH, BLACKLINE

Table 4. Description of how the overfishing limit (OFL) and acceptable biological catch (ABC)
are set for the managed species that have not yet been assessed. Units include gutted weight (gw)
and whole weight (ww) in pounds. SD = standard deviation. Additional details are available in
GMFMC (2011).

Species	Tier	Reference	OF	Ľ	ABC	Units
Species	Tier	Years	Method	Value	Method	Units
Scamp	3A	1995-2008	Mean + 2SD	443,982	Mean + 1 SD	gw
Warsaw Grouper	3B	1992-2008	Mean	138,313	Mean	gw
Yellowfin Grouper	3A	1995-2008	Mean + 2SD	17,018	Mean + 1 SD	gw
Blackfin Snapper	3A	1999-2008	Mean + 2SD	8,143	Mean + 1 SD	WW
Cubera Snapper	3A	1999-2008	Mean + 2SD	7,005	Mean + 1 SD	WW
Gray Snapper	3A	1999-2008	Mean + 2SD	2,877,034	Mean + 1 SD	WW
Queen Snapper	3A	1999-2008	Mean + 2SD	23,810	Mean + 1 SD	WW
Silk Snapper	3A	1999-2008	Mean + 2SD	112,646	Mean + 1 SD	ww
Blueline Tilefish	3A	1992-2008	Mean + 2SD	175,377	Mean + 1 SD	gw
Goldface Tilefish	3A	1992-2008	Mean + 2SD	62,364	Mean + 1 SD	gw
Banded Rudderfish	3A	2000-2008	Mean + 2SD	198,304	Mean + 1 SD	ww

Table 5. Summary of the availability (identified by an X) of life history information for the managed species that have not yet been assessed. – indicates no data available.

Species	Growth	Maturity	Length- Weight	Length- Length	Natural Mortality	Steepness
Scamp	Х	Х	Х	Х	Х	_
Warsaw Grouper	Х	Х	Х	_	Х	_
Yellowfin Grouper	Х	Х	Х	_	X	_
Blackfin Snapper	Х	_	Х	_	Х	_
Cubera Snapper	Х	Х	Х	Х	Х	_
Gray Snapper	Х	Х	Х	Х	Х	_
Queen Snapper	Х	_	Х	Х	_	_
Silk Snapper	Х	_	Х	_	Х	_
Blueline Tilefish	Х	Х	Х	Х	Х	Х
Goldface Tilefish	_	_	_	_	_	_
Banded Rudderfish	_	_	_	_	_	_

Table 6. von Bertalanffy growth parameters compiled through a literature review. L_{∞} is the asymptotic size parameter, k is the rate at which the growth curve approaches L_{∞} , t_0 is the theoretical size of the fish at age 0, t is the maximum age, sex represents male (M), female (F), or both sexes (A), and n is the sample size. Standard errors are given in parentheses where available. Possible length types in millimeters (mm) include total length (TL), fork length (FL), or unknown (UNK). -- indicates no information available.

Species	Location	$L\infty$	k	t_0	Length range	t	Sex	n	Reference
Grouper									
Warsaw		2394	0.054	-3.62	mm	41	А		Ault et al. (1998)
	Southeast US	2394	0.050	-3.61	mm TL	41	А		Manooch III and Mason (1987)
Scamp		1000	0.126	-1.36	mm	21	А		Ault et al. (1998)
	Southeast US	846	0.170	1.86	mm TL	30	А	2,573	Harris et al. (2002)
	Southeast US	897	0.130	2.57	mm TL	30	А	2,573	Harris et al. (2002)
	Southeast US	864	0.120	-3.15	mm TL		А		Harris et al. (2002)
	Southeast US	1114	0.050	-7.52	mm TL		А		Harris et al. (2002)
	Northern GOM	772	0.090	-4.40	109-890 mm FL	31	А	5,383	Lombardi-Carlson et al. (2012)
	South Atlantic	985	0.092	-2.45	mm FL	21	А		Matheson III et al. (1986)
Yellowfin		860	0.170	0.00	mm	15	А		Ault et al. (1998)
	Puerto Rico	895	0.086	0.00	mm	25	А		Ault et al. (2008)
	Bahamas	977	0.140	-1.50	mm TL	13	А	70	Cushion (2010)
	St. John	895	0.086		mm TL		А		Munro and Williams (1985)
			(0.04)						
	Jamaica	860	0.090		mm TL		А		Munro (1983)
	St. John	895	0.086		850 mm TL		А		Randall (1962)
			(0.04)						· · · ·
	Caribbean				1000 mm TL		А		SEDAR (2007)
	Jamaica	860	0.10-		mm TL		А		Thompson and Munro (1978)
			0.17						
	Southern GOM				390-920 mm TL		А		Tuz-Sulub et al. (2006)
	(Campeche)								
Snapper									
Queen	Caribbean	906			900 mm FL		А		Gobert et al. (2005)
	St. Lucia	1020	0.400	-0.29	mm TL		А		Murray and Moore (1992)
			1.087		UNK		А		Murray and Neilson (2012)
			0.621		UNK		А		Murray and Neilson (2012)
	St. Lucia	1032	0.610		310-920 mm TL	2.5	А		Murray et al. (1992)
Blackfin		730	0.084	-2.90	mm	9	A		Ault et al. (1998)
-	Puerto Rico	730	0.084	-2.90	mm	9	A		Ault et al. (2008)
	Cuba, SE	635	0.100	-2.05	mm FL		A		Pozo and Espinosa (1982)
		000	0.100						

Species	Location	$T\infty$	k	t0	L range	t	Sex	п	Reference
Blackfin	Cuba, NW	602	0.100	-3.16	mm FL		А		Espinosa and Pozo (1982)
(continued)	Jamaica	460	0.350		mm FL		А		Munro (1983)
	Jamaica	540	0.700		mm FL		А		Munro (1983)
	Caribbean (Costa	620	0.350	-0.04	mm		А		Tabash and Sierra (1996)
	Rica)								
Cubera		1200	0.160	-0.30	mm	20	А		Ault et al. (1998)
	Cuba	1033	0.125	-0.98	1004 mm UNK	24	А		Martinez-Andrade (2003)
	Synthesis	1289	0.137	-0.71	1171 mm UNK	22.7	А		Martinez-Andrade (2003)
Gray		722	0.136	-0.86	mm	10	А		Ault et al. (1998)
	Puerto Rico	722	0.136	-0.86	mm	28	А		Ault et al. (2008)
	Florida, North	717	0.170	-0.03	181-760 mm TL	24	А	519	Burton (2001)
	Florida, South	625	0.130	-1.33	167-618 mm TL	15	А	724	Burton (2001)
	Florida				167-760 mm TL	24	А	1,243	Burton (2001)
	Florida	768	0.150	-0.78	167-760 mm TL	24	F		Burton (2001)
	Florida	697	0.180	0.49	167-760 mm TL	24	Μ		Burton (2001)
	Cuba, SW	548	0.230	-1.06	mm FL		А		Claro (1983)
	Cuba, SE	513	0.240	-0.62	mm FL		А		Claro et al. (2001)
	Florida	1200	0.050	-0.29	mm FL		А		Claro et al. (2001)
	Florida	788	0.160	0.17	mm TL		А		Claro et al. (2001)
	Northern GOM (LA)	656	0.220	0.00	222-756 mm TL	28	А	718	Fischer et al. (2005)
	Northern GOM (LA)	657	0.210	0.00	254-756 mm TL	28	F		Fischer et al. (2005)
	Northern GOM (LA)	655	0.230	0.00	222-732 mm TL	28	Μ		Fischer et al. (2005)
	Southeast US/GOM	792	0.078	-3.90	136-764 mm TL	25	А	432	Johnson et al. (1994)
	Southeast US	890	0.100	-0.31	mm TL		А		Manooch III and Matheson II (1981)
	Florida (Florida Bay)	716	0.140	-0.96	692 mm UNK	21	А	0	Martinez-Andrade (2003)
	Synthesis	670	0.168	-0.70	651 mm UNK	17.4	А		Martinez-Andrade (2003)
	Jamaica	464	0.610		mm TL		А		Munro (1999)
Silk		781	0.092	-2.31	mm	9	А		Ault et al. (1998)
	Puerto Rico	781	0.092	-2.31	mm	9	А		Ault et al. (2008)
	Cuba, SE	757	0.100	-2.08	mm FL		А	688	Pozo and Espinosa (1982)
	Cuba	812	0.100		mm TL		А		Pozo and Espinosa (1982)
	Cuba, NE	729	0.090	-2.64	mm FL		А		Pozo et al. (1983)
	Caribbean (Costa	620	0.320	-0.04	mm		A		Tabash and Sierra (1996)
	Rica)		-						
Filefish									
Blueline	Mid-Atlantic	750	0.110	-5.45	396-784 mm TL	43	М	104	Harris et al. (2004); SEDAR (2004)

Species	Location	$L\infty$	k	t0	L range	t	Sex	п	Reference
Blueline (continued)	Mid-Atlantic	649	0.090	-7.58	333-711 mm TL	40	F	172	Harris et al. (2004); SEDAR (2004)
	Mid-Atlantic	716	0.070	-12.54	385-734 mm TL	40	М	201	Harris et al. (2004); SEDAR (2004)
	Mid-Atlantic	626	0.120	-5.57	336-702 mm TL	43	F	219	Harris et al. (2004); SEDAR (2004)
	Mid-Atlantic	651	0.080	-11.77	333-734 mm TL	40	А	400	Harris et al. (2004); SEDAR (2004)
	Mid-Atlantic	643	0.150	-3.88	336-784 mm TL	43	А	406	Harris et al. (2004); SEDAR (2004)
	Mid-Atlantic	814	0.137	1.03	270-780 mm TL	15	А	201	Ross and Huntsman (1982); SEDAR (2004)
	South Atlantic	839	0.110	-2.31	200-900 mm FL	40	А	1,737	Schmidtke and Jones (2016)
	South Atlantic	936	0.090	-1.76	200-900 mm FL	40	А	1,737	Schmidtke and Jones (2016)
	South Atlantic	711	0.260	-0.85	300-800 mm FL	38	А	2,627	Schmidtke and Jones (2016)
	South Atlantic	739	0.190	-1.85	300-800 mm FL	38	А	2,627	Schmidtke and Jones (2016)
	Mid & Southeast US	621.3 (4.29)	0.282 (0.12)	-1.2473 (0.18)	250-900 mm FL	40	А		SEDAR (2013b)
	Mid & Southeast US	600.3 (2.54)	0.330 (0.01)	-0.50	250-900 mm FL	43	А		SEDAR (2013b)
	Mid & Southeast US	609.3 (3.40)	0.281 (0.02)	-1.112 (0.15)	250-900 mm FL	43	А		SEDAR (2013b)
	Mid & Southeast US	615.7 (10.30)	(0.02) (0.111) (0.01)	-5.08 (0.01)	250-800 mm FL	43	F		SEDAR (2013b)
	Mid & Southeast US	(10.50) 554.9 (4.35)	(0.01) 0.258 (0.01)	-0.50	250-900 mm FL	43	F		SEDAR (2013b)

Table 7. Maturity parameters compiled through a literature review. Parameters obtained through statistical model estimation are represented by t_{50} , L_{50} , and L_{95} , which represent the age at 50% maturity, the length at 50% maturity, and the length at 95% maturity, respectively. Approximation of size at maturity is given by L_m and approximation of size at full maturity is given by L_{100} . Sample size for the entire study is given by n, sex represents male (M), female (F), both sexes (A), or transitional (T), and sample size for each individual sex is given by m. Possible length types in millimeters (mm) include total length (TL), fork length (FL), standard length (SL) or unknown (UNK). -- indicates no information available.

Species	Sampling location	<i>t</i> ₅₀	L_{50}	L_{95}	L_m	L_{100}	Length range	t range	n	Sex	т	Reference
Grouper												
Warsaw	Southeast US	9								F		Manooch III and Mason (1987)
Scamp	Southeast US	1.72	374				mm TL			F		Harris et al. (2002)
-	Southeast US	1.28	353				mm TL			F		Harris et al. (2002)
	Northern GOM	2	332				109-878 mm FL	1-19	2,481	F	1,427	Lombardi-Carlson et al. (2012)
	South Atlantic											Matheson III et al. (1986)
	Eastern GOM					350	250-700 mm SL		2,646	F		Bullock and Smith (1991)
Yellowfin	Puerto Rico				529		mm			F		Ault et al. (2008)
	Bahamas	4.66	561				300-871 mm TL	8	323	F		Cushion (2010)
	Bahamas						716-871 mm TL	9	323	Т		Cushion (2010)
	Bahamas						716940 mm TL		323	М		Cushion (2010)
	Cuba						250-850 mm TL		135	F		García-Cagide and García (1996)
	Cuba						mm TL		135	Μ		García-Cagide and García (1996)
	Jamaica				510		mm TL			F		García-Cagide et al. (1994)
	Florida Keys				540		mm SL			Μ		Taylor and McMichael (1983)
	Southern GOM (Campeche)						430-853 mm TL		363	F	273	Tuz-Sulub et al. (2006)
	Southern GOM (Campeche)						390-920 mm TL		363	М	90	Tuz-Sulub et al. (2006)
Snapper												
Queen	Caribbean						mm		309	F	191	Gobert et al. (2005)
C C	Caribbean						mm		309	М	118	Gobert et al. (2005)
Cubera	Belize						UNK			А		Heyman et al. (2005)
	Synthesis				654		mm UNK			А		Martinez-Andrade (2003)
	Cuba				536		mm UNK			А		Martinez-Andrade (2003)
Gray	Puerto Rico				230		mm UNK			F		Ault et al. (2008)

Species	Sampling location	<i>t</i> ₅₀	L_{50}	L_{95}	L_m	L_{100}	Length range	t range	п	Sex	т	Reference
Gray	Florida (Key West)				100	240	mm SL		80	F		Domeier et al. (1996)
(continued)	Florida (Key West)				300	240	mm SL		80	F		Domeier et al. (1996)
	Florida (Key West)				100	240	mm SL		80	Μ		Domeier et al. (1996)
	Florida (Key West)				300	240	mm SL		80	Μ		Domeier et al. (1996)
					195		mm SL					Faunce and Serafy (2007)
	Puerto Rico				304		mm UNK			F		Ault et al. (2008)
	Eastern Venezuela		540				260-750 mm TL		592	F	292	Gomez et al. (1996)
	Eastern Venezuela		565				265-760 mm TL		592	Μ	300	Gomez et al. (1996)
Tilefish												
Blueline	Mid-Atlantic				500- 525	600	156-800 mm TL	3-15	371	М	195	Ross and Merriner (1983); SEDAR (2004)
	Mid-Atlantic				426- 450	500- 526	200-775 mm TL	3-15	371	F	176	Ross and Merriner (1983); SEDAR (2004)
	Mid-Atlantic					400+	330-780 mm TL		1,451	М	480	Harris et al. (2004); SEDAR (2004)
	Mid-Atlantic				326- 350	351- 375	330-780 mm TL		1,451	F	616	Harris et al. (2004); SEDAR (2004)
	Mid-Atlantic	3			340	360	330-710 mm TL	2		F	702	SEDAR (2013b)
	Mid-Atlantic	< 3			380	380	380-780 mm TL	3		М	517	SEDAR (2013b)
	Mid & South Atlantic	1.71	305				300-800 mm FL	2-43	2,386	F	1,281	Kolmos et al. (2016)

Table 8. Length (L)-weight (W) parameters compiled through a literature review. Equation form and associated parameters (a, b) are given, with standard errors in parentheses where available, n is the sample size, and sex represents male (M), female (F), or both sexes (A). Possible length types in millimeters (mm) include total length (TL), fork length (FL), standard length (SL) or unknown (UNK). -- indicates no information available.

Species	Sampling location	Equation form	а	b	Length range	n	Sex	Reference
Grouper								
Warsaw		$W = a * L \wedge b$	2.09E-05	2.98	mm UNK			Ault et al. (1998)
	Southeast US	$W = a * TL \wedge b$	2.09E-05	2.98	mm TL	124	А	Manooch III and Mason (1987)
Scamp		$W = a * L \wedge b$	2.02E-05	2.99	mm			Ault et al. (1998)
	Eastern GOM	$W = a * SL \wedge b$	1.10E-07	2.74	75-650 mm SL	1,216	А	Bullock and Smith (1991)
	Eastern GOM	$W = a * FL \wedge b$	9.00E-09	3.07	mm FL	1,092	А	Bullock and Smith (1991)
	South Atlantic Bight	W= a * FL ^ b	2.46E-08	2.91	mm FL	693	А	Matheson III et al. (1986)
Yellowfin		$W = a * L \wedge b$	2.82E-05	2.98	mm UNK			Ault et al. (1998)
	Cuba, SW	$W = a * TL \wedge b$	1.32E-02	3.04	25-92 cm TL	54		Claro and Garcia-Arteaga (1994)
								Claro and Garcia-Arteaga (1994)
	Cuba, NE	$W = a * TL \wedge b$	6.20E-03	3.25	29-57 cm TL	8		Claro and Garcia-Arteaga (2001)
	Bahamas	$\log W = a + b * \log TL$	-3.17	2.75	mm TL	170	А	Cushion (2010)
	Cuba, SW	$W = a * TL \wedge b$	2.82E-05	2.98	310-690 mm TL	36		Claro et al. (2001)
Snapper								
Queen	Caribbean	W=a * FL ^ b	0.02748	2.83	cm FL	499	А	Gobert et al. (2005)
	Caribbean	W=a * TL ^ b	0.03006	2.81	cm FL	487	А	Gobert et al. (2005)
	St. Lucia	$\ln W = a + b * \ln(TL)$	-9.925	2.72	mm TL	62	Α	Murray and Moore (1992)
	St. Lucia	$\ln W = a + b * \ln(FL)$	-9.67	2.77	mm FL	62	Α	Murray and Moore (1992)
Blackfin		$W = a * L \wedge b$	7.40E-06	2.97	mm UNK			Ault et al. (1998)
	Cuba, SE	W=a * L^ b	1.75E-05	3.02	19-74 cm FL		Α	Espinosa and Pozo (1982)
	Caribbean (Costa	W=a * L^ b	1.42E-05	2.89	cm UNK	200	А	Tabash and Sierra (1996)
	Rica)							
Cubera		$W = a * L \wedge b$	1.32E-05	3.06	mm UNK			Ault et al. (1998)
	Cuba, SW	$W = a * FL \wedge b$	9.26E-01	2.88	33-109 cm FL	107	А	Claro and Garcia-Arteaga (1994)
	Cuba, NE	$W = a * FL \wedge b$	9.80E-03	3.12	25-99 cm FL	28	А	Claro and Garcia-Arteaga (2001)
Gray		$W = a * L \wedge b$	3.05E-05	2.88	mm UNK			Ault et al. (1998)
•	Cuba, SE	$W = a * FL \wedge b$	1.03E-04	2.68	15-50 cm FL	769	F	Báez-Hidalgo and Álvarez-
								Lajonchere (1980)
	Cuba, SE	$W = a * FL \wedge b$	1.70E-05	3.00	15-43 cm FL	519	Μ	Báez-Hidalgo and Álvarez-
								Lajonchere (1980)
	Florida	$W = a * TL \wedge b$	7.22E-09	3.11	167-760 mm TL	10,705	А	Burton (2001)
	Florida	$W = a * TL \wedge b$	7.13E-09	3.11	mm TL	10,705	М	Burton (2001)
	Florida	$W = a * TL \wedge b$	6.95E-09	3.10	mm TL	10,705	F	Burton (2001)

Species	Sampling location	Equation form	а	b	Length range	n	Sex	Reference
Gray	Florida, North	$W = a * TL \wedge b$	8.40E-09	3.08	181-760 mm TL	10,705	А	Burton (2001)
(continued)	Florida, South	$W = a * TL \wedge b$	5.40E-09	3.15	167-618 mm TL	10,705	А	Burton (2001)
	Cuba, NE	$W = a * FL \wedge b$	1.66E-02	2.96	11-40 cm FL	25	А	Claro and Garcia-Arteaga (2001)
	Cuba, SW	$W = a * FL \wedge b$	2.07E-02	2.91	6-52 cm TL	956	Α	Claro (1983)
	Florida (Key West)	W= a * SL ^ b	0.0281	3.00	cm SL	1,026	А	Domeier et al. (1996)
	Northern GOM (LA)	$W = a * TL \wedge b$	2.04E-05	2.93	222-732 mm TL	441	М	Fischer et al. (2005)
	Northern GOM (LA)	$W = a * TL \wedge b$	5.50E-05	2.77	254-756 mm TL	387	F	Fischer et al. (2005)
	Northern GOM (LA)	$W = a * TL \wedge b$	3.31E-05	2.85	222-756 mm TL	933	А	Fischer et al. (2005)
	Cuba, SW	$W = a * FL \wedge b$	1.82E-02	2.94	15-56 cm FL	1,499	А	Claro et al. (2001)
Silk		$W = a * L \wedge b$	1.00E-05	3.10	mm UNK			Ault et al. (1998)
	Central Brazil	W=a * (TL) ^ b	0.0169	2.95	41.5-768 cm TL	65	Α	Frota et al. (2004)
	Central Brazil	W=a * (SL) ^ b	0.0232	3.05	32-56 cm SL	34	Α	Frota et al. (2004)
	Eastern Venezuela	W=a * (TL) ^ b	1.00E-05	3.02	260-760 mm TL	592	Α	Gomez et al. (1996)
	SE Cuba	W=a * (FL) ^ b	1.66E-05	3.03	19-56 mm FL		Α	Pozo and Espinosa (1982)
	US Virgin Islands,	$\log W = a + b \log FL$	-3.47058	2.41	33-67 cm FL	35	А	Sylvester and Dammann (1973)
	Anegada, Virgin							-
	Gorda							
	Caribbean (Costa	W=a * L ^ b	9.00E-05	2.91	180-50 mm UNK	200	А	Tabash and Sierra (1996)
	Rica)							
Tilefish								
Blueline	Mid-Atlantic	$\log W = a + b * \log TL$	-12.286	3.14	mm TL	601	А	Ross and Huntsman (1982)
	Mid-Atlantic	$\log W = a + b * \log TL$	-11.495	3.02	mm TL	120	F	Ross and Huntsman (1982)
	Mid-Atlantic	$\log W = a + b * \log TL$	-10.498	3.30	mm TL	113	М	Ross and Huntsman (1982)
	Mid-Atlantic	$W = a * TL \wedge b$	1.66E-05	2.94	333-784 mm TL	1,306	А	SEDAR (2004)
			(2.48E-06)	(0.02)				
	Mid-Atlantic	$W = a * TL \wedge b$	2.43E-05	2.88	385-784 mm TL	448	М	SEDAR (2004)
			(6.56E-06)	(0.04)				
	Mid-Atlantic	$W = a * TL \wedge b$	1.08E-05	3.01	333-711 mm TL	662	F	SEDAR (2004)
			(3.03E-06)	(0.04)				
	Mid-Atlantic	$W = a * FL \wedge b$	1.24E-05	3.01	312-725 mm FL	732	А	SEDAR (2004)
			(2.14E-06)	(0.03)				
	Mid-Atlantic	$W = a * FL \wedge b$	5.52E-06	3.14	364-725 mm FL	345	Μ	SEDAR (2004)
			(1.38E-06)	(0.04)				× ,
	Mid-Atlantic	$W = a * FL \wedge b$	4.75E-06	3.17	312-661 mm FL	304	F	SEDAR (2004)
			(1.33E-06)	(0.04)				× /
	Mid-Atlantic	$W = a * SL \wedge b$	5.47E-05	2.84	262-640 mm SL	1,156	А	SEDAR (2004)
			(8.38E-06)	(0.03)		-, 0		
	Mid-Atlantic	$W = a * SL \wedge b$	6.11E-05	2.82	308-640 mm SL	449	Μ	SEDAR (2004)
					2.2.2 0.10 1111 51			
			(1.50E-05)	(0.04)				

Species	Sampling location	Equation form	а	b	Length range	n	Sex	Reference
Blueline	Mid-Atlantic	$W = a * SL \wedge b$	2.87E-06	3.32	262-586 mm SL	582	F	SEDAR (2004)
(continued)			(9.10E-07)	(0.05)				
	Mid & South Atlantic	$\log W = a + b * \log FL$	-18.85 (0.10)	3.11 (0.02)	220-833 mm FL	1,113	А	SEDAR (2013b)
	Mid & South Atlantic	$\log W = a + b * \log TL$	-18.76 (0.10)	3.07 (0.02)	267-884 mm TL	1,708	А	SEDAR (2013b)
	Mid & South Atlantic	logW = a + b * logSL	-17.11 (0.12)	2.90 (0.02)	262-650 mm SL	1,302	А	SEDAR (2013b)

Species	Sampling location	Equation form	a	b	Length range	Sex	n	Reference
Grouper								
Scamp	South Atlantic Bight	FL = a + b * TL	23.63	0.870	mm UNK	А	33	Matheson III et al. (1986
Snapper								
Queen	Caribbean	TL = a + b * FL	2.75	1.164	cm UNK	А	842	Gobert et al. (2005)
	Caribbean	FL = a + b * TL	-1.00	0.837	cm UNK	А	842	Gobert et al. (2005)
	St. Lucia	FL = a + b * TL	-9.86	1.159	mm UNK	А	394	Murray and Moore (1992
Cubera	Synthesis	TL = a + b * FL	0.00	1.023	mm UNK	А		Martinez-Andrade (2003)
	Synthesis	TL = a + b * SL	0.00	1.178	mm UNK	А		Martinez-Andrade (2003)
Gray Tilefish	Northern GOM (LA)	TL = a + b * FL	8.35	1.048	222-756 mm TL	А	275	Fischer et al. (2005)
Blueline	Mid-Atlantic	SL = a + b * TL	-19.21	0.864	mm UNK	•		Ross and Huntsman
Биенне	Mid-Atlantic	SL = a + 0 + 1L	-19.21	0.804	IIIIII UNK	А		(1982)
	Mid-Atlantic	TL = a + b * FL	-2.28 (1.10)	1.068 (0.002)	312-725 mm FL	А	820	SEDAR (2004)
	Mid-Atlantic	TL = a + b * FL	-2.61 (1.67)	1.067 (0.003)	364-725 mm FL	Μ	375	SEDAR (2004)
	Mid-Atlantic	TL = a + b * FL	-2.82 (1.79)	1.069 (0.004)	312-661 mm FL	F	334	SEDAR (2004)
	Mid-Atlantic	TL = a + b * SL	22.19 (210)	1.178 (0.050)	262-640 mm SL	А	1,239	SEDAR (2004)
	Mid-Atlantic	TL = a + b * SL	23.97 (3.29)	1.177 (0.007)	308-640 mm SL	Μ	480	SEDAR (2004)
	Mid-Atlantic	TL = a + b * SL	24.38 (3.58)	1.168 (0.008)	262-586 mm SL	F	580	SEDAR (2004)
	Mid-Atlantic	FL = a + b * TL	4.09 (1.12)	0.933 (0.002)	333-775 mm TL	А	821	SEDAR (2004)
	Mid-Atlantic	FL = a + b * TL	4.15 (1.55)	0.934 (0.003)	385-775 mm TL	Μ	375	SEDAR (2004)
	Mid-Atlantic	FL = a + b * TL	5.76 (2.35)	0.929 (0.005)	333-711 mm TL	F	337	SEDAR (2004)
	Mid-Atlantic	FL = a + b * SL	28.09 (2.12)	1.092 (0.005)	262-633 mm SL	А	810	SEDAR (2004)
	Mid-Atlantic	FL = a + b * SL	30.02 (3.30)	1.090 (0.007)	308-633 mm SL	Μ	375	SEDAR (2004)
	Mid-Atlantic	FL = a + b * SL	30.14 (3.72)	1.083 (0.009)	262-586 mm SL	F	305	SEDAR (2004)
	Mid-Atlantic	SL = a + b * TL	-11.15 (1.76)	0.836 (0.003)	333-778 mm TL	А	1,258	SEDAR (2004)
	Mid-Atlantic	SL = a + b * TL	-12.36 (2.86)	0.836 (0.005)	385-784 mm TL	Μ	481	SEDAR (2004)
	Mid-Atlantic	SL = a + b * TL	-10.94 (2.75)	0.837 (0.005)	333-711 mm TL	F	611	SEDAR (2004)
	Mid-Atlantic	SL = a + b * FL	-17.58 (2.10)	0.900 (0.004)	312-725 mm FL	А	818	SEDAR (2004)
	Mid-Atlantic	SL = a + b * FL	-19.77 (3.14)	0.902 (0.006)	364-725 mm TL	Μ	376	SEDAR (2004)
	Mid-Atlantic	SL = a + b * FL			mm FL	F		SEDAR (2004)
	Southeast US	FL = a + b * TL	1.32 (0.88)	0.940 (0.002)	267-884 mm TL	А	1,335	SEDAR (2013b)
	Southeast US	FL = a + b * SL	28.28 (1.69)	1.090 (0.004)	262-672 mm SL	А	1,074	SEDAR (2013b)
	Southeast US	TL = a + b * FL	0.66 (0.93)	1.060 (0.002)	220-833 mm FL	А	1,335	SEDAR (2013b)
	Southeast US	TL = a + b * SL	25.22 (1.91)	1.170 (0.004)	262-672 mm SL	А	1,523	SEDAR (2013b)
	Southeast US	TL = a + b * FL			200-900 mm FL	А	2,277	Schmidtke and Jones (2016)

Table 9. Length-length parameters compiled through a literature review. Parameters are as defined in the Table 7 caption.

Species	Sampling location	Ζ	М	F	Mortality estimation method	t	Sex	п	Reference
Grouper									
Warsaw			0.08				А		Ault et al. (1998)
Scamp			0.14				А		Ault et al. (1998)
Yellowfin			0.18				А		Ault et al. (1998)
	Puerto Rico	0.22	0.12	0.10			А		Ault et al. (2008)
	Jamaica		0.42		Beverton and Holt (1956)		А		Munro and Williams (1985)
	Jamaica		0.23- 0.61		Beverton and Holt (1956)		А		Thompson and Munro (1978)
Snapper									
Queen	St. Lucia	1.87			length converted catch curve, ELEFAN		Α		Murray and Moore (1992)
Blackfin			0.23				А		Ault et al. (1998)
	Caribbean (Costa Rica)	1.19	0.73	0.46	Electronic LEngth Frequency ANalysis (ELEFAN) IV		А		Tabash and Sierra (1996)
Cubera			0.15				А		Ault et al. (1998)
	Synthesis		0.31		averaging existing parameters		А		Martinez-Andrade (2003)
	Cuba		0.46				А		Martinez-Andrade (2003)
Gray			0.30				А		Ault et al. (1998)
•	Puerto Rico	0.54	0.11	0.43			А		Ault et al. (2008)
	Florida, North		0.18		Hoenig (1983)		А		Burton (2001)
	Florida, South		0.29		Hoenig (1983)		А		Burton (2001)
	Florida, North		0.33		Hoenig (1983) (corrected for sample size)		А		Burton (2001)
	Florida, South		0.35		Hoenig (1983) (corrected for sample size)		А		Burton (2001)
	Florida, North		0.43		Pauly (1980)		А		Burton (2001)
	Florida, South		0.38		Pauly (1980)		A		Burton (2001)
	Florida, North		0.37		Ralston (1987) (linear regression)		А		Burton (2001)
	Florida, South		0.29		Ralston (1987) (linear regression)		А		Burton (2001)
	Florida, North	0.35			catch curves		A		Burton (2001)
	Florida, South	0.94			catch curves		A		Burton (2001)
	Northern GOM (LA)	0.18			catch curve	28	A		Fischer et al. (2005)
	Northern GOM (LA)		0.15		Hoenig (1983)		A		Fischer et al. (2005)
	Northern GOM (LA)		0.30		Hoenig (1983) (corrected for sample size)		А		Fischer et al. (2005)
	Northern GOM (LA)		0.40		Ralston (1987) (linear regression)		А		Fischer et al. (2005)
	Northern GOM (LA)		0.51		Pauly (1980)		A		Fischer et al. (2005)

Table 10. Total (Z), natural (M), and fishing (F) mortality estimates compiled through a literature review. Estimation method is given, as well as age (t) ranges where available, sex represents both male and female (A), and n is the sample size.

Species	Sampling location	Ζ	М	F	Mortality estimation method	t	Sex	п	Reference
Silk			0.23				А		Ault et al. (1998)
(continued)	Puerto Rico	0.59	0.33	0.26			А		Ault et al. (2008)
	Caribbean (Costa Rica)	1.26	0.86	0.30	Electronic LEngth Frequency ANalysis (ELEFAN) IV		А		Tabash and Sierra (1996)
Tilefish									
Blueline	Mid-Atlantic	0.22	0.30		catch curve; M - using Hoenig (1983) for fish regression	15	А	283	Ross and Huntsman (1982)
	Mid-Atlantic		0.11		Hoenig (1983) for fish regression	42	А	406	SEDAR (2004); data from Harris et al. (2004)
	Mid-Atlantic		0.11		Hoenig (1983) for fish regression	40	А	400	SEDAR (2004); data from Harris et al. (2004)
	Mid-Atlantic		0.11		Hoenig (1983) for fish regression	42	А	923	SEDAR (2004); data from Harris et al. (2004)

Table 11. Summary of steepness (*h*) and recruitment variability (SigmaR) used in previous assessments for groupers, snappers, tilefish, and amberjacks. Regions include South Atlantic (SA), Gulf of Mexico (GOM), the southeast U.S. (SE US), and the U.S. Caribbean (Cari). Type identifies whether steepness was calculated (Calc), estimated (Est), or fixed (Fix). -- indicates no data available. Note that all steepness formulations correspond to a Beverton-Holt stock-recruitment curve (Beverton and Holt 1957).

Species	Region	Туре	h	Other runs	h range	sigmaR	Notes	Reference
Grouper								
Goliath	SA/GOM	Calc	0.85		0.70-0.99			SEDAR (2011d)
(Epinephelus itajara)								
Red	GOM	Est	0.80	0.65, 0.98	0.40-0.99	0.97	Prior value of 0.83 from Shertzer	SEDAR (2015a)
(Epinephelus morio)						(0.12	and Conn (2012)	
						SD)		
	SA	Est	0.91		0.76-0.97	0.41	Prior value of 0.72 from SEFSC	SEDAR (2010b)
							(2009)	
Snowy	SA	Fix	0.84	0.70, 0.74,	0.32-0.99	0.55	Fixed at 0.84 from Shertzer and	SEDAR (2013c)
(Hyporthodus niveatus)				0.94			Conn (2012)	
Yellowedge	GOM	Est	0.95	0.60, 0.65,	0.30 -	0.2	Prior value of 0.7 from Shertzer	SEDAR (2011c)
(Hyporthodus				0.70	0.99		and Conn (2012)	
flavolimbatus)								
Black	SA/GOM	Est	0.84	0.6, 0.65,	0.60-0.85			SEDAR (2010a)
(Mycteroperca bonaci)				0.7, 0.75,				
				0.8, 0.85,				
				0.9, 0.95				
Gag	GOM	Est	0.99	0.7, 0.95,	0.50-0.99	0.6	Prior value of 0.7 from Shertzer	SEDAR (2014c)
(Mycteroperca microlepis)				0.85			and Conn (2012)	
	SA	Fix	0.84	0.74, 0.94	0.30-0.99	0.6	Fixed at 0.84 from Shertzer and	SEDAR (2014a)
							Conn (2012)	
Snapper								
Mutton	SA/GOM	Est	0.81		0.40-0.99			O'Hop et al. (2015)
(Lutjanus analis)								
	SA/GOM	Fix	0.75	0.65, 0.8	0.65-0.96	0.5		SEDAR (2008b)
Red	GOM	Fix	0.99		0.30-0.99	0.3		SEDAR (2014b)
(Lutjanus campechanus)	GOM	Fix	0.99	0.8	0.30-0.99	0.3		SEDAR (2013a)
· • • • • • •	SA	Fix	0.85	0.97, 0.95,	0.60-0.99	0.6?	Fixed at 0.85 from SEFSC	SEDAR (2010c)
				~1			(2010)	. ,
Yellowtail	SA/GOM	Est	0.70		0.50-0.99			O'Hop et al. (2012)
(Ocyurus chrysurus)	CARI	_	_		0.79-0.91			SEDAR (2005b)
· • • •	SE US	Est	0.80	0.7, 0.8, 0.9	0.21 -	0.19	Prior value of 0.8 assigned based	Muller et al. (2003
					0.99		on Rose et al. (2001)	· · ·

SEDAR 49 Data Triage Report

Species	Region	Туре	h	Other runs	h range	sigmaR	Notes	Reference
Vermilion (<i>Rhomboplites aurorubens</i>)	SA	Est	0.71	0.56	0.52-0.90	0.75		SEDAR (2008c)
	GOM	Calc	1.00			0.4		SEDAR (2011a)
	SA	Fix	0.56	0.47, 0.53, 0.67, 0.73	0.45-0.95	0.75		SEDAR (2012)
Tilefish Blueline	SA	Fix	0.8	0.70, 0.95	0.32-0.99	0.367	Fixed at value based on Myers et	SEDAR (2013b)
(Caulolatilus microps)	SA	TIX	0.0	0.70, 0.95	0.52-0.99	0.307	al. (2002), Shertzer and Conn (2012), and SEDAR (2011e)	SLDAR (20150)
Golden (Lopholatilus chamaeleonticeps)	SA	Fix	0.8	0.74, 0.94	0.3-1.0	0.4 (0.2- 0.76)	Fixed at 0.84 from Shertzer and Conn (2012)	SEDAR (2011e)
chumaeleoniiceps)	GOM	Est	0.9	0.75, 0.95	0.6-0.99	0.70) 0.15 (0.01- 0.3)		SEDAR (2011b)
Amberjack						,		
Greater (Seriola dumerili)	GOM	Est	0.84	0.8	0.50-0.99	0.6		SEDAR (2014d)
X	SA	Est	0.74		0.55-0.95			SEDAR (2008a)

Year	Scamp	Warsaw Grouper	Yellowfin Grouper	Blackfin Snapper	Cubera Snapper	Gray Snapper (Mangrove)	Queen Snapper	Silk Snapper	Blueline Tilefish	Goldface Tilefish	Banded Rudderfish
1990	Х	Х	Х			Х	Х	Х			
1991	Х	Х	Х			Х	Х	Х			
1992	Х	Х	Х			Х	Х	Х			Х
1993	Х	X	Х			Х	Х	Х			
1994	Х		Х	Х	Х	Х	Х	Х	Х		Х
1995	Х	X	Х	Х		Х	Χ	Х	Х		Х
1996	Х	Х	Х	Х		Х	Х	Х	Х		Х
1997	Х	X	Х	Х		Х	X	Х	Х		Х
1998	Х	X	Х	Х		Х	X	Х	Х		X
1999	Х	X	Х	Х		Х	X	Х	Х		X
2000	Х		Х	Х		Х	Χ	Х	Х		Х
2001	Х		Х	Х		Х	Х	Х	Х		Х
2002	Х		Х	Х		Х	Χ	Х	Х		Х
2003	Х		Х	Х		Х	Χ	Х	Х		Х
2004	Х		Х	Х		Х	Χ	Х	Х		X
2005	Х		Х	Х		Х	Х	Х	Х		Х
2006	Х		Х	Х		Х	Χ	Х	X		Х
2007	Х		Х	Х		Х	Х	Х	Х		Х
2008	Х		Х	Х		Х	Х	Х	Х		Х
2009	Х		Х	Х		Х	Х	Х	Х		Χ
2010	Х	X	Х	Х		Х	Х	Х	X		Х
2011	Х	Χ	Χ	Х		Х	Х	Х	Х		Х
2012	Х	X	Χ	Χ		Х	Х	Х	X		Х
2013	Х	Х	Х	Х		Х	Х	Х	Х		Х
2014	Х	X	Х	Х		Х	Х	Х	Х		Х

Table 12. The availability (presence indicated by X) on the commercial logbook reporting forms for the managed species that have not yet been assessed.

Table 13. Summary of commercial landings (in pounds) between 1986 and 2015 for the managed species that have not yet been assessed. Note that *Lutjanus griseus* has been reported as both Mangrove Snapper and Gray Snapper in the Annual Landings System (same species reporting under different NMFS Codes), and are reported as Gray Snapper within this report. Nyear refers to the number of years where the species was landed. Total refers to the total landings summed across years.

Species	Nyear	А	nnual Con	nmercial La	andings
species	Inyear	Min	Mean	Max	Total
Scamp	30	169,543	296,615	383,233	8,898,451
Warsaw Grouper	30	59,305	140,869	272,509	4,226,073
Yellowfin Grouper	30	690	28,231	423,212	846,932
Blackfin Snapper	29	10	3,551	10,244	102,977
Cubera Snapper	25	350	1,386	4,468	34,657
Gray Snapper	30	112,307	245,452	528,289	7,363,556
Queen Snapper	30	2,234	20,210	65,287	606,294
Silk Snapper	30	20,236	65,042	317,750	1,951,253
Blueline Tilefish	28	31	84,761	180,393	2,373,320
Goldface Tilefish	23	2	20,467	90,423	470,738
Banded Rudderfish	25	1,352	11,682	24,828	292,050

Table 14. Summary of percent positive trips (PP) and discards (pounds, whole weight) from the Commercial Logbook dataset between 2003 and 2014. Nyear refers to the number of years where the species was reported as present. Total refers to the total number discarded summed across years. Mean values above 2.5% positive trips (bolded) may warrant calculation of discards based on the criteria discussed at SEDAR 49. – indicates no data available.

Species	Source	Nyear	Mean PP		С	atch	
species	Source	Nyeai	wiedli F F	Min	Max	Mean	Total
Scamp	Diving	10	2.8	1	20	8	76
	Handline	13	4.3	192	4,540	760	9,886
	Longline	12	2.2	1	202	32	382
	Trap	3	7.5	2	136	47	141
Warsaw Grouper	Handline	12	1.1	1	1,262	178	2,130
	Longline	2	5.5	1	184	93	185
Yellowfin Grouper	Handline	1	0.4	102	102	102	102
	Longline	3	0.4	4	9	6	19
Blackfin Snapper	Handline	3	0.1	4	11	7	22
Cubera Snapper	Handline	1	0.1	5	5	5	5
Gray Snapper	Diving	8	7.8	3	163	59	469
	Handline	13	1.3	10	5,916	589	7,652
	Longline	2	0.6	4	6	5	10
	Trap	2	7.1	3	300	152	303
	Troll	1	4.7	27	27	27	27
Queen Snapper	Handline	1	0.1	1	1	1	1
Silk Snapper	Handline	3	0.2	8	50	26	77
	Trap	1	5.0	400	400	400	400
Goldface Tilefish	-	_	-	-	_	_	-
Blueline Tilefish	Handline	5	0.2	6	200	66	323
	Longline	8	3.4	593	4,517	1,436	11,488
Banded	Handline	8	0.1	4	64	36	289
Rudderfish	Longline	1	0.5	12	12	12	12

		Bandit			Handline			Longline		Shri	mp
Year	N sets sampled	Soak time (hrs)	N hooks set	N sets sampled	Soak time (hrs)	N hooks set	N sets sampled	Soak time (hrs)	N hooks set	N tows sampled	Tow time (hrs)
1997	-	-	-	-	-	-	-	-	-	50	261
1998	-	-	-	-	-	-	-	-	-	25	337
1999	-	-	-	-	-	-	-	-	-	1,193	5,981
2000	-	-	-	-	-	-	-	-	-	1,284	7,304
2001	-	-	-	-	-	-	-	-	-	1,505	8,263
2002	-	-	-	-	-	-	-	-	-	5,324	27,308
2003	-	-	-	-	-	-	-	-	-	2,567	13,525
2004	-	-	-	-	-	-	-	-	-	2,371	13,049
2005	-	-	-	-	-	-	-	-	-	2,066	10,743
2006	1,083	791	30,992	49	39	493	201	946	204,000	1,795	8,161
2007	2,422	1,803	72,552	505	430	3,540	192	1,064	235,000	2,080	10,798
2008	1,350	1,028	37,210	298	158	9,613	109	429	94,206	3,328	17,083
2009	1,362	774	35,157	278	348	1,938	686	3,636	654,539	3,314	18,223
2010	2,177	1,103	35,635	181	211	5,214	1,448	5,777	922,512	2,533	12,754
2011	3,335	1,963	119,019	738	440	9,349	2,332	8,640	1,561,199	3,504	17,868
2012	9,703	5,167	309,356	1,282	949	19,426	524	1,790	361,396	3,790	17,218
2013	3,687	1,693	100,017	1,013	610	15,867	2,136	8,037	1,494,335	4,899	20,881
2014	3,405	1,774	84,535	913	432	8,377	858	3,419	616,582	4,506	21,467
2015	6,668	3,347	192,706	1,485	703	7,694	719	2,927	518,194	3,689	17,762
2016	1,012	561	20,814	130	97	1,521	273	1,194	211,712	280	2,006

Table 15. Summary of observer coverage for the Gulf of Mexico bandit reel, handline, and longline reef fish fisheries from 2006–2016 and the shrimp fishery from 1997–2016.

Table 16. Summary of occurrence (i.e., percent positive sets) in observer datasets for the Gulf of Mexico bandit reel, handline, and longline reef fish fisheries from 2006–2016 and the shrimp fishery from 1997–2016. Nyear refers to the number of years where each species was recorded. Total sets refers to the number of sets where the species occurred. Total Catch refers to the total number caught across years. *Potential* species-gear combinations for discard estimation are highlighted in bold (mean occurrence in sets > 2.5% as per SEDAR 49), although additional data filtering may alter the numbers. Note that little to no data were available for any species from the Shark Bottom Longline Observer Program.

Section	Gear Nyear	Nucon		,	Sets		Mean		C	atch	
Species	Gear	Nyear	Min	Max	Mean	Total	PP	Min	Max	Mean	Total
Scamp	Bandit	11	66	833	237	2,609	7.3	102	1,458	410	4,514
	Handline	11	2	84	21	231	3.8	2	187	41	456
	Longline	11	14	679	227	2,492	23.2	51	2,712	782	8,598
	Shrimp	2	0	1	0	2	0.0	0	1	0	2
Warsaw	Bandit	11	2	30	11	121	0.4	2	32	15	163
Grouper	Handline	6	0	2	1	9	0.2	0	2	1	9
	Longline	10	0	32	12	137	2.2	0	45	16	178
	Shrimp	2	0	1	0	2	0.0	0	1	0	2
Yellowfin	Bandit	2	0	2	0	3	0.0	0	2	0	4
Grouper	Handline	1	0	2	0	2	0.0	0	2	0	2
	Longline	1	0	3	0	3	0.0	0	3	0	3
Blackfin	Bandit	6	0	24	6	68	0.2	0	87	21	226
Snapper	Handline	2	0	3	0	4	0.0	0	4	1	7
	Longline	4	0	32	7	75	0.5	0	705	97	1,070
Cubera	Bandit	3	0	1	0	3	0.0	0	1	0	3
Snapper	Longline	6	0	3	1	10	0.1	0	3	1	11
	Shrimp	3	0	2	0	5	0.0	0	9	1	14
Gray	Bandit	11	29	271	99	1,090	3.2	41	497	163	1,798
Snapper	Handline	11	8	117	42	459	8.4	17	566	168	1,851
	Longline	11	5	200	68	747	9.3	6	261	98	1,075
	Shrimp	6	0	7	1	14	0.0	0	16	1	25
Queen	Bandit	7	0	17	5	57	0.2	0	198	26	284
Snapper	Handline	1	0	1	0	1	0.0	0	1	0	1
	Longline	8	0	20	7	80	0.6	0	94	25	279
	Shrimp	1	0	1	0	1	0.0	0	1	0	1
Silk	Bandit	7	0	34	8	89	0.2	0	297	53	586
Snapper	Handline	1	0	1	0	1	0.0	0	7	1	7
	Longline	9	0	31	8	93	0.8	0	215	32	354
Blueline	Bandit	9	0	60	12	130	0.4	0	111	21	236
Tilefish	Handline	1	0	15	1	15	0.1	0	19	2	19
	Longline	9	0	225	78	858	9.2	0	2,810	1,073	11,805
	Shrimp	1	0	4	0	4	0.0	0	10	1	10
Goldface	Bandit	8	0	19	5	60	0.1	0	21	6	66
Tilefish	Handline	2	0	6	1	7	0.1	0	6	1	7
	Longline	6	0	6	1	15	0.1	0	12	2	24
Banded	Bandit	11	3	215	51	558	1.4	6	447	159	1,753
Rudderfish	Handline	8	0	20	6	64	0.9	0	290	36	399
	Longline	8	0	60	19	209	2.0	0	125	38	423
	Shrimp	1	0	9	0	9	0.0	0	14	1	14

Common Name	Scientific Name	Positive Tows	Catch
Scamp	Mycteroperca phenax	18	28
Warsaw Grouper	Hyporthodus nigritus	0	0
Yellowfin Grouper	Mycteroperca venenosa	1	1
Blackfin Snapper	Lutjanus buccanella	0	0
Cubera Snapper	Lutjanus cyanopterus	0	0
Gray Snapper	Lutjanus griseus	59	203
Queen Snapper	Etelis oculatus	3	18
Silk Snapper	Lutjanus vivanus	1	1
Blueline Tilefish	Caulolatilus microps	52	464
Goldface Tilefish	Caulolatilus chrysops	9	29
Banded Rudderfish	Seriola zonata	17	31

Table 17. Bycatch in the offshore shrimp fishery as total number landed (Catch) and total number of positive tows (Positive Tows). Note that no species meet the criteria for inclusion (i.e., > 400 positive tows and > 2,000 total catch).

Table 18. Summary of trips and catch (in pounds) for the Southeast Regional Headboat Survey dataset between 1986 and 2015. Nyear refers to the number of years where the species was reported as present. Total refers to the total catch summed across years. Additional data filtering may alter the numbers.

Spacios	Nucor		Trips		Catch			
Species	Nyear	Min	Max	Mean	Min	Max	Mean	Total
Scamp	30	319	1,024	632	2,533	23,041	9,083	272,493
Warsaw Grouper	30	45	454	188	1,204	41,084	7,239	217,181
Yellowfin Grouper	23	1	15	4	3	414	113	2,596
Blackfin Snapper	30	3	24	9	18	1,349	310	9,288
Cubera Snapper	29	1	18	9	4	5,157	722	20,951
Gray Snapper	30	718	2,333	1,386	26,554	151,730	72,489	2,174,661
Queen Snapper	9	1	13	4	1	1,379	286	2,577
Silk Snapper	30	1	26	10	2	1,527	208	6,231
Blueline Tilefish	28	1	77	17	4	12,120	887	24,836
Goldface Tilefish	10	1	5	3	1	52	18	177
Banded Rudderfish	29	2	705	262	47	50,344	16,176	469,099

Cracica		A	Annual Recre	ational Land	lings
Species	Nyears	Min	Mean	Max	Total
Scamp	35	5,638	66,578	165,921	2,330,246
Warsaw Grouper	34	1,219	106,809	980,525	3,631,512
Yellowfin Grouper	15	151	8,118	33,594	121,776
Blackfin Snapper	10	11	173	732	1,725
Cubera Snapper	28	189	68,963	504,569	1,930,960
Gray Snapper	35	627,288	1,535,067	5,847,951	53,727,336
Queen Snapper	14	41	8,341	64,503	116,768
Silk Snapper	27	76	179,783	3,900,752	4,854,144
Blueline Tilefish	19	113	10,208	42,514	193,944
Goldface Tilefish	-	-	-	-	-
Banded Rudderfish	26	369	79,113	505,363	2,056,938

Table 19. Summary of recreational landings (in pounds) between 1981 and 2015 for the managed species that have not yet been assessed from the Marine Recreational Fisheries Statistics Survey. Nyear refers to the number of years where the species was landed. Total refers to the total landings summed across years. Additional data filtering may alter the numbers.

Table 20. Summary of recreational discards (in number) between 1981 and 2015 from the Marine Recreational Fisheries Statistics Survey. Nyear refers to the number of years where the species was reported as present. Total refers to the total discards summed across years. Additional data filtering may alter the numbers.

Spacios			Annual Recr	eational Dis	cards
Species	Nyears	Min	Mean	Max	Total
Scamp	34	629	19,373	77,747	658,695
Warsaw Grouper	14	24	2,336	7,928	32,703
Yellowfin Grouper	10	17	2,998	20,764	29,985
Blackfin Snapper	2	125	1,074	2,024	2,149
Cubera Snapper	13	28	12,671	101,824	164,717
Gray Snapper	35	170,983	2,876,395	7,570,175	100,673,809
Queen Snapper	5	38	2,767	8,229	13,835
Silk Snapper	10	33	6,440	43,116	64,396
Blueline Tilefish	10	7	806	3,556	8,063
Goldface Tilefish	-	-	-	-	-
Banded Rudderfish	22	397	26,363	147,672	579,994

Table 21. Occurrence (i.e., percent positive) of Scamp in fishery-independent surveys conducted in the Gulf of Mexico. Data sources which may produce an index of abundance are highlighted in bold. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available. Additional data filtering may alter the numbers.

		Missi	ssippi Labora	tory		Panama City
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton	Video
1986	—	—	_	_	*	_
1987	0.0	—	_	_	*	_
1988	0.0	—	_	_	—	_
1989	0.0	—	_	_	_	_
1990	0.2	—	_	_	*	_
1991	0.2	—	_	_	*	_
1992	0.0	—	36.2	_	_	_
1993	0.0	—	23.3	_	*	_
1994	0.2	—	18.3	_	*	_
1995	0.0	0.0	19.4	_	*	_
1996	0.0	0.0	20.0	_	*	_
1997	0.0	0.0	21.3	_	*	_
1998	0.0	—	_	_	_	_
1999	0.0	0.0	_	_	*	_
2000	0.0	0.0	_	_	*	_
2001	0.0	0.0	30.1	_	*	_
2002	0.2	0.5	45.1	0.0	_	_
2003	0.2	1.1	56.2	0.0	*	_
2004	0.2	2.0	34.7	0.0	_	_
2005	0.4	2.1	34.5	_	_	_
2006	0.4	0.0	21.8	0.0	*	36.6
2007	0.0	0.6	33.1	0.0	*	43.1
2008	0.7	0.9	30.5	0.6	_	48.2
2009	1.1	0.0	26.1	0.0	*	46.5
2010	0.6	0.0	32.2	0.0	*	37.8
2011	0.5	0.0	31.5	0.8	*	23.1
2012	2.8	2.1	22.8	0.0	*	14.7
2013	1.9	0.0	30.9	0.0	_	24.5
2014	1.0	0.0	32.7	_	_	25.6
2015	_	_	_	_	_	24.8
Mean	0.4	0.5	30.0	0.1	—	33.3

Table 22. Occurrence (i.e., percent positive) of Gray Snapper in fishery-independent surveys conducted in the Gulf of Mexico. Data sources which may produce an index of abundance are highlighted in bold. – indicates no data available. Additional data filtering may alter the numbers.

	Mississippi Laboratory								
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton	Video			
1986	_	_	_	_	2.9	_			
1987	0.0	_	_	_	5.3	_			
1988	0.0	_	_	_	_	_			
1989	0.0	—	_	_	_	_			
1990	0.2	_	_	_	1.4	_			
1991	0.0	_	_	_	6.8	_			
1992	0.2	_	16.2	_	_	_			
1993	0.2	_	12.6	_	1.0	_			
1994	0.0	_	15.0	_	0.0	_			
1995	0.2	0.0	18.4	_	0.9	_			
1996	0.0	0.0	11.0	_	1.7	_			
1997	0.0	0.0	14.0	_	3.5	_			
1998	0.0	_	_	_	_	_			
1999	0.4	0.0	_	_	0.0	_			
2000	0.6	0.0	_	_	1.8	_			
2001	0.0	0.4	7.2	_	4.6	_			
2002	0.2	0.0	11.6	0.0	_	_			
2003	0.0	0.4	6.6	0.0	9.5	_			
2004	0.2	0.8	9.6	0.0	_	_			
2005	0.9	0.0	5.0	_	_	_			
2006	0.0	0.0	6.8	0.0	5.4	43.7			
2007	0.2	0.0	4.3	2.1	10.9	51.0			
2008	0.6	0.0	7.1	1.8	_	41.2			
2009	5.7	0.5	8.8	1.6	5.0	50.5			
2010	7.6	0.0	7.6	2.2	0.9	49.0			
2011	5.1	0.0	8.2	4.6	3.6	34.0			
2012	7.5	0.7	6.5	0.9	11.5	41.3			
2013	7.0	0.0	7.2	2.6	_	27.7			
2014	11.6	0.0	5.4	_	_	40.2			
2015	_	_	_	_	_	41.4			
Mean	1.7	0.1	9.5	1.4	4.0	42.0			

Table 23. Occurrence (i.e., percent positive) of Warsaw Grouper in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Miss	issippi Labora	itory	
Year	SEAMAP	NMFS Bottom	Reef Fish	NMFS Small	SEAMAP
	Groundfish	Longline	Video	Pelagics	Plankton
1986	_	_	—	_	*
1987	0	_	—	_	*
1988	0	—	—	_	_
1989	0	_	—	_	—
1990	0	_	_	_	*
1991	0.2	_	—	_	*
1992	0	_	0	_	_
1993	0	_	0	_	*
1994	0	_	0.8	_	*
1995	0	0	0	_	*
1996	0	0	0	_	*
1997	0	0	0.3	_	*
1998	0	_	_	_	_
1999	0	0	—	_	*
2000	0	0	_	_	*
2001	0	1.1	1.3	_	*
2002	0	1.4	0.4	0	_
2003	0	0	1.5	0	*
2004	0	1.6	0.8	1	—
2005	0	4.2	1	_	_
2006	0	0	0.6	0	*
2007	0	0.6	0	0	*
2008	0	2.8	0.5	0	—
2009	0.2	1.1	0.8	0	*
2010	0.1	1.3	1.2	0	*
2011	0	1.6	0.9	0.8	*
2012	0	0.7	0.8	0.9	*
2013	0	0	1.4	0	—
2014	0	0	0.5	_	_
Mean	0.0	0.9	0.6	0.2	_

Table 24. Occurrence (i.e., percent positive) of Yellowfin Grouper in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Missis	sippi Laborat	tory	
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton
1986	_	_	_	_	*
1987	0	_	_	_	*
1988	0	_	_	_	_
1989	0	_	_	_	_
1990	0	—	_	_	*
1991	0	—	_	_	*
1992	0	—	0.8	_	_
1993	0	—	0.6	_	*
1994	0	—	0.8	_	*
1995	0	0	0	_	*
1996	0	0	0.7	_	*
1997	0	0	1.7	_	*
1998	0	—	_	_	_
1999	0	0	_	_	*
2000	0	0	_	_	*
2001	0	0	0.7	_	*
2002	0	0	1.1	0	_
2003	0	0	0	0	*
2004	0	0	0.4	0	_
2005	0	0	1	_	_
2006	0	0	0.2	0	*
2007	0	0	0.2	0	*
2008	0	0	0.8	0	_
2009	0.1	0	0	0	*
2010	0	0	0.6	0	*
2011	0	0	0.2	0	*
2012	0	0	0.3	0	*
2013	0	0	0.8	0	_
2014	0	0	0.5	—	_
Mean	0.0	0.0	0.6	0.0	_

Table 25. Occurrence (i.e., percent positive) of Blackfin Snapper in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Missi	ssippi Labora	tory	
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton
1986	_	_	_	_	*
1987	0	—	_	_	*
1988	0	—	_	_	_
1989	0	_	-	_	_
1990	0	—	_	_	*
1991	0	_	-	_	*
1992	0	—	0.8	_	_
1993	0	—	0	_	*
1994	0	_	1.7	_	*
1995	0	0	0	_	*
1996	0	0	0	_	*
1997	0	0	0	_	*
1998	0	_	_	_	_
1999	0	0	_	_	*
2000	0	0	_	_	*
2001	0	0	0	_	*
2002	0	0	0	0	_
2003	0	0	0	0	*
2004	0	0	0.4	0	_
2005	0	0	0.2	_	_
2006	0	0	0	0	*
2007	0	0	0.8	0	*
2008	0	0	0.5	0	_
2009	0	0	1.5	0	*
2010	0	0	0.3	0	*
2011	0	0	1.2	0	*
2012	0	0	2	0	*
2013	0	0	1.1	0	_
2014	0	0	0.9	_	_
Mean	0.0	0.0	0.6	0.0	_

Table 26. Occurrence (i.e., percent positive) of Cubera Snapper in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Miss	issippi Labor	atory	
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton
1986	_	_	_	_	*
1987	0	_	_	_	*
1988	0	_	_	_	_
1989	0	—	—	_	—
1990	0	_	—	_	*
1991	0	_	—	_	*
1992	0	—	0	_	—
1993	0	_	0	_	*
1994	0	_	0	_	*
1995	0	0	0	_	*
1996	0	0	0	_	*
1997	0	0	0	_	*
1998	0	_	_	_	_
1999	0	0	—	_	*
2000	0	0	—	_	*
2001	0	0	0	_	*
2002	0	0	0	0	_
2003	0	0	0	0	*
2004	0	0	0	0	—
2005	0	0	0	_	_
2006	0	0	0	0	*
2007	0	0	0	0	*
2008	0	0	0	0	_
2009	0	0	0	0	*
2010	0	0	0	0	*
2011	0	0	0	0	*
2012	0	0	0.5	0	*
2013	0	0	0	0	_
2014	0	0	0	_	_
Mean	0.0	0.0	0.0	0.0	_

Table 27. Occurrence (i.e., percent positive) of Queen Snapper in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Missi	ssippi Laborato	ry	
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton
1986	_	_	_	_	*
1987	0	_	_	_	*
1988	0	_	_	_	_
1989	0	_	_	_	_
1990	0	_	_	_	*
1991	0	_	_	_	*
1992	0	_	0	_	_
1993	0	_	0	_	*
1994	0.2	_	0	_	*
1995	0	0	2	_	*
1996	0	0	0	_	*
1997	0	0	0.3	_	*
1998	0	_	_	_	_
1999	0	0	_	_	*
2000	0	0	_	_	*
2001	0	0	0	_	*
2002	0	0	0.7	0	_
2003	0	0.4	0	0	*
2004	0.2	0	0	0	_
2005	0	1.1	0	_	_
2006	0	0	0	0	*
2007	0	0	0.2	0	*
2008	0	0	0	0	_
2009	0.1	0	0.2	0	*
2010	0	0	0	0	*
2011	0	0	0	0	*
2012	0	0	0.2	0	*
2013	0	0	0.3	0	_
2014	0	0	0	_	_
Mean	0.0	0.1	0.2	0.0	_

Table 28. Occurrence (i.e., percent positive) of Silk Snapper in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Missi	ssippi Labora	tory	
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton
1986	_	_	_	_	*
1987	0.6	_	_	_	*
1988	0	_	_	_	_
1989	0	_	_	_	_
1990	0	_	_	_	*
1991	0	_	_	_	*
1992	0	_	0	_	_
1993	0	_	0	_	*
1994	0	_	0	_	*
1995	0	0	0	_	*
1996	0	0	0	_	*
1997	0	0	0.7	_	*
1998	0	_	_	_	_
1999	0	0	_	_	*
2000	0	0	_	_	*
2001	0	0	0	_	*
2002	0	0	0.4	0	_
2003	0	0	0	0	*
2004	0	0	0	0	_
2005	0	0	0.4	_	_
2006	0	0	0	0	*
2007	0	0	0.3	0	*
2008	0	0	0	0	_
2009	0	0	0	0	*
2010	0	0	0.3	0	*
2011	0.2	0	0.9	0	*
2012	0	0	0.6	0	*
2013	0.4	0	0.3	0	_
2014	0.3	0	0.2	_	_
Mean	0.1	0.0	0.2	0.0	_

Table 29. Occurrence (i.e., percent positive) of Blueline Tilefish in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Mississi	ppi Laboratoi	у	
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton
1986	_	_	_	_	*
1987	1.2	_	_	_	*
1988	0.6	_	_	_	_
1989	0.6	_	_	_	_
1990	0.4	_	_	_	*
1991	0	_	_	_	*
1992	0	_	0	_	_
1993	0	_	0	_	*
1994	0	_	0	_	*
1995	0	0	0	_	*
1996	0	0	0.3	_	*
1997	0	0	0	_	*
1998	0	_	_	_	_
1999	1.8	0	_	_	*
2000	0	0	_	_	*
2001	0.5	0.4	0.7	_	*
2002	0	0	0	0	_
2003	0	5.7	2.9	0	*
2004	0	2	0.4	0	_
2005	0	2.1	0.4	_	_
2006	0	0.7	0.4	0	*
2007	0	0.6	0.3	0	*
2008	0	1.9	0	0	_
2009	0	1.1	0.4	0.8	*
2010	0	0.7	0	0	*
2011	0	0.8	0	0	*
2012	0.2	1.4	0.2	0	*
2013	0	1.8	0	0	_
2014	0	0	0.5	_	_
Mean	0.2	1.0	0.3	0.1	_

Table 30. Occurrence (i.e., percent positive) of Goldface Tilefish in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Missis	sippi Laborat	ory	
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton
1986	_	_	_	_	*
1987	0	_	_	_	*
1988	0	_	_	_	_
1989	0	_	_	_	_
1990	0	_	_	_	*
1991	0	_	_	_	*
1992	0	_	6.2	_	_
1993	0	_	0	_	*
1994	0	_	2.5	_	*
1995	0	0	7.1	_	*
1996	0	0	3.1	_	*
1997	0	0	2.8	_	*
1998	0	_	_	_	_
1999	0	0	_	_	*
2000	0	0	_	_	*
2001	0	0	1.3	_	*
2002	0	0	4.7	0.8	_
2003	0	0	0	3.4	*
2004	0	0	1.3	0	_
2005	0.2	0	3.7	_	_
2006	0	0	1.9	0	*
2007	0.4	0	4.1	1.4	*
2008	0	0	3.3	1.8	_
2009	0.3	0	3.4	0.8	*
2010	0	0	4.7	0	*
2011	0.4	0	4.5	0	*
2012	0	0	2.6	0.9	*
2013	0.2	0	2.2	0	_
2014	0.1	0	4.1	_	_
Mean	0.1	0.0	3.2	0.8	_

Table 31. Occurrence (i.e., percent positive) of Banded Rudderfish in fishery-independent surveys conducted in the Gulf of Mexico. Development of an index for any data source seems unlikely given the low occurrence, although the Panama City Video is just below the 5% threshold. For the SEAMAP Plankton survey, * indicates that larvae cannot be identified to species level and/or are not caught in any numbers. – indicates no data available.

		Missi	ssippi Labor	atory		Panama City
Year	SEAMAP Groundfish	NMFS Bottom Longline	Reef Fish Video	NMFS Small Pelagics	SEAMAP Plankton	Video
1986	_	_	_	_	*	_
1987	0.0	_	_	_	*	_
1988	0.0	_	_	_	_	_
1989	0.0	_	_	_	_	_
1990	0.2	_	_	_	*	_
1991	0.0	_	_	_	*	_
1992	0.0	_	0.0	_	_	_
1993	0.2	_	1.3	_	*	_
1994	0.2	_	0.0	_	*	_
1995	0.0	0.0	0.0	_	*	_
1996	0.0	0.0	0.0	_	*	_
1997	0.0	0.0	0.3	_	*	_
1998	0.2	_	_	_	_	_
1999	1.0	0.0	_	_	*	_
2000	0.2	0.0	_	—	*	_
2001	0.0	0.0	0.0	_	*	—
2002	0.0	0.0	0.7	1.5	_	_
2003	0.2	0.0	0.0	0.0	*	_
2004	0.9	0.0	0.4	0.0	_	_
2005	0.0	0.0	0.4	—	—	_
2006	0.0	0.0	1.1	0.0	*	0.0
2007	0.2	0.0	2.0	1.4	*	0.0
2008	0.0	0.0	0.5	0.6	_	3.5
2009	0.7	0.0	0.4	0.0	*	3.0
2010	0.6	0.0	1.5	0.0	*	4.9
2011	1.1	0.0	0.2	0.0	*	3.8
2012	0.5	0.0	0.5	0.0	*	5.3
2013	2.5	0.0	0.8	0.9	_	5.3
2014	0.3	0.0	0.0	_	_	15.2
2015	_	_	_	_	_	3.8
Mean	0.3	0.0	0.5	0.4	_	4.6

Table 32. Summary of percent positive trips (PP) and catch (pounds, whole weight) for commercial gear types in the Commercial Logbook dataset between 1993 and 2014. Nyear refers to the number of years where the species was reported as present. Total Catch refers to the total number caught summed across years. *Potential* indices of abundance are highlighted in bold (mean PP > 5% and time series > 20 yr), although additional data filtering may alter the numbers.

а :		N	Mean		(Catch	
Species	Gear	Nyear	PP	Min	Max	Mean	Total
Scamp	Buoy Gear	3	12.9	5	460	200	599
	Diving	22	12.1	387	10,404	2,164	47,607
	Gillnet	1	1.2	12,713	12,713	12,713	12,713
	Handline	22	23.3	68,137	249,445	161,102	3,544,244
	Longline	22	42.3	29,601	183,794	110,964	2,441,215
	Other	14	8.5	9	3,041	529	7,403
	Trap	14	5.3	18	4,665	2,575	36,056
	Troll	13	0.5	4	1,440	236	3,063
Warsaw	Buoy Gear	1	2.7	54	54	54	54
Grouper	Diving	10	0.5	6	739	209	2,094
	Handline	22	5.7	18,813	157,381	78,045	1,716,996
	Longline	22	9.3	18,307	90,157	40,817	897,965
	Other	5	1.5	55	3,188	814	4,070
	Trap	4	0.2	55	297	169	676
	Troll	7	0.4	19	909	299	2,093
Yellowfin	Buoy Gear	1	12.5	230	230	230	230
Grouper	Diving	20	1.0	18	340	147	2,932
	Handline	22	0.4	228	11,928	4,023	88,514
	Longline	22	1.6	853	139,332	35,483	780,621
	Other	3	1.0	2	13	8	24
	Trap	8	0.3	1	278	84	675
	Troll	2	0.2	55	114	85	170
Blackfin	Buoy Gear	1	2.7	6	6	6	6
Snapper	Diving	2	0.2	7	60	33	67
	Gillnet	1	0.4	6	6	6	6
	Handline	22	1.1	1,016	17,328	5,794	127,466
	Longline	22	3.2	842	31,201	5,222	114,875
	Other	2	1.6	1	26	13	27
	Trap	9	0.4	3	2,018	384	3,459
	Troll	11	0.2	1	134	34	379
Cubera	Diving	16	0.8	7	529	174	2,781
Snapper	Handline	18	0.0	6	744	326	5,872
	Longline	21	0.4	37	1,126	365	7,671
	Trap	5	0.2	24	145	61	303

					C	latch	
Species	Gear	Nyear	Mean PP	Min	Max	Mean	Total
Gray	Buoy Gear	2	22.8	7	16	11	22
Snapper	Diving	22	59.9	6,304	33,544	17,260	379,724
	Gillnet	2	0.8	6	7	6	12
	Handline	22	26.7	63,691	234,778	154,931	3,408,486
	Longline	22	22.4	2,876	17,455	8,676	190,872
	Other	19	12.0	9	1,666	352	6,683
	Trap	14	20.3	564	13,484	4,719	66,066
	Troll	22	1.0	6	1,392	253	5,558
Queen	Diving	5	0.3	8	391	95	475
Snapper	Handline	22	1.3	4,904	37,704	17,851	392,731
	Longline	22	2.8	175	18,564	5,248	115,458
	Other	1	1.0	1,474	1,474	1,474	1,474
	Trap	6	0.4	4	817	225	1,350
	Troll	2	0.2	16	21	18	37
Silk	Diving	5	0.3	12	234	69	344
Snapper	Handline	22	1.7	17,524	87,377	38,458	846,070
	Longline	22	7.4	4,805	35,189	15,673	344,796
	Other	6	2.1	1	1,010	194	1,165
	Trap	13	1.7	48	10,776	3,731	48,502
Blueline	Diving	9	0.5	2	156	38	340
Tilefish	Handline	22	2.3	3,432	25,834	12,621	277,657
	Longline	22	8.4	29,014	156,503	77,333	1,701,334
	Other	6	0.9	2	448	113	675
	Trap	13	0.6	12	5,044	583	7,585
	Troll	3	0.2	6	34	23	68
Goldface	Handline	10	0.1	12	478	183	1,828
Tilefish	Longline	1	0.0	48	48	48	48
Banded	Diving	12	0.4	4	133	48	572
Rudderfish	Gillnet	2	1.5	87	16,567	8,327	16,654
	Handline	22	2.4	5,626	31,782	13,964	307,207
	Longline	21	0.9	27	2,380	911	19,125
	Other	4	1.4	1	1,033	261	1,046
	Trap	5	0.3	4	233	63	316
	Troll	11	0.2	5	619	80	884

Table 33. Summary of percent positive trips (PP) and catch (in numbers) for each fishing mode from the Marine Recreational Fisheries Statistics Survey between 1981 and 2014. Nyear refers to the number of years where the species was reported as present. Total Catch refers to the total number caught summed across years. Development of an index seems unlikely given the low occurrence for all species (mean PP < 5%).

Spacing	Mada	Nucon	Mean		С	atch	
Species	Mode	Nyear	PP	Min	Max	Mean	Total
Scamp	Charterboat	33	1.2	1	1,137	220	7,257
	Headboat	5	2.6	10	48	27	134
	Private	33	0.1	1	173	42	1,374
	Shore	2	0.1	2	7	5	9
Warsaw Grouper	Charterboat	27	0.0	1	43	12	319
	Headboat	3	0.1	1	4	3	8
	Private	29	0.0	1	40	6	172
	Shore	1	0.0	1	1	1	1
Yellowfin Grouper	Charterboat	11	0.1	1	9	4	43
	Headboat	1	0.1	1	1	1	1
	Private	13	0.0	1	23	4	54
	Shore	1	0.0	1	1	1	1
Blackfin Snapper	Charterboat	10	0.0	1	12	4	42
	Private	1	0.0	1	1	1	1
Cubera Snapper	Charterboat	16	0.1	1	17	6	88
	Headboat	2	0.2	2	9	6	11
	Private	17	0.0	1	17	5	79
	Shore	5	0.0	1	4	2	8
Gray Snapper	Charterboat	34	3.7	21	3,095	1,130	38,429
	Headboat	5	7.4	59	163	112	561
	Private	34	4.7	59	10,418	3,016	102,537
	Shore	34	3.8	85	2,166	939	31,914
Queen Snapper	Charterboat	11	0.0	1	11	4	43
	Headboat	1	0.1	2	2	2	2
	Private	4	0.0	1	30	12	48
	Shore	1	0.0	1	2	2	3
Silk Snapper	Charterboat	27	0.1	1	148	24	639
	Headboat	5	0.6	1	29	11	55
	Private	4	0.0	1	27	17	66
	Shore	1	0.2	8	13	11	21

Spacing	Mada	Nucon	Mean		C	latch	
Species	Mode	Nyear	PP	Min	Max	Mean	Ntotal
Goldface Tilefish	_	_	_	_	_	_	_
Blueline Tilefish	Charterboat	17	0.1	1	47	12	212
	Private	9	0.0	1	8	3	27
Banded Rudderfish	Charterboat	24	0.6	2	1,064	289	6,937
	Private	21	0.0	1	55	9	184
	Shore	11	0.1	1	296	49	536

Table 34. Summary of percent positive trips (PP) and catch (in numbers) for each fishing mode from the Texas Parks and Wildlife Department dataset between 1983 and 2014. Nyear refers to the number of years where the species was reported as present. Total Catch refers to the total number caught summed across years. Development of an index seems unlikely given the low occurrence for all species (mean PP < 5%).

Species	Nucer	Mean		Count				
species	Nyear	PP	Min	Max	Mean	Ntotal		
Scamp	21	0.1	1	6	3	57		
Warsaw Grouper	30	0.3	1	45	7	218		
Yellowfin Grouper	2	0.0	1	1	1	2		
Blackfin Snapper	1	0.0	4	4	4	4		
Cubera Snapper	8	0.0	1	9	3	24		
Gray Snapper	32	3.9	1	1,646	279	8,930		
Queen Snapper	_	_	_	—	_	_		
Silk Snapper	_	_	_	_	_	—		
Blueline Tilefish	_	_	_	—	_	—		
Goldface Tilefish	_	_	_	_	_	—		
Banded Rudderfish	4	0.0	1	2	2	10		

Table 35. Summary of length observations from commercial and recreational fishery samples, tournaments, and scientific surveys between 1984 and 2015. Nyear refers to the number of years where length samples were recorded. Total refers to the total number of length observations summed across years. *Potential* composition data are highlighted in bold (mean observations per year > 100, long time series > 10 yr), although additional data filtering may alter the numbers.

Species	Data Source	Nyoor	Len	gth Meas	surements	5
species	Data Source	Nyear	Min	Max	Mean	Total
Scamp	Commercial Handline	32	101	2,774	1,269	40,596
	Commercial Longline	32	83	3,308	1,335	42,725
	Commercial Other	30	1	168	57	1,708
	SRHS Headboat	10	1	51	14	171
	MRFSS Charterboat	17	1	85	19	374
	MRFSS Private	4	1	6	3	11
	Tournament	11	1	12	3	34
	Scientific Survey	3	2	5	4	12
Warsaw	Commercial Handline	32	8	206	65	2,067
Grouper	Commercial Longline	32	2	161	51	1,621
	Commercial Other	13	1	69	18	233
	SRHS Headboat	1	9	9	9	9
	MRFSS Charterboat	5	1	6	2	15
	MRFSS Private	1	4	4	4	4
	Tournament	5	1	5	2	19
Yellowfin	Commercial Handline	26	1	51	11	275
Grouper	Commercial Longline	24	1	208	22	525
_	Commercial Other	17	1	20	5	77
	SRHS Headboat	1	2	2	2	2
	MRFSS Private	1	1	1	1	1
Blackfin	Commercial Handline	28	1	432	92	2,586
Snapper	Commercial Longline	25	1	144	50	1,241
	Commercial Other	11	1	59	17	185
Cubera	Commercial Handline	22	1	35	5	107
Snapper	Commercial Longline	23	1	28	7	152
	Commercial Other	11	1	219	21	233
	SRHS Headboat	1	1	1	1	1
	MRFSS Charterboat	1	2	2	2	2
	Tournament	8	1	3	2	13
Banded	Commercial Handline	20	1	553	125	2,504
Rudderfish	Commercial Longline	4	1	2	1	5
	Commercial Other	4	1	6	3	13

Gracias	Species Data Source Nucer Length M				leasurements		
Species	Data Source	Nyear	Min	Max	Mean	Ntotal	
Gray	Commercial Handline	32	3	2,860	1,113	35,628	
Snapper	Commercial Longline	29	8	451	220	6,382	
	Commercial Other	30	6	824	123	3,679	
	SRHS Headboat	10	1	155	25	254	
	MRFSS Charterboat	20	1	303	44	1,063	
	MRFSS Private	21	1	68	22	547	
	Tournament	17	1	60	16	372	
	Scientific Survey	5	2	9	6	28	
Queen	Commercial Handline	30	2	800	145	5,643	
Snapper	Commercial Longline	29	1	103	31	1,289	
	Commercial Other	9	2	48	16	140	
	SRHS Headboat	1	24	24	24	24	
	MRFSS Charterboat	1	7	7	7	7	
Silk	Commercial Handline	29	5	478	163	4,729	
Snapper	Commercial Longline	29	1	357	74	2,139	
	Commercial Other	12	1	333	53	633	
	SRHS Headboat	1	23	23	23	23	
	MRFSS Charterboat	2	1	2	2	3	
Blueline	Commercial Handline	29	1	348	63	1,834	
Tilefish	Commercial Longline	29	1	2,473	441	12,793	
	Commercial Other	14	1	81	12	174	
	SRHS Headboat	1	4	4	4	4	
Goldface	Commercial Handline	19	1	188	48	906	
Tilefish	Commercial Longline	13	1	89	23	304	
	Commercial Other	6	6	66	23	140	

	G	Recreational					
Species	State	Charter	Private	Headboat	Shore	Commercial	Unknown
Scamp	FL	604	60	102	-	1,687	105
	AL	411	6	0	-	0	0
	TOTAL	1,015	66	102	-	1,687	105
Warsaw Grouper	FL	16	0	3	-	16	0
Yellowfin Grouper	FL	-	-	-	-	-	-
Blackfin Snapper	FL	0	0	0	-	129	0
Cubera Snapper	FL	0	0	1	-	4	11
Gray Snapper	FL	1,969	712	1,960	118	50	3,326
	AL	209	27	0	26	1	0
	MS	0	14	0	0	15	0
	LA	2,920	2,084	58	1	309	0
	TX	220	287	0	0	0	0
	TOTAL	5,318	3,124	2,018	145	375	3,326
Queen Snapper	FL	0	0	0	-	65	0
Silk Snapper	FL	1	0	16	-	152	11
Blueline Tilefish	FL	2	2	2	-	9	1
Goldface Tilefish	FL	-	-	-	-	-	-
Banded Rudderfish	FL	527	0	322	-	0	88
	AL	6	0	0	-	0	0
	TOTAL	533	0	322	-	0	88

Table 36. Number of length observations from commercial and recreational fishery samples obtained from GulfFIN and FWC by state. Note that observations have not been assessed for quality and therefore numbers may change.

Table 37. Summary of otoliths inventoried at NMFS Panama City between 1990 and 2016 (up to August 2016) determined from the NMFS Panama City AGR Access Database (all sources 1980s through 2016, including TIP 1991-2010) and NMFS Miami BSD Oracle Database (only TIP source, 2011-2016). Ntotal refers to the total number across years. Nyear refers to the number of years where otoliths were collected. The availability of age data for assessment would require substantial resources and time to process samples and validate annual band increments to ensure age assignments.

Spacing	Nyear	Trip Interview Program Samples				
Species		Min	Max	Mean	Total	
Scamp	26	81	3,648	1,432	37,235	
Warsaw Grouper	24	1	188	66	1,592	
Yellowfin Grouper	19	1	23	9	165	
Blackfin Snapper	21	1	472	93	1,955	
Cubera Snapper	23	1	28	7	170	
Gray Snapper	26	70	1,506	512	13,323	
Queen Snapper	20	4	884	185	3,705	
Silk Snapper	26	1	446	110	2,866	
Blueline Tilefish	16	3	185	70	1,113	
Goldface Tilefish	7	1	34	9	64	
Banded Rudderfish	2	1	5	3	6	

Species	Nyear	Other Data Sources					
Species		Min	Max	Mean	Total		
Scamp	26	8	370	107	2,787		
Warsaw Grouper	27	0	65	9	240		
Yellowfin Grouper	3	1	1	1	3		
Blackfin Snapper	5	1	40	14	72		
Cubera Snapper	7	1	5	2	15		
Gray Snapper	26	7	507	124	3,235		
Queen Snapper	7	1	5	2	14		
Silk Snapper	10	1	29	4	43		
Blueline Tilefish	13	1	109	27	347		
Goldface Tilefish	4	1	2	2	6		
Banded Rudderfish	11	1	21	8	93		

Table 38. *Potentially feasible* data-limited method types (as indicated by X) for the managed species that have not yet been assessed. Note that available data have not been vetted for quality, and hence feasibility may change, particularly for uncertain data inputs (identified by ? in the table below). The availability of age data for assessment would require substantial resources and time to process samples and validate annual band increments to ensure age assignments.

	Method type							
Species	Catch- based	Index- based	Length- based	Depletion- based	Mean length-based mortality estimator	Age- based		
Scamp	Х	Х	Х	0	Х	0		
Warsaw Grouper	Х	X?	Х	0	Х	0		
Yellowfin Grouper	Х	0	0	0	0	0		
Blackfin Snapper	Х	0	Х	0	Х	0		
Cubera Snapper	Х	0	0	0	0	0		
Gray Snapper	Х	Х	Х	0	Х	0		
Queen Snapper	Х	0	0	0	Х	0		
Silk Snapper	Х	X?	Х	0	Х	0		
Blueline Tilefish	Х	Х	Х	0	Х	0		
Goldface Tilefish	Х	0	0	0	0	0		
Banded Rudderfish	Х	X?	0	0	0	0		

14 FIGURES

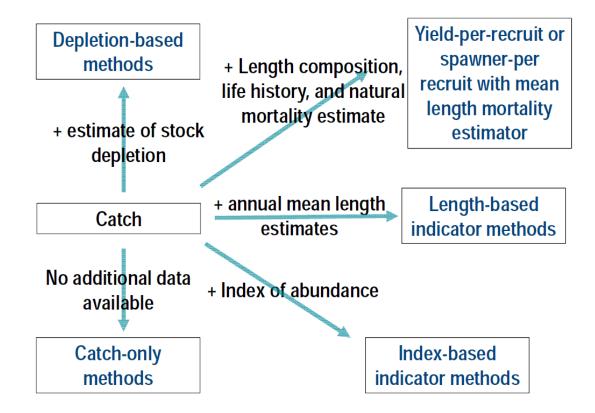


Figure 1. Depiction of method types available in the Data-limited Methods Toolkit (DLMtool) as well as required data inputs.

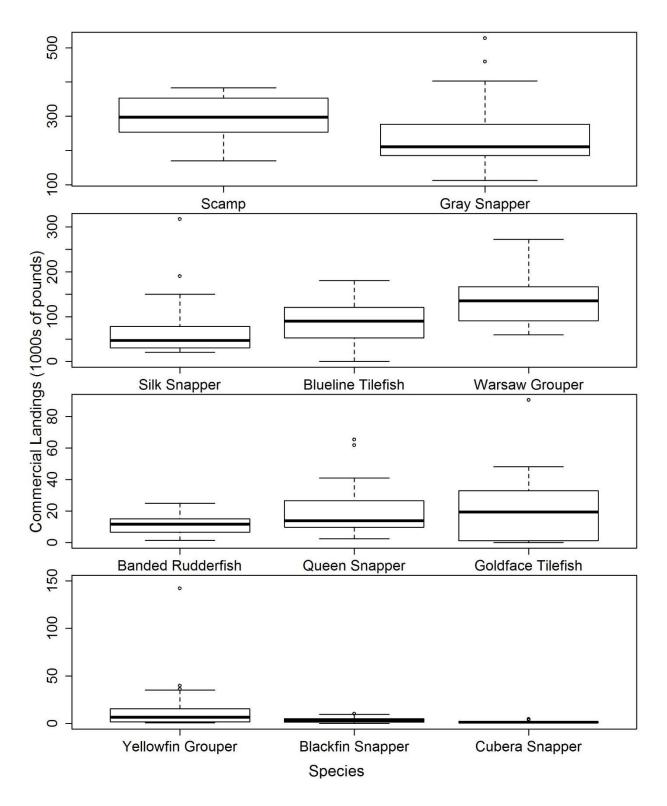


Figure 2. Summary of commercial landings (in pounds) for the managed species that have not yet been assessed. The boxplots represent the inter-quartile range, the solid lines represent the medians, and the open circles represent outliers.

SEDAR 49 Data Triage Report

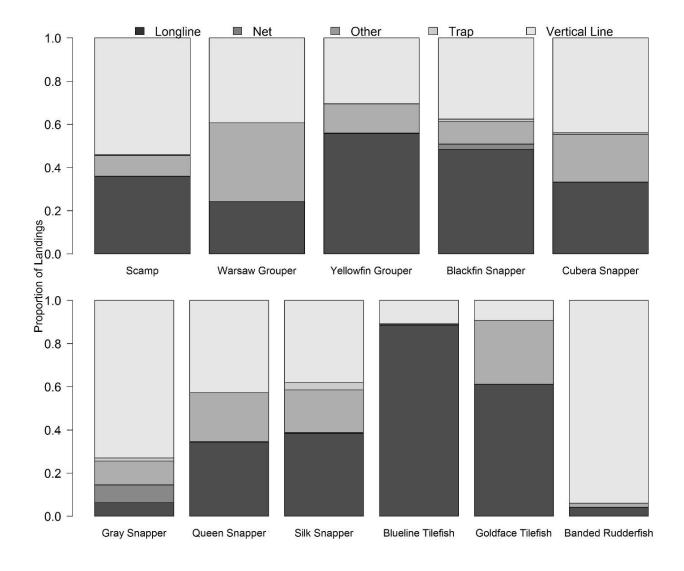


Figure 3. Proportion of landings for each commercial gear type for the managed species that have not yet been assessed.

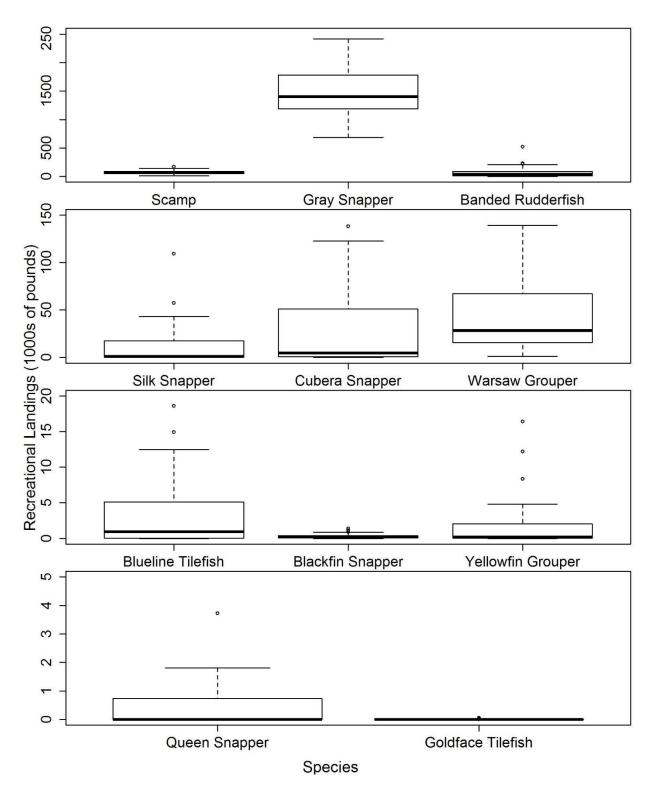


Figure 4. Summary of recreational landings (in pounds) for the managed species that have not yet been assessed. The boxplots represent the inter-quartile range, the solid lines represent the medians, and the open circles represent outliers. Note that some outliers have been removed to enhance interpretation.

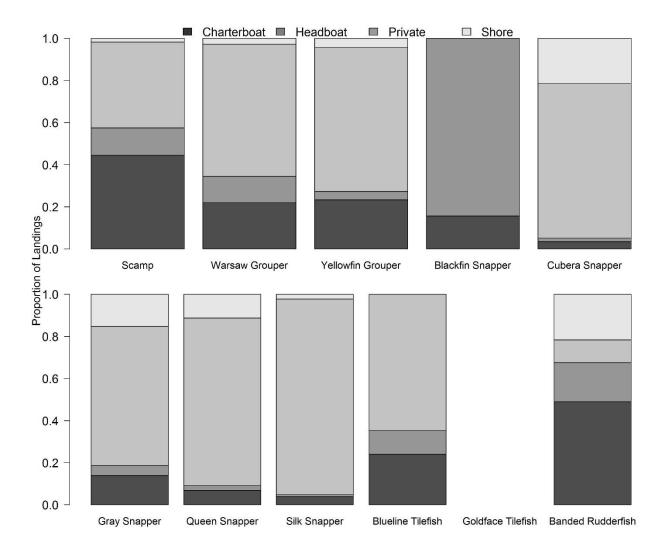


Figure 5. Proportion of landings for each recreational fishing mode for the managed species that have not yet been assessed.

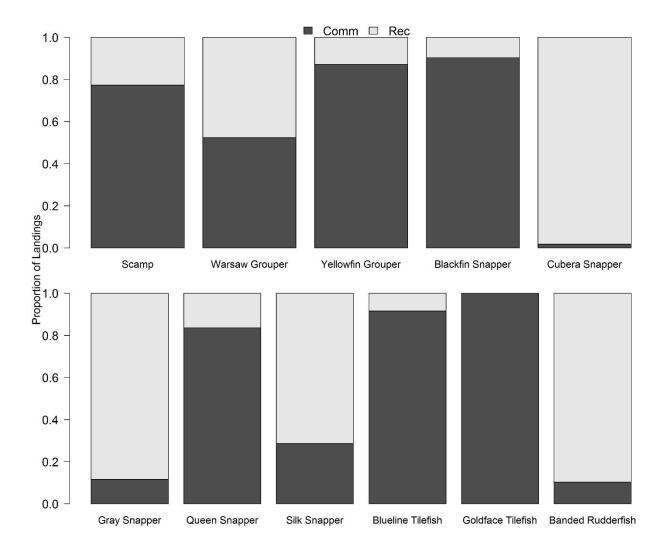
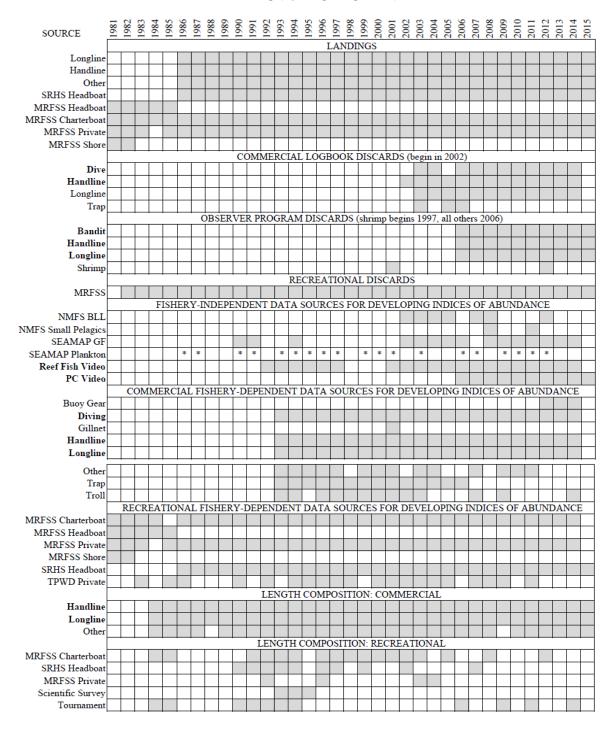
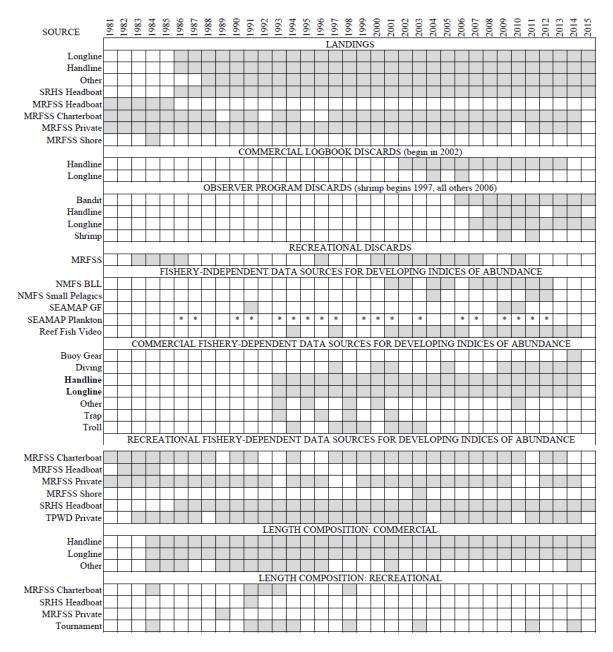




Figure 6. Comparison of the magnitude of commercial and recreational landings for the managed species that have not yet been assessed.

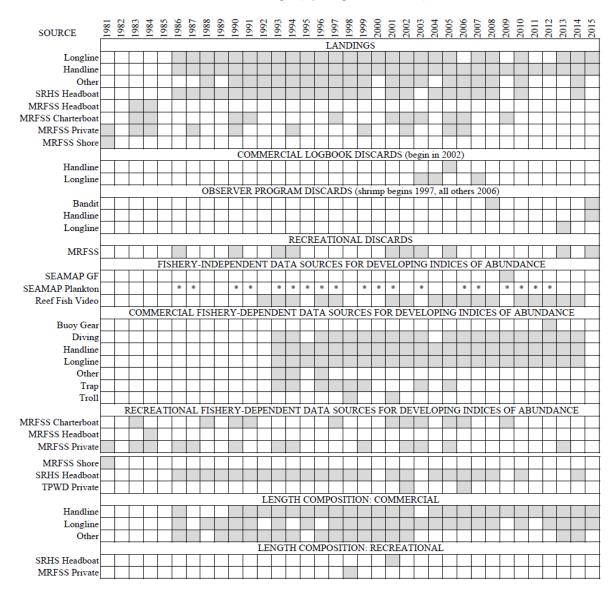

Scamp (*Mycteroperca phenax*)

Figure 7. Synthesis of available data for Scamp. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

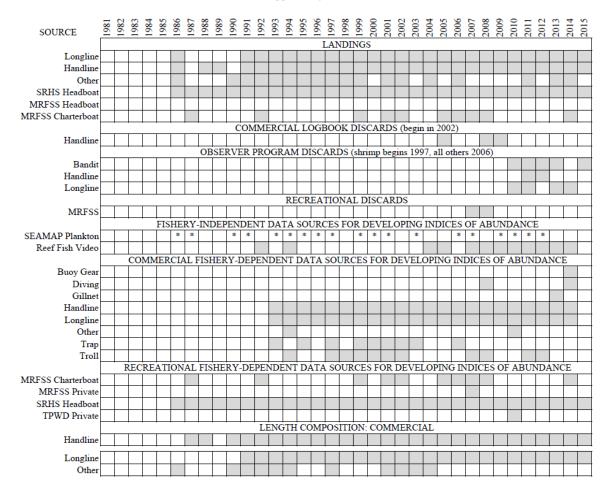

Warsaw Grouper (Hyporthodus nigritis)

Figure 8. Synthesis of available data for Warsaw Grouper. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

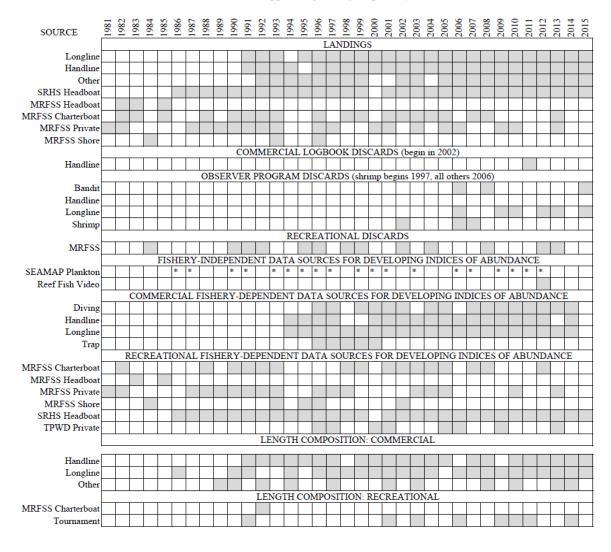

Yellowfin Grouper (Mycteroperca venenosa)

Figure 9. Synthesis of available data for Yellowfin Grouper. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

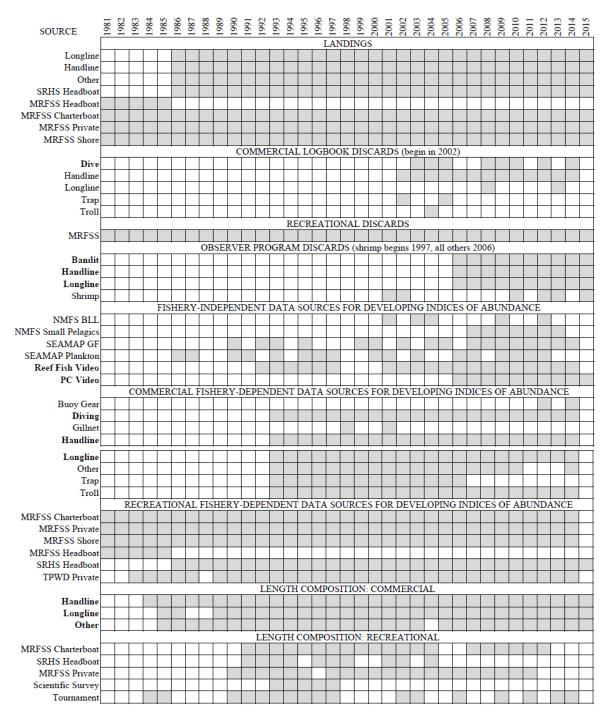

Blackfin Snapper (Lutjanus buccanella)

Figure 10. Synthesis of available data for Blackfin Snapper. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

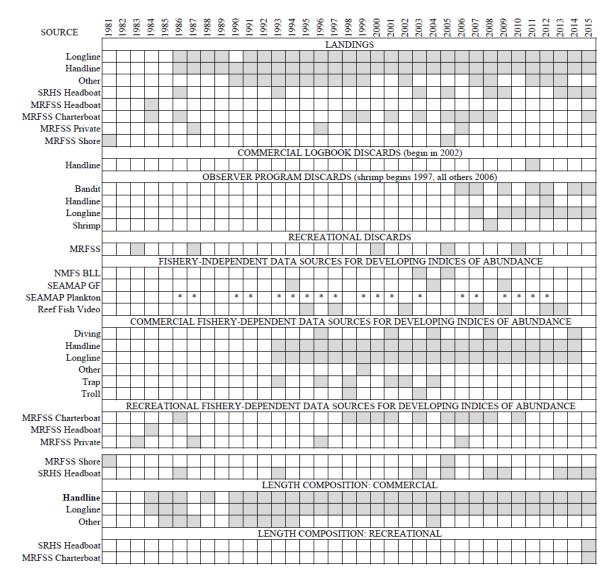

Cubera Snapper (Lutjanus cyanopterus)

Figure 11. Synthesis of available data for Cubera Snapper. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

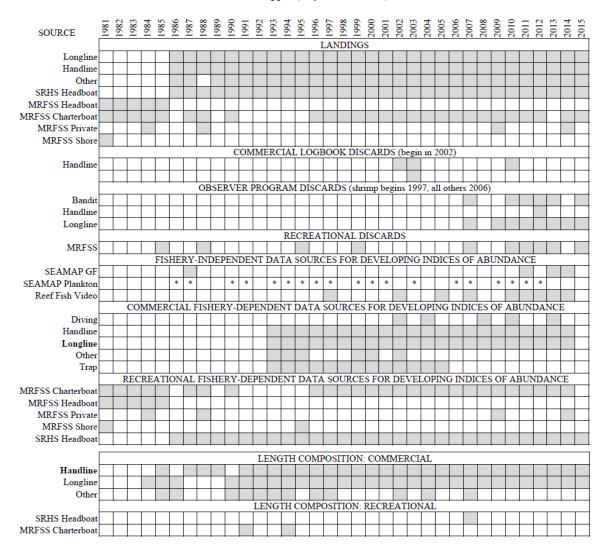

Gray Snapper (Lutjanus griseus)

Figure 12. Synthesis of available data for Gray Snapper. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful.

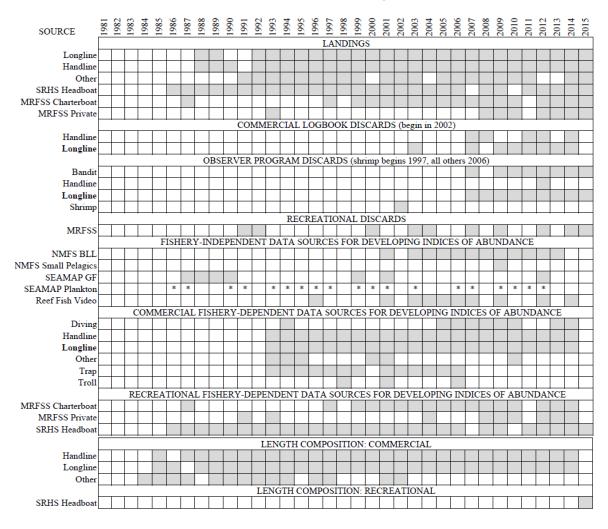

Queen Snapper (Etelis oculatus)

Figure 13. Synthesis of available data for Queen Snapper. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

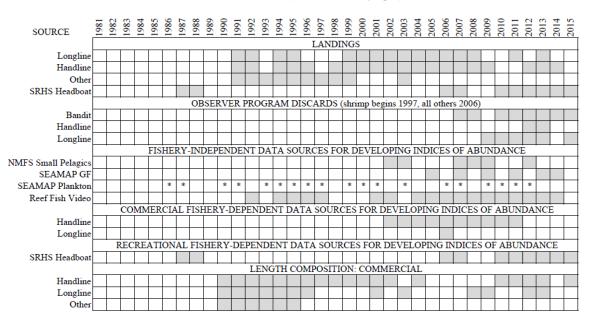

Silk Snapper (Lutjanus vivanus)

Figure 14. Synthesis of available data for Silk Snapper. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

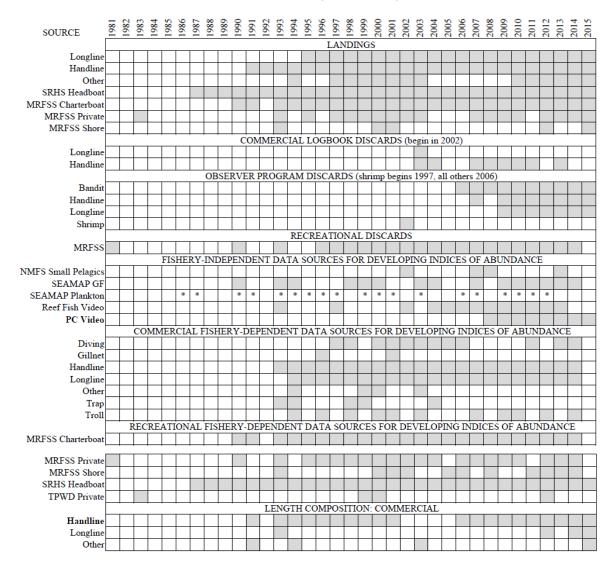

Blueline Tilefish (Caulolatilus microps)

Figure 15. Synthesis of available data for Blueline Tilefish. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

Goldface Tilefish (Caulolatilus chrysops)

Figure 16. Synthesis of available data for Goldface Tilefish. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.

Banded Rudderfish (Seriola zonata)

Figure 17. Synthesis of available data for Banded Rudderfish. Gray shading is indicative of the presence of data (i.e., but not the quantity of data available). Sources include data source or gear source, with bolded text used to highlight data sources and/or gear types with data deemed potentially useful. * indicates that larvae cannot be identified to species level and/or are not caught in any numbers.