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Abstract

Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS) support a

multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish

from harvest, to enhance productivity and reduce the potential for overfishing. We assessed

spatiotemporal cues for spawning for six species from four reef fish families, using data on

individual spawning condition collected by over three decades of regional fishery-indepen-

dent reef fish surveys, combined with a series of predictors derived from bathymetric fea-

tures. We quantified the size of spawning areas used by reef fish across many years and

identified several multispecies spawning locations. We quantitatively identified cues for

peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus),

White Grunt (Haemulon plumierii), Red Snapper (Lutjanus campechanus), Vermilion Snap-

per (Rhomboplites aurorubens), Black Sea Bass (Centropristis striata), and Scamp (Mycter-

operca phenax). For example, Red Snapper peak spawning was predicted in 24.7–29.0˚C

water prior to the new moon at locations with high curvature in the 24–30 m depth range off

northeast Florida during June and July. External validation using scientific and fishery-

dependent data collections strongly supported the predictive utility of our models. We identi-

fied locations where reconfiguration or expansion of existing marine protected areas would

protect spawning reef fish. We recommend increased sampling off southern Florida (south

of 27˚ N), during winter months, and in high-relief, high current habitats to improve our

understanding of timing and location of reef fish spawning off the southeastern United

States.
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Introduction

The South Atlantic Fishery Management Council (Council) manages 50 Atlantic Ocean reef

fish stocks (e.g., snappers, groupers, porgies, grunts, tilefishes) over nearly 500,000 km2 of fed-

eral waters off the southeastern United States (SEUS) from Florida to North Carolina. These

stocks provide billions of dollars to coastal communities through commercial and recreational

fisheries and tourism [1]. Management of reef fish is commonly based on maximizing repro-

ductive potential, expressed as spawning stock biomass or total egg production [2]; however,

in many marine species, the location and timing of spawning may be more important to repro-

ductive success [3]. Recognizing that spawning areas are productivity hotspots where small

investments in research and management can lead to large benefits for fisheries and conserva-

tion [4], the Council is currently contemplating a variety of management measures designed

to protect spawning reef fish [5,6].

Reef fish exhibit a great diversity of spawning strategies [7]. Resident spawners have pro-

tracted spawning within their home range, whereas transient spawners migrate relatively large

distances to spawn in aggregations during only a portion of the year [8]. More recently, this

distinction has been illustrated as a suite of non-linear continua dependent on distance

migrated to spawn, number of individuals aggregated to spawn, duration of spawning, and

other variables [9,10]. Choat [11] analyzed factors that determine spawning behaviors and

found that body size is the most important predictor. Specifically, species with large (> 40 cm

mean maximum fork length) bodies (regardless of age, diet, or lineage) were likely to spawn in

transient aggregations.

Species that are long-lived, migrate long distances, and form dense transient aggregations

are extremely vulnerable to overfishing [12]. Once discovered by fishers, transient aggregation

sites may be rapidly extirpated [12–14]. Overfishing transient aggregations may lead to sperm

limitation in protogynous hermaphrodites [15] and removal of gravid individuals prior to

spawning. This has resulted in the elimination of spawning aggregations for some species [16].

Once eliminated, spawning aggregation sites may not re-form, or they may form in less-desir-

able locations with respect to larval survival, leading to declines in the exploited stock [17–19].

Protection of a site prior to extirpation may lead to substantial increases in spawning activity

[20] and rebuilding of the exploited stock [21,22]. Spawning sites are commonly used by multi-

ple species [7,17–19,23–25]; thus, identification and protection of a site used by one species

may directly benefit other species and serve as an effective precautionary approach to manage-

ment [26].

The precise timing of spawning may be synchronized to lunar, solar, diel, and/or tidal

cycles [27–30]. Studies in the Caribbean have suggested reef geomorphology may be a key

determinant in the selection of reef fish spawning locations [25,31–34]. Spawning locations in

Belize and the Cayman Islands were generally near the inflection points of convex-shaped

reefs in 20–40 m water depth, adjacent to sharp shelf edges where water depths drop several

hundred meters [25]. These features appear to be common to other spawning locations in

Cuba [35], Florida [36], and Mexico [37], as they endure for thousands of years and create

unique current patterns that promote either local larval retention or long-distance dispersal

depending on currents at the time of spawning [38].

The objectives of this study were to: 1) synthesize what is known about timing of spawn-

ing for managed reef fish stocks in the Atlantic Ocean off the SEUS, 2) quantitatively test

what variables are predictive of spawning activity, 3) generate spatial predictions of spawning

locations, 4) validate predicted spawning locations based on the ecological knowledge of

local fishermen and scientific field studies, and 5) suggest needed data and methods for pre-

diction and verification of the locations of spawning aggregations. Our results may help the
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Council update information on periods when spawning activity is highest and delineate the

appropriate locations and spatiotemporal extent for marine protected areas (MPAs) to pro-

tect spawning fish.

Materials and methods

Data sources

Histological samples. The primary source of data for this project was the Southeast Reef

Fish Survey (SERFS) database. SERFS is a long-term fishery-independent monitoring program

targeting reef fish species of the SEUS Atlantic Ocean. We used SERFS data from the Marine

Resources Monitoring, Assessment and Prediction (MARMAP) program (1990–2013), the

Southeast Area Monitoring and Assessment Program, South Atlantic region (SEAMAP-SA)

Reef Fish Complement (2009), and the Southeast Fishery Independent Survey (SEFIS; 2010–

2013). By using consistent gears (e.g., chevron traps and bottom longlines) and methodologies

over time, SERFS has facilitated long-term examinations of changes in relative abundance, spe-

cies distribution, and life history traits for a variety of fish species. Throughout the survey his-

tory, the SERFS has collected biological data for investigation of population demographics

(e.g., length, age, and sex composition) and life history traits (e.g., growth rates, age/length-at-

maturity/transition, spawning season).

Fishery-independent SERFS data collection efforts were concentrated between May and

September, though some samples were collected from all months from March through Octo-

ber (Fig 1). Periodically, the MARMAP program has supplemented SERFS fishery-

Fig 1. Spawning condition females and valid sets by month. Percentage of SERFS samples of females within 48

hours of spawning (left) and number of sets (right) where a histological sample was taken, by species and sampling month.

doi:10.1371/journal.pone.0172968.g001
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independent biological data via targeted fishery-dependent sampling of fish wholesalers for

particular species to obtain biological samples from species that were caught infrequently by

monitoring gears and/or collect biological samples from months and/or seasons of the year

outside the routine fishery-independent monitoring season. Such samples were used to deter-

mine reproductive life history characteristics of particular species, including spawning season-

ality and spawning location information.

In 2012, the Florida Fish and Wildlife Commission (FWC) conducted a stratified random

sampling study for Red Snapper from 28˚ 00’ N (Melbourne, Florida) to 30˚ 45’ N [39]. Each

month, 12 inshore (i.e., <30 m depth) and 20 offshore (i.e., depths of 30–100 m) sites were

sampled using standardized fishing methods. Three sampling techniques were used (passively

fished vertical and horizontal bottom longlines and an actively fished repetitive timed drop

method using Elec-tra-mate gear). Histological indicators were used to assess reproductive

state and phase for fish captured during sampling consistent with the definitions below

[40,41]. This sampling program also obtained bycatch collections of spawning condition Black

Sea Bass and Vermilion Snapper.

For three sites in the South Atlantic the authors attempted field validation of predicted

spawning areas, via cooperation with commercial fishermen. Field validation techniques

included video monitoring using Go-Pro™ drop cameras, catch-per-unit-effort (CPUE) moni-

toring and collection of biological samples at predicted spawning areas. Histological analysis

from these samples was conducted by MARMAP staff and was used to verify spawning

condition.

Spawning season. Seasonal and lunar cues to spawning activity for reef fish species were

compiled from SERFS samples and supplemented with information from peer-reviewed litera-

ture, especially stock assessment reports [42]. Timing of peak spawning was noted as well as

duration of spawning season.

Bathymetric categorization. A complete bathymetric layer for the SEUS was developed

within a geographic information system (GIS) from the National Oceanographic and Atmo-

spheric Administration’s (NOAA) Coastal Relief Model (CRM: www.ngdc.noaa.gov/mgg/

coastal/startcrm.htm). The CRM provides a comprehensive three arc-second (approxi-

mately 90 m) resolution view of the U.S. coastal zone, integrating offshore bathymetry with

land topography. The CRM was assimilated from numerous bathymetric sources including

U.S. National Ocean Service Hydrographic Database, the U.S. Geological Survey (USGS),

the Monterey Bay Aquarium Research Institute, the U.S. Army Corps of Engineers, the

International Bathymetric Chart of the Caribbean Sea, the Gulf of Mexico project, and vari-

ous academic institutions. Topographic data are from the USGS and the Shuttle Radar

Topography Mission (SRTM).

Additional high-resolution (3–50 m) multi-beam (MB) bathymetric layers were assimilated

from NOAA, SEFIS, USGS, the U.S. Navy, and the National Centers for Coastal Ocean Science

(NCCOS: https://products.coastalscience.noaa.gov/collections/benthic/e49s_atlantic/). The

MB bathymetric layer covered relatively small areas in and around existing and proposed

SEUS MPAs.

The CRM and MB bathymetric layers were categorized according to broad-scale and fine-

scale bathymetric positioning index (BS-BPI and FS-BPI), slope, aspect, and curvature. BPI is a

second order derivative of the surface, which defines the elevation at locations with reference

to the overall landscape. A BPI value less than zero denotes a valley, a BPI equal to zero denotes

a flat area, and a BPI greater than zero denotes a ridge. BS-BPI and FS-BPI were computed

using Benthic Terrain Modeler [43] with an inner annulus cell size of 1 (i.e., 90 m) and outer

annulus sizes of 18 (approximately 1 arc-minute at 30˚ N) and 9 cells, respectively.
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Definitions

Spawning areas. We use the term “spawning areas” to denote locations where individual

species of fish actively spawn; these areas may represent the year-round habitat of an individ-

ual fish, or may represent specific areas to which fish move for the express purpose of spawn-

ing. Spawning areas may contain reproductively active fish engaged in resident, simple

migratory, or transient aggregation spawning following definitions in [8,10,44].

Fish spawning in an area can be verified directly in one of two ways. First, actual spawning

events (e.g., gamete release) can be recorded using photos or video, which is generally accom-

plished using scuba in the tropics [8,45,46]. Second, the reproductive phases of fishes (including

spawning) can be documented through observations of gonadal tissues. Several indirect meth-

ods have also been used traditionally to suggest the presence of spawning aggregations. These

include anecdotal evidence from fishermen, photo/video evidence of courtship behaviors or

colorations, or high CPUE at the site including catch of some fishes with large, late development

stage gonads. Photo or video documentation of courtship coloration or behaviors, swollen or

distended abdomens, recent bite marks, or a species density three times the normal density at

the site can also provide indirect evidence for the presence of spawning aggregations [8,45,46].

Most of these techniques were developed for use in relatively shallow (25–60 m) shelf-edge trop-

ical waters [47], but can be adapted to the deeper, sometimes turbid waters of the SEUS [48].

In addition to information from fishery-independent surveys and collaborative research

projects with fishermen, the timing of spawning (season and lunar phase) for various species

has been published in papers and reports (e.g., stock assessment reports). Experienced fisher-

men are an important source of information on spawning areas and times based on their

extensive time at sea [7]. Indeed, multispecies spawning sites have been identified by fishermen

in Florida [20,44], Cuba [35], Belize [23,38], the Cayman Islands [24,49], the west Florida shelf

[50,51] Brazil [52], and the SEUS [5,44]. Summaries of existing information from fishermen

about the timing and location of spawning aggregation areas are important resources [53,54].

Finally, bathymetric data and maps can be used to identify prominent shelf-edge features that

may serve as aggregation sites [47].

Spawning condition. All reef fish species with sufficient data were evaluated, providing a

representative variety of sizes, families, and life histories. Spawning females were defined as

mature females with histological evidence of oocyte maturation (nucleus migration through

hydration) and/or post-ovulatory follicles in gonadal tissue, indicating the fish was captured

within 48 hours of a spawning event [55]. The duration of oocyte maturation through post-

ovulatory follicles is influenced by water temperature [56–58]. Based on the water tempera-

tures in the study area, discernable follicles in histological sections were expected until approx-

imately 24–48 hr after spawning.

Data analyses

Multispecies and multi-year use of spawning locations. Multispecies spawning areas

were defined as areas where a single collection retrieved spawning condition females of two or

more species. Multi-year spawning areas were defined as locations where spawning females of

a single species were collected in two or more sampling years from 1990–2013. Characteristics

of multi-year spawning areas were determined through visual inspection of underlying

bathymetry and distance from the edge of the continental shelf (i.e., shelf-edge). The sizes of

these locations were determined using minimum convex polygon methods implemented in

Geospatial Modeling Environment [59]. Because it was difficult to quantitatively determine

the edges of multi-year spawning areas relative to the underlying sampling scheme, estimates

are presented as approximations rounded to the nearest square kilometer.
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Model selection and validation. Spawning timing and location were modeled, by species,

in a binary logistic regression framework for species with sample sizes sufficient to achieve

model convergence (i.e., n>90). The logistic regression modeled the probability of detecting a

female of a given species in spawning condition versus a female in non-spawning condition, as

a function of gear, habitat, latitude, year, month, lunar phase, depth, temperature, and bathy-

metric features (Table 1). We also tested for interaction factors between latitude and depth, lat-

itude and month, and latitude and temperature, as some species may have different peak

spawning times in different areas.

The model was fit using all gear deployments where individuals were histologically-exam-

ined and categorized with regards to their gender and spawning condition (Table 2). We tested

for gear effects to determine whether there was evidence of one gear preferentially selecting for

spawning condition individuals, and in the absence of any evidence of gear effects we used the

full data set with combined gear types. Based on the biology of the study species, using spawn-

ing condition females versus non-spawning condition females (as opposed to males or juve-

niles), is the best model structure for identifying potential spawning areas within the known

Table 1. Input variables considered in logistic regression model.

Variable Description Treatment Coverage

MAXBCURVE Maximum curvature value from high-resolution bathymetry Categorical (binned) Limited

MEANBCURVE Mean curvature value from high-resolution bathymetry Categorical (binned) Limited

MAXBASPECT Maximum aspect value from high-resolution bathymetry Categorical (binned) Limited

MEANBASPEC Mean aspect value from high-resolution bathymetry Categorical (binned) Limited

MAXBSLOPE Maximum slope value from high-resolution bathymetry Categorical (binned) Limited

MEANBSLOPE Mean slope value from high-resolution bathymetry Categorical (binned) Limited

MAXBBSBPI Maximum broad-scale (18 cell) BPI value from high-resolution bathymetry Categorical (binned) Limited

MEANBBSBPI Mean broad-scale (18-cell) BPI value from high-resolution bathymetry Categorical (binned) Limited

MAXBFSBPI Maximum fine-scale (9 cell) BPI value from high-resolution bathymetry Categorical (binned) Limited

MEANBFSBPI Mean fine-scale (9-cell) BPI value from high-resolution bathymetry Categorical (binned) Limited

MAXCBSBPI Maximum broad-scale (18 cell) BPI value from coastal relief model bathymetry Categorical (binned) Comprehensive

MEANCBSBPI Mean broad-scale (18-cell) BPI value from coastal relief model bathymetry Categorical (binned) Comprehensive

MAXCFSBPI Maximum fine-scale (9 cell) BPI value from coastal relief model bathymetry Categorical (binned) Comprehensive

MEANCFSBPI Mean fine-scale (9-cell) BPI value from coastal relief model bathymetry Categorical (binned) Comprehensive

MAXCASPECT Maximum aspect value from coastal relief model bathymetry Categorical (binned) Comprehensive

MEANCASPEC Mean aspect value from coastal relief model bathymetry Categorical (binned) Comprehensive

MAXCCURVE Maximum curvature value from coastal relief model bathymetry Categorical (binned) Comprehensive

MEANCCURVE Mean curvature value from coastal relief model bathymetry Categorical (binned) Comprehensive

MAXCSLOPE Maximum slope value from coastal relief model bathymetry Categorical (binned) Comprehensive

MEANCSLOPE Mean slope value from coastal relief model bathymetry Categorical (binned) Comprehensive

Gear_ID Sampling gear Categorical All records

Month Month Categorical All records

Year Year Categorical All records

Latitude Latitude for gear set (1˚ bins from 30.5˚-34.5˚) Categorical (binned) All records

Depth Depth of gear set (20 m bins from 10–70 m) Categorical (binned) All records

Temperature Temperature at depth of gear deployment Continuous Some errors

Lunar3 Lunar luminosity expressed as an approximated continuous wavelet function based on

NASA archived data on lunar phase (downloaded from: http://eclipse.gsfc.nasa.gov/phase/

phases1901.html) with waxing moons as positive values, waning moons as negative,

rounded to the nearest quarter moon.

Continuous and

Categorical (binned)

All records

Habitat Habitat type (hardbottom, possible hardbottom, not hardbottom, or unknown) from

1-degree resolution SEAMAP-1199 grid

Categorical Limited

doi:10.1371/journal.pone.0172968.t001
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range of species occurrence (Table 2). Juveniles and males were not considered in the analysis

as many species exhibit ontogenetic shifts, and the model effects may have been confounded

with ontogenetically driven or sex-specific habitat preferences. Similarly, including sites where

zero individuals of the species were observed would have confounded probability of occur-

rence with probability of spawning and thus was not desirable.

We modeled the logistic response in a mixed-model framework where year was treated as a

random effect, and all other effects were fixed. Treating year as a random effect allowed us to

control for time-varying processes which could potentially affect the ratio of spawning to non-

spawning females in a sample, such as annual differences in sampling method (e.g., binning vs.

random sampling), size- or age-selective fishing pressure, or recruitment pulses. Month was

treated as a factor; other predictor variables were binned by quantiles and also treated as fac-

tors to avoid imposing linear relationships between factors and spawning probability. Factor

data bins with no observations were removed. Bathymetric variables tested were fine-scale and

broad-scale BPI, slope, curvature, and aspect. Mean and maximum values for bathymetric fea-

tures were statistically summarized for each sample site using a 381.8 m buffer (i.e., the hypote-

nuse of a 3x3 grid of the CRM’s 90 m cells). Bathymetric features for the MB bathymetry were

summarized using a 127 m buffer. To increase statistical power and geographic coverage, the

FWC and SERFS data were combined when analyzing Red Snapper. No gear effects were

found to be significant.

Logistic regression analysis using a logit-linked generalized linear mixed model was imple-

mented using R version 3.2.3, package lme4, function glmer [60]. Generalized additive models

(GAMs) may have provided better smoothing; however, GAMs and generalized linear models

(GLMs) make similar predictions within areas of high sampling [61], and GAMs may overfit

Table 2. Number of collections from MARMAP/SERFS and FWC fishery-independent data with histological sampling (Samples), with number of

sets containing females within 48 hours of spawning (Female Spawners), number of sets containing females and males within 48 hours of spawn-

ing (All Spawners), number of sets with three or more histologically-sampled fish for the species (Valid Sets), and number Valid Sets within the

high-resolution multibeam bathymetry (MB Valid Sets).

Common Name Scientific Name Family Samples Female

Spawners

Mature Non-Spawning

Females

Valid

Sets

MB Valid

Sets

Gray Triggerfish Balistes capriscus Balistidae 2114 122 1400 799 212

*Greater

Amberjack

Seriola dumerili Carangidae 20 3 4 1 0

White Grunt Haemulon plumierii Haemulidae 861 97 536 375 37

Red Snapper Lutjanus campechanus Lutjanidae 421 159 180 158 8

Vermilion

Snapper

Rhomboplites aurorubens Lutjanidae 1697 1124 949 878 159

*Blueline Tilefish Caulolatilus microps Malacanthidae 18 8 1 2 0

*Tilefish Lopholatilus

chamaeleonticeps

Malacanthidae 171 12 73 87 1

Black Sea Bass Centropristis striata Serranidae 2324 338 1444 1499 10

*Gag Mycteroperca microlepis Serranidae 154 1 70 3 1

*Red Grouper Epinephelus morio Serranidae 308 6 143 70 0

Scamp Mycteroperca phenax Serranidae 743 105 494 143 94

*Snowy Grouper Hyporthodus niveatus Serranidae 156 48 55 56 5

*Speckled Hind Epinephelus drummondhayi Serranidae 93 0 10 4 1

*Warsaw Grouper Hyporthodus nigritus Serranidae 5 0 0 0 0

*Red Porgy Pagrus pagrus Sparidae 3098 17 1840 1710 361

Species with names preceded by an asterisk had insufficient samples to be statistically modeled.

doi:10.1371/journal.pone.0172968.t002
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the data, especially when considering many variables of unknown importance, resulting in less

useful predictions beyond the sampling domain [62]. As our goal was to make predictions for

the entire Council jurisdiction, we opted for the simpler GLM approach. GLMs were devel-

oped using a two-stage approach. First, models were fit to the suite of non-bathymetric vari-

ables that have been reported to affect spawning activity (month, temperature, latitude, depth,

lunar phase). Variables with correlations >60% were not included in the same model, to avoid

multicollinearity. Once a model was selected based on these factors as described below, the

suite of bathymetric variables were tested for inclusion; this was done in a separate stage

because a large suite of bathymetric variables was considered, and there was potential for spu-

rious relationships. In the first stage, models were fit in a forward stepwise fashion, testing the

suite of non-bathymetric variables (Table 1), and a subset of potential models using these fac-

tors was identified based on lowest AIC [63].

Model performance was internally tested using a 10-fold cross-validation procedure in

which the data were split into training and testing sets, and a model was fit to the training set

and subsequently tested on the “unseen” testing set [64]. Using a receiver operating character-

istic (ROC) curve (R ‘pROC’ library; [65]) for each of the subset of AIC-selected models, we

calculated the threshold at which the proportion of correctly classified positive observations

plus the proportion of correctly classified negative observations are maximized.

Using the parameters defined by each model, as well as the threshold defined by the ROC

curve for each model using the training set, we then made predictions for the testing set. The

predictive utility of models was rated based on the ROC area-under-the-curve (AUC) as ‘excel-

lent’ (AUC = 90–100%), ‘good’ (80–89%), ‘fair’ (70–79%), and ‘poor’ (<70%). Once the best

model containing all or a subset of these factors was defined, based on cross-validation output

and lowest AIC, bathymetric variables were tested to see if their inclusion lowered the model

AIC. If bathymetric variable inclusion lowered model AIC and improved predictive utility,

based on cross-validation as described above, the variable was retained.

Because of the large number of bathymetric variables tested, some of which had limited

contrast, we carried out an additional randomization test to determine the likelihood that any

significant associations with bathymetric variables were spurious. This test involved: 1) retain-

ing all non-bathymetric variables in the model at their original values and randomizing each

of the variables independently such that they were random variables retaining their original

distributions, 2) refitting the model with each randomized bathymetric variable individually,

and 3) identifying the randomized bathymetric variable that led to the largest reduction in

AIC, and 4) calculating the percent deviance explained by the randomized variable. This pro-

cess was repeated 500 times to determine the percentage of instances where inclusion of a ran-

domized bathymetric variable explained more deviance in the data than the true selected

bathymetric variable. This percentage is then equivalent to the probability that the inclusion of

a bathymetric variable in the final model was spurious.

Independent validation of predicted spawning locations. Maps of probability of a

spawning condition female at time of peak spawning were generated, by species, for a grid cov-

ering SEUS waters from 25˚ N to 35˚ N to 200 m depth. The resolution of the grid corre-

sponded to the resolution used to compute CRM bathymetric statistics (270 m × 270 m).

Model predictions were based on the given latitude, depth, and bathymetric features for each

grid cell, with month, temperature, and/or lunar phase effects fixed at their peak values for the

prediction. Predictive grid values were converted to Z-scores, by species.

We gathered independent validation data for predicted spawning areas from: 1) interviews

with fishermen who had knowledge of spawning times and locations based on experience, 2)

collaborative field research, and 3) overlays of supplemental fishery-independent and fishery-

dependent data sources. Tishler-Meadows [66] collected confidential information on
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spawning areas from fisher interviews. LGL Ecological Research Associates, Inc. (LGL-ERE)

conducted a cooperative field research program with commercial fishermen in 2014–2015 that

provided histological samples from locations off South Carolina and North Carolina [67].

FWC (2012–2013) collected fishery-independent bycatch and MARMAP (1974–2014) col-

lected fishery-dependent samples that were histologically evaluated. The FWC bycatch and

MARMAP fishery-dependent samples could not be used in a predictive modeling framework

because they were not collected through a structured sampling program for the stock that

included areas where no spawning condition individuals were observed (e.g., the zeroes); how-

ever, both were suitable for external validation of model predictions. For independent valida-

tion comparisons, positive Z-scores underlying independent validation sites were interpreted

as supportive of the model predictions.

Results

Multispecies and multi-year use of spawning locations

Spawning records were available for 15 species and varied by latitude and environmental fac-

tors (Fig 2, Table 3). No spawning Speckled Hind Epinephelus drummondhayi or Warsaw

Grouper Hyporthodus nigritus and few Gag Mycteroperca microlepis, Greater Amberjack Ser-
iola dumerili, and Red Grouper Epinephelus morio were encountered by fishery-independent

SERFS sampling.

Multiple species were observed in spawning condition on 128 of 10146 SERFS collections

(1.3%). Vermilion Snapper spawning condition females were observed at multispecies spawn-

ing areas with Black Sea Bass, Gray Triggerfish, Scamp, Red Snapper, and White Grunt

(Table 4). On six of these 128 multispecies sets, females of three different species were captured

in spawning condition. These encounters were composed of combinations of Black Sea Bass,

Gray Triggerfish, Red Snapper, Scamp, Vermilion Snapper, and White Grunt. Red Snapper

were encountered at five of these six events. Multispecies spawning observations were primar-

ily found off Charleston, SC and Savannah, GA within the historical core SERFS sampling

domain (Fig 2). Repeated observations of multispecies spawning were noted in many areas,

including three sites in the Northern SC MPA and nine sites in the Edisto MPA (Fig 2).

Multispecies spawning areas tended to be located on the shelf-edge or inshore, with the

densest cluster of observations in the core SERFS sampling range along the shelf-edge in and

around the Edisto and Northern South Carolina MPAs. Additionally, FWC had one record of

spawning condition Vermilion Snapper and Black Sea Bass caught together off northern Flor-

ida. Of the 128 SERFS collections with observations of multispecies spawning, only two were

within 110 m of each other in different years, and both had observations of multispecies

spawning in both years sampled. Of the 44 sites with multispecies spawning observations

within 1.1 km of another collection, 27 (61%) had repeat observations, including many sites

with observations across more than two years.

Most species evaluated appeared to use the same general spawning locations across multiple

years (Fig 3, Table 5). Gray Triggerfish were observed over multiple years at 17 areas on or just

inshore of the shelf-edge; areas ranged in size from 0–16 km2. White Grunt were observed

over multiple years at 14 shelf-edge and inshore areas ranging in size from 0–6 km2. Red Snap-

per were observed over multiple years at nine shelf-edge and inshore areas; areas ranged in

size from 0.01–5 km2. One FWC sampling site overlapped with SERFS sampling, and female

Red Snapper were observed in spawning condition at this site in each of the five years sampled.

Vermilion Snapper were observed over multiple years at 42 shelf-edge and inshore areas rang-

ing in size from 0.01–69 km2 (Fig 3). Despite limited sampling during their peak spawning sea-

son, Black Sea Bass were observed over multiple years at 14 shelf reefs and shelf-edge areas

Timing and locations of reef fish spawning off the southeastern United States
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ranging in size from 0.1–13 km2 (Fig 3). Spawning Scamp were observed at 14 areas, located

predominantly along the shelf edge in and around Edisto MPA, at three offshore edges near

the continental rise to the south of the Northern South Carolina MPA, and at some offshore

pinnacles. Multi-year spawning locations for Scamp ranged in size from 0.2–8 km2. Snowy

Grouper were observed over multiple years at three areas offshore of the shelf-edge; areas ran-

ged in size from 2–5 km2.

Timing and location of spawning

A comprehensive literature review revealed protracted spawning seasons for many species

(Table 6). Peak spawning was identified for most species, typically based on gonadosomatic

index (GSI). For many species, GSI or other spawning indicators (e.g., direct observation of

Fig 2. Fishery-independent sampling and multispecies spawning locations. On left, fishery-independent samples of female fish within 48 hours of

spawning, by species. Gray shapes denote histological samples, black shapes denote collections of spawning condition females, with triangles denoting

chevron traps, diamonds denoting short bottom longline, and circles denoting long bottom longline. On right, sites where females of multiple species have

been captured in spawning location at the same time (labeled by collection year). Green boxes denote no-take marine protected areas. Basemap courtesy

ESRI and National Park Service.

doi:10.1371/journal.pone.0172968.g002
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Table 3. Summary statistics for water depth (m), salinity (ppt), and temperature (˚C) during SERFS observations of spawning condition females.

Common name Scientific name N Valid Mean SD Min Max

Gray Triggerfish Balistes capriscus Depth 122 122 44.8 9.5 20 75

Salinity 122 121 36.3 0.2 35 37

Temp 122 121 22.7 2.2 15 27

White Grunt Haemulon plumierii Depth 97 97 33.3 8.8 22 52

Salinity 97 97 36.1 0.3 35 37

Temp 97 97 23.7 1.9 18 27

Blueline Tilefish Caulolatilus microps Depth 8 8 181.9 33.8 100 205

Salinity 8 7 36.1 0.0 36 36

Temp 8 7 16.0 0.3 15 16

Tilefish Lopholatilus chamaeleonticeps Depth 12 12 204.5 16.6 188 240

Salinity 12 11 35.7 0.3 35 36

Temp 12 11 12.8 2.1 10 16

Red Snapper Lutjanus campechanus Depth 40 40 43.2 11.6 23 66

Salinity 40 40 36.2 0.3 35 37

Temp 40 40 22.6 2.5 17 28

Vermilion Snapper Rhomboplites aurorubens Depth 1124 1124 36.9 12.4 18 104

Salinity 1124 1085 36.1 2.1 1 39

Temp 1124 1085 23.4 2.5 13 28

Black Sea Bass Centropristis striata Depth 338 338 25.4 9.1 15 66

Salinity 338 335 35.7 0.8 34 40

Temp 338 335 19.5 2.6 11 27

Red Grouper Epinephelus morio Depth 6 6 50.5 14.5 28 73

Salinity 6 6 36.3 0.1 36 37

Temp 6 6 20.5 2.4 17 24

Scamp Mycteroperca phenax Depth 105 105 52.1 13.2 32 101

Salinity 105 100 36.3 0.1 36 37

Temp 105 100 21.0 2.1 16 27

Snowy Grouper Hyporthodus niveatus Depth 48 48 190.0 9.1 175 223

Salinity 48 29 35.6 0.4 35 36

Temp 48 29 13.4 2.0 9 15

Red Porgy Pagrus pagrus Depth 17 17 38.6 18.5 26 93

Salinity 17 16 36.3 0.3 35 36

Temp 17 16 16.9 0.9 16 19

N: number of samples with spawning females; Valid: number of samples with water metrics >0; SD: standard deviation.

doi:10.1371/journal.pone.0172968.t003

Table 4. Number of gear deployments with multispecies observations of spawning females from SERFS.

Stock Gray Triggerfish White Grunt Red Snapper Vermilion Snapper Black Sea Bass Scamp Red Porgy

Gray Triggerfish 7 6 25 0 0 0

White Grunt 7 2 16 4 3 0

Red Snapper 6 2 12 1 3 0

Vermilion Snapper 25 16 12 40 15 0

Black Sea Bass 0 4 1 40 1 4

Scamp 0 3 3 15 1 1

Red Porgy 0 0 0 0 4 1

doi:10.1371/journal.pone.0172968.t004
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Fig 3. Multi-year observations of spawning. Sites at which spawning condition females were collected in

multiple years (two-digit labels) for Vermilion Snapper (top left), Black Sea Bass (top right), Snowy Grouper

(bottom left), and Scamp (bottom right) relative to bathymetry, histological sampling locations (Xs), marine

protected areas and SMZs (blue/gray boxes).

doi:10.1371/journal.pone.0172968.g003
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spawning, passive acoustic detections of spawning sounds) peaked between April and August

(Table 6). A period of peak spawning was not identified for Speckled Hind or Warsaw Grou-

per, nor did SERFS fishery-independent sampling observe spawning condition females for

these stocks. The core of SERFS fishery-independent sampling occurs from May-September

(Fig 1), which overlaps multiple peak spawning months for Gray Triggerfish, White Grunt,

Red Snapper, Vermilion Snapper, Scamp off North Carolina, Snowy Grouper, Blueline Tile-

fish, and Tilefish (Table 6). Winter months were not well-sampled, limiting collections of

spawning condition Black Sea Bass, Red Porgy, and Gag.

Plots of spawning relative to month and lunar phase revealed patterns for several species

(Fig 4). Spawning White Grunt were most commonly observed in June during the waxing

crescent moon. Spawning Red Snapper were most commonly observed from June-July during

the new-waning gibbous moons. Spawning Vermilion Snapper were most commonly observed

Table 5. Summary statistics (mean ± standard deviation) for apparent use of multi-year spawning locations. Multi-year spawning location size com-

puted as minimum convex polygon containing all collections within a site.

Stock Multi-year Spawning

Locations

Years

Sampled

% Years with Spawning Condition

Females

Multi-year Spawning Location Size

(km2)

Gray Triggerfish 17 9.9 ± 6.2 51% ± 24% 2.7 ± 4.7

White Grunt 14 6.7 ± 4.2 53% ± 27% 1.6 ± 1.8

Red Snapper 9 2.9 ± 1.2 100% ± 0% 1.0 ± 2.0

Vermilion

Snapper

42 9.1 ± 6.2 89% ± 16% 6.4 ± 13.6

Black Sea Bass 14 12.8 ± 6.1 51% ± 22% 4.2 ± 4.2

Scamp 11 8.2 ± 4.2 47% ± 19% 1.8 ± 2.5

Snowy Grouper 3 3.3 ± 0.6 100% ± 0% 3.2 ± 1.4

doi:10.1371/journal.pone.0172968.t005

Table 6. Timing of spawning (gray shading) and peak spawning (black shading) for exploited Atlantic Ocean reef fish stocks off the southeastern

United States. Months in bold denote core SERFS core fishery-independent sampling months. See S1 Table for references.

Stock Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Citation

Gray triggerfish [10]

Greater amberjack [7]

White grunt [14, 17]

Cubera Snapper WDH, pers. comm.

Red snapper [17, 18]

Vermilion snapper [2, 17]

Blueline tilefish [6]

Tilefish [4, 17]

Black sea bass [15, 17]

Gag [13, 17]

Red grouper [1]

Scamp (NC) [12]

Scamp (FL) [5]

Scamp (29.95–32.95 ˚N) [8, 17]

Snowy grouper [16, 19]

Speckled hind [20]

Warsaw Grouper [11, 17]

Red porgy [3, 17]

doi:10.1371/journal.pone.0172968.t006
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from June-August during all moons. Spawning Black Sea Bass were most commonly observed

from April-July during the waxing crescent, waxing gibbous, and waning gibbous moons.

Spawning Scamp were most commonly observed in May during all moon phases. Spawning

Snowy Grouper were most commonly observed from June-August during the waning cres-

cent-full moons.

Comparison of collection sites of spawning reef fish relative to three-dimensional bathyme-

try suggested strong associations with high vertical structure for many species (Fig 5, S2 File).

Live bottom habitats off SC were well-sampled and spawning areas were most well-defined in

this area. Spawning Scamp, Gray Triggerfish, White Grunt, and Vermilion Snapper were cap-

tured atop the shelf-edge convex reef crest within the Northern South Carolina MPA (Fig 5:

top). Spawning Vermilion Snapper, Scamp, Red Porgy, and Greater Amberjack were captured

Fig 4. Lunar cycle and spawning. SERFS fishery-independent samples of female fish within 48 hours of spawning (denoted by size of circles; values

vary by species) relative to lunar phase and month. Numbers denote histologically examined fish.

doi:10.1371/journal.pone.0172968.g004
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Fig 5. Spawning locations relative to 3D bathymetry. SERFS fishery-independent samples of female fish

within 48 hours of spawning, by species, relative to multibeam (MB; rainbow gradient) and Coastal Relief

Model (CRM; grayscale gradient) bathymetry near Northern South Carolina MPA (top), Georgetown Hole, SC

(middle), and Edisto MPA (bottom). Spawning condition females are shown as floating 3D shapes above

SERFS samples (black triangles). Figure created in ArcScene (ESRI, Redlands, CA) using Z-values from MB

and CRM with 50-fold vertical exaggeration.

doi:10.1371/journal.pone.0172968.g005
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both along the shelf-edge reef crest north of Georgetown Hole, SC; spawning Blueline Tilefish,

Snowy Grouper, and Tilefish were captured in the deeper water at the base of the slope (Fig 5:

middle). A spawning Warsaw Grouper was captured by LGL-ERE within the Council’s

recently approved spawning Special Management Zone (SMZ) at Georgetown Hole (Fig 5:

middle). Spawning Vermilion Snapper, Scamp, Gray Triggerfish, Black Sea Bass, Red Porgy,

Red Snapper, and White Grunt were all frequently captured along the shelf-edge reef crest

both within and north and south of Edisto MPA (Fig 5: bottom). Areas of high bathymetric

slope and curvature appeared to be good predictors of where spawning females and multispe-

cies spawning areas would be located; however, it was difficult to visually assess the confound-

ing effects of sampling effort (Fig 6).

Fig 6. Spawning locations relative to bathymetric slope and curvature. SERFS fishery-independent samples of female fish within 48 hours of

spawning, by species, relative to multibeam (MB) and Coastal Relief Model (CRM) bathymetric slope (left) and curvature (right) in area north of Edisto

MPA off South Carolina. SERFS histologically-evaluated collection sites are shown as gray Xs in right panel.

doi:10.1371/journal.pone.0172968.g006
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Model predictions

Sufficient (n>90) fishery-independent collections of spawning condition females were avail-

able to fit statistical models for six species: Gray Triggerfish, White Grunt, Red Snapper, Ver-

milion Snapper, Black Sea Bass, and Scamp (Table 2). Vermilion Snapper was the only stock

with sufficient observations of females within the MB bathymetry (n = 179) to test using a

127-m buffer. Regression model fits for timing and location of collections of spawning condi-

tion females are presented in tabular format in Table 7 and visually in the S1 File. In the text

below, variables are presented in order of descending variability explained.

For Gray Triggerfish, 34% of the total variability in the presence of spawning condition

females was explained by year, month, lunar phase, depth, latitude, and mean aspect from the

CRM bathymetry (Table 7, S1 Fig). Based on AUC, the predictive utility of the model was

good. Randomization testing indicated a low risk of incorporating a spurious bathymetric

variable.

For White Grunt, 72% of the total variability in the presence of spawning condition females

was explained by month, year, latitude, lunar phase, depth, temperature, and mean BPI from

the CRM bathymetry (Table 7, S2 Fig). Predictive utility of the model was excellent. Although

randomization testing suggested an extremely high risk of incorporating a non-informative

bathymetric variable, cross-validation indicated better model performance with the variable

included in the final model.

For Red Snapper, 46% of the total variability in the presence of spawning condition females

was explained by month, lunar phase, mean curvature from the CRM bathymetry, tempera-

ture, depth, latitude, and year (Table 7, Fig 7). Based on AUC, predictive utility of the model

was good. Randomization testing indicated a low risk of incorporating a spurious bathymetric

variable. Distinct gradients were observed in the predictive map due to quartile binning of

latitude.

For Vermilion Snapper throughout the SERFS sampling domain, 30% of the total variability

in the presence of spawning condition females was explained by an interaction between lati-

tude and month, year, depth, maximum BPI from the CRM bathymetry, and lunar phase

(Table 7, Fig 8). Predictive utility of the model was fair. Randomization testing indicated a rela-

tively low risk of incorporating a spurious bathymetric variable. Distinct gradients were

observed in the predictive map due to quartile binning of latitude.

For a subset of spawning condition female Vermilion Snapper within the MB bathymetry

off South Carolina, 48% of the total variability in the presence of spawning condition females

was explained by year, temperature, mean BPI from the MB bathymetry, month, lunar phase,

and depth (Table 7, Fig 9). Predictive utility of the model was fair. Randomization testing indi-

cated low risk of incorporating a non-informative bathymetric variable.

For Black Sea Bass, 72% of the total variability in the presence of spawning condition

females was explained by bottom water temperature, latitude, lunar phase, year, depth, maxi-

mum fine-scale BPI and mean curvature from the CRM bathymetry (Table 7, Fig 10). Based

on AUC, the predictive utility of the model was excellent. The bathymetric variables were of

limited explanatory value; the model had moderate risk of inclusion of a spurious bathymetric

variable. Distinct gradients were observed in the predictive map due to quartile binning of

latitude.

For Scamp throughout the SERFS sampling domain, 43% of the total variability in the pres-

ence of spawning condition females was explained by year, temperature, latitude, lunar phase,

depth, and mean BPI from the CRM bathymetry (Table 7, S3 Fig). Based on AUC, the predic-

tive utility of the model was good. Randomization testing indicated a relatively high risk of

incorporating a non-informative bathymetric variable.
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External validation of predicted spawning locations

The predictive model for Gray Triggerfish was compared to MARMAP fishery-dependent col-

lections (S1 Fig). The Z-scores for the probability of encountering a spawning condition

female at the two SERFS sites that overlapped the predictive map were 2.6 and -0.2,

respectively.

The predictive model for White Grunt was compared to MARMAP fishery-dependent col-

lections (S2 Fig). The only fishery-dependent MARMAP sample located in this layer had a Z-

score of 2.1.

The predictive model for Red Snapper (Fig 7) was compared to MARMAP fishery-depen-

dent collections and information collected from fishers [66]. Of the 44 external validation

points, 38 (86%) were located at sites with predicted probabilities that exceeded the mean

probability in the model domain (Fig 11).

The predictive models for Vermilion Snapper were compared to MARMAP fishery-depen-

dent collections and FWC fishery-independent samples of spawning condition female Vermil-

ion Snapper. Of the 80 external validation points in the broad-scale predictive layer for

Fig 7. Probability of encountering a spawning condition female Red Snapper. Predicted mean (left) and standard error (right)

probabilities of observing spawning condition female Red Snapper at time and conditions of peak spawning, relative to external

validation observations (+). Raster color-coding based on percent clip. Green boxes denote no-take marine protected areas and

SMZs. Basemap courtesy ESRI Ocean Basemap and partners.

doi:10.1371/journal.pone.0172968.g007
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Vermilion Snapper (Fig 8), 69 (86%) were located at sites with predicted probabilities that

exceeded the mean probability in the model domain (Fig 11). The Z-score for the only fishery-

dependent MARMAP sample located in the fine-scale predictive layer was -0.4 (Fig 9).

The predictive model for Black Sea Bass (Fig 10) was compared to incidental catch of

spawning condition female Black Sea Bass from the LGL sampling program, MARMAP fish-

ery-dependent collections, and FWC fishery-independent samples. Of the 74 external valida-

tion points, 68 (92%) were located at sites with predicted probabilities that exceeded the mean

probability in the model domain (Fig 11).

The predictive model for Scamp was compared to LGL and MARMAP fishery-dependent

collections (S3 Fig). Of the 62 external validation points, 58 (94%) were located at sites with

predicted probabilities that exceeded the mean probability in the model domain (Fig 11).

Discussion

For most species evaluated, our methods were able to elucidate the spatial, temporal, and envi-

ronmental cues to peak spawning. Several multispecies spawning areas were observed, and

most species appeared to utilize spawning areas across many years. Logistic regression

approaches generated spatial predictions for the probability of encountering spawning condi-

tion females. Internal cross-validation indicated these models had fair to excellent predictive

Fig 8. Probability of encountering a spawning condition female Vermilion Snapper. Predicted mean (left) and

standard error (right) probabilities of observing spawning condition female Vermilion Snapper at time and conditions of

peak spawning, relative to external validation observations (+). Raster color-coding based on 2.5 standard deviations

from the mean. Green boxes denote no-take marine protected areas and SMZs. Basemap courtesy ESRI Ocean

Basemap and partners.

doi:10.1371/journal.pone.0172968.g008
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utility, depending on the species. Independent validation provided a strong indication that the

predictive models would not frequently deliver false negatives.

Balistidae

Gray Triggerfish are gonochoristic, small-bodied [size at maturity = 32.8 cm [68]] fish [53,69].

Consistent with other members of the family Balistidae [70], Gray Triggerfish are reported to

form haremic groups [71], with male Gray Triggerfish establishing territories with nests in the

sediment either in or around reef structure [53,69]; parents release demersal gametes and pro-

tect the nest for 24–48 h after which time the larvae enter a pelagic stage [69]. Spawning Gray

Triggerfish were collected at numerous, broadly distributed locations along and just inshore of

Fig 9. Vermilion Snapper spawning. Maps of Edisto MPA (green) square and surrounding shelf edge showing A) Depth from multibeam bathymetry and

SERFS samples with spawning condition (stars) and non-spawning condition (Xs) female vermilion snapper, B) BPI from Benthic Terrain Modeler and

squares denoting habitat type (HB: hardbottom, NH: not hardbottom, PH: potential hardbottom) from SEAMAP-SA, C) Model predictions of spawning

locations at month and lunar phase of peak spawning and MARMAP fishery-dependent samples of spawning condition female Vermilion Snapper

(crosses), and D) standard error in model predictions of peak spawning.

doi:10.1371/journal.pone.0172968.g009
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the shelf-edge. Given their unique reproductive strategy, it is unsurprising that they were less

commonly observed at multispecies spawning areas than other stocks. Model fits for Gray

Triggerfish were good, but explained a relatively low percentage of the overall variability

(34%). Peak spawning months were identified as June-July, which agrees with previously pub-

lished studies (Table 6). Peak spawning was predicted around the new moon at flat locations

in the 49–78 m depth range. The timing of spawning around the new moon may reduce noc-

turnal predation on demersal eggs, although this was not explicitly testable using the data at

hand. Spawning aggregations for other members of the family Balistidae have been observed

forming just prior to the new moon, full moon, or both (Balistoides viridescens Donaldson and

Dimalanta [72], Canthidermis sufflamen Heyman and Kjerfve [38]).

Haemulidae

White Grunt are small-bodied (size at maturity = 16.7 cm [73]), gonochoristic and have previ-

ously been reported to reproduce throughout the year in different areas of the Caribbean, with

possible multiple spawning peaks [74,75]. Peak spawning was predicted inshore of the shelf-

Fig 10. Probability of encountering a spawning condition female Black Sea Bass. Predicted mean (left) and standard error

(right) probabilities of observing spawning condition female Black Sea Bass at time and conditions of peak spawning, relative to

external validation observations (+). Raster color-coding based on 2.5 standard deviations from the mean. Green boxes denote no-

take marine protected areas and SMZs. Basemap courtesy ESRI Ocean Basemap and partners.

doi:10.1371/journal.pone.0172968.g010
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edge (31–37 m depth) in 24.7–26.2˚C waters during the waxing half moon in May and June.

Studies in other regions have observed peak spawning for White Grunt during months corre-

sponding to the lowest regional water temperatures [74,76,77], but this was not observed in

the SERFS database, possibly due to limited winter sampling. More recently, Stallings et al.

[78] found strong evidence for a peak in hydrated eggs in female White Grunt in the eastern

Gulf of Mexico around the full moon in April. It is unsurprising that peak spawning differs

between regions, as fish evolve different strategies to maximize survival of their offspring in

different locations [79]. Peak lunar phase and peak month of spawning can vary by species

across relatively small scales [35].

Fig 11. External validation of spawning predictions. Boxplots of model-predicted Z-score standardized probabilities of collecting a spawning female

underlying locations where spawning females were collected by Florida Fish and Wildlife Conservation Commission (FWC; Lowerre-Barbieri et al. [39]),

LGL Ecological Research Associates ([67]), MARMAP Fishery Dependent Sampling (MMFD), and anecdotal reports from fishers (‘Tishler’) collected by

Tishler-Meadows [66]. Z-Scores above zero were interpreted as providing support for model predictions. Inset numbers denote sample sizes.

doi:10.1371/journal.pone.0172968.g011
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Lutjanidae

Red Snapper are moderately-sized (size at maturity = 37.1 cm [80]) gonochoristic fish and are

reported to spawn May-October, with a peak June-September [81]. Little is known about Red

Snapper spawning ecology in the SEUS; however, an aggregation of 20–30 Red Snapper that

“appeared to be a spawning aggregation” was observed via submarine at Scamp Ridge off

South Carolina in August 2002 [54]. Red Snapper spawning condition females were encoun-

tered in limited numbers by SERFS despite sampling during their spawning season. Their core

distribution appears to be centered off Northeast Florida, an area of historically low SERFS

sampling. More recent sampling targeting Red Snapper provided additional statistical power

to the Red Snapper model fits. Unfortunately, insufficient samples were available in the MB

bathymetry to fully evaluate the impacts of biogeomorphology on spawning for this stock.

However, it appeared that Red Snapper peak spawning takes place in 24.7–29˚C waters prior

to the new moon at locations with high bathymetric curvature in the 24–30 m depth range off

Northeast Florida during June and July. The predictive model confirms SEUS observations

that Red Snapper spawn at numerous protruding hardbottom locations [39] and is supported

by findings in the Gulf of Mexico that Red Snapper spawn on rocky ridges and relatively steep

delta terrace drop-offs [51].

Vermilion Snapper are gonochoristic, small-bodied [size at maturity = 15.0 cm [82]] fish

previously reported to spawn approximately every five days or about 35 times a year between

April and September [83]. The large size of multi-year spawning areas for this species suggests

a relatively broad use of habitat for spawning rather than isolated sites. A fair model fit in the

high-resolution bathymetry indicated that female Vermilion Snapper are most likely to be

found in spawning condition in 20.5–21.6˚C waters at deep (52–63 m) high-profile ridges

prior to the new moon in August. It is noteworthy that Vermilion Snapper was the only species

with a large sample size (n = 179) in the MB bathymetry layer, and our findings for their asso-

ciation with high-profile habitats were consistent with observations for tropical reef fish spe-

cies [23,25]. By contrast, the same analysis applied to the broad-scale bathymetry found higher

probability of encountering spawning condition females in areas of no slope. These contradic-

tory findings suggest that results are highly dependent on spatial scale of the analysis, a prob-

lem which abounds in the marine realm [84].

Serranidae

Black Sea Bass are moderately-sized (female length at maturity = 13.5 cm [85]) protogynous

hermaphrodites that undergo sex transition between ages 1 to 8 years [86]. Not all latitude

zones were represented during most peak spawning months; thus, the model-reported differ-

ences in probability of spawning at different latitudes may be somewhat misleading. Despite

limited sampling in the winter, the Black Sea Bass model predicted peak spawning at moder-

ately curving high-profile ridges in 10.4–20.5˚C inshore waters (13–22 m depth) during the

full moon, which aligns well with previous studies on the species (see Table 6). This suggests

that spawning activity by location may not vary significantly between peak and non-peak

spawning times for this stock.

Scamp are large-bodied [female size at maturity = 35.3 cm [87]] protogynous hermaphro-

dites known to aggregate in deep water (>40 m) to spawn at high-relief sites on the shelf-edge,

with or without a drop-off [15,50,51]. Peak spawning was predicted near the new moon in

19.7–21.6˚C waters on the shelf edge (48–51 m) at high-profile ridges off South Carolina. Pre-

vious studies have reported Scamp probably spawn during the late afternoon and evening,

with a peak during March-May around the new moon and full moon [87]. Scamp have been

reported in gray-head courtship color phase [88] at Georgetown Hole and Julians Ridge off
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South Carolina and at Sebastian Pinnacles, Jacksonville Scarp, and St. Augustine Scarp off

Florida [67,89,90].

Snowy Grouper are large-bodied (female size at maturity = 54.1 cm [55]) protogynous her-

maphrodites [55]. Adults are generally associated with the upper continental slope (>75 m) in

habitats characterized by rocky ledges, cliffs, and swift currents [91,92]. Snowy Grouper were

also often observed by SERFS video sampling in low relief rocky outcrops and pavement habi-

tats, often mixed in with Blueline Tilefish (N. Bacheler, SEFSC-SEFIS, pers. comm. 2016). We

observed spawning condition female Snowy Grouper at depths from 175–223 m. Multi-year

use of spawning areas identified at least three areas offshore and south of the existing Northern

South Carolina MPA (see Fig 3).

Applications to management

Because traditional management efforts in the SEUS have been insufficient to stop overfish-

ing for several species, such as Red Snapper, Warsaw Grouper and Speckled Hind, other

management tools are being explored—particularly spatial tools designed to reduce bycatch

mortality and protect spawning fish. There is a growing interest in the SEUS to develop

management tools to protect spawning fish, as evidenced by the Council’s development of a

System Management Plan to monitor new and existing no-take areas and their approval of

Amendment 36 to the Snapper-Grouper Fishery Management Plan, which develops no-

take areas, referred to as ‘Spawning Special Management Zones’ (SMZs) to protect impor-

tant spawning fish and associated habitats [6]. Our analysis contributed to management

decision-making for this amendment and identifies other areas that may merit spatial

protection.

Not all large snapper and grouper species spawn in highly predictable, site-specific loca-

tions. Species such as Red Snapper, Gray Snapper (Lutjanus griseus), and Yellowtail Snapper

(Ocyurus chrysurus) and species that feed lower on the food chain (e.g. scarids, labrids,

acanthurids) or that achieve smaller maximum size may spawn repeatedly at predictable loca-

tions; however these spawning events may be broadly-distributed in space and time, with a rel-

atively low fraction of the spawning population represented at any given event [8,12,39]. These

stocks may benefit more from seasonal protections during peak spawning as opposed to spatial

closures [8,11]. Our analysis suggests that there are broadly distributed spawning areas for

Gray Triggerfish, White Grunt, Red Snapper, Vermilion Snapper, and Black Sea Bass, although

we note that the broad spatial patterns in the predictive maps are partly an artifact of the level

of binning used in our analysis. Spatial management tools focused specifically on spawning

protection for these species, such as those employed for large-bodied serranids in other regions

[93,94]; would likely prove unsuccessful unless they were on a correspondingly large spatio-

temporal scale—at least, until data become available that would allow for more high-resolution

analysis and prediction of spawning activity.

An understanding of spawning ecology and reproductive resilience is critical to the effective

management of exploited fish stocks [3]. An important first step towards incorporation of

reproductive resilience into stock assessments is quantifying spawning site diversity and den-

sity [3]. We identified numerous multi-annual spawning areas; however, the resolution of our

data were insufficient to conclude whether these areas contained transient spawning aggrega-

tions, simple migratory spawning, or resident spawning. Several species are known to spawn

in aggregations in the SEUS. However, with the exception of Gag [95,96], most of these species

occur well south of the area of focus for this study [i.e., Black Grouper [97], Gray Snapper [98],

and Mutton Snapper [20]]. Due to reduced populations following decades of fishing pressure,

limited winter sampling, and limited sampling in southern Florida, collections of spawning
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condition females for these species were limited. Based on their repeated use of numerous,

broadly-distributed spawning locations, we anticipate a type of simple migratory or, poten-

tially, resident or near-resident spawning behavior in a vast number of locations over a broad

geographic range for Gray Triggerfish, White Grunt, Red Snapper, Vermilion Snapper, and

Black Sea Bass. The presence of these species in an SMZ may indicate some value in closing

the area; however, their spawning presence does not, by itself, fully support closure of that

area. White Grunt, Red Snapper, and Vermilion Snapper were common at multispecies

spawning areas, and may be a good indicator of favorable spawning habitats for some non-

aggregating species.

Our analysis suggested that immediate improvements in spawning protection for the two

larger-bodied serranids (Scamp and Snowy Grouper) might be possible. Several multi-year

spawning areas for these species were identified offshore of the boundaries of existing

MPAs. The reorientation or extension of these protected areas could provide useful protec-

tion to the spawning stock. As protogynous hermaphrodites, Scamp and Snowy Grouper are

particularly vulnerable to sperm limitation [15,51,55]. Snowy Grouper are currently consid-

ered overfished by the National Marine Fisheries Service based on a 2013 assessment [42].

Recent reviews of Scamp have called for close monitoring of the population due to a

decreased percentage of males in the population and a loss of older, larger females [87].

Additionally, the periods of peak spawning identified in Table 6 suggest that although the

Council’s January-April closure to grouper harvest may provide protection for spawning

Gag and Red Grouper, it is mistimed for spawning Scamp, Snowy Grouper, Speckled Hind,

and Warsaw Grouper.

Intensive fishing on natural spawning aggregations may alter their dynamics. It is well-doc-

umented that overexploitation results in smaller, faster-maturing fish [99]. Additionally, if fish

spawning at aggregations are disproportionately targeted relative to members of the popula-

tion spawning outside of aggregations, fishing may act to select for non-aggregating spawners.

Fishers have indicated there were several known large Red Snapper spawning aggregation sites

in the 1960s and 1970s off Florida that no longer form [44], and more recent evidence suggests

Red Snapper spawn in small groups in a broad array of habitats [39,66]. In the context of

aggregation overfishing, low density spawning groups at a diversity of locations may confer

reproductive resilience [3,39].

To date, no spawning aggregations have been formally documented by researchers in the

Council’s jurisdiction north of Jupiter Inlet, Florida. There are several purported spawning

aggregation or simple migratory spawning sites from east-central Florida northward, and a

growing body of indirect evidence for their occurrence in various locations [5,66]. Georgetown

Hole (or Devil’s Hole) is perhaps the most obvious example of a multispecies spawning area

that has been identified by multiple fishers [5]. Concurrent with the data mining efforts pre-

sented above, several of the authors of this paper have also been piloting a collaborative proto-

col for documenting spawning areas in the field [48]. Based on observations of two or more

female fish in spawning condition, spawning in the Georgetown Hole area was confirmed for

Scamp, Snowy Grouper, and Blueline Tilefish [67]. Based on single samples of female fish in

spawning condition, Greater Amberjack, Mutton Snapper (Lutjanus analis), Yellowedge

Grouper (Epinephelus flavolimbatus), and Warsaw Grouper were also confirmed in spawning

condition in the Georgetown Hole, SC area [67]. The degree to which this information reflects

species-level aggregation spawning, simple migratory spawning, or other types of spawning is

under further evaluation. The Council recently approved a 7.85 km2 SMZ at Georgetown Hole

[6]. Based on the sizes of multi-year spawning locations identified in this study (see Table 5

and Fig 3), if properly placed and configured, this SMZ might be sufficient to protect spawning

locations for a variety of species.
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Data limitations

This study was completed in large part from data mining the multi-decadal SERFS database.

Although this comprehensive fishery-independent survey represents the longest-standing,

most consistent sampling approach in the SEUS, the fishery-independent component of

SERFS was not specifically designed to evaluate timing and location of spawning activity.

However, it has proven useful for this purpose. The SERFS and FWC fishery-independent data

contained limited information on larger, longer-lived species of groupers and snappers in the

SEUS (e.g. Warsaw Grouper, Speckled Hind, Gag, Scamp, Snowy Grouper, Yellowedge Grou-

per Epinephelus flavolimbatus, and Cubera Snapper, Lutjanus cyanopterus) due to limited sam-

pling in the southern Florida region and limited sampling during the winter months that

represent the spawning season for most grouper species. These large-bodied species may fol-

low similar spatial and temporal spawning patterns of more tropical and insular species (i.e.

large, infrequent, transient aggregations at distinctive geomorphological features), but care

should be taken not to infer that all distinctive geomorphological features host spawning

aggregations.

An absence of sampling does not imply an absence of spawning activity—there are many

areas and months that remain poorly sampled. Not surprisingly, the predictive utility of our

models and our observations of multi-year and multispecies spawning areas were clustered in

the region of highest sampling (e.g. South Carolina). Additionally, the primary sampling gear

utilized by SERFS is the chevron trap; due to difficulty with recovery, traps are seldom set on

the deep, rocky ledges in high current zones where reef fish spawning activity has been docu-

mented in other regions [23]. Despite this limitation, several associations between high-profile

ridges and high probability of encountering spawning condition females were noted. We had

hoped to utilize the SEAMAP 1199 habitat grid [100] as a predictor of spawning habitats.

Unfortunately, the spatial coverage of this layer was too limited to be useful in a statistical

modeling framework and the SERFS samples were predominantly constricted to identified

hardbottom habitats, reducing the possible influence of this covariate (see Fig 9).

Future improvements

Our understanding of spawning ecology in the SEUS would be greatly enhanced by an expan-

sion of fishery-independent sampling into southern Florida and into the winter months. Addi-

tionally, increased sampling on high-relief, high current habitats using gears other than the

chevron trap might increase encounters with large-bodied aggregating spawners. Our ability

to distinguish bathymetric features that may be aggregation sites would be greatly enhanced by

more comprehensive fine-scale multibeam sampling of the region. This study has identified

limited availability of high-resolution bathymetry data within the SEUS. The CRM provides

comprehensive bathymetric information, but at a very low resolution and with known errors

and accuracy issues (NAF, unpublished data). Comprehensive high resolution bathymetric

data would allow much more fine-scale analysis of the effects of geomorphology on spawning

site distribution by species. Improved bathymetric data would allow a re-analysis of this data-

base at spatial scales that might be more meaningful to spawning reef fish, a key factor in pre-

dictive ability of such models [84].

Many studies have documented shifting distributions in marine species in response to cli-

mate change [101–103]. For the six species from four reef fish families tested, temperature and/

or latitude had significant effects on the probability of collecting spawning condition females.

Therefore, the spawning activities of these species may be particularly influenced by climate

change. The spawning season of these stocks and other stocks protected by seasonal spawning

closures (e.g., shallow-water groupers) should be tracked through time relative to
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environmental factors, to ensure alignment of management objectives with the reproductive

ecology of the stock. The productivity of stocks with peak spawning predicted in cooler waters

(i.e., Black Sea Bass, Scamp, Vermilion Snapper) may be particularly vulnerable to climate

change. A significant interaction between latitude and month was detected for Vermilion Snap-

per, suggesting there may be some plasticity for dealing with climate change for this species.

As discussed above, this study has revealed gaps in the data needed to fully characterize

spawning areas and times by species in the SEUS. We offer the following suggestions for

improved data collection, recognizing that many will be subject to funding constraints:

1. Conduct region-wide histological sampling, especially in southeastern Florida (south of 27˚

N) where aggregations of Gray Snapper (NAF, pers. obs., 2014), Mutton Snapper [20], War-

saw Grouper (D. DeMaria, pers. comm., 2016), Black Grouper, Red Grouper, and Red

Hind Epinephelus guttatus [104] have been reported.

2. Increase winter sampling to provide a better understanding of the spawning dynamics for

most groupers and many other species (see Table 6).

3. Increase sampling at high-relief, high current locations where multispecies aggregations are

probable [23], using hook-and-line or longline gears to avoid trap loss.

4. Evaluate histological samples to ascertain whether aggregating males demonstrate a more

discrete spawning season than resident males.

5. Use cooperative research with commercial fishermen to collect video and biological sam-

ples for under-represented species/areas/times similar to approaches outlined in Heyman

[48].

6. Integrate these monitoring approaches into the Council’s MPA System Management Plan

(http://safmc.net/SystemManagementPlan) as a required monitoring protocol for existing

and newly implemented MPAs and SMZs.

Conclusion

Despite the various data limitations discussed above, timing and location of spawning was

identified or confirmed for numerous commercially-important reef fish species in the SEUS,

at broad spatial scales. Many of the evaluated species appeared to spawn at myriad locations

along the shelf-edge or inshore. Although many reef fishes important in commercial and recre-

ational fisheries off the SEUS spawn across broad shelf areas, it is evident that some spawning

is localized. Often, local spawning grounds were utilized by several species. Many multi-year

and multispecies spawning locations were located close to existing MPAs, where expansion or

reorientation of those MPAs might provide conservation benefits. For example, spawning con-

dition female Vermilion Snapper and Scamp have been repeatedly collected on a ledge just

north of Edisto MPA and these locations could be contained by a reorientation of this MPA

(see Fig 3).

For those species that form aggregations, cooperative research approaches and expanded

SERFS sampling might help elucidate their spawning locations. Unfortunately, intensive fish-

ing over the past several decades may have reduced these aggregations to the point they might

not be recognizable as such. In the Gulf of Mexico, the Madison-Swanson and Steamboat

Lumps Marine Reserves demonstrated remarkable recoveries of spawning aggregations of Gag

and Scamp after nearly a decade of protection [51]. At Riley’s Hump near the Dry Tortugas

islands in southwestern Florida, a nearly extirpated Mutton Snapper spawning aggregation has

become a regional success story after over a decade of protection, and likely contains spawning
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aggregations of other snapper and grouper species [20,104]. These locations were closed based

on shelf geomorphology and information from fishers indicating known historical reef fish

spawning activity at the sites [105]. The SEUS contains many similar sites, some with fishery-

independent documented spawning activity of commercially-important species. Spawning site

closures for species that are appropriately sized and enforced to reduce fishing pressure on

spawning fish may improve the sustainability of regional stocks through increased recruit-

ment. These closures should be left in place and monitored for sufficient time relative to the

lifespan of the species to allow for a meaningful recovery. Sufficient monitoring to generate a

time series of the abundance of spawning individuals would allow an empirical demonstration

of the utility of the closure and would also promote more effective management [106].

Expanding these approaches to other regions is recommended [107], as spawning migrations

and larval distribution patterns may cross regional and national boundaries.
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