
REPORT OF THE SHARK EVALUATION WORKSHOP March 14-18, 1994

NOAA, National Marine Fisheries Service

SEDAR77-RD60

Received: 8/25/2023

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

REPORT OF THE SHARK EVALUATION WORKSHOP

March 14-18, 1994

NOAA, National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, FL 33149

SUMMARY

In conducting this evaluation, the Workshop Committee, which focused on the large coastal shark grouping, found that for many species considered, shark abundance in waters off the U.S. Atlantic and Gulf of Mexico coasts is depressed due to fishing removals. Catch rate information indicates that the abundance of many of the species and species groups could have declined by about 50 to 75% from the early 1970's to the mid 1980's. As shark catches dramatically increased in 1986 and there was no quota until 1993, the downward trend in available CPUE observations probably accurately reflects further shark abundance decrease since 1986. Recovery of this resource to levels of the 1970's will be slow (perhaps 30 years or more in some cases), due to the relatively low intrinsic rates of increase exhibited by most shark species. Measuring recovery or decline under a TAC implemented in 1993, even with precise abundance indices, may not be possible for a decade or more. Given the information available, increases in the TAC for sharks were considered risk-prone with respect to promoting stock recovery. In fact, considering the reproductive profiles of sharks and the general insufficiency of fishery data upon which to base analyses, any TAC might be considered risk prone relative to stock recovery of large coastals. In order to increase the probability of recovery, the single most important measure, supplemental to controlling the annual harvest level, that might be implemented is a closure of nursery grounds to directed fishing during the pupping season. The greatest impediments to improving shark stock assessments continue to be the general lack of species- and size-specific catch (landed and discarded) and effort data, as well as only limited fishery-independent measures of shark abundance and productivity.

BACKGROUND

The Fishery Management Plan (FMP) for Sharks of the Atlantic Ocean, completed in late 1992, has the following four goals: 1) to prevent overfishing of shark resources; 2) to encourage management of shark stocks throughout their ranges; 3) to establish a shark resource data collection, research and monitoring program; and 4) to increase the benefits from shark resources to the US while reducing waste, consistent with the other objectives. In order to achieve these objectives a number of regulations were implemented in 1993 and 1994 designed to limit fishing mortality of shark resources in the US western Atlantic. Additionally, the FMP calls for an annual evaluation of shark information in regards to a number of relevant characteristics including current stock status, current landings, maximum sustainable yield (MSY) and information on which to base total allowable catch (TAC). This information is to be developed by the National Marine Fisheries Service (NMFS) and submitted to the FMP Operations Team. In order to facilitate the evaluation, NMFS convened a group of scientists to examine the available shark data in order to provide scientific advice in this process. The workshop was held in

Miami at the Southeast Fisheries Science Center (SEFSC). The following is the report of the Workshop.

The Workshop activities, which mainly focussed on the large coastal grouping of sharks, fell into six major areas, used also to organize the Report: 1. Trends in Abundance, 2. Vital Rates, 3. Estimation of Catches and Landings, 4. Resource Status Versus Target Levels, 5. Monitoring Measures, and 6. Management Implications and Recommendations.

1. TRENDS IN ABUNDANCE

A major emphasis in this Workshop was to integrate the information that was available on trends in abundance of individual shark species and species groups. In particular the Workshop Committee felt there was a need to provide a more historical perspective to shark trends so that recent assessments could be interpreted in that light. In order to achieve this, a number of catch-per-unit-effort and research sampling effort data bases were analyzed and compared to determine consistent information in trends in shark abundance.

The Workshop Committee examined an array of catch rate information for sharks, some speciesspecific and others for groups of species according to the shark FMP management unit definitions. Analyses and summaries of catch rate information were presented (see List of Documents). The Committee also identified several data sets with which to conduct further analysis at the meeting. These are described in the Appendix.

The catch per unit effort patterns from 21 time series presented in working documents at the meeting or calculated from the available data were examined (see Appendix report). The Committee considered a range of CPUE series that were expressed in either numbers of sharks per effort unit or in biomass of sharks per effort unit. The available CPUE series were of different quantity and quality, *i.e.* some were nominal, highly aggregated averages from very localized fishing operations while others were based on analysis designed to adjust for area, season, and fishing practices for set-by-set catch and effort from fisheries operating over a broad area of the ocean. With this in mind, the Committee proceeded to examine the CPUE data, in aggregate, for evidence of trend in catch rates.

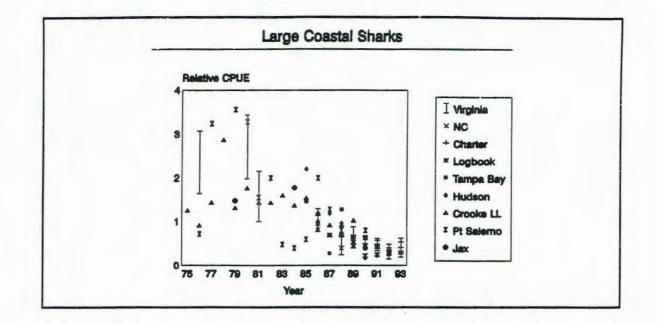
In order to combine the various catch and effort data into a single series representing an average species or species group catch rate trajectory, a General Linear Model, controlling for source of data, and testing for a significant tendency between years, was applied to the log-transformed CPUE data. Only CPUE in the form of numbers per unit effort were combined in this way since most of the available series were of this form (see Appendix table). The annual CPUE values were weighted in the analysis by the inverse of the precision of the value (i.e. weight = 1/coefficient of variation). In cases where only nominal information was available, or where no measure of the uncertainty in the annual CPUE series was available, a coefficient of variation of 100% (weight of 1.0) was assumed. Figures 1.1 and 1.2 show the available CPUE observations, with estimated variance measures, when available, for the large coastal and pelagic sharks considered.

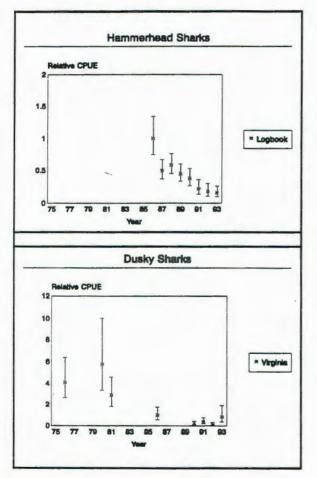
In most cases, the resulting linear fits to the log-transformed CPUE values over the species and species groups considered had significant negative slopes (indicating a negative trend in the catch rates

2

over the time series; see Appendix for specific probability levels). In every case but two, there was less than a 10% probability of a larger t-statistic due to chance in the test for significance of the model slope parameter (see Appendix and Table 1.1; *i.e.* dusky shark and Atlantic sharpnose, in the recent time period: 1986-1993). In the case of the dusky shark, the largest decline in catch rate occurred before 1986. The more recent dusky shark catch rates remained low, but were variable, with no obvious trend.

Table 1.1 summarizes the results of these model fits in terms of the predicted ratios of catch rates in 1986 with respect to the beginning of the time series of observations and the predicted ratio of catch rates in 1993 with respect to 1986. These model predictions, considering the variability in the ratios (Table 1.1), indicate that the abundance of many of the species and species groups for which catch rate information is available, could have declined by about 50 to 75% from the early 1970's to the mid 1980's. For the large coastal sharks considered, the model predicted catch rates in 1986 are generally in the range of 12-25% of their levels in the mid- to late-1970's. In most cases (except as noted above), the available data also indicate negative trends in CPUE since 1986. As shark catches dramatically increased in 1986 and there was no quota until 1993, the downward trend in CPUE probably accurately reflects shark abundance decrease since 1986. However, although CPUE observations show relatively large declines from 1970's levels to the current levels, in the most recent years since 1991 the CPUE data are too few and variable to show statistically significant evidence that the stocks are either increasing or decreasing under the allowable catch level.


Table 1.1. Predicted catch rate ratios from log-linear model (ln(CPUE) = $\beta_0 + \beta_1$ Year + $\beta_{2,i}$ Series_i + ε) fits to the available time series of CPUE (in numbers of sharks caught per effort unit). Values shown are approximate 95% confidence bounds and the model predicted mean ratio of catch rate (CR; Lower_{95 cf Bound}, Mean, Upper_{95 cf Bound}) in one year with respect to another, as indicated (note that I represents the initial year in the available time series of observations).


Species or	Years of		All Data	86-93 Data	
Group	CPUE Data	CR86/CRI	CR93/CR86	CR93/CR86	
arge Coastal Sharks	1975-1993	***.20,.25,.33		***.26,.33, .41	
Sandbar	1975-1993	***.14,.22,.34	***.29,.38,.50	*.14,.33, .84	
Dusky	1975-1993	***.05,.12,.32	***.15,.27,.49	NS.04,.35,3.32	
Hammerheads	1986-1993	N/A	.11, .17, .26		
elagic Sharks					
Makos	1978-1993	***.40,.50,.62	***.45,.54,.65	***.46,.54, .63	
Blue	1978-1993			***.29,.43, .63	
Small Coastal Sharks					
Atlantic Sharphose	1973-1993	**.295190	**.547195	NS.16,.63,2.48	

Model Parameters: β_0 , intercept; β_1 , slope; $\beta_{2,1}$, scale effect adjustment for each of the i CPUE Series in the fit; ε , assumed normally distributed random error.

Model slope (β_1) parameter estimate negative and significantly different from 0 at α =0.01. Model slope (β_1) parameter estimate negative and significantly different from 0 at α =0.05. Model slope (β_1) parameter estimate negative and significantly different from 0 at α =0.1.

Model slope (β_1) parameter estimate negative, but not significantly different from 0 at $\alpha=0.25$.

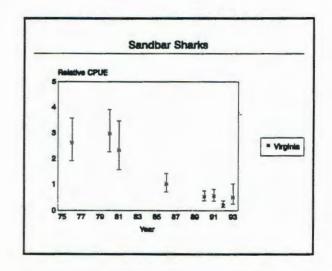


Figure 1.1. CPUE observations, adjusted for difference in scale, for species in the large coastal shark grouping. Error bars (approximate 80% confidence ranges) are shown for those CPUE series for which variability in CPUE was estimated. Sources of data are indicated (also see Appendix).

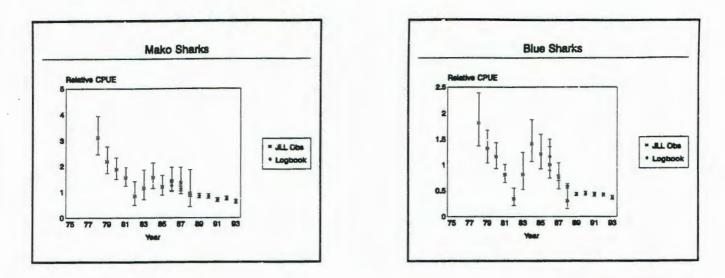


Figure 1.2. CPUE observations, adjusted for difference in scale, for species in the pelagic shark grouping. Error bars (approximate 80% confidence ranges) are shown for those CPUE series for which variability in CPUE was estimated. Sources of data are indicated (also see Appendix).

2. VITAL RATES

An evaluation of available information on the vital rates of sharks was undertaken by the Committee to determine either qualitatively or quantitatively, the intrinsic rate of increase that shark stocks can exhibit, *i.e.* the amount of resilience a shark stock has to an external source of mortality such as fishing. Doing this required an assimilation of what may be derived for specific species of sharks in the fishery, *i.e.* which species life history parameters such as age at maturity and fecundity can be characterized. Additionally, the Committee considered alternative species groupings different from those in the FMP for which the species have similar life history patterns. In evaluating the above, practical aspects including species identification, habitat and fishery differences were also considered.

Based on the available data and literature, the Committee attempted to characterize the following parameters for selected species:

- a) female minimum age at maturity,
- b) minimum longevity,
- c) total litter size, and
- d) reproductive periodicity.

Since (a) and (b) rely on ageing methods, the confidence of these values vary with ageing methodology and whether or not ages have been validated using more than one method. In the case of two studies yielding different results for (a) and (b), both numbers are included to give a range.

5

"Model" species were chosen that reflect life history patterns, and present knowledge of shark biology. Survivorship (S) was derived for each species based on longevity.

> S** Minimum Minimum Total Reprod. FMP Female Longevity Litter Period FMP Age at (Years) Size^{*} (Years GROUF Species Maturity (Mean) (Years) (Years) Large Sandbar 15/30 30/60 6-10 (8) 2 .87/ Coastal Blacktip 6 12 3-9 (5) 2 .70 Dusky 21 45 6-14 (9) 2 .91 Silky 9/12 22 6-14 (9) 2 .83 .87/.93 Small Atlantic 4 10 1-8 (5) 1 . 66 Coastal Sharphose Pelagic Shortfin 7 20 12-21(16) 2 .81 Mako 5 16 1 .77 Blue 50

Table 2.1 Summary of life history characteristics for "model" species

* Total litter size = male and female pups. For female pups only, assume sex ratio is 1:1 and divide litter size by 2.

** S was derived from life history parameters using Hoenig's (1983) equation: $\ln(Z) = 1.46 - 1.01 \ln(t_{max})$, where $S = e^{-3}$

The following results of the above evaluation should be noted:

Sandbar - Age ranges in sandbar are due to two methods of ageing: vertebral centra (15 yrs at maturity, 30 yrs longevity) vs. tag returns (30 yrs maturity, 60 yrs longevity). Modelling should only pair similarly derived values, i.e. 15 with 30 and 30 with 60 (not 15 with 60, etc.). The sandbar was viewed as a "slow-growing/large coastal" model species that is also the predominant species in the east coast and Gulf fishery.

Blacktip - A " fast-growing/large coastal" model that is the second-most dominant species in the fishery for large coastal sharks.

Dusky - Slow-growing/large coastal that is a species of special concern.

Silky - Fast-growing/large coastal that is more pelagic and tropical in its distribution. Range in age at maturity due to two studies, both using vertebral centra.

Atlantic sharpnose - Fast-growing/small coastal with both targeted and bycatch fishery components.

Shortfin mako - Fast-growing/pelagic that is a predominant targeted shark species in the pelagic fishery.

Blue - Fast-growing/pelagic that is a predominant bycatch species and an increasing

landed component of the pelagic fishery.

The Committee proposes a <u>new species grouping</u>, based on similarities in life history and habitat, comprised of the <u>blacktip</u>, <u>spinner</u>, <u>finetooth</u>, <u>and blacknose</u> sharks. These four species are "fast-growing/large coastal" sharks showing similar k values from von Bertalanffy growth functions fit to age and growth data. In the future, when species-specific catch data allow, this group should be treated separately from both the relatively slow-growing large coastal species and the relatively fast-growing small coastal species.

The intrinsic rate of increase (r) of a species is dependent on age (size) at maturity, longevity, and fecundity. However, values of r are also interdependent with survivorship (S), including survivorship of pups in the first year (S_0) . In a theoretically stable, virgin population, the rate of increase is 0, and survivorship can be calculated from a Leslie matrix algorithm, for instance. But survivorship is affected by fishing mortality, which may not be obtainable from current catch and effort data, and so calculations of S and r for sharks may be impractical at this time. However, since age at maturity appears to be the most important, and perhaps the most immutable, factor separating the productivity of one shark species from another, age at maturity can be used to construct a best first approximation of the dynamics of stock recovery.

In this context, therefore, it appears that certain species of sharks would have faster stock recovery rates than others, but in no case would recovery rate be fast in any large coastal shark species. The sandbar shark, with a minimum age at maturity of 15 years, would have a very slow recovery rate; the blacktip, with a minimum age at maturity of 6 years, would be somewhat faster; and the sharpnose, with a minimum age at maturity of 4 years, would have the fastest recovery rate, based on age at maturity alone. The difference in growth rates between the blacktip and the sandbar provides the basis for separating out the blacktip (along with spinner, finetooth, and blacknose) as a separate species group of relatively fast-growing, large coastal sharks. This proposal is made to help facilitate modelling when, and if, species composition of the shark catch is determined.

Ageing methodology for sharks is still evolving and so the numbers in Table 2.1 may change in the future. Any changes in ages at maturity, however, will most likely be upward (older), based on how this field is evolving. Thus, modelling based on the ages in the table should set upper limits on production from the standpoint of age at maturity alone.

In conclusion, life history characteristics of certain keystone or model species of sharks are moderately well known, so that species-specific analyses and management are not limited by a lack of biological knowledge in these cases, but rather by other factors, such as speciesspecific delineation of the catch. When these other factors are resolved, species-specific management can then proceed.

3. ESTIMATION OF CATCH AND LANDINGS

Recreational and commercial landings from 1986 through 1993 were reviewed for species composition data (SB-2). Within this time period, the reported landings were comprised of a very significant proportion that was not identified to species. This was especially true for the South Atlantic and Gulf of Mexico regions. Northeast landings indicated a greater prevalence of pelagic species in the reported landings. With respect to the available estimates of recreational catch, a greater proportion of the total was identified to species.

Discussions on revising the landings focused on how to apportion the unidentified catch by species and how to account for landed fins and dead discards at sea. Several options were discussed, including prorating the unidentified catch based on the species composition of the identified catch. Examination of the species composition by region raised the possibility that the identified catch might reflect species composition from the bycatch of pelagic longline fisheries for swordfish and tuna. This might partially explain the prevalence of pelagic species in the identified catch. The unidentified catch in contrast was thought to reflect reported landings from the directed shark fishery. The Committee clearly favored an approach that would apportion the unidentified catch based on regional and seasonal application of ancillary data (independent of landings, i.e. personal logbooks, research fishing effort, etc.) on the species composition for shark directed effort.

With respect to reported landings of fins, concern was expressed about the potential for double counting if an unknown portion of the fins were associated with landings designated as unidentified. The Committee felt that a minimum estimate of the discarded shark biomass could be developed by subtracting the weight of the unidentified landings from an estimate of the total biomass produced by raising the fin weight to total shark weight (i.e. dry fin weight = 2.5% of total weight).

These tasks will require considerable amount of work and could not be completed during this workshop. The Committee utilized the available time to discuss options and outline the work necessary to revise the landings before the next assessment. Participants indicated that priority should be placed on gathering the ancillary species specific data to apportion unidentified catch from directed fisheries. The Committee also recognized that the existing landings data represent a minimum estimate of total catch and that additional research would be required to cross check these records against other sources of information (i.e. private logbooks, size frequency samples, etc.). This effort could improve the reliability of the existing estimates of total catch from 1986 through 1993. The Committee also supported research efforts to provide qualitative estimates of the scale of the total catch (both landed and discarded catch) prior to 1986, including the recreational catch time series to at least 1979.

4. RESOURCE STATUS VERSUS TARGET LEVELS

4.1. Large Coastal Sharks

4.1.a. Maximum Sustainable Yield

The Fishery Management Plan (FMP) developed an argument for maximum sustainable yield (MSY) based upon the analytical results of the 1992 Review Committee. That approach used maximum likelihood estimation procedures to compute various statistics of interest including stock sizes, fishing mortality rates and production. The FMP used the maximum of annual production estimates during the period of the data as a biological reference point by assuming that any annual production, including the maximum, is sustainable. Therefore, first approximations of maximum sustainable yield were taken as the maximum of the annual production estimates during the period of the data. In doing so it was recognized that a recovery plan was to be implemented through the FMP which was designed to return the resources to a more biologically optimal level. It was also recognized that this first approximation of the resource level that might produce MSY was likely to be an underestimate. Given the implementation of a recovery plan, underestimation of this statistic was deemed acceptable since, in order for the resource to recover to its MSY level, it would have to pass through the "first approximation" level and, in the ensuing time period, new information could be brought to bear on improving the estimate of the resource MSY level.

In this meeting it was determined that an improvement could indeed be made in defining the resource levels that could produce MSY, by incorporating the longer term index information into the analysis. This was done in the following manner: the population trend index in year t (I.) was scaled to the stock size estimates from the previous Committee Report using $N_{t} =$ {N/I,}I, where stock sizes N, and index I, are from a selected reference period (1986). Then the initial period of the index (1975) was specified as being representative of a stable period which was equivalent to a resource level similar to an unfished condition $(I_{virgin} = I_{75})$. Secondly, the relative level at which MSY might occur was specified as 50 percent of virgin based on a logistic relationship. This leads to a characterization of stock size at MSY of N_{MSY} = $(I_{75}(0.5)N_{86}/[I_{86}] = N_{86}(1.0)(0.5)/0.25 = 2N_{86}$, where the index levels are taken from Table 1.1. This characterization implies that the stock size at MSY could be twice as high as that in 1986, hence twice as high as that in the FMP. Also, if the exploitation rate at MSY is the same as in the FMP, then this characterization also implies that MSY could be twice as high as that in the FMP. The validity of the estimates of F_{MSY} ($F_{MSY} = 0.25$ for large coastal sharks and 0.48 for small coastal sharks, p. 56 in the FMP) was questioned. These values, in a closed population context, seem to be more appropriate for moderate to highly productive teleosts, rather than the shark species considered here, all of which in a comparative sense, have extremely low fecundity, slow growth and high age at maturity. It should be noted that the FMP analysis does not make closed population assumptions. However, the Committee was not able to derive better estimates at present, due to data constraints.

This simple characterization makes a number of unverified assumptions including the constancy of selectivity in the fishery and that the dynamics in average weight in the catch is small relative to the index changes. However, the implications of a large decline in these abundance indices in terms of MSY are as follows: 1) the result is not in conflict with the

general strategy in the FMP to recover the resource levels. As mentioned before, it was always recognized that the recovery strategy would have to achieve the "first approximation" target on its recovery trajectory; 2) however, these results <u>do</u> imply that recovery is likely to be a lengthy process under the best of circumstances. Given the differences between the estimates of current stock size and the stock size which could produce MSY and given the information on life history characteristics outlined above, the Committee felt it was extremely unlikely that full recovery of the resource to MSY stock level (about twice the 1986 stock size, by the above characterization) would occur by the projection year of 1995, or even by the end of the century.

4.1.b. Total Allowable Catch

The FMP specifies a rebuilding strategy based upon a constant exploitation rate, where the exploitation rate was one of three options outlined by the previous committee. The manner in which this exploitation rate was to be achieved was by the implementation of a total allowable catch (TAC) through a combination of quotas and bag limits. In doing so, the FMP outlines a trajectory of subsequent TAC's which might have ensued if the TAC's were perfectly implemented, if we knew exactly what resource levels were now in the sea and if we knew the vital rate parameters exactly. Of course this is not the case for any fishery, much less sharks. Therefore, it is expected that TAC's will be adjusted as stock size levels are reevaluated and target exploitation rates redetermined. However, in the case of sharks it is unreasonable to expect that enough additional information has accumulated since the implementation of the FMP to provide much more precise information to adjust the TAC. Instead it was our Committee's approach to evaluate the evidence that would suggest that the exploitation rate and replacement yield originally chosen as the target was risk-averse or risk-prone.

The 1992 commercial landings were 4002 mt dressed weight (these included sharks identified as large coastal sharks landed in the northeastern US and those either identified as large coastal sharks or as unclassified sharks landed in the southeastern US and Gulf of Mexico). Additionally, 431 mt of fins of all shark groups were landed in the northeast in 1992 and 127 mt of fins were landed in the southeast and Gulf. Additionally, recreational landings of large coastal sharks have averaged approximately 400 mt in recent years. From the magnitude of these landings, it appears most likely that the 1992 yield was in excess of the estimated 1992 replacement yield of 3733 mt (see previous Committee Report in FMP). The 1992 landings were probably similar in magnitude to those assumed for 1992 in the FMP (10% more than 1991). Hence, under the stock dynamics model assumed, estimated stock size of large coastal sharks would have declined in 1992.

In 1993 the preliminary commercial landings were 2715 mt dressed weight (these included sharks identified as large coastal sharks landed in the northeastern US and those either identified as large coastal sharks or as unclassified sharks landed in the southeastern US and Gulf of Mexico). Additionally, 303 mt of fins of all shark groups were landed in the northeast in 1993 and 69 mt of fins were landed in the southeast and Gulf. These commercial landings coupled with the average recreational landings over recent years indicates that 1993 yield was probably near the projected 1993 replacement yield of 3520 mt. Therefore, under this scenario

it is unlikely that there would have been unused surplus in 1993 and also unlikely that recovery would have been initiated.

Additionally, the variability in the estimate of replacement yield in 1993 is large. The coefficients of variation on stock production in weight were 100%, 54%, 40% and 67% for 1988 to 91, respectively. It is likely that similar variability occurs in the 1993 estimate of replacement yield of 3520 mt. Thus, it is relevant to examine the probability that a 1993 yield of 2916 mt is, indeed, less than the estimated replacement yield. Given the above levels of variability and assuming a normal distribution of error about the estimate, there is better than even odds (estimated between a 56% and a 67% chance) that the 1993 allocation of 2916 mt was less than the estimated 1993 replacement yield and might actually have allowed for some surplus buildup. On the other hand, this line of reasoning also implies that there is also between an estimated 46% and 33% chance that the allocation of 2916 mt for 1993 might have resulted in no surplus or in further stock decline.

Finally, although CPUE observations show substantial declines from mid-1970's levels to the current levels, in the most recent years since 1991, the CPUE data are too few and variable to show statistically significant evidence that the stocks are either increasing or decreasing under the allowable catch level. Thus, there is not strong evidence at hand to indicate that rebuilding has been initiated or if the stocks are declining further under the recent catch restrictions. Given the fishery has been regulated for just one year, the expected rates of change in shark abundance are low, and our measures of stock abundance are uncertain, sufficient observational data are not yet available to test hypotheses about change in stock size after management measures were implemented. In fact, given reasonably precise measures of abundance (cv's in catch rate indices of 20%), doubling or halving in shark abundance could be statistically detected with high probability. However, under a catch limit that might allow for a 5-10% annual increase, this degree of change would not likely occur for a decade or more.

As discussed, the CPUE observations suggest substantial declines in large coastal shark abundance since the 1970's. This feature is consistent across the available observations which span the time period. An alternative method for evaluating the TAC involves considering the change in relative abundance levels with respect to landing levels was proposed in a document distributed to the Committee via correspondence¹. Over the period 1980-1985, average annual landings of sharks were assumed as 4773 mt. Although these represent large coastal and other species, the majority of the landings were thought to be large coastals. During this period, a fishery-independent CPUE measure from off the Virginia coast for large coastal sharks decreased an average of 9.3% per year (SB-8, SB-19). Assuming these catch rates accurately and without error, measured change in abundance of the closed population and ignoring possible change in stock productivity due to time lags or other phemomena and further assuming no change in reporting rates for shark catches over time, an estimate of the exploitable standing stock of sharks in 1980 is taken as 4773/0.093 = 51,323 mt. In 1990, CPUE was about 20% of the 1980.

¹ Presented to the Committee via correspondence (April 1994) in a document entitled "An evaluation of the T.A.C.'s in the Fisheries Management Plan for sharks of the Atlantic Ocean" by J. A. Musick, Virginia Institute of Marine Science. Copies are available from Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149.

level. Applying this fraction to the 1980 stock estimate results in an estimate of the standing stock in 1991 of 10.255 mt. In order for removals equivalent to a TAC of 2916 from a standing stock of this, or a lower level (if the stock were reduced further in 1991-1992 and the estimate includes other shark groupings), to result in an increase in standing stock, the annual average replacement rate (in biomass) required would be greater than 28%. Demographic considerations (see Table 2.1), under closed population assumptions, suggest that replacement rates this large are not likely for large coastal sharks. Replacement rates of this magnitude would require considerable immigration into the exploited stocks. However, it was noted that estimated annual average replacement rate via this method is sensitive to, among other factors (identified above), the presumed historical catch levels. If actual mortality were higher than the assumed level (e.g. due to finning or proportionally larger unreported or misidentified catches), then by this method, the estimated replacement rate required to support an annual removal of 2916 mt would be lower in proportion to the change in presumed historical catch. It was further noted that without full consideration of these sensitivities and characterization of the uncertainty in the approach, this should not be viewed as an improvement over, or a replacement for, the statistically-based model in the FMP.

While there are a number of uncertainties in the above discussion, the Committee believes that the weight of the evidence does not support the previous (FMP) recommendation that the 1994 or 1995 TAC should automatically increase. Given the information available, increases in the TAC for sharks were considered risk-prone with respect to promoting stock recovery. In fact, considering the reproductive profiles of sharks and the general insufficiency of fishery data upon which to base analyses, any TAC might be considered risk-prone relative to stock recovery of large coastals.

4.2. Smali Coastal Sharks

No new analyses were presented with which to modify MSY or TAC of the small coastal sharks. While it appears that resource survey estimates of relative abundance of Atlantic sharpnose in the Gulf of Mexico may have been higher in the 1970's and early 1980's than in later years, there has not been a trend either up or down since the mid-1980's. This would argue that the stocks may be stabilized. An analysis of Atlantic sharpnose presented at this Workshop provided a range of intrinsic rates of increase of these sharks based on possible ranges of demographic parameters. The analysis indicated that the intrinsic rate of increase (or conversely the replacement fishing mortality rate) was less than previously estimated for the small coastal shark group as a whole. However, the demographic analysis assumes a closed population, *i.e.* it does not allow for migrations of sharks into and out of the areas where they are subject to fishing pressure, whereas the methods used to estimate replacement rates in the FMP did include replacement from that mechanism. At this point the lines of evidence for recommending change in TAC are ambiguous.

4.3. Pelagics

No new analyses were presented with which to modify MSY of the pelagic sharks or the TAC. However, it should be noted that the available catch rate data indicates that make and blue shark relative catch rates may have declined to approximately 25% of their late 1970's levels. At this juncture, it is unclear if this decline in catch rate observed in these data sets represents an equivalent abundance decline. The Committee recommended that additional research on this topic be conducted.

5. MONITORING MEASURES

5.1. Catches and Landings

There is a need to monitor the total catch by species and size or age, including total removals, discard mortality and other forms of mortality. The Committee reiterates this overall goal.

In previous meetings similar to the present Workshop (1986, 1988 and 1992) the participants at those meetings have continuously emphasized the need for species identification in catches. Still this remains a problem. There will only be marginal improvements in shark assessment and management while a large proportion of the shark catch is unidentified to species. Improvements in characterization of landed shark catch could be made by increasing the level of dockside intercepts of shark catch by trained port agents. The Committee recommends increasing these intercept rates.

The Committee discussed the present overlap of the different logbooks being issued. It was pointed out that some directed shark fishermen do not have specific shark logbooks, either being covered under reef fish or pelagic logbooks (on which shark data can be recorded) or not having any at all. It is suggested additional effort be made to identify directed shark fisherman, i.e. that all directed shark fishermen be supplied with a shark log book. It was also suggested that since size data were integral to improvements in assessments that reporting of the weight of each individual shark carcass is needed, perhaps by using dealer weighout sheets.

The Committee felt that logbook data collection methods required a means of verification of the data reported. The Committee recommended further use of scientifically designed observer sampling programs for this purpose. The Committee noted that scientific observers are being deployed in certain fisheries which provide species-specific information for a portion of the landed and discarded catch. The Committee further noted that current observer sampling for most of the shark-directed effort was either not in place or likely at too low a sampling fraction to provide representative and precise information about catch and effort.

There remains a serious loophole in data collection requirements due to incompatibility between Federal regulations and those of some States. This needs to be resolved.

Recreational catches and landings must continue to be monitored including catch rates as measures of relative abundance. Although the importance of tournaments has decreased in recent years, there is still a need to monitor their catch and catch rates. Direct sampling and/or tournament reporting may be required.

Effort should be expended in monitoring the small gillnet fisheries directed at small coastal sharks. It appears that a substantial number of juvenile large coastal sharks are being caught and discarded by those fishing for small coastal species when the season on large coastal sharks is closed. Some research (e.g. SB-18) indicates that mortality of this bycatch could be relatively high (greater than 50%).

In addition to improvements in domestic landings and species composition information, improved information on catches of sharks by other nations is required, especially for those species known or believed to be exploited by the high-seas fishing fleets or which are exploited by our neighboring fishing nations. The Committee believes that improvements in this area might be attained through the appropriate international fishery research and management bodies.

5.2. Nurseries

The Committee noted the importance of nursery areas and the monitoring of the stocks in these areas. This requires the delineation of the nursery areas. Additionally, scientific monitoring of the relative abundance of juveniles in these areas is feasible and would provide useful information on shark status.

5.3. Fishery Independent Measures

In addition to fishery-based catch rate information, the Committee noted the importance of developing and continuing the available consistent, time-series data bases of fishery independent measures of shark abundance and productivity. Scientific sampling designs in nursery areas (see above) provides a basis for monitoring productivity, both through measures of juvenile shark density and measures of maturity and natality. Application of research vessel sampling designs to provide precise catch rate indices should also be further developed and utilized.

6. MANAGEMENT IMPLICATIONS AND RECOMMENDATIONS

As mentioned in the above sections, stocks of large coastal sharks appear to have been substantially depleted since the mid-late 1970s and it is likely that, at least in aggregate, large coastal sharks are well below the biomass associated with MSY. The sustainability of the current TAC is more difficult to evaluate, since there are not yet data available to test hypotheses about change in stock abundance under the current TAC. Catch per unit effort indices, average weights and species richness have declined throughout the period of data availability. Estimates of longevity and age at maturity have generally increased as ageing techniques have improved. In 1992, just after the draft FMP was released, but prior to implementation of the final FMP, there was considerable finning of sharks and shark mortality during that period is believed to have escalated, probably resulting in further reductions in stock biomass. Based on these types of information, the Committee judged that the current TAC will not lead to stock rebuilding by the end of this century. Extending the logic, the Committee felt that the projected quota increase for 1995 should be delayed indefinitely, at least until and if the stocks exhibit signs of rebuilding.

6.1. Other Measures

The Working Group also discussed the use of supplemental management measures that could promote rebuilding. The main measures discussed were those related to size, sex and season. The Working Group discussed the benefits of minimum sizes, strategies to differentially reduce fishing mortality on females, and seasonal closures to protect reproductive females and young of the year. It was generally agreed that the single most important supplementary measure that might be implemented is a closure of nursery grounds to directed fishing during the pupping season. This measure, provided it is both sufficiently long and covers the known geographical range of nursery areas, is likely to result in reduced fishing pressure on the stocks if done in concert with, rather than in place of, a ceiling on allowable catch (i.e. TAC) apportioned throughout the year. Alternatives to the semi-annual allocation scheme (e.g. tri-annual or quarterly allocations) may be reasonable alternatives to use in conjunction with a nursery closure measure. Since most nursery grounds occur in coastal waters, this recommended measure generally comes under the jurisdiction of the States. The Committee believes that nursery ground closures would also provide benefits in terms of reduced fishing pressure on small sharks and on females during closure periods. However, such measures might impact other fisheries which have shark bycatch. Additional supplemental management measures are probably not practical at this time.

Closure of coastal nursery grounds will not promote conservation of the pelagic species, which apparently pup offshore. For this reason, minimum sizes for species such as make should continue to be investigated in anticipation of possible future implementation.

The possible benefits and drawbacks of finer subdivisions of the annual quota were also discussed; this issue is likely to become increasingly important to certain fleet components if the abundance of preferred stocks continues to decline.

6.2. Species Composition

The greatest impediment to management, monitoring and stock assessment is the need to collect more accurate and more complete information on species composition of the catch. Approximately 80% of commercial shark landings are classified as "unidentified", and it is

believed that a sizable proportion of the remainder may be misidentified. While 20% "identified" is an improvement from previous years, it must still be noted that the primary limiting factor to improvement of shark stock assessments is the paucity of species catch composition data. Unless data on landings by species improve substantially, it will not be possible to produce credible species-specific assessments, or to effectively manage the stocks in the future. Dealers and fishermen need to be encouraged to learn and apply correct species identification techniques. The composition of the discarded catch is also needed. This could best be obtained through observer programs.

LIST OF PARTICIPANTS

Joseph Powers	Chairman, NMFS, SEFSC, Miami, FL
Jack Musick	Virginia Institute of Marine Sciences
Robert Hueter	Mote Marine Laboratory
James Francesconi	North Carolina Division of Marine Fisheries
John Hoey	Blue Water Fishermen's Association
Pamela Mace	NMFS, HQ, Siver Spring, MD
John Hoenig	Canadian DFO, St. Johns, Newfoundland, Canada
Nancy Kohler	NMFS, NEFSC, Narragansett, RI
Steve Branstetter	Gulf & South Atlantic Fisheries Development Foundation
Enric Cortes	Mote Marine Laboratory
Tom Hoff	Mid-Atlantic Fishery Management Council
Jerry Scott	NMFS, SEFSC, Miami, FL
Jose Castro	NMFS, SEFSC, Miami, FL
Mike Parrack	NMFS, SEFSC, Miami, FL
Lee Trent	NMFS, SEFSC, Panama City, FL
Jean Cramer	NMFS, SEFSC, Miami, FL
Michael Schirripa	NMFS, SEFSC, Miami, FL
Victor Restrepo	NMFS, SEFSC, Miami, FL
John Poffenberger	NMFS, SEFSC, Miami, FL

LIST OF DOCUMENTS

SB-1. Castro, J.I. Shark species synopses for stock assessment purposes.

SB-2. Powers, J.E., J. Poffenberger and B. Slater. Recreational and commercial shark landings, recreational effort and average sizes from the recreational fisheries.

SB-3. Schirripa, M.J. Analysis of shark catches from the Gulf of Mexico - reeffish logbooks.

SB-4. Powers, J.E. Analysis of shark catches from the southeast US coast - snapper-grouper logbooks.

SB-5. Pellegrin, G. Estimates of shark bycatch from shrimp trawling in the Gulf of Mexico and indices of relative abundance.

SB-6. Trent, L. Evaluation of shark by-catch in commercial shark fisheries.

SB-7. Musick, J.A., S. Branstetter and J. Graves. Distribution, abundance, and stock composition of sharks important to recreational fisheries in Virginia.

SB-8. Musick, J.A., S. Branstetter and J. A. Colvocoresses. Trends in shark abundance from 1974 to 1991 for the Chesapeake Bight region of the US mid-Atlantic coast.

SB-9. Cramer, J. Large pelagic logbook catch rate indices for sharks.

SB-10. Scott, G. Shark logbooks data summary

SB-11. Scott, G. Charterboat catch rate indices for sharks.

SB-12. Scott, G. Preliminary landed catch rate indices for large pelagic sharks from US fleet longline trip weighout records.

SB-13. Francesconi, J. North Carolina Commercial CPUE.

SB-14. Gilmore, G. Comments on shark assessment and management.

SB-15. Cortes, E. Demographic analysis of the Atlantic sharpnose shark <u>Rhizoprionodon</u> terranovae in the Gulf of Mexico.

SB-16. Hueter, R. Survey of the Florida recreational shark fishery utilizing shark tournament and selected longline data.

SB-17. Scott, G. Recreational catch rate information for sharks.

SB-18. Hueter, R. Bycatch and catch-release mortality of small sharks in the Gulf Coast nursery grounds of Tampa Bay and Charlotte Harbor, Florida.

SB-19. Musick, J., S. Branstetter and T. Sminkey. Trends in shark abundance from 1974 to 1993 for the Chesapeake Bight region of the U.S. mid-Atlantic coast.

Appendix

Catch Rate Indices.

The Working Group examined an array of catch rate information for sharks, some speciesspecific and others for groups of species according to the shark FMP management unit definitions. Analyses and summaries of catch rate information were presented in documents (list of the SB CPUE documents). The group also identified several data sets with which to conduct further analysis at the meeting. These are described below.

Pelagic Longline Indices

Catch rate indices, standardized for various effects thought to influence catch rate independent of shark abundance, for large coastal and pelagic sharks in the the Atlantic, Caribbean and Gulf of Mexico were developed using mandatory reports from longline vessels in Document SB-9 and from trip weighout records from longline vessels in Document SB-11. Indices from logbook records were also compared to available observer data on catch rates from Gulf of Mexico observed and self-reported fishing effort in Document SB-9. The catch rates estimated from trip weighout records (SB-12) used in subsequent analysis, were those since 1985, a period during which the proportion of trips landing the sharks of interest was not increasing.

Daily catch and effort reports by U.S. fishing vessels fishing in the Atlantic, Caribbean and Gulf of Mexico which land swordfish have been required since October 1986. Large coastal and pelagic sharks are caught as bycatch and less frequently as targeted catch by these vessels. Although a variety of gear types are represented, the predominant gear type (90% of vessels reporting) is longline gear. In order to standardize the type of effort used in analysis, only records from boats known to use longline gear and/or bottom longline gear are used in the analyses presented in SB-9. Eight years of data (1986 to 1993) were available.

Shark categories available for the full time span in the LPL included hammerhead, tiger, white, blue, mako, thresher, and unclassified sharks. A high proportion of the catch of sharks was reported as unclassified. For these analyses, unclassified sharks were assumed to come from the category large coastals. Due to very low reported catch rates, white shark was not considered for analysis; similarly blue sharks and thresher sharks were not included in analyses specific to the Gulf of Mexico. In all cases, catch rate was taken as the reported number of sharks kept, discarded dead and discarded alive.

Charterboat Logbooks

Document SB-11 describes the analyses conducted on the Charterboat logbook data compiled by the NMFS Panama City Laboratory. The data available for analysis was from shark-directed effort which spanned the period 1987-1992. Most of the shark catch was not classified to species level and the estimated catch rates were assumed to represent the large coastal grouping. The model estimated catch rates are shown in the table below.

Reef Fish Logbooks

Documents SB-3 and SB-4 described the nominal catch rate and species proportions in the Gulf of Mexico (Document SB-3) and Southeastern US Atlantic (Document SB-4) logbook data sets. In document SB-3, the data summarized were from the Gulf of Mexico reeffish logbook program. This program was phased in in 1989 and was in full operation in 1990. From 1989 to 1992, all participants in all states (Florida, Alabama, Mississippi, Louisiana, and Texas) except Florida were required to report on a per trip basis; 20% of the Florida fishermen were required to report and 100% of Florida trap fishermen. In 1993, a phasing in of 100% reporting for Florida fisherman was started. Therefore, catch (in pounds) is to be interpreted not as total estimated catch, but rather total reported catch (except for those states in which total participation is required). Furthermore, any data analyzed on a "by vessel" basis will only include those Florida fishermen selected to participate (new participants were selected each year). Any data concerned with rates (catch/trip, catch/day. etc.) or species composition should not be effected ... by the sub-sampling design however.

Catch as reported here is the condition in which the sharks are landed by the fisherman (i.e. there is no conversion to gutted or cored weight or any other weight). Species composition was derived from an "as reported" basis as well.

Estimates of catch-per-unit-effort (CPUE in pounds/hook hour) were derived from trips which reported at least 50% of that trip as shark. Monthly estimates of CPUE were obtained by calculating CPUE by trip and taking an averaging of these for the month. Furthermore, only the middle 50th percentile of the monthly CPUE distribution was used for the calculations (i.e. the upper and lower 25 percentile was dropped). Annual estimates followed the same method only averaged for the year rather than month.

During the working group meeting, further analysis of the Gulf reef fish log reports was undertaken. A GLM of the bottom longline reported catch rates was used to standardize for the effects of bi-month and area of fishing to produce an annual index (sharks/1000 hooks fished). The mean index values from this analysis are presented below. The ANOVA calculations are presented at the end of the Appendix.

Large Pelagic Survey Data.

Catch per unit effort (CPUE) data on rod and reel (RR) and handline (HL) fisheries off the coast of the United States from Virginia through Massachusetts were collected between 1980 and 1993. Fishermen were interviewed as they returned to the dock and by phone to determine if the trip was directed at large pelagic game fish (sharks, tunas, billfishes). Interviewers recorded the number of fish caught and the methods employed for each trip.

Each trip interview record includes data on: target species, date, boat type, fishing method and state. For this analysis data were restricted to only those trips which targeted sharks and which employed the chumming method. The analysis was also limited to months May through September. Nominal catch rates within these restrictions appeared to be higher than those outside. The nominal catch rates, by species are shown in the table below.

Nominal average shark catch f	rom the Large	Pelagic Survey.
-------------------------------	---------------	-----------------

		Species or Sp	ecies Group Averag	e Catch per Trip	
Year	Makos	Blue	Sandbar	Dusky	Hammerheads
86	0.49	1.04	0.22	0.32	0.05
87	0.36	0.75	0.11	0.27	0.03
88	0.16	1.87	0.21	0.09	0.01
89	0.24	1.03	0.33	0.17	0.03
90	0.26	0.73	0.12	0.17	0.02
91	0.46	1.63	0.16	0.18	0.07
92	0.01	0.01	<0.01	<0.01	0.01
-					

The variation in factors such as area fished, time of year, interview type (phone or dockside) and boat type (private/charter) likely make it inappropriate to compare nominal CPUE across years. A general linear model (GLM) approach could be used to develop standardized indices of abundance for mako, sandbar, dusky, blue and hammerhead sharks in the RR fishery during 1986-1993 (the available time period for which shark targeted effort was covered). Analysis of this data set was initiated at the working meeting. However, the working group was not able to fully consider these data, and additional analysis of these data is needed to examine the question of patterning in shark CPUE. The group recommended that further analyses of these data be undertaken.

Scientific Observers on Japanese Longline Vessels.

The Japanese longline observer database consists of data collected by US observers aboard Japanese longline vessels which fished in US EEZ waters between 1978 and 1988. The database examined by the working group provided summaries of catch and effort from nearly 5,500 longline sets made by these vessels during this period. Three broad areas were fished: Gulf of Mexico (GCM), Mid-Atlantic (MAT) and Northwest (NAT). The distribution of observed sets over areas and years is shown below:

	_78	79	80	81	82	83	84	85	86	87	88
GOM	168	199	145			-					
MAT	104	158	91	159	95	37	38	63	23	10	-
NAT	97	82	229	577	752	233	300	480	397	490	290

- - .

Japanese longliners were excluded from the Gulf of Mexico beginning in 1982. Although more than 20 different species of sharks are included in the database, there are only two species for which the total numbers of sets with positive catch exceeds 1,000: mako sharks (over 2,100 observations) and blue sharks (over 4,400 observations).

A GLM of positive catches showed significant effects of year, area, wave (bi-month), swordfish catch rate, and fishing depth. These variables, along with bluefin tuna catch rates, were also significant for blue sharks. Proportions of zero catch sets were included in the final indices using the Lo method (see Working Documents SB-9 and SB-11). The standardized catch rates indicate an overall significant decline for both species. The catch rates estimated for 1982 in both species analyses are quite low, with respect to surrounding years, and may have been affected by fishing pattern changes not adequately accounted for in the modelling. This pattern persists in the analysis limited to Atlantic fishing areas only, is also evident in catch rate analyses of species other than sharks and is not thought to be an area fishing effect. Results of the GLM model fits to these data are presented in the Appendix. Mean catch rate index values computed from these data are presented below.

Shark Tournament Data

Document SB-16 presented a synopsis of work completed under Florida Department of Natural Resources contract to assess historical trends in the shark fisheries of Florida through analysis of data available through organized sportfishing tournaments (also called "derbies" or "rodeos") for sharks. From the mid-1970's to about 1989, the number of tournaments that include or are directed solely toward sharks along the U.S. Atlantic and Gulf coasts steadily increased. Such tournaments in this region have been conservatively estimated by NMFS to number about 65 per year as of 1989 (NMFS, 1989).

Over the past decade, shark tournaments became popular as fishing contests and fundraisers in many fishing communities of the southeast U.S. In recent years, declining catches of sharks, both in number and size, have been reported in these tournaments via anecdotal sources. Although tournament directors have pointed to years of logbook information containing catch records, prior to those present in Document SB-_, no formal attempt has been made previously to compile and analyze these records on a statewide basis. In light of the relative lack of published information on Florida's recreational shark fishery, these tournament records represent important historical data.

A total of 34 sportfishing tournaments devoted strictly to sharks and operating in Florida waters sometime between 1971 and 1991 was identified. (This survey did not include other tournaments that had sharks as a category of catch--only dedicated shark tournaments are In 25 (74%) of these, the tournament director or co-director was identified, considered}located and interviewed. General information was collected on each tournament as follows: --Official name of the tournament and its base location.

--Years of operation and current status (active or discontinued). --Number of participating anglers and/or boats per year. --Status of tournament record.

If written catch records of a tournament were located, the status of those records fell into one of three categories: 1) records provided to this study and suitable for analysis --9 tournaments (26%); 2) records incomplete and not suitable for analysis--6 (18%); or 3) records may have been suitable but were not provided, due either to passive noncompliance or deliberate noncooperation of record curators -- 5 (15%). For the rest of the tournaments (14/41%), no existing records were located.

Tournaments with suitable records were analyzed for catch by year. Primary data consisted of species and size (by total weight in pounds) of catch. Unfortunately, data on sex and length of sharks caught were rarely recorded, so these could not be included in the analysis. Given that the information came from competitive tournaments, it was assumed that weight measurements were accurate. On the other hand, it was not necessarily assumed that species identifications were accurate. The record-holders were interviewed to gauge the relative accuracy of the species ID's, and adjustments in the data were made where justified. However, some errors in species identification likely exist in the tournament data set, due to the inherent difficulties that anglers have in distinguishing between closely ... related species of sharks.

Catch per unit effort (catch per registered angler in the tournament) was calculated and plotted where possible. In general, the available catch and effort information from the tournaments show decline in CPUE and in the average size of sharks caught over the years available. Four of these tournaments provided some time series information (over a span of 4

or more years) about catch rates. For 2 of these tournaments, the unit of effort used to calculate CPUE was the average number of registered anglers in the tournament for periods when registry was thought to be more or less constant from year to year, but for which annual counts of anglers were not available. For the other data sets, the actual number of registered anglers for each year was used. The working group assumed these catch rates to be representative of the large coastal group in aggregate. These catch rates are shown below.

Crooke Longline Data

Document SB-16 also presented analyses of longline catch rates made by Mr. C.F. Crooke, Jr. of Warrington (near Pensacola), Florida. The Crooke data pertain to small but remarkably consistent longlining operations for large, inshore sharks over 15 years, from 1975 through 1989. The records include species, sex, water temperature, and other information for sharks caught in the waters off Pensacola.

Beginning in 1975 and ending in 1989, Mr. Crooke set a small longline regularly in the waters south of Pensacola, specifically to catch large sharks for supply of shark meat to local restaurants. His typical fishing year ran from late March/early April to late November/early December. Since these activities were incidental to Mr. Crooke's regular line of work, he fished usually on weekends or holidays. Through the 15 years, he averaged just over 18 successful sets of the gear per year ("successful" - at least one shark was caught and recorded), with a range of 9 successful sets in some years to 32 in his most active year (1978). One unfortunate drawback of the database was that data were taken only when sharks were caught, i.e. only on successful sets. Sets that caught no sharks were not recorded. and there appears to be no way to recover this information accurately. This compromises to some extent the catch/effort data, limiting the quantitative analysis to successful sets only.

Document SB-18 plotted the 15 years of Crooke data as number of sharks caught per hook vs. year of fishing, for successful sets of the gear. After removing the data assumed to represent the "learning period" (1975-76; the start-up period in which Mr. Crooke set the line only nine times each year), the resulting regression shows a negative trend. In the later years of the Crooke longline operation, size of sharks caught and CPUE in sharks per hook were both declining. SB-18 concluded that it appeared that one partial explanation for both phenomena is the near-complete disappearance of dusky and great hammerhead from the catch after 1985. Both of these are large-bodied species.

North Carolina Division of Marine Fisheries Data

North Carolina, Division of Marine Fisheries, conducted a fishery dependent survey of directed shark longline trips from March 1988 through April 1992. The survey data have 53 observations (trips) and consist of total weight (kg), number of sharks, total fin weight (kg), days fished, number of sets, number of hooks, miles per set, soak time, location, depth, and discard information. Data were collected from 6 vessels. These data are presented at the end of this report.

A General Linear Model Procedure was performed upon the data testing for year, wave (2 month periods), miles per set, and hooks per mile of longline set. CPUE was computed either as kg or number of fish per 10,000 hook hours. One observation (trip) was omitted due to inconsistent gear and methods used in fishing. Results of these analyses are presented at the end of this Appendix. The indices resulting were believed to represent the large coastal shark complex fished by these vessels. For the index based on kg, the estimated mean catch rate in 1989 was greater than in other years. For the index based on number of fish, the 1989 value was again higher than subsequent years; in addition, the 1988 value was higher than 1990-1992. In this analysis, there appeared some tendency for an increase in the number of fish caught per unit effort over the last years of the time period (1990-92), although the catch rate values were not statistically different from one another. A result similar to this (constant biomass/effort and increasing numbers/effort) could be consistent with a tendency to land more small sharks in 1992 compared to 1990.

Recreational Surveys Data

Estimated catch and estimated effort data from the MRFSS, Headboat, and TX Parks and Wildlife recreational fisheries survey were summarized in Document SB-17. After review, the working group recommended that the analysis of these data be based on interview observations rather than state by wave estimated effort and catch. This was recommended since modelling the

- - -

highly aggregated data does not likely allow for adequate adjustment for targeting effects by the different fisheries surveyed.

VIMS Fishery Independent Survey Data

The Virginia Institute of Marine Science (VIMS) has conducted a longline sampling program since 1974 examining the distribution, abundance, and biology of sharks and large pelagic teleosts off Virginia. This long-term program provides information on catch, effort, and species composition from 1974 through 1993 for the Chesapeake Bight region. A synopsis of these data and available CPUE analyses is presented in the Appendix.

Low-effort years were combined into multi-year categories by grouping 1974-79 and 1982-89. Although combining data from consecutive years reduced the information available for a given year, it provided a more equitable basis of effort to illustrate the long-term continuum in catch and effort trends around the comprehensive high-effort survey periods 1980-1981 and 1990-1991 in SB-8 and SB-19.

Catch per unit of effort (CPUE) was defined as the total number of sharks caught for the total number of hooks fished, multiplied by 100 within each sampling category, although the number of hooks per set increased over time. CPUE was analyzed for total catch and by individual species in designated year categories. Because sharks segregate by sex and size, and may be distributed disjunctly by depth on a seasonal basis, CPUE was analyzed for each timeseries by depth strata and by month. The majority of species considered were coastal sharks; thus, because of the relatively higher percentage of hooks fished in offshore (>100 m) waters during the 1980's and in 1990, species-specific CPUE analyses were restricted to efforts from the Bay to the 100-m depth contour to avoid negatively biasing results for these species. Efforts in the >100-m depth category were included only for total CPUE and CPUE for more widely distributed dusky and scalloped hammerhead sharks. Additionally, after 1981, new sampling areas -- offshore (>100 m) areas away from the standard station at Norfolk Canyon, and a lagoon within the Virginia eastern shore peninsula -- were fished for very specific purposes. These efforts were not directly comparable with previous data, and were excluded from analyses.

Mean log-transformed CPUE values are given and 95% confidence intervals and retransformed means are given in Table 1 and Fig. 1 of working document SB-19. Both presentations show decline from the 1974-79, 1980 period to the early 1990s. The ANOVA of the log transformed data (see Table 2 in working document SB-19 and other information in the Appendix) was significant and the multiple range test showed clear differences between the 1974-81 data sets and the 1990-93 data sets.

Results were similar for the sandbar shark (Table 4, Fig. 2 in SB-19). There was a decline in CPUE from the 1974-81 period to the 1990-1993 period (Table 4 - SB-19). The ANOVA was significant and the results of the multiple range test clearly separated these two time periods (SB-19, Tables 5 and 6).

The decline in dusky sharks was even more pronounced than that for sandbar sharks (working document Table 7, Fig. 3). Values for CPUE (working document Table 9) from 1974-1980 were different from those from 1992-1993, but 1981 was grouped with later periods 1982-89 and 1993. Musick et al. (1993a) pointed out that the decline in the dusky shark population appears to have begun earlier in the Mid-Atlantic than for most other species.

The Mid-Atlantic long-line survey data show declines in dusky and sandbar sharks from the late 1970's and early 1980's to the early 1990's. A similar decline has been noted for other large coastal species as well (Musick *et al.*, 1993a), and for large coastal sharks in general (Fig. 1 - SB-19). A more complete analysis of this data set is given in Musick *et al.* (1993a and 1993b).

Are Trends Evident in the Various CPUE Data Series?

The available CPUE data were examined for evidence of trend in catch rates by fitting linear models to the log transformed CPUE series. Fits were made to individual series with a linear regression and to combined CPUE series through the application of a General Linear Model... to control for the scale effects (different measures of effort) of the different series investigated. In total, 21 index CPUE series were available. The associated single series fits and combined series fits are provided later in the Appendix.

-- .

Table 1. The CPUE series for sharks considered by the working group. Series are listed by species or species group with source of the information indicated. The index is the estimated mean CPUE and the CV is the estimated precision of the mean value. Also indicated is if the series represents a number based or biomass based catch per unit effort. Observations with CV of 1.0 are nominal data for which no measure of precision of the estimate was available (in these cases, the CV was assumed to equal 100%).

large coastal large coastal ¹ Gulf Reef Gulf ReefBiomass901781.120.2039large coastal large coastalGulf ReefBiomass912131.300.1124large coastal large coastalGulf ReefBiomass921628.980.1076large coastalGulf ReefBiomass931419.180.1357large coastal ² HudsonNumbers850.221.0000large coastalHudsonNumbers860.101.0000large coastalHudsonNumbers870.121.0000large coastalHudsonNumbers880.101.0000large coastalHudsonNumbers890.051.0000large coastalHudsonNumbers890.021.0000large coastalHudsonNumbers900.021.0000large coastalHudsonNumbers900.021.0000large coastalHudsonNumbers910.021.0000	0
Large coastal large coastalGulf ReefBiomass912131.300.1126Large coastalGulf ReefBiomass921628.980.1076Large coastalGulf ReefBiomass931419.180.1357Large coastal ² HudsonNumbers850.221.0000Large coastalHudsonNumbers860.101.0000Large coastalHudsonNumbers870.121.0000Large coastalHudsonNumbers880.101.0000Large coastalHudsonNumbers880.101.0000Large coastalHudsonNumbers890.051.0000Large coastalHudsonNumbers890.051.0000Large coastalHudsonNumbers890.021.0000Large coastalHudsonNumbers900.021.0000	
Large coastal large coastalGulf ReefBiomass921628.980.1078large coastalGulf ReefBiomass931419.180.1357large coastal ² HudsonNumbers850.221.0000large coastalHudsonNumbers860.101.0000large coastalHudsonNumbers870.121.0000large coastalHudsonNumbers880.101.0000large coastalHudsonNumbers880.101.0000large coastalHudsonNumbers890.051.0000large coastalHudsonNumbers900.021.0000	4
large coastal ² HudsonNumbers850.221.0000large coastalHudsonNumbers860.101.0000large coastalHudsonNumbers870.121.0000large coastalHudsonNumbers880.101.0000large coastalHudsonNumbers880.101.0000large coastalHudsonNumbers890.051.0000large coastalHudsonNumbers900.021.0000	
large coastalHudsonNumbers860.101.0000large coastalHudsonNumbers870.121.0000large coastalHudsonNumbers880.101.0000large coastalHudsonNumbers890.051.0000large coastalHudsonNumbers890.021.0000large coastalHudsonNumbers900.021.0000	5
Large coastalHudsonNumbers870.121.0000Large coastalHudsonNumbers880.101.0000Large coastalHudsonNumbers890.051.0000Large coastalHudsonNumbers900.021.0000	0
Large coastalHudsonNumbers880.101.0000Large coastalHudsonNumbers890.051.0000Large coastalHudsonNumbers900.021.0000	0
large coastal Hudson Numbers 89 0.05 1.0000 large coastal Hudson Numbers 90 0.02 1.0000	0
large coastal Hudson Numbers 90 0.02 1.0000	0
	0
	0
	-
large coastal ³ Crooke LL Numbers 75 0.11 1.0000	0
large coastal Crooke LL Numbers 76 0.08 1.0000	0
large coastal Crooke LL Numbers 77 0.13 1.0000	0
large coastal Crooke LL Numbers 78 0.25 1.0000	0
large coastal Crooke LL Numbers 79 0.12 1.0000	0
large coastal Crooke LL Numbers 80 0.16 1.0000	
large coastal Crooke LL Numbers 81 0.13 1.0000	0
large coastal Crooke LL Numbers 82 0.13 1.0000	0
large coastal Crooke LL Numbers 83 0.14 1.0000	0
large coastal Crooke LL Numbers 84 0.12 1.0000	0
large coastal Crooke LL Numbers 85 0.14 1.0000	0
large coastal Crooke LL Numbers 86 0.11 1.0000	
large coastal Crooke LL Numbers 87 0.08 1.0000	0
large coastal Crooke LL Numbers 88 0.08 1.0000	0
large coastal Crooke LL Numbers 89 0.09 1.0000	0
large coastal ⁴ Jax Numbers 79 0.59 1.0000	0
large coastal Jax Numbers 84 0.71 1.0000	0
large coastal Jax Numbers 90 0.16 1.0000	0
large coastal ⁵ NC # Numbers 88 999.10 0.4219	9
large coastal NC # Numbers 89 1637.36 0.2321	9
large coastal NC # Numbers 90 549.10 0.1376	6
large coastal NC # Numbers 91 625.52 0.1271	4
large coastal NC # Numbers 92 721.60 0.1740	9
large coastal ⁶ NC KG Biomass 88 837.85 0.5042	1
large coastal NC KG Biomass 89 2398.68 0.2849	3
large coastal NC KG Biomass 90 1121.99 0.1642	0
large coastal NC KG Biomass 91 1207.04 0.1588	6
large coastal NC KG Biomass 92 1163.71 0.1665	2
large coastal ⁷ Port Salerno Numbers 76 0.18 1.0000	0
large coastal Port Salerno Numbers 77 0.81 1.0000	0
large coastal Port Salerno Numbers 79 0.89 1.0000	0

large coastal	Port Salerno	Numbers	80	0.82	1.00000
large coastal	Port Salerno	Numbers	81	0.39	1.00000
large coastal	Port Salerno	Numbers	82	0.50	1.00000
large coastal	Port Salerno	Numbers	83	0.12	1.00000
large coastal	Port Salerno	Numbers	84	0.10	1.00000
large coastal	Port Salerno	Numbers	85	0.15	1.00000
large coastal	Port Salerno	Numbers	86	0.50	1.00000
large coastal	Port Salerno	Numbers	87	0.32	1.00000
large coastal	Port Salerno	Numbers	88	0.20	1.00000
large coastal	Port Salerno	Numbers	89	0.12	1.00000
large coastal	Port Salerno	Numbers	90	0.12	1.00000
targe coastat	Fort Saterno	Numbers	90	0.20	1.00000
large coastal	⁸ Tampa Bay	Numbers	85	0.16	1.00000
large coastal	Tampa Bay	Numbers	86	0.09	
large coastal	Tampa Bay	Numbers	87		1.00000
large coastal				0.03	1.00000
	Tampa Bay	Numbers	88	0.14	1.00000
large coastal	Tampa Bay	Numbers	89	0.06	1.00000
large coastal	Tampa Bay	Numbers	90	0.05	1.00000
large coastal	⁹ Virginia LL	Numbers	76	7.14	0.25000
large coastal	Virginia LL	Numbers	80	8.26	0.22000
large coastal	Virginia LL	Numbers	81	4.65	0.31000
large coastal	Virginia LL	Numbers	86	3.17	
large coastal	Virginia LL	Numbers			0.21000
large coastal	-		90 91	1.69	0.20000
	Virginia LL	Numbers		1.44	0.24000
large coastal	Virginia LL	Numbers	92	0.71	0.31000
large coastal	Virginia LL	Numbers	93	1.09	0.49000
large coastal	¹⁰ charter boat	Numbers	89	403.00	0.15000
large coastal	charter boat	Numbers	90	420.00	0.14000
large coastal	charter boat	Numbers	91	402.00	0.14000
large coastal	charter boat	Numbers	92	335.00	0.15000
large coastal	charter boat	Numbers	93	347.00	0.21000
					0.21000
large coastal	¹¹ pelagic logbook	Numbers	86	13.02	0.16000
large coastal	pelagic logbook	Numbers	87	9.59	9.04000
large coastal	pelagic logbook	Numbers	88	9.56	0.04000
large coastal	pelagic logbook	Numbers	89	8.99	0.04000
large coastal	pelagic logbook	Numbers	90	8.57	0.04000
large coastal	pelagic logbook	Numbers	91	5.82	0.05000
large coastal	pelagic logbook	Numbers	92	4.33	0.05000
large coastal	pelagic logbook	Numbers	93	4.08	0.05000
	12				
sandbar	¹² Virginia LL	Numbers	76	3.92	0.25000
sandbar	Virginia LL	Numbers	80	4.45	0.22000
sandbar	Virginia LL	Numbers	81	3.49	0.32000
sandbar	Virginia LL	Numbers	86	1.50	0.28000
sandbar	Virginia LL	Numbers	90	0.79	0.28000
sandbar	Virginia LL	Numbers	91	0.82	0.32000
sandbar	Virginia LL	Numbers	92	0.34	0.42000
sandbar	Virginia LL	Numbers	93	0.75	0.60000
dunky	13vinginia 11	Number	76	0.00	0 7/000
dusky	¹³ Virginia LL	Numbers	76	0.88	0.36000
dusky	Virginia LL	Numbers	80	1.24	0.46000
dusky	Virginia LL	Numbers	81	0.62	0.38000
dusky	Virginia LL	Numbers	86	0.22	0.48000

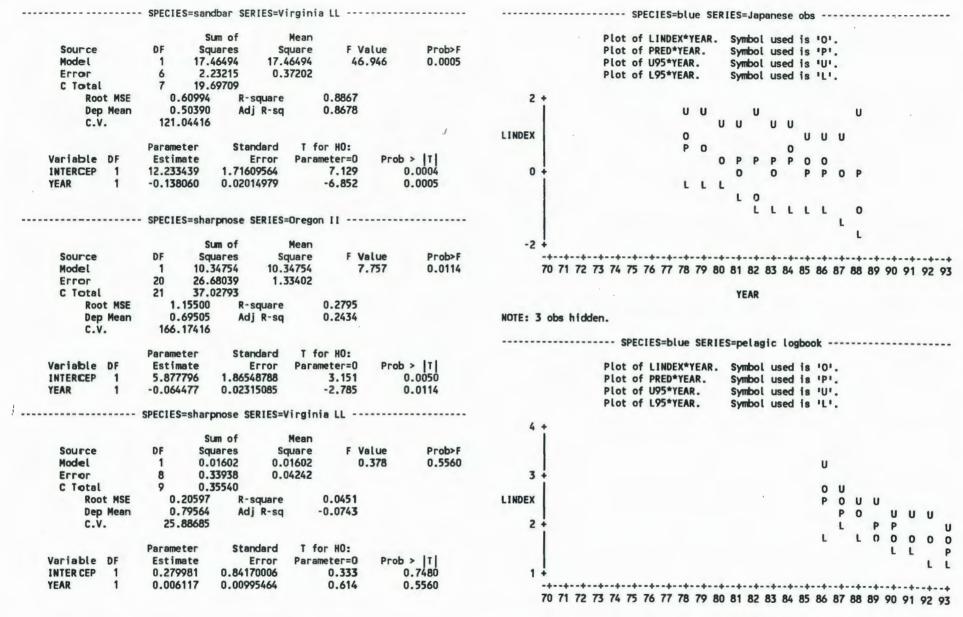
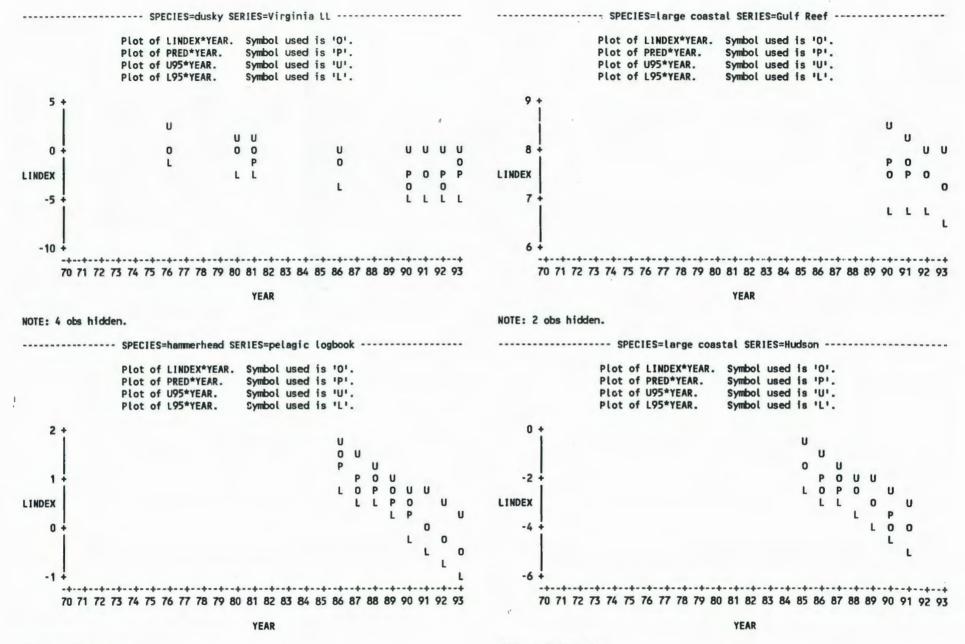

dusky	Virginia LL	Numbers	90	0.04	0.75000	mako	¹⁹ weighout	Biomass	85	52.00	0.15000
dusky	Virginia LL	Numbers	91	0.08	0.57000	mako	weighout	Biomass	86	61.00	0.12000
dusky	Virginia LL	Numbers	92	0.02	1.08000	mako	weighout	Biomass	87	55.00	0.11000
dusky	Virginia LL	Numbers	93	0.18	0.75000	mako	weighout	Biomass	88	54.00	0.10000
						mako	weighout	Biomass	89	51.00	0.10000
						mako	weighout	Biomass	90	38.00	0.11000
hammerhead	¹⁴ pelagic logbook	Numbers	86	4.36	0.24000	mako	weighout	Biomass	91	43.00	0.10000
hammerhead	pelagic logbook	Numbers	87	2.16	0.24000	mako	weighout	Biomass	92	30.00	0.13000
hammerhead	pelagic logbook	Numbers	88	2.55	0.21000						
hammerhead	pelagic logbook	Numbers	89	1.94	0.24000	sharpnose	²⁰ Oregon II	Numbers	72	1.32	0.35000
hammerhead	pelagic logbook	Numbers	90	1.64	0.27060	sharpnose	Oregon II	Numbers	73	0.95	0.25000
hammerhead	pelagic logbook	Numbers	91	0.95	0.40000	sharpnose	Oregon 11	Numbers	74	4.17	0.19000
hammerhead	pelagic logbook	Numbers	92	0.77	0.43000	sharpnose	Oregon II	Numbers	75	3.76	0.18000
hammerhead	pelagic logbook	Numbers	93	0.68	0.42000	sharphose	Oregon II	Numbers	76		
fidinine freder	peragre rogbook	Humber 3	13	0.00	0.42000	sharphose	-			3.66	0.15000
him	¹⁵ Japanese obs	Numbers	78	2.43	0.22000		Oregon II	Numbers	77	1.94	0.21000
blue						sharpnose	Oregon II	Numbers	78	1.67	0.21000
blue	Japanese obs	Numbers	79	1.77	0.19000	sharpnose	Oregon II	Numbers	79	2.74	0.21000
blue	Japanese obs	Numbers	80	1.55	0.17000	sharpnose	Oregon II	Numbers	80	4.50	0.22000
blue	Japanese obs	Numbers	81	1.09	0.18000	sharpnose	Oregon II	Numbers	81	2.31	0.20000
blue	Japanese obs	Numbers	82	0.45	0.40000	sharpnose	Oregon II	Numbers	82	2.31	0.20000
blue	Japanese obs	Numbers	83	1.08	0.35000	sharpnose	Oregon II	Numbers	83	2.71	0.28000
blue	Japanese obs	Numbers	84	1.89	0.23000	sharpnose	Oregon II	Numbers	84	1.36	0.23000
blue	Japanese obs	Numbers	85	1.62	0.22000	sharpnose	Oregon II	Numbers	85	3.18	0.39000
blue	Japanese obs	Numbers	86	1.34	0.24000	sharpnose	Oregon 11	Numbers	86	0.78	0.59000
blue	Japanese obs	Numbers	87	1.00	0.27000	sharpnose	Oregon II	Numbers	87	8.25	0.90000
blue	Japanese obs	Numbers	88	0.40	0.58000	sharpnose	Oregon 11	Numbers	88	0.71	0.50000
						sharpnose	Oregon II	Numbers	89	1.17	0.53000
blue	¹⁶ pelagic logbook	Numbers	86	16.95	0.21000	sharpnose	Oregon II	Numbers	90	0.28	0.67000
blue -	pelagic logbook	Numbers	87	10.94	0.06000	sharpnose	Oregon II	Numbers	91	0.39	0.47000
blue	pelagic logbook	Numbers	88	8.55	0.06000	sharpnose	Oregon II	Numbers	92	0.77	0.50000
blue	pelagic logbook	Numbers	89	6.30	0.06000	sharpnose	Oregon 11	Numbers	93	0.78	0.50000
blue	pelagic logbook	Numbers	90	6.46	0.06000	onai prioso		in calification of	15	0.10	0.30000
blue	pelagic logbook	Numbers	91	6.26	0.06000	sharpnose	²¹ Virginia LL	Numbers	75	2.10	1.00000
blue	pelagic logbook	Numbers	92	6.15	0.06000	sharphose	Virginia LL	Numbers	76	2.10	
blue	pelagic logbook	Numbers	93	5.35	0.07000	sharphose	Virginia LL	Numbers	79		1.00000
Dide	peragic rogbook	Humber 5	15	5.35	0.07000	sharphose	Virginia LL	Numbers	80	2.10	1.00000
mako	¹⁷ Japanese obs	Numbers	78	0.60	0.19000	sharphose				2.50	1.00000
			79				Virginia LL	Numbers	81	2.51	1.00000
mako	Japanese obs	Numbers		0.42	0.19000	sharpnose	Virginia LL	Numbers	86	1.40	1.00000
mako	Japanese obs	Numbers	80	0.36	0.18000	sharpnose	Virginia LL	Numbers	90	2.40	1.00000
mako	Japanese obs	Numbers	81	0.30	0.19000	sharpnose	Virginia LL	Numbers	91	2.00	1.00000
mako	Japanese obs	Numbers	82	0.16	0.44000	sharpnose	Virginia LL	Numbers	92	2.52	1.00000
mako	Japanese obs	Numbers	83	0.22	0.40000	sharpnose	Virginia LL	Numbers	93	2.90	1.00000
mako	Japanese obs	Numbers	84	0.30	0.25000						
mako	Japanese obs	Numbers	85	0.23	0.25000						
mako	Japanese obs	Numbers	86	0.27	0.27000	Sources:	1 - document SB-3	and analyses	conducte	d at the m	eeting.
mako	Japanese obs	Numbers	87	0.26	0.30000		2, 3, 4, 7, 8 - de	ocument SB-16			
mako	Japanese obs	Numbers	88	0.17	0.65000		5, 6 - document SI 9, 12, 13, 21 - do			ucted at th	ne mecting.
mako	¹⁸ pelagic logbook	Numbers	86	1.24	0.13000		10 - document SB-				
mako	pelagic logbook	Numbers	87	1.12	0.07000		11, 14, 16, 18 - 0				
mako	pelagic logbook	Numbers	88	0.90	0.07000		15, 17 - analyses		the most	ing	
mako	pelagic logbook	Numbers	89	0.85	0.08000		19 - document SB-		the meet	119	
mako		Numbers	90	0.83			20 - document SB-				
	pelagic logbook				0.08000		20 - document SB-:	,			
mako	pelagic logbook	Numbers Numbers	91 92	0.69	0.08000						
	pelagic logbook										
mako mako	pelagic logbook	Numbers	93	0.75	0.09000						

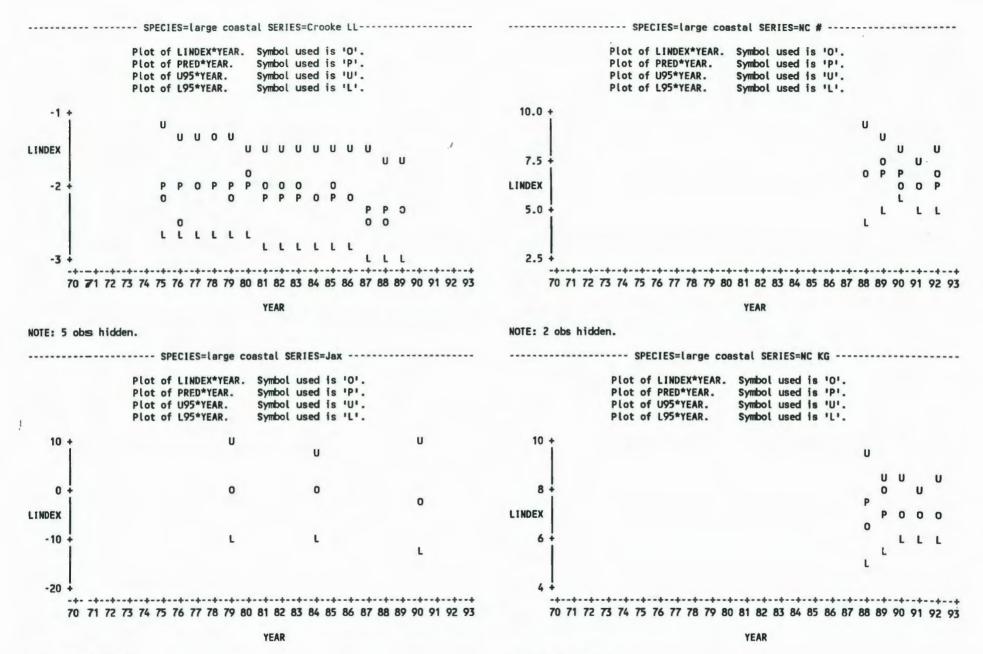
Table 2. Linear regression fits to log-transformed, individual CPUE series to examine the data for trend. Observations are weighted by the inverse of the coefficient of variation in the fits. A significant negative slope (negative year parameter estimate) is indicative of a negative trend in the data (conversely, a positive slope is indicative of a positive trend). The significance of the slope (H0: no slope) is indicated by the t-statistic and associated probability.

		- SPECIES=t	lue SERIE	S=Japane	se obs					SP	ECIES=hamme	rhead SERIE	S=pelagic	logbook -		
			Sum of		an							Sum of	Mean			
Source		DF S	quares	Squa		F Valu	e Pro	ob>F	Source		DF					Burnha P
Model			.93615	1.936		2.46		1508				Squares	Square			Prob>F
Error			.06652	0.785			• • • •		Model			8.25647	8.25647		921	0.0002
C Total			2.00268						Error			0.72929	0.12155			
Root	MSE	0.8861		quare	0.2	151			C Total			8.98576				
Dep M		0.2865		R-sq		278				t MSE	0.348		uare	0.9188		
C.V.	ricari	309.2143		n oq	•	LIU				Mean	0.594		R-sq	0.9053		
0		3071211	-						C.V	•	58.670	42				
		Parameter	Star	ndard	T for H	10:					Parameter	Stand	lard T	for HO:		
Variable D	DF	Estimate	E	rror P	aramete	er=0	Prob > T		Variable	DE	Estimate			ameter=0	Prob >	111
	1	5.861472	3.5526	52226	1.	650	0.1334		INTERCEP	1	22.878852			8.459		0001
YEAR	1	-0.067631	0.0430		-1.	570	0.1508		YEAR	i	-0.250428			-8.242		0002
											01230420	0.05050	510	0.242	0.	0002
		SPECIES=blu	e SERIES=	pelagic	logbool											
			Sum of	Me	an						SPECIES=lar	ge coastal	SERIES=Gu	If Reef		
Source		DF S	Squares	Squa		F Valu	e Pro	ob>F				C	Maar			
Model			. 19057	7.190		19.62		0044	Courses		DE	Sum of	Mean			
Error			2.19890	0.366			• •••		Source		DF 1	Squares	Square			Prob>
C Total			.38947		10				Model			0.41056	0.41056		715	0.241
Root	MSE	0.6053		quare	0.7	658			Error			0.30243	0.15121			
Dep M		1.979		R-sq		268			C Total					0 5750		
C.V.		30.5779		, n oq		200				t MSE	0.388		quare	0.5758		
										Mean	7.455		R-sq	0.3637		
		Parameter	Star	ndard	T for H	0:			C.V	•	5.216	500				
Variable D	DF	Estimate			aramete		Prob > T				Denemater	C	T back	fan 110.		
	1	12.581518	2.3940			255	0.0019		Vaniable		Parameter Estimate			for HO:	Burk .	1-1
	1	-0.118086	0.0266			430	0.0044		Variable					ameter=0	Prob	
1 Erin			0.0200						INTERCEP	1	17.891092			2.825		1058
									YEAR	1	-0.113895	0.0691	2087	-1.648	0.	.2412
		- SPECIES=0									SPECIES=La	arge coasta	SERIES=H	udson		
			Sum of		an											
Source			Squares	Squa		F Valu		ob>F				Sum of	Mean			
Model			3.94574	18.945		19.58	o U.(0044	Source			Squares	Square		lue	Prob>
Error			.80375	0.967	29				Model			4.55070	4.55070	42.	980	0.001
			.74949						Error		5	0.52939	0.10588	1		
C Total	IGE	0.9835		square		655			C Total		6	5.08009				
C Total Root		-1.2609		R-sq	0.7	264			Roo	t MSE	0.325	39 R-s	quare	0.8958		
C Total Root Dep M	Mean									Mean	-2.722		R-sq	0.8749		
C Total Root	Mean	-77.997							C. V		-11.950	073				
C Total Root Dep M	Mean			ndard	T for H	10:			C.V		-11.950	073				
C Total Root Dep M	Mean	-77.997	Star		T for H aramete		Prob > [T]		C.V				lard 7	for HO.		
C Total Root Dep M C.V. Variable D	Mean	-77.997 Parameter	Star	Fror P	aramete		Prob > T 0.0066				Parameter	Stan		for HO:	Proh	111
C Total Root Dep M C.V. Variable D INTERCEP	Mean DF	-77.997 Parameter Estimate	Stan	Fror P	aramete 4.	er=0			C.V Variable INTERCEP			Stan	rror Par	for HO: ameter=0 6.051	Prob	T .0018

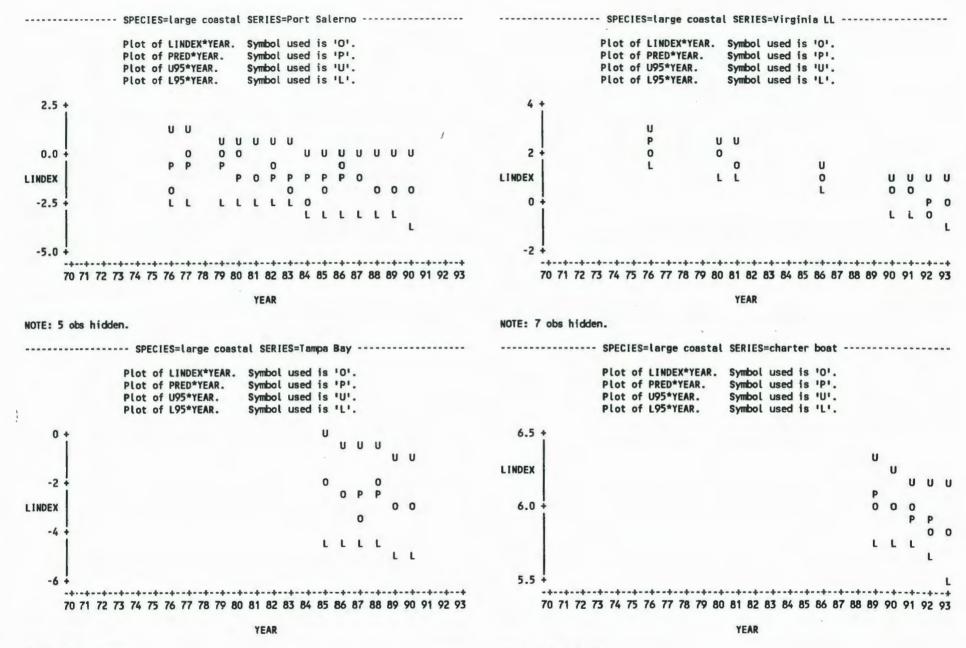
	PECIES=large coastal SERIES=Crooke LL	
	Sum of Mean	Sum of Mean
Source	DF Squares Square F Value Prob>F	Source DF Squares Square F Value Prob
Model	1 0.18283 0.18283 2.169 0.1646	Model 1 0.09424 0.09424 0.155 0.720
Error	13 1.09571 0.08429	Error 3 1.82208 0.60736
C Total	14 1.27855	C Total 4 1.91632
Root MSE	0.29032 R-square 0.1430	Root MSE 0.77933 R-square 0.0492
Dep Mean	-2.12746 Adj R-sq 0.0771	Dep Mean 7.13875 Adj R-sq -0.2678
C.V.	-13.64629	C.V. 10.91694
	······· /	
	Parameter Standard T for HO:	Parameter Standard T for HO:
Variable DF	Estimate Error Parameter=0 Prob > T	Variable DF Estimate Error Parameter=0 Prob > T
INTERCEP 1	-0.032084 1.42466845 -0.023 0.9824	INTERCEP 1 11.715207 11.61922466 1.008 0.3876
YEAR 1	-0.025553 0.01734994 -1.473 0.1646	YEAR 1 -0.050595 0.12844455 -0.394 0.7200
	- SPECIES=large coastal SERIES=Jax	SPECIES=large coastal SERIES=Port Salerno
	Sum of Mean	Sum of Mean
Source	DF Squares Square F Value Prob>F	Source DF Squares Square F Value Prob
Model	1 0.91645 0.91645 2.276 0.3727	Model 1 1.85290 1.85290 3.794 0.07
Error	1 0.40273 0.40273	Error 12 5.85978 0.48832
C Total	2 1.31918	C Total 13 7.71268
Root MSE	0.63461 R-square 0.6947	Root MSE 0.69880 R-square 0.2402
Dep Mean	-0.90090 Adj R-sq 0.3894	Dep Mean -1.24050 Adj R-sq 0.1769
C.V.	-70.44128	c.v56.33192
	Parameter Standard T for HO:	Parameter Standard T for HO:
Variable DF	Estimate Error Parameter=0 Prob > [T]	Variable DF Estimate Error Parameter=0 Prob > [T]
INTERCEP 1	9.464347 6.88090081 1.375 0.4002	INTERCEP 1 5.890084 3.66533191 1.607 0.1340
YEAR 1	-0.122908 0.08147596 -1.509 0.3727	YEAR 1 -0.085543 0.04391430 -1.948 0.0752
	SPECIES=large coastal SERIES=NC #	SPECIES=large coastal SERIES=Tampa Bay
	Sum of Mean	Sum of Mean
Source	DF Squares Square F Value Prob>F	Source DF Squares Square F Value Pro
Model	1 1.08160 1.08160 1.196 0.3540	Model 1 0.43084 0.43084 1.064 0.36
Error	3 2.71195 0.90398	Error 4 1.61978 0.40494
C Total	4 3.79355	C Total 5 2.05062
Root MSE	0.95078 R-square 0.2851	Root MSE 0.63635 R-square 0.2101
Dep Mean	6.62472 Adj R-sq 0.0468	Dep Mean -2.58706 Adj R-sq 0.0126
	14.35200	c.v24.59755
C.V.		
C.V.	Parameter Standard T for HO:	Parameter Standard T for HO:
	Parameter Standard T for HO: Estimate Error Parameter=0 Prob > T	Parameter Standard T for HO: Variable DF Estimate Error Parameter=0 Prob > 11
C.V. Variable DF INTERCEP 1	Parameter Standard T for HO: Estimate Error Parameter=0 Prob > T 21.344481 13.45816126 1.586 0.2109	Parameter Standard T for HO: Variable DF Estimate Error Parameter=O Prob > T INTERCEP 1 11.142204 13.31280659 0.837 0.4497


			um of	Mean				•	9	um of	Mean		
Source		-			alue P	rob>F	Source				Square	F Valu	e Prob>
Model						.0003	Model				.06543	12.41	
Error				4716			Error				.24699		
C Total			70327				C Total			28837			
	t MSE	0.58921		0.8994				t MSE	0.49699		e	0.5797	
	Mean	1.00575		0.8826				Mean	-1.17062			0.5329	
C.V.		58.58345		010020			C.1		-42.45495		-		
0	,	30.30343				/							
		Parameter	Standard	T for HO:					Parameter	Standard	I T f	or HO:	
Variable I	DF	Estimate	Error	Parameter=0	Prob > T	1	Variable	DF	Estimate	Error	Para	meter=0	Prob > T
INTERCEP	1	12.463490	1.56806756	7.948	0.000	2	INTERCEP	1	5.946908	2.02178349)	2.941	0.0164
YEAR	1	-0.133678	0.01825292	-7.324	0.000	3	YEAR	1	-0.086552	0.02456829	,	-3.523	0.0065
	SPE	CIES=large c	oastal SERIES=	charter boat					SPECIES=make	SERIES=pela	gic log	book	
		s	um of	Mean					5	um of	Mean		
Source					alue P	rob>F	Source				Square	F Valu	e Prob
Model						.0971	Model				.59703	57.28	
Error				2998			Error		6 0.	37677 0	.06279		
C Total			26069				C Total	í – 1	7 3.	97380			
	t MSE	0.17316	R-square	0.6549			Roo	ot MSE	0.25059	R-squar	e	0.9052	
Dep	Mean	5.94745		0.5399			Dep	Mean	-0.16390		q	0.8894	
C.V.		2.91149	ł				C.1	1.	-152.88725				
			Chandrad.	T for 110.					Denemator	Standard		for HO:	
		Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > 11	1	Variable	DE	Parameter Estimate	Error			Prob > T
Variable		10.837403	2.04944748	5.288	0.013		INTERCEP		7.720368	1.04202759		7.409	0.0003
INTERCEP	1	-0.053814	0.02255172	-2.386	0.097		YEAR	1	-0.088044	0.01163287		-7.569	0.0003
TEAK		-0.033614	0.02255172	2.300	0.077		I LAN	•	0.000044	0.01105201		1.307	0.0005
	SPEC	IES=large co	astal SERIES=p	pelagic logboo	k				SPECIES	-mako SERIES=	weighou	ut	
		5	um of	Mean					1	Sum of	Mean		
Source		DF Sq	uares Sc	quare FV	alue P	rob>F	Source		DF Sc	uares	Square	F Valu	
Model		1 18.	26507 18.2	26507 44	.080 0	0.0006	Model		1 2.	.24593 2	2.24593	14.70	58 0.00
		6 2.	.48620 0.4	41437			Error				0.15208		
Error		7 20.	75127				C Tota	ι		15840			
Error C Total		0.64371	R-square	0.8802			Ro	ot MSE	0.3899		re	0.7111	
	t MSE		Adj R-sq	0.8602				p Mean	3.8530		sq	0.6629	
C Total Root	t MSE Mean	1.98657	naj n og				C.1	1	10.1211	7			
C Total Root	Mean	1.98657 32.40324					U .		10.1211				
C Total Root Dep	Mean	32.40324		T for HO.			0.1				н т н	for HO:	
C Total Root Dep C.V.	Mean	32.40324 Parameter	Standard	T for HO: Parameter=0	Prob > 1	rl			Parameter	Standard		for HO: ameter=0	Prob > 11
C Total Root Dep	Mean	32.40324		T for HO: Parameter=0 7.555	Prob > 1 0.000		Variable INTERCEP	DF			r Para	for HO: ameter=0 5.884	Prob > 1 0.0011

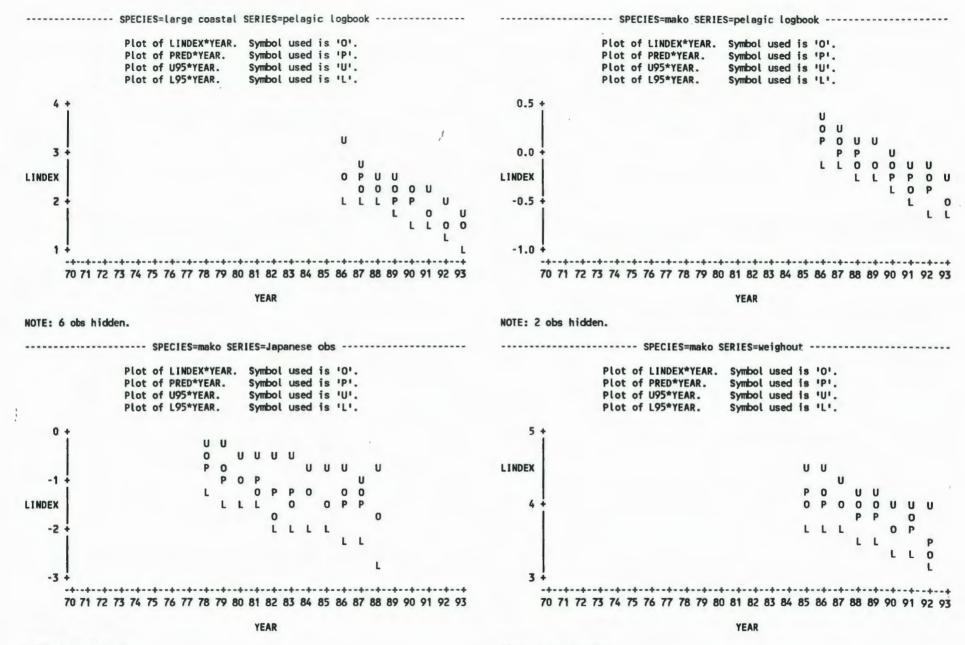
YEAR


NOTE: 4 obs hidden.

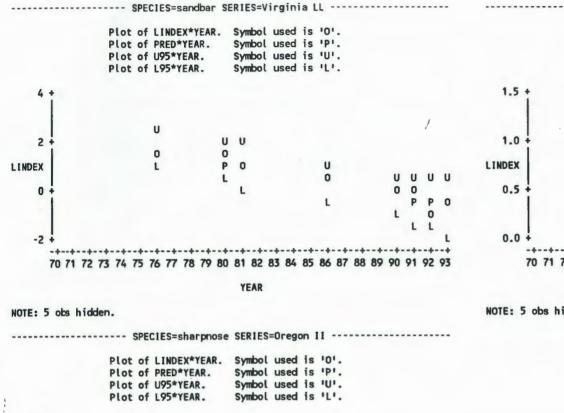
t,

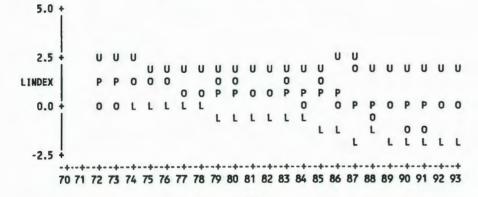


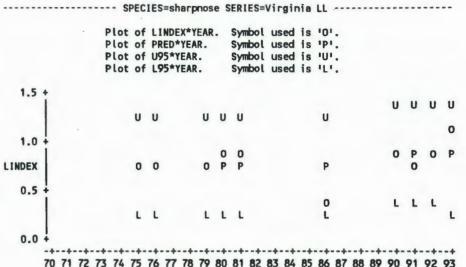
NOTE: 4 obs hidden.



NOTE: 3 obs hidden.




NOTE: 2 obs hidden.


NOTE: 2 obs hidden.

YEAR

NOTE: 12 obs hidden.

YEAR

Table 3. General Linear Model applied to the available CPUE data, weighted by the inverse of the estimated precision, controlling for the scale effect introduced by the use of different CPUE data with different measures of catch and effort. The analysis is constructed to test the hypothesis of no trend in CPUE versus the alternative of a negative trend. The sign and approximate significance level of the model parameter estimate for the year covariate term is a test of this hypothesis.

General Linear Models Procedure												ieneral			ky	lure		
		C	lass Leve	I Infor	mation			1							rmation			
	Class SERIES	Leve			bs pela	agic logboo	k					Class	Leve	ls	Values Virginia	LL		
	Num	ber of	observat	ions in	by gr	oup = 19					Numt	per of	observa	tions	in by g	oup = 8		
Dependent Varia	ble: Log	(CPUE)							Dependent	Variable:	Log(PUE)						
Weight:	1/C	v		-					Weight:		1/CV							
			-	um of		Mean								um of		Mean		
Source		DF		uares		Square	F Value	Pr > F	Source		1)F		uares		Square	F Value	Pr > I
Model		2	102.297			14887632	83.02	0.0001	Model			1	18.945		18.9	4574277	19.59	0.0044
Error		16		20100	0.	61607506			Error			6	5.803		0.9	6729137		
Corrected Total		18	112.154	95364					Corrected	Total		7	24.749	49098				
	R-Squ			C.V.		Root MSE		NDEX Mean			R-Squar			C.V.	1	Root MSE	L	INDEX Mean
	0.912	111	51.	82144	0	.7849045		.51463260		C	0.76550)0	-77.	99717	0.	9835097	-	1.26095559
Source		DF	Type 1			n Square	F Value	Pr > F	Source		t	DF	Туре І		Mean	n Square	F Value	Pr > F
YEAR		1		94565		53494565	13.85	0.0019	YEAR			1	18.945	74277	18.9	94574277	19.59	0.0044
SERIES		1	65.049	26504	65.	04926504	105.59	0.0001	SERIES			0	0.000	00000				
				T for	HO:	Pr > T	Std Er	ror of						T fo	or HO:	Pr > T	Std Er	ror of
Parameter		Es	timate	Parame	ter=0		Estin	nate	Parameter			Esti	mate	Param	neter=0			nate
INTERCEPT		10.53	943193 B		4.58	0.0003	2.30	083047	INTERCEPT		•	4.4761	6031 B		4.06	0.0066		493504
YEAR		-0.09	534023		-3.72	0.0019	0.02	561490	YEAR			0.1866	50057		-4.43	0.0044		216342
	ese obs	-2.39	389140 B		10.28	0.0001	0.23	297003	SERIES	Virginia	LL	0.0000	00000 B					
pelagic	logbook	0.00	000000 B							-								
	-								NOTE: The	X'X matri	x has	been f	ound to	be si	ingular a	and a gene	ralized i	Iverse

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters. NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

			nead							PECIES=larg					
General Linear Models Procedure							General Linear Models Procedure								
Class Level Information							Class Level Information								
Class Levels Values SERIES 1 pelagic logbook						Class Levels Values									
			SERIES	and the second sec						pa Bay,					
							Virginia LL, charter boat, pelagic logbook								
	Number of	observations in	n by group = 8					Numb	per of	observation	s in by g	roup = 71			
Dependent Variab	le: Log(CPUE)					Dependent	Variable	e: Log(CPUE)						
Weight:	1/CV					Weight:		1/0	1						
		Sum of	Mean		.4					Sum	of	Mean			
Source	DF	Squares	Square	F Value	Pr > F	Source			DF	Squar	es	Square	F Value	Pr > F	
Model	1	8.25647057	8.25647057	67.93	0.0002										
Error	6	0.72929145	0.12154857			Model			9	1404.39120	98 15	6.0434678	442.24	0.0001	
Corrected Total	7	8.98576201				Error	or		61	21.5237586		0.3528485			
	R-Square	C.V. Root MSE		LINDEX Mean		Corrected Total			70	1425.91496	85				
	0.918839	58.67042	0.3486382	0.59423162				R-Square		C.V.		Root MSE	LINDEX Mean		
								0.9849	205	33.010	49	0.5940105		.79945967	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	Source			DF	Type III		an Square	F Value	Pr > 1	
YEAR	1	8.25647057	8.25647057	67.93	0.0002	YEAR			1	38.23518		8.2351887	108.36	0.000	
SERIES	0	0.00000000				SERIES			8	1238.34576	24 15	4.7932203	438.70	0.000	
											for HO:	Pr > T	Std Er	ror of	
		T for				Parameter					rameter=0		Estin		
Parameter	Est	imate Paramet		Estin		INTERCEPT	r -			080752 B	12.25			43478	
INTERCEPT		85200 B	8.46 0.0001			YEAR				461628	-10.41			197119	
YEAR	-0.250		-8.24 0.0002	2 0.03038510		SERIES	Hudson			733777 В	-21.37			006218	
SERIES pelagic logbook 0.00000000 B							Crooke	LL		973745 B	-27.46			\$9292	
							Jax			240281 B	-10.10			187889	
NOTE: The X'X matrix has been found to be singular and a generalized inverse							NC #			299100 B	19.26			964381	
was used to solve the normal equations. Estimates followed by the										364691 B	-22.08			175685	
letter 'B'	are biased, a	nd are not uniqu	ue estimators of	the param	neters.		Tampa B			393989 B	-19.52			320313	
							Virgini	all	-1.47	398101 B	-11.74	0.0001	0.12	554441	

ł

charter boat 4.11023334 B

pelagic logbook 0.00000000 B

35.74

.

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

0.0001

.

0.11500013

.

35

		SPECIES=make	,							ibar		
	Genera	al Linear Models	Procedure					Genera	Linear Model	s Procedure		
	CI	lass Level Inform	nation					Cla	ass Level Info	ormation		
	Class Level	ls Values						Class	Levels	Values		
	SERIES	2 Japanese ob	os pelagic logboo	k				SERIE	s 1	Virginia LL		
	Number of	observations in	by group = 19				NL	mber of	observations	in by group = 8	1	
Dependent Variab	ole: Log(CPUE)					Dependent	Variable: Log	(CPUE)				
Weight:	1/CV					Weight:	1/0	v				
		Sum of	Mean		,1				Sum of	Mean	1	
Source	DF	Squares	Square	F Value	Pr > F	Source		DF	Squares	Square	F Value	Pr > F
Model	2	36.74203402	18.37101701	113.04	0.0001	Model		1	17.46493975	17.4649397	46.95	0.0005
Error	16	2.60019883	0.16251243			Error		6	2.23214724	0.37202454		
Corrected Total	18	39.34223285				Corrected	Total	7	19.69708699			
	R-Square	C.V.	Root MSE	LI	NDEX Mean		R-Squ	lare	C.V.	Root MSI	: L	INDEX Mean
	0.933908	-85.63463	0.4031283	-0	.47075384		0.88	676	121.0442	0.609938	I	0.50389720
Source	DF	Type 111 SS	Mean Square	F Value	Pr > F	Source		DF	Type 111 SS	Mean Square	F Value	Pr > F
YEAR	1	6.66197212	6.66197212	40.99	0.0001	YEAR		1	17.46493975	17.4649397	5 46.95	0.0005
SERIES	1	28.51494995	28.51494995	175.46	0.0001	SERIES		0	0.0000000			
		T for	HO: Pr > [T]	Std Err	or of				Tf	or HO: Pr >	T Std Er	ror of
Parameter	Es	timate Paramet		Estim	ate	Parameter		Est	imate Para	meter=0	Esti	mate
INTERCEPT	7.657	770001 B	6.26 0.0001	1.222	31823	INTERCEPT		12.233	43915 B	7.13 0.0	004 1.71	609564
YEAR			-6.40 0.0001	0.013	64201	YEAR		-0.138	06016	-6.85 0.0	0.02	2014979
			13.25 0.0001	0.124	23700	SERIES	Virginia LL	0.000	00000 B			
	logbook 0.000											
Percenter 4						NOTE . The	VIV metnix h	hoon	found to be a	ingular and a g	anonal irad	munner

1

.

NOTE: The X¹X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

		eral Linear M Class Level		dure				estricted to p		d in log(CPU	E), 1986-	present?		
	Class	Levels V	alues							SPECIES=b	lue			
	SERIES	2 0	regon II Vi	rginia LL					General	Linear Mode	ls Proced	ture		
									Cla	ss Level Inf	ormation			
	Number o	of observatio	ns in by gr	oup = 32				Class	Levels	Values				
	it different is							SERIES	2	Japanese	obs pela	agic logboo	k	
Dependent Variabl	et Log(CPUE								-		P			
Weight:	1/CV	.,						Numb	er of o	bservations	in by are	oup = 11		
weight.	1701	Sum	of	Mean		1								
Source	DF	Squa		Square	F Value	Pr > F				Sum of		Mean		
Model	2	3.00065		50032561	3.33	0.0498	Source		DF	Squares		Square	F Value	Pr > F
Error	29	13.05384		45013250			Model		2	43.94410843	21.0	97205422	52.15	0.0001
Corrected Total	31	16.05449					Error		8	3.37064571		42133071		
confected forat	R-Square			Root MSE	1	INDEX Mean	Corrected	Total	10	47.31475415				
	0.186904	112.9		.6709191	_	0.59399379		R-Squa		C.V.		Root MSE	1.1	NDEX Mean
	0.100704	112.7	505 0					0.9287		35.48300		.6490999		.82932639
Source	DF	Type III	SS Mea	n Square	F Value	Pr > F				00110000	•			
YEAR	1	2.40919		40919027	5.35	0.0280	Source		DF	Type III SS	Meat	n Square	F Value	Pr > F
SERIES	1	0.92747		92747606	2.06	0.1619	YEAR		1	7.80975560		80975560	18.54	0.0026
JERILJ	•	0.72.41					SERIES		1	43.79659470		79659470	103.95	0.0001
			T for HO:	Pr > T	Std Er	ror of								0.0001
Parameter			arameter=0		Esti					Tf	or HO:	Pr > T	Std Err	or of
INTERCEPT		05846771 B	2.80	0.0091		486526	Parameter		Esti		meter=0		Estim	
YEAR		42825652	-2.31	0.0280		851137	INTERCEPT			3400 B	5.08	0.0010		97692
SERIES Oregon		70396049 B	-1.44	0.1619		803890	YEAR		-0.1224		-4.31	0.0026		43934
Virgini		00000000 B					SERIES	Japanese obs	-2.3889	20064 B	-10.20	0.0001		30927
							pe	elagic logbook	0.0000	00000 B				

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

				CIES=dus							*****	- SPECIES=h					
		Ge	eneral Line	ar Model	s Proce	dure						al Linear M			Ire		
			Class Le	vel Info	ormation						C	lass Level	Inform	ation			
		0	lass Le	vels	Values					C	lass	Levels	Valu	es			
			ERIES	1	Virgini	a LL				S	ERIES	1	pela	gic log	jbook		
		Numbe	er of obser	vations	in by g	roup = 5				Num	iber c	f observati	ons in	by gro	oup = 8		
				Sum of		Mean						Sun	of		Mean		
Source		DF		Squares		Square	F Value	Pr > F	Source		DF	Squa	res		Square	F Value	Pr > F
Model		1	1.1	5609460	1.	15609460	0.84	0.4277	Model		1	8.25647	057	8.2	647057	67.93	0.0002
Error		3	4.1	4322387	1.	38107462			Error		6	0.72929	145	0.1	2154857		
Corrected T	lotal	4		9931847					Corrected Total		7	8.98576	5201				
our corea r		R-Square		C.V.		Root MSE	LI	NDEX Mean		R-Squa	re	(.v.	R	oot MSE	LI	NDEX Mean
		0.218159		9.09498		.1751913		.39370995		0.9188		58.6	7042	0.:	5486382	C	.59423162
Source		DI	Type	111 SS	Mea	n Square	F Value	Pr > F	Source		DF	Type 11	SS	Mean	Square	F Value	Pr > 1
YEAR		1		5609460		15609460	0.84	0.4277	YEAR		1	8.2564	7057	8.2	5647057	67.93	0.000
SERIES		C		0000000					SERIES		0	0.0000	0000				
				T fo	or HO:	Pr > T	Std Err	or of					T for	HO:	Pr > [T]	Std Err	ror of
Parameter			Estimate	Paran	neter=0		Estin	ate	Parameter		E	stimate 1	Paramet	ter=0		Estin	nate
INTERCEPT		11	. 17929314	B	0.75	0.5060	14.841	27295	INTERCEPT		22.8	7885200 B		8.46	0.0001	2.704	64998
YEAR			. 15097530		-0.91	0.4277		01286	YEAR		-0.2	5042804		8.24	0.0002	0.030	038510
	/irginia		0.00000000									0000000 B					

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter '8' are biased, and are not unique estimators of the parameters.

			Ger	neral Li	nea	r Model	s Proce	dure					General						
				Class	Lev	el Info	ormation								el Info	ormatio	n		
lass	Levels	Valu	es									Class	Levels		lues				
ERIES	9							alerno,Tam	pa Bay,			SERIES	2	Ja	panese	obs pe	lagic logbo	ok	
		Virg	inia	LL, cha	rte	r boat,	pelagic	logbook				Ma em	han of ah	00510	tions		roup = 11		
		M		of shee			-					num		361 40	L'IONS I	in by a	roup - m		
		NUM	ber	or obse	rva	tions 1	n by gr	oup = 44							Sum of		Mean		
						Sum of		Mean			Source		DF		quares		Square	F Value	Pr >
ource			DF			quares		Square	F Value	Pr > F	Model		2	15.90	276891	7	.95138445	126.65	0.0001
odel			9	111		078011	123	.5564223	490.79	0.0001	Error		8		225903		.06278238		
rror			34			594916		.2517498			Corrected Total		10	16.40	502794				
orrected	d Total		43			672927						R-Squ	are		C.V.		Root MSE	1	INDEX Mean
Unected	a locat	R-Squ				C.V.		Root MSE	L	INDEX Mean		0.969		-94	.72458		0.2505641		0.2645186
		0.992			23	.64678		.5017467		2.12183898									
		0.772									Source		DF	Туре	III SS	Me	an Square	F Value	Pr >
ource			DF	Ty	pe	111 SS	Mea	n Square	F Value	Pr > F	YEAR		1	3.72	375072	3	.72375072	59.31	0.000
EAR			1	2	3.7	416125	23	.7416125	94.31	0.0001	SERIES		1	15.51	598205	15	.51598205	247.14	0.000
ERIES			8	109	1.7	957737	136	.4744717	542.10	0.0001									
															T f	or HO:	Pr > T		
						T fo	or HO:	Pr > T	Std Er	ror of	Parameter		Estin			meter=0		Estin	
aramete	r			Estimat	e	Paran	neter=0		Esti	mate	INTERCEPT		7.817763		3	7.54			669857
NTERCEP	т		16.	2782294	6 B		11.06	0.0001	1.47	219007	YEAR		-0.089131			-7.70			157334
EAR			-0.	1593820	9		-9.71	0.0001	0.01	641228	SERIES Japan	ese obs	-1.492842	2636 E	3	-15.72	0.0001	0.09	496056
ERIES	Hudson		-5.	.0971160	6 B	1	-24.34	0.0001	0.20	938191	pelagic	logbook	0.00000	0000 E	3				
	Crooke	LL	-4.	7489656	OB	1	-18.52	0.0001	0.25	635748									
	Jax		-3.	7664223	8 B	1	-7.48	0.0001	0.50	328274	NOTE: The X'X m								
	NC #		5	2044924	7 B	1	22.85	0.0001	0.22	780192							timates fol		
	Port Sa	lerno	-3	.6869492	7 B	3	-16.07	0.0001	0.22	937898	letter 'B	are bi	ased, and	d are	not un	ique es	timators of	the para	meters.
	Tampa B	ay	-4	.9905569	7 B	L.	-21.76	0.0001		937898									
	Virgini	aLL	-1.	4985664	8 B	1	-12.38	0.0001		100201									
	charter	boat	4	1518992	7 B	1	42.21	0.0001	0.09	836567									
	1 1 1			000000															

pelagic logbook

ł

0.00000000 B

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

.

.

.

				ES=sand										=sharpno				
		Gen	eral Linea	r Mode	ls Proces	ture							eral Linear			lure		
			Class Leve	el Info	ormation								Class Leve					
		CL	ass Leve	els	Values						CL	ass	Levels	Values				
		SE	RIES	1	Virgini	a LL					SE	RIES	2	Oregon	II Vir	ginia LL		
		Number	of observa	ations	in by g	roup = 5					Nu	mber d	of observat	ions in	by gro	oup = 13		
				Sum of		Mean							5	Sum of		Mean		
Source		DF	Se	quares		Square	F Value	Pr > F	Source			DF	Sc	uares		Square	F Value	Pr > F
Model		1	2.08	555620	2.0	08555620	5.81	0.0950	Model			2	2.858	365638	1.4	2932819	2.00	0.1864
Error		3	1.07	712633	0.3	35904211			Error			10	7.160	09336	0.7	71600934		
Corrected Tot	al	4	3.16	268253					Corrected	I Total		12	10.018	374974				
		quare		C.V.		Root MSE	LI	NDEX Mean			R-Sq	uare		C.V.	F	Root MSE	LI	NDEX Mean
		59426	-28	0.1389	0	.5992012	-0	.21389435			0.28	5331	380	5.5268	0.	.8461733	0	.21891713
Source		DF	Type	111 55	Mea	n Square	F Value	Pr > F	Source			DF	Type	III SS	Mean	n Square	F Value	Pr > F
YEAR		1	2.08	555620	2.1	08555620	5.81	0.0950	YEAR			1	0.31	161702	0.3	31161702	0.44	0.5243
SERIES		0	0.00	000000			-		SERIES			1	2.79	352623	2.7	79352623	3.90	0.0765
				T f	or HO:	Pr > T	Std Err	or of						T for	HO:	Pr > [T]	Std Err	or of
Parameter			Estimate	Para	meter=0		Estin	ate	Parameter				Estimate	Parame	ter=0		Estin	ate
INTERCEPT			89702859 B		2.37	0.0983	5.857	01025	INTERCEPT	1		6.7	59332545 B		0.74	0.4734	9.073	31161
YEAR			15695844 B		-2.41	0.0950	0.065	12480	YEAR				66156206		-0.66	0.5243	0.100	28116
	ginia LL		00000000 B		•				SERIES	Oregon			69369026 B		-1.98	0.0765	0.490	76333

1

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

Annendix	Table	GLM Analysi	c of 11		data -	Mako Sharl	ka		Dependent	Vaniah	Los IMAK					2	
Appendix		ass Leve		alues	Cata -	nako anan	K.5		vependent	441.190	ILMAK		um of		Mean		
	YE				82 83 8	4 85 86 8	7 88		Source		DF		uares			F Value	Pr >
	AR			OM MAT NAT		4 05 00 0	/ 00		Model		21	73.954			Square 52166101		
	WAY			23456					Error		1980	623.769			31503501	11.18	0.000
	-			ations in		- 90			Corrected	Tatal	2001			0	31303301		
		Humber Of	ODSEL A	actions in	uata set	- 70			corrected	Total		697.724					
		CI.H. 0-			iven II	I. Maleas					R-Square	4.00	C.V.		Root MSE		LMAK Mea
ependent	Vaciob	GLM OF	propor	tion posit	ives, JL	L Makos					0.105994	-128	. 1935	0	.5612798	-(.4378378
ependent	ANITAD	le: PUS		Sum of					C								
ource		DE				Mean	-	D	Source		DF	Type I			n Square	F Value	Pr >
		DF		Squares	0.0	Square	F Value	Pr > F	YEAR	•	10	31.873			18737764	10.12	0.000
lodel		17		.43885541		2581502	1.04	0.4302	AREA		2		28562		08664281	6.62	0.001
rror		72		.79096211	0.0	2487447			WAVE		5		44280		86708856	2.75	0.017
orrected	Intal	89	2	.22981752					BILCR		1		16824		64116824	2.04	0.153
		R-Square		C.V.		oot MSE		POS Mean	BFTCR		1		59438		50759438	1.61	0.204
		0.196812		47.22415	0.	1577164	(0.33397410	SWOCR		1		51805	4.1	81851805	15.30	0.000
									FDEPTH		1	3.261	78095	3.	26178095	10.35	0.001
ource		DF		pe III SS		Square	F Value	Pr > F									
FAR		10		.26093771		2609377	1.05	0.4126					T for	HO:	Pr > T	Std Er	or of
REA		2		.09875893		4937947	1.99	0.1448	Parameter		E	stimate	Paramet	ter=0		Estin	nate
AVE		5	0	.09878534	0.0	1975707	0.79	0.5573	INTERCEPT		977	9616952 B	-1	10.50	0.0001		15948
									YEAR	78	0.668	6304652 B		6.68	0.0001		14539
										79	0.409	0251712 B		4.53	0.0001		28650
					r HO:	Pr > T	Std Eri	ror of		80	0.276	1289274 B		3.14	0.0017		305571
arameter			Estimat		eter=0		Estin			81	0.297	9484859 B		3.46	0.0006		519732
NTERCEPT		0.20	3015855	7 B	1.77	0.0815		492286		82	0.067	5507211 B		0.76	0.4445		32310
EAR	78	0.15	9603704	9 B	1.23	0.2228	0.129	78571		83	0.341	8643402 B		3.48	0.0005		314396
	79		1260024		1.05	0.2994		558650		84	0.129	6538048 B		1.45	0.1465		26548
	80		7909393		0.95	0.3457	0.124	421579		85	0.114	9833155 B		1.31	0.1897		63740
	81	0.06	2088580	1 B	0.50	0.6203	0.124	479424		86		0231810 B		1.34	0.1810		319591
	82	03	2417078	2 B	-0.24	0.8117	0.135	559281		87		7965435 B		1.30	0.1952		51284
	83	02	2338737	1 B	-0.17	0.8659	0.131	185483		88	0.000	0000000 B					
	84 85	0.11	4697368	S.B	0.89	0.3757	0.128	367414	AREA	GOM		6317528 B		1.70	0.0898	0.06	77094
	85	0.04	1037807	2 B	0.32	0.7476		704192		MAT		8739028 B		2.28	0.0230		37705
	86		7656447		0.68	0.4979		367414		NAT		0000000 B				0.040	31103
	87	0.07	0188531	9 B	0.54	0.5913	0.130	011606	WAVE	1		7664016 B	,	2.90	0.0037	0.050	15509
	88		0000000							2		3652445 B		2.68	0.0074		281126
REA	GOM		3376534		-1.19	0.2383	0.06	171317		3		1593104 B		1.41	0.1573		356514
	NAT		2064710		1.14	0.2571		582387		4		4341218 B		2.62	0.0088		62309
	NAT		0000000							5		8890459 B		2.71	0.0068		
AVE	1		8949430		0.16	0.8723		549871		6		0000000 B			0.0000	0.04	67384
	2		8965920		1.49	0.1413		26820	BILCR	0		6961234		1 13	0 1570	0.000	10011
	2		0116357		0.96	0.3417		525969	BFTCR			4357492		1.43	0.1538		60044
	1		2677139		1.41	0.1621		145297						1.27	0.2045		91891
	6		9638796		0.90				SWOCR			8167236		3.91	0.0001		313539
					0.90	0.3728	0.055	535045	FDEPTH		0.002	9316285		3.22	0.0013	0.000	91109
	0	0.00	0000000	V B													

 $\tau_{\rm h}$

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

*,

\$

41

		2 'VA	R' Variabl	ION ANALYS es: PPOS Statistics	CPUE				A .			JLL M	ako Inde	ex with	80% CI				>
Variable PPOS CPUE		11 0.3	Mean S 6980 0	td Dev .08596 .13895	Median 0.37278 0.58108	Minimum 0.23943 0.51139	Maximum 0.49983 0.99616	0.7											
Kendall	Tau b Cor	relation C	pefficient	s / Prob >	R under	Ho: Rho=0	/ N = 11		:										
		PPOS		PPOS 0000 0	CP 0.527 0.02	27	.4	0.6	-										
		Compute	e Index Va	lues using	Lo Method				:										
YEAR 78 79 80	CPUE 0.99616 0.76802 0.67245	PPOS 0.49983 0.45776 0.43799	BC_CPU 1.16290 0.89747 0.78578	BC_POS 0.51421 0.47206 0.45297	INDEX 0.59798 0.42366 0.35594	SE_I 0.11295 0.08059 0.06391	CV_I 0.18888 0.19022 0.17956	UINDEX		A :: : : : :									
81 82 83 84 85 86	0.68707 0.54589 0.71890 0.58108 0.57251 0.57432	0.35974 0.23943 0.25140 0.43479 0.33198 0.39651	0.80337 0.63780 0.83827 0.67842 0.66866 0.67062	0.37428 0.24802 0.26124 0.44689 0.34507 0.40829	0.30068 0.15819 0.21899 0.30318 0.23074 0.27381	0.05598 0.07001 0.08764 0.07625 0.05859 0.07329	0.18618 0.44258 0.40018 0.25150 0.25394 0.26768		: •	: : : : :	A ::				٨				
87 88	0.57016 0.51139	0.37278 0.28553	0.66581 0.59479	0.38345 0.28386	0.25531 0.16884	0.07601 0.10914	0.29770 0.64643	0.4		: : : :	: :	A :: : : : : : : : : : : : : : : : : :		A ::			A :: ::	A : :	A :
ŀ.								0.3			:	: A : : : A	A ::		· · · · · · · · · · · · · · · · · · ·	A :: :: : : : : : : : : : : : : : : : :	· · · · · · · · · · · · · · · · · · ·		
ţ								0.2					: : : A	A		::::			: : : :
								0.1					:	î					::
								r											
								0.0											
		۰. ۱						7	78	79	80	81	82	83	84	85	86	87	88
				P						6				YEAR			tut T		

Analysi	s of JIL 0	Observer Da	ta - Blue	Sharks							GLM c	n positi	ve catch	11. 29	Blues		
			eral Linea		s Proce	dure			Dependent	Variab		n poorer	re coren	co, orr	Diaco		
			Class Lev	vel Info	rmation								Sum of		Mean		
	CLa	ass Leve	ts Valu	Jes					Source		DF		Squares		4	F Value	Pr > F
	YEA		11 78 7	79 80 81	82 83	84 85 86 8	7 88		Model		21		1523204	42	15786819	42.16	0.0001
	ARE			MAT NAT	02 00 1				Error		4434		6048702		99996854	42.10	0.0001
	WAY			3456					Corrected	Total	4455		7571906	0.	77770034		
			0 12	3430					corrected	Totat	R-Square	5519.1	C.V.		Root MSE		
		Number	of observa	ations i	n data :	set = 90					0.166438	8	0.85455		.9999843		LBLU Mean 1.23676937
	. Mandahl							,	Source		DF		III SS		n Square	F Value	Pr > F
Depender	nt Variabl	le: PUS						,1	YEAR		10		0234898		83023490	50.83	0.0001
				Sum of		Mean			AREA		2		0887853		65443927	108.66	0.0001
Source		DF		Squares		Square	F Value	Pr > F	WAVE		5		9748327		67949665	13.68	0.0001
Model		17		8885541		02581502	1.04	0.4302	BILCR		1		8720619	1.	38720619	1.39	0.2389
Error		72		2096211	0.	02487447			BFTCR		1		7019632	74.	67019632	74.67	0.0001
Correcto	ed Total	89	2.22	2981752					SWOCR		1	9.0	0001166	9.	00001166	9.00	0.0027
		R-Square		C.V.	1	Root MSE		POS Mean	FDEPTH		1	15.3	5644755	15.	35644755	15.36	0.0001
		0.196812	47	7.22415	0	. 1577164		0.33397410									
Source		DF	Type	III SS	Mea	n Square	F Value	Pr > F					T fo	r HO:	Pr > [T]	Std Er	ror of
YEAR		10		5093771		02609377	1.05	0.4126	Parameter		F	stimate		eter=0		Esti	
AREA		2		875893		04937947	1.99	0.1448	, al and cot			Sermace	r ar an	CCCI-0		Latin	
WAVE		5		878534		01975707	0.79	0.5573	INTERCEPT		0.54	50127532		6.18	0.0001	0.00	068752
WAVE		-	0.0	010334	0.	01715101	0.17	0.5515	YEAR	78		8376161		11.33	0.0001		
				T fo	r HO:	Pr > T	Std Er	ror of	I LAR	79		6725706		9.41	0.0001		661307 382664
Paramete	er		Estimate		eter=0		Esti			80		30817079		9.30	0.0001		466922
INTERCE			30158557 E		1.77	0.0815		492286		81		8160488		8.34	0.0001		612559
YEAR	78		96037049		1.23	0.2228		978571		82		59787269		2.82	0.0048		
TEAN	79		12600248		1.05	0.2994		558650		83		0693651		11.04	0.0001		501653
	80		79093935		0.95	0.3457		421579		84		4505241		12.05			696873
	81		20885801		0.50	0.6203		479424		85		7547350			0.0001		083142
	82		24170782		-0.24	0.8117		559281		86				13.82	0.0001		662529
	83		23387371		-0.17	0.8659		185483		87		1419378		9.71	0.0001		663551
										07		3347860		7.23	0.0001	0.08	485256
	84		46973689		0.89	0.3757		867414		88		00000000					
	85		10378072		0.32	0.7476		704192	AREA	GOM		2132747	-	-13.85	0.0001		371485
	86		76564471 E		0.68	0.4979		867414		MAT		78892315		-7.84	0.0001	0.04	833827
	87		01885319		0.54	0.5913	0.13	011606		NAT		00000000					
	88		00000000 E						WAVE	1		53184023		-0.85	0.3936		233786
AREA	GOM		33765342 E		-1.19	0.2383		171317		2		21913506		-1.03	0.3038	0.11	853129
	HAT		20647103 E		1.14	0.2571	0.03	682387		3	-0.15	53433147	B	-1.47	0.1418	0.10	441020
	NAT		00000000							4		35168607		-7.92	0.0001	0.04	862783
WAVE	1	0.00	89494303 E	3	0.16	0.8723		549871		5	-0.15	64404453	B	-3.35	0.0008		609269
	2	0.10	89659205 E	3	1.49	0.1413		326820		6	0.00	00000000	B				
	3	0.07	01163572 8	3	0.96	0.3417	0.07	325969	BILCR		0.01	7346727		1.18	0.2389	0.01	472788
	4	0.07	26771399 8	3	1.41	0.1621		145297	BFTCR			5936559		-8.64	0.0001		184423
	5		96387968		0.90	0.3728		535045	SWOCR			5413767		3.00	0.0027		180440
	6		00000000 E						FDEPTH			3634420		3.92	0.0001		092743

NOTE: The X'X matrix has been found to be singular and a generalized inverse was used to solve the normal equations. Estimates followed by the letter 'B' are biased, and are not unique estimators of the parameters.

		2 114	CORRELAT R' Variabl	ION ANALYS	SIS CPUE			3.5	+		JL	L Blue	Shark 1	index wi	th 80%	CI			2
			Simple	Statistics					A :										
Variable PPOS CPUE		11 0.3	6980 0	td Dev 0.08596 0.67315	Median 0.37278 2.08368	Minimum 0.23943 0.86471	Maximum 0.49983 2.89272	3.0											
Kendall	Tau b Cor	relation C	oefficient	s / Prob >	R under	Ho: Rho=0	/ N ± 11		:										
		PPOS		PPOS 00000 0	CP 0.418 0.07	18		2.5	A :						A :				
		Comput	e Index Va	lues using	Lo Method	1				A					:				
YEAR	CPUE	PPOS	BC_CPU	BC_POS	INDEX	SE_I	CV_I		:	:					:	A :			
78 79 80 81 82 83	2.89272 2.29522 2.08368 1.76909 1.09672 2.52063	0.49983 0.45776 0.43799 0.35974 0.23943 0.25140	4.73216 3.75902 3.41793 2.90778 1.80179 4.13057	0.51421 0.47206 0.45297 0.37428 0.24802 0.26124	2.43334 1.77448 1.54823 1.08832 0.44689 1.07909	0.54332 0.33559 0.26494 0.19071 0.18094 0.37855	0.22328 0.18912 0.17112 0.17524 0.40490 0.35081	2.0	+: : A	: : A :	A :: ::				:		A :		
84 85 86 87 88	2.58046 2.85917 2.00289 1.59447 0.86471	0.43479 0.33198 0.39651 0.37278 0.28553	4.23159 4.69313 3.28638 2.61612 1.41467	0.44689 0.34507 0.40829 0.38345 0.28386	1.89106 1.61947 1.34179 1.00315 0.40157	0.42712 0.35574 0.32183 0.27113 0.23247	0.22586 0.21966 0.23985 0.27028 0.57890	1.5	+	:	A	A :		:				A :: :	
ł								1.0								~	:		
								0.5					A :	Å				Å	A : :
								0.5					Å						A ::
								0.0	•	+	+								
									78	79	80	81	82	83	84	85	86	87	88
														YEAR					

Bark Boul 1, the UC data Index with BOX c1, NC Sharks Working works C100 house 2200 1000 x 177 42 000 x 11 400 x 100 house 1000 x 100 x 27 16 302.350 101 1000 x 30200 x 300	5	6.48377	653.44 721	.60 15781.	43	0.17409			88	89	90	91	
Hominal everage CPUE (runbers/1000 hooks) 2200 A BB 772.62 2 145.90 3 BB 90 402.57 1 302.300 2000 BB 52 826.17 8 241.358 2000 1 BB Sauro Sauro 1000 1 1 1 Backet LCPUE 1000 1 1 1 Frequery: SEIS Sauro Kan 1 1 Source DF Saure Kan 1 1 Corrected Total 137 44.2020671 UHNEK 1 1 Bacure C.V. Root ME LCPUE Nem 1 1 Source DF Type III SS Nemare F Value Pr - 5 F 1 1									+				*******
Hominal everage CPUE (rundbers/1000 hooks) 2200 A B8 772.62 2 146,040 1 B9 002.57 1 03.100 1 1 B1 1005.27 16 302.300 2000 1 B1 1005.27 16 302.300 2000 1 B2 824.19 8 241.358 1 1 B0 602.57 1 302.300 2000 1 B4 1 1005.27 16 302.300 1 1 B1000 1 1 15.306.020 1 1 1 1 B2 224.01 8.241.758 1.000.0001 1600 1 1 1 B000 11 15.3366.020 1.0302.020 1								0 -					
Nominal average CPU (numbers/1000 hocks) 2200 + A YEAR VAC CPU 005 CPU 5C CPU 88 772.02 2 144.046 5 90 262.27 1 35.180 30.100 91<1009.27 16								0.	-				
Nominal average CPU (numbers/1000 hocks) 2200 + A YEAR VAC CPU 005 CPU 5C CPU 88 772.02 2 144.046 5 90 262.27 1 35.180 30.100 91<1009.27 16	2	7.31472 15	501.25 1637	.36 144540.	73	0.23219							
Nominal average CPU (numbers/1000 hocks) 2200 + A YEAK XVE CPU 005 CPU 50													
Nominal average CPU (numbers/1000 hocks) 2200 + A YEAR V.C.PU 055_CPU 55_CPU 88 772.62 2 144.046 90 602.27 133.186 1 91 1009.27 16 302.330 2000 91 1009.27 16 302.330 2000 Shark Bowl 1, the NC data 1 1 1 1 Shark Bowl 1, the NC data 1 1 1 1 1 Begendent Variable: SUIT 1			JU LPU IND	VAR C				e.					
Nominal average CPUE (runbers/1000 hooks) 2200 A 88 772.62 2 144.048 89 661.557 193.507 90 1950.27 16 302.330 91 1950.27 16 302.330 2000 92 824.19 8 241.358 Image: CPU (Strubers) 0 1950.27 16 302.330 2000 Image: CPU (Strubers) 0 Shark Boul 1, the KC data Image: CPU (Strubers) Image: CPU (Strubers) Image: CPU (Strubers) 0 Same 6 Square Square F Value Pr > F Image: CPU (Strubers) Image: CPU (Strubers) 0 135 44.2.0020AT Image: CPU (Strubers) Image: CPU (Strubers) Image: CPU (Strubers) 0.347344 7.629597 0.479446 0.237444 0.23795154 0.0001 Image: CPU (Strubers) VEAR 4 7.23596124 1.40976745 Image: CPU (Strubers) Image: CPU (Strubers) Image: CPU (Strubers) 10 0.2375154 0.02001 Image: CPU (Strubers) Image:									+				
Nominal average CPU (numbers/1000 hocks) 2200 A 178A AVE CPU 085; CPU 35; CPU 35													
Nominal surgage CPUE (numbers/1000 hooks) 2200 A 178AR AVE CPU 055 CPU 55 CPU 55 CPU 88 777.6.2 2 144.048 1 97 00.02.57 11 83.188 2000 1 97 100.277 13 31.08 2000 1 98 641.55 3 199.587 1 1000 1 99 1002.77 11 83.188 2000 1 1 99 624.159 5 1000 1 1 1 1000 1000 1													
Nominal everage CPUE (numbers/1000 hocks) 2200 A YEAK AVE CPU 052 (CVL) SE (CPU) SE (CPU) SE (CPU) 88 7772.62 2 144.048 State State State 90 602.57 11 83.188 2000 State State 91 1095.27 16 302.330 2000 State State 92 624.19 8 241.358 State State State GLM on catches +1, MC Shark Humbers 1800 State State State State Source DF Squares Sum of Mean Mean State State Source DF Squares State C.V. Root MSE LCPUE Mean State Corrected Total 137 44.20020671 UIMDEX State State State WWE 5 7.46514500 1.409702903 6.54 0.0001 State State MWE 5 7.46514500								400 -	†				
Noninal average CPUE (runbers/1000 hooks) 2200 A YEAR VPC CPU 050 FPU 5C - CPU 1 99 841.55 3 199.587 1 1 1509.27 1 31.185 1 <											~		
Noninal average CPUE (runbers/1000 hooks) 2200 A YEAR VPCCPU 058 772.62 2 144.048 1 88 772.62 2 144.048 1												•	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-			-0.35	7234	0.0	3060070						
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE CPU 050 CPU SE CPU SE CPU 1 88 772.62 2 144.048 1 89 841.55 3 199.587 1 857.60 1 91 1085.27 11 83.188 1 1 1 92 824.19 8 241.358 1 1 1 Shark Bowl 1, the MC data 1	-							000	1				
Nominal average CPUE (runders/1000 hooks) 2200 + A YEAR NVE CPU OBS CPU SECPU 1 B8 772.62 2 144.048 B9 641.55 3 199.567 90 602.57 11 83.188 1 91 1089.27 16 302.330 2000 + 1 92 824.19 8 241.358 1 1 Benedent Variable: LCPUE 1 1800 + 1 1 Frequency: SETS Sum of Mean 1 1 1800 + 1 Source DF Squares Square F Value Pr > F 1 1 Rodel 11 15.35265021 1.3565639 0.0001 1600 + 1 1 Source DF Squares Square F Value Pr > F 1 1 1 R-Square C.Y. Root MSE LCDUE Mean 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5							600	- A				
Nominal average CPUE (runders/1000 hooks) 2200 + A YEAR NVE CPU OBS CPU SE CPU 1 88 772.62 2 144.048 89 641.55 3 199.567 90 602.57 11 83.188 1 91 1099.27 16 302.330 2000 + 92 824.19 8 241.358 1 Shark Boul 1, the NC data GLM on catches +1, NC Shark Numbers 1 CUPUE Frequency: SETS 1 1 Source DF Square 6 Square F Value Pr > F 1 Model 11 15.352602 1 1.39569539 1.00.0001 1600 + 1 Corrected Total 137 44.2002671 1 1 1 R-Square C.V. Root MSE LCPUE Mean 1 1 Source DF Type 111 SS New Soyoo1 1 1 Source DF Type 111 SS Stdersforts4 0.02876154 1.02876154 1 MWE 5	4								:		٨		
Nominal average CPUE (numbers/1000 hocks) 220 + A YEAR AVE_CPU 085_CPU 200 + 1 88 772.62 2 144.048 1 89 841.55 3 199.587 1 90 602.57 11 83.188 1 91 1089.27 16 302.330 2000 + 92 824.19 8 241.358 1 Shark Bowl 1, the WC date 1 1 1 GLH on catches +1, NC Shark Numbers 1 1 Pependent Variable: LCPUE 1800 + 1 Frequency: SETS Sum of Mean Source DF Squares Squares Source DF Squares Squares Source DF Type III SS Mean Square 0.347344 7.629597 0.478466 6.27144666 1400 + 1 1 1.269597 0.478466 0.347344 7.629597 0.478466 6.27144666 1400 + 1 1600 + 1 15000 1.40792000 6.34 0.0001 160 11.337 1.8089931 7.90 0.0001 1718486 0.12876154 <td>3</td> <td>-0.35</td> <td>7570940 B</td> <td>-2.00 0</td> <td>.0472</td> <td>0.1</td> <td>7841066</td> <td></td> <td>:</td> <td></td> <td></td> <td>:</td> <td></td>	3	-0.35	7570940 B	-2.00 0	.0472	0.1	7841066		:			:	
Nominal average CPUE (numbers/1000 hocks) 220 + A YEAR AVE_CPU 085_CPU 200 + 1 88 772.62 2 144.048 1 89 841.55 3 199.587 1 90 602.57 11 83.188 1 91 1089.27 16 302.330 2000 + 92 824.19 8 241.358 1 Shark Bowl 1, the WC date 1 1 1 GLH on catches +1, NC Shark Numbers 1 1 Pependent Variable: LCPUE 1800 + 1 Frequency: SETS Sum of Mean Source DF Squares Squares Source DF Squares Squares Source DF Type III SS Mean Square 0.347344 7.629597 0.478466 6.27144666 1400 + 1 1 1.269597 0.478466 0.347344 7.629597 0.478466 6.27144666 1400 + 1 1600 + 1 15000 1.40792000 6.34 0.0001 160 11.337 1.8089931 7.90 0.0001 1718486 0.12876154 <td>2</td> <td>-0.430</td> <td>0776093 B</td> <td></td> <td></td> <td></td> <td>2556543</td> <td></td> <td>:</td> <td></td> <td></td> <td>Α</td> <td></td>	2	-0.430	0776093 B				2556543		:			Α	
Nominal average CPUE (numbers/1000 hocks) 220 + A YEAR AVE_CPU 38 772.62 2 144.048 1 89 841.55 3 199.587 1 183.188 1 90 602.57 11 83.188 1 1 91 1089.27 16 302.330 2000 + 1 92 824.19 8 241.358 1 1 Shark Bowl 1, the NC data 1 1 1800 + 1 1 GLM on catches *1, NC Shark Numbers 1	WAVE 1								:				
Nominal average CPUE (runbers/1000 hooks) 2200 + A YEAR A VE_CPU 38 772.42 2 144.048 : 89 641.55 3 199.587 : : : 90 602.57 11 83.188 : : : 91 1089.27 16 302.330 2000 + : : 92 824.19 8 241.358 : : : Shark Bowl 1, the NC data : : : : : GLM on catches +1, NC Shark Hunbers 1800 + : : : : Source DF Squares Squares Squares Squares : : Source DF Squares Squares : : : : Corrected Total 137 44.20020671 : : : : : Source DF Type III SS Mean Square F Value Pr > F : : : : Source DF Type III SS					-			800 -	: :				
Nominal average CPUE (rumbers/1000 hocks) 2200 + A YEAR AVE CPU 085 CPU 085 CPU 085 CPU 1805 CPU 085 CPU 1805 CPU				-1.11	.2/09	0.1	3337104	0.00					
Nominal average CPUE (numbers/1000 hooks) 2200 + A YERA AVE (CPU 005 CPU 2 2 144,048 88 772.62 2 144,048 89 641.55 3 199.587 90 602.57 11 91 1089.27 16 92 824.19 8 241.358 91 1089.27 16 302.330 2000 + 92 824.19 82 541.358 30 502.373 91 1089.27 16UM on catches +1, MC Shark Numbers 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 1800 + 111 15,35265029 </td <td></td>													
Noninal average CPUE (numbers/1000 hooks) 2200 + A YERA AVE CPU 0085 CPU 085 CPU 085 CPU 085 CPU 085 CPU 055 C3 1 1 88 772.62 2 144.048 89 841.55 3 199.587 90 602.57 11 83.188 1 91 1069.27 16 302.330 2000 + 1 92 824.19 8 241.338 1 1 Shark Bowl 1, the NC data GLM on catches +1, NC Shark Numbers 1800 + 1 Dependent Variable: LCPUE 1800 + 1 Frequency: SE Start Source DF Square Square F Value Pr > F A Model 11 15.3526029 1.39569639 0.100 0.0001 1600 + 1 Corrected Total 137 44.20020671 UINDEX 1 1 R-Square C.V. Root MSE CDPUE Mean 0.347344 1 1.49726903 1 Source DF Type III S Mean Square F Value Pr > F 1 1 R-Square C.V. Root MSE CDPUE Mean 0.347344 1 1 NY Tor NO: Pr > [T] Std Error of 1 1 Yea Tor NO: Pr > [T] Std Error of <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Nominal average CPUE (rumbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU I 88 772.62 2 144.048 I 89 841.55 3 199.587 I I 90 602.57 11 83.188 I I 91 1089.27 16 302.330 2000 + I 92 824.19 8 241.358 I I Shark Bowl 1, the NC data I GLM on catches +1, NC Shark Numbers Dependent Variable: LCPUE Frequency: Sum of Mean Source DF Square F Value Corrected Total 11 15.35266029 1.3956939 6.10 0.0001 1600 + : : : Corrected Total 13 44.20020671 UINDEX : : Source DF Type III SS Mean Square F Value : : Source DF Type III SS Mean Square F Value : : VEAR 4 7.23596124 .0.3071456 1400 : : Source DF<													
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU SE_CPU SE_CPU <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1000</td> <td>1 .</td> <td></td> <td></td> <td></td> <td></td>								1000	1 .				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE CPU SE CPU :: 88 772.62 2 144.048 :: 89 841.55 3 199.587 :: 90 602.57 11 83.188 :: 91 1089.27 16 302.330 2000 + :: Shark Bowl 1, the NC data :: :: :: :: GLM on catches +1, MC Shark Numbers :: :: :: :: Pependent Variable: LCPUE :: :: :: Frequency: SETS Sum of Mean :: :: Source DF Squares Squares :: :: :: Corrected Total 137 44.20020671 UINDEX :: :: :: Source DF Type III SS Mean Square F Value Pr > F :: :: R-Square C.V. Root MSE LCPUE Mean :: :: :: :: Source DF Type III					0.0001			1000 -	+ A				
Nominal average CPUE (rumbers/1000 hooks) 2200 + A YEAR AVE CPU OBS_CPU SE_CPU SE_CPU </td <td>Parameter</td> <td>E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td>	Parameter	E							:				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE CPU OBS_CPU SE_CPU 1 1 88 772.62 2 144.048 : 89 841.55 3 199.587 : 90 602.57 1 83.188 : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers 1800 + : : Pependent Variable: LCPUE * * : A Frequency: SETS Sum of Mean : A : Source DF Square F Yalue Pr > F : A : Corrected Total 137 44.20020671 UINDEX : : : : R-Square C.V. Root MSE LCPUE Mean : : : : R-Square C.V. Root MSE LCPUE Mean : : : : Nodel <td></td> <td></td> <td>T</td> <td>for HO: Pr</td> <td>> T </td> <td>Std E</td> <td>rror of</td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td>			T	for HO: Pr	> T	Std E	rror of		:				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : 89 841.55 3 199.587 : : 90 602.57 1 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers 1800 + : : : Prequency: SETS : : : : Source DF Square F Yalue Pr > F : : Model 11 15.35266029 1.39569639 6.10 0.0001 1600 + : : Corrected Total 137 44.20020671 UINDEX : : : R-Square C.V. Root MSE LCPUE Mean : : : 0.347344 7.62959						0.00							
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU I 88 772.62 2 144.040 I 89 841.55 3 199.587 I 90 602.57 11 83.188 I 91 1089.27 16 302.330 2000 + I Shark Bowl 1, the NC data I I I I I GLM on catches +1, NC Shark Numbers I I I I I Pependent Variable: LCPUE I I I I I I Frequency: SETS I	HPM	1	1.48976492	1.4897649	22	6.51			:				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU I 88 772.62 2 144.040 I 89 841.55 3 199.587 I 90 602.57 11 83.188 I 91 1089.27 16 302.330 2000 + I Shark Bowl 1, the NC data I I I I I GLM on catches +1, NC Shark Numbers I I I I I Pependent Variable: LCPUE I I I I I I Frequency: SETS I	MPS	1			54	0.13	0.7236	1200 -	+ :				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE CPU OBS_CPU SE CPU I 88 772.62 2 144.048 I 89 841.55 3 199.587 I 90 602.57 11 83.188 I 91 1089.27 16 302.330 2000 + I 92 824.19 8 241.358 I I Shark Bowl 1, the NC data GLM on catches +1, NC Shark Numbers I I Dependent Variable: LCPUE 1800 + I Frequency: SETS I <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td>A</td> <td></td> <td></td> <td></td>		5							:	A			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU 88 772.62 2 144.048 : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : : 91 1089.27 16 302.330 2000 + : : 92 824.19 8 241.358 : : : Shark Bowl 1, the NC data GLM on catches +1, NC Shark Numbers : : : : Dependent Variable: LCPUE : : : : : Frequency: SETS : : : : : Source DF Squares Square F Value Pr > F : : : Corrected Total 137 44.20020671 : : : : : R-Square C.V. Root MSE LCPUE Mean : : : : : : :									:	:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : : 90 602.57 11 83.188 : : : : 91 1089.27 16 302.330 2000 : : : 92 824.19 8 241.358 : : : : Shark Bowl 1, the NC data : : : : : : : Sum of Mean : : : : : : : Source DF Squares Square F Value Pr > F : : : : : Model 11 15.35266029 1.39569639 6.10 0.0001 : : : : : : : : : : : : : : : : <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td>:</td> <td></td> <td></td> <td></td>									:	:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : : Pependent Variable: LCPUE : : : : : Frequency: SETS : : : : : Source DF Squares Square F Value Pr > F : : : Model 11 15.3526029 : : : : : Error 126 28.4575643 0.22894878 : : : : : Corrected			-						:	:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : : Pependent Variable: LCPUE : : : : : Frequency: SETS : : : : : Source DF Squares Square F Value Pr > F : : : Model 11 15.3526029 : : : : : Error 126 28.4575643 0.22894878 : : : : : Corrected		0.34/344	1.029391	0.4/848	^{oo}	0	. 2/ 144400	1400		:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : : 90 602.57 11 83.188 : : : : 91 1089.27 16 302.330 2000 + : : : 92 824.19 8 241.358 : : : : : Shark Bowl 1, the NC data : <								1/00					
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : : Pependent Variable: LCPUE : : : : : Frequency: SETS : : : : : Source DF Squares Square F Yalue Pr > F : : A Model 11 15.35266029 1.39569639 6.10 0.0001 1600 + : : : Error 126 28.8475643 0.22894878 : :		P-Scuare	CV	Poot MG	F		CPUE Mean		:				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : : Pependent Variable: LCPUE : : : : Frequency: SETS : : : : Source DF Squares Square : : : Model 11 15.5266029 1.39569639 6.10 0.0001 1600 : : Error 126 28.84754643 0.22894878 : : : :								STINGER					
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE CPU OBS CPU SE CPU 88 772.62 2 144.048 : 89 841.55 3 199.587 : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : Pependent Variable: LCPUE : : : : Frequency: SETS : : : Source DF Squares : : A Model 11 15.35266029 1.39569639 6.10 0.0001 1600 + :: :								UINDEX	:				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU 88 772.62 2 144.048 : 89 841.55 3 199.587 : 90 602.57 11 83.188 : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : Pependent Variable: LCPUE : : : : Frequency: SETS : : : Source DF Squares Square FValue Pr > F : A		126							1 :				
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : 89 841.55 3 199.587 : 90 602.57 11 83.188 : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : Pependent Variable: LCPUE : : : : Frequency: SETS : : : Sum of Mean A : :	Model	11				6.10	0.0001	1600 -	÷ :	:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : GLM on catches +1, NC Shark Numbers : : : Pependent Variable: LCPUE : Frequency: SETS : :	Source	DF	Squares	s Squar	e F				:	A			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : : Dependent Variable: LCPUE : : : : Frequency: SETS : : :			Sum of	f Mea	an				A	:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : 1800 + :	Frequency:	SETS								:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : : :		ble: LCPUE					,			:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data : : : : GLM on catches +1, NC Shark Numbers : : :	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -						1	1800 -	+	:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : : Shark Bowl 1, the NC data		GLM on a	catches +1, NC	: Shark Numbers	3					:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : 89 841.55 3 199.587 : 90 602.57 11 83.188 : 91 1089.27 16 302.330 2000 + : 92 824.19 8 241.358 : :										:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : : 91 1089.27 16 302.330 2000 + :				-						:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU 88 772.62 2 144.048 : 89 841.55 3 199.587 : 90 602.57 11 83.188 : 91 1089.27 16 302.330 2000 + :		92	824.19	8 241.35	8					:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : : 90 602.57 11 83.188 : :								2000 -	+	:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 : : 89 841.55 3 199.587 : :										:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU : 88 772.62 2 144.048 :										:			
Nominal average CPUE (numbers/1000 hooks) 2200 + A YEAR AVE_CPU OBS_CPU SE_CPU													
Nominal average CPUE (numbers/1000 hooks) 2200 + A													
								2200 -	T.	A			
		Nominal av	arane CDIE (n	mbars/1000 hor	ake)			2200		A A A A A A A A A A A A A A A A A A A	to ci, no shari	(5	

YEAR

A : : : A : : A

--+--

			hark Bowl 1, t							Index with	80% ci, NC Sha	rks	
			l average CPUE					UINDEX					
		YEAR			SE_CPU								
		88	908.47		50.387			3500 +					
		89	1031.40		12.238					A			
		90	864.06	13 1	31.134					:			
		91	1715.67	16 4	46.894					:			
		92	1037.14	17 2	10.444					:			
										:			
		S	hark Bowl 1, t	he NC data									
			n catches +1,					3000 +					
enende	ant Varia	ble: LCPUE	in caroneo		orgine .			1		:			
requer		SETS					18			:			
eque	ic ya	3613	Sum o	6	Mean								
		DE				E Value	Dest						
ource		DF	Square		Square	F Value	Pr > F						
odel		11	16.4534949		577226	4.40	0.0001			:			
101		167	56.8076548		016560					:			
prrect	ted Total	178	73.2611497					2500 +		:			
		R-Square	C.V		ot MSE		CPUE Mean			A			
		0.224587	8.85761	5 0.	583237	6	.58458512			:			
										:			
ource		DF	Type III S	S Mean	Square	F Value	Pr > F			:			
AR		4	3.7599297		998242	2.76	0.0293			:			
VE		5	8.2662256		324512	4.86	0.0004			:			
S		1	0.3113195		131957	0.92	0.3401	2000 +					
PM		i	1.4075279		752791	4.14	0.0435	1					
			114012617			4114				:			
			т	for HO:	Pr > 1	Std E	rror of						
aramet	ter			rameter=0	1		imate			A			
TERCE			39058997 B	19.66	0.000		6308517						
AR	88		96340635 B	-0.32	0.752		2083489						
	89		51110793 B	2.99	0.003		5154269	1500 +	A				
	90		36947522 B	-0.27	0.785		3526706	1200 1				2	
													~
	91		35172364 B	0.28	0.780	0.1	2582491				~		:
	92		00000000 B	7 70	0.000		(70(000				:	:	:
VE	1		17005875 B	-3.78	0.000		6326822		:		:	A	:
	2		45104449 B	-3.03	0.002		4694078		:		A	:	A
	3		22963911 B	-1.65	0.100		9560930		:		:	:	:
	4		45043269 B	-2.77	0.006		3270982	1000 +	:		:	Α	:
	5	2.0	71635704 B	2.36	0.019	95 0.8	7827775		:		A		A
	6	0.0	00000000 B						A				
S			26411026	0.96	0.340	0.0	2760751		:				
M			03385733	-2.03	0.043		0166444		:				
									:				
			en found to be						:				
	as used	to solve the	normal equati	ons. Est	imates fo	llowed by	the	500 ÷	:				
	etter 'B	are biased	, and are not	unique est	imators o	of the par	ameters.		A				
			variance calcu										
	OBS	LCPUE		DEX	VAR_CP	CV							
	1	6.70796	817.90 83		8468.94	0.50421							
	2	7.65541	2111.04 239		7104.19	0.28493							
	3	6.86735			3940.91	0.16420)	0 +					
	4				6766.64	0.15886		1					
	5	6.90430	995.55 116		7731.15	0.16692			+				
	-								88	89	90	91	92
													76
											YEAR		

		Shark Bo Nomina	average							Index	and varia	nce calculat	ions - Reef	fish Logbook	- Sharks
		YEAR	AVE CPU	OBS C		SE CPU				OBS	LCPUE	UC CPU	INDEX	VAR CP	CV
		90	1735.59	67		7.421				1	6.61925	748.383	1355.22	104821.22	0.2389
		91	1667.43	132		27.476				2	6.74117	845.548	1547.52	47909.62	0.1414
		92	1559.16	177		9.122				3	6.47557	648.087	1185.48	30067.75	0.1462
		93	1546.36	122		5.148				4	6.40452	603.570	1101.94	30626.46	0.1588
		12	1940130			51140								gbooks - Shar	
		GLM OI	n catches	+1, Reef	Fish L	ogbook	Sharl	k Kg		UINDEX				good on on on	RU
epend	ent Variab										A	A			
			S	um of		Mean				1800 +	:	:			
Source		DF	Sq	uares	5	Square	F Va	alue	Pr. > F		:	:			
lodel		27	87.699	47509	3.248	312871	2	2.64	0.0001		:	:			
rror		470	577.191	84550	1.228	306776					:	:			
	ted Total	497	664.891	32059							:	:			
		R-Square		C.V.	Roc	ot MSE		1	CPUE Mean	1600 ÷	:	:			
		0.131900	16.	05570	1.1	08182			5.90210903	1	:	A			
											:	:			
Source		DF	Type I			Square		alue	Pr > F		:	:			
EAR		3	7.122			31540		1.93	0.1233		:	:		A	
AVE		5	10.260	86540	2.052	217308		1.67	0.1400	1400 +	:	:		:	
RID		19	71.456	06561	3.760	084556	3	3.06	0.0001		A	:		:	
											:	:		:	
				T for		Pr >	T		Error of		:	A		:	
Parame			Estimate	Parame				Est	timate		1 .			:	
NTERC			08122510 B		6.23	0.0			12427125	1200 +	:			Α	
EAR	90	0.2	14733917 B		1.08	0.2		0.1	19807462		:			:	
	91	0.3	36649584 B		2.18	0.0	296	0.1	15432512		:			:	
	92	0.0	71050625 B		0.49	0.6	271	0.	14615470		:			:	
	93	0.0	00000000 B								:		7 5	:	
AVE	1	-0.3	91381346 B		-1.80	0.0	722	0.2	21723793	1000 ÷	A			Α	
	2	0.0	25637934 B		0.13	0.8		0.2	20100144						
	3	0.0	B0825622 B		0.41	0.6		0.1	19873599						
	4	0.0	32851613 B		0.17	0.8		0.	18952066						
	5	0.1	14817520 B		0.58	0.5	626	0.	19816913						
	6	0.0	00000000 B							800 +					
RID	0	-0.0	24515208 B		-0.02	0.9	B26	1.1	12134686	1					
	1	0.1	78877961 B		0.15	0.8	B11	1.1	19493467						
	2	-0.5	05360562 B		-0.44	0.6			15622443						
	3		18089102 B		-0.02	0.9			12954281						
	4	-0.1	96491276 B		-0.17	0.8	516		12659808	600 +					
	5	-0.4	79902886 B		-0.43	0.6			12295859						
	6	-0.49	97172203 B		-0.44	0.6		1.	13464046						
	7	-0.2	78536201 B		-0.24	0.8			15335311						
	8	-0.0	50019408 B		-0.04	0.9	651	1.	14169035						
	9	-0.3	54503802 B		-0.31	0.7	564	1.1	14189708	400 +					
	10	-0.10	67214133 B		-0.14	0.8	851		15680501						
	11		08002451 B		-0.83	0.4	049	1.2	20906245						
	12	0.3	99697088 B		0.31	0.7			285 19872						
	13		57968996 B		0.31	0.7	537	1.	17210811						
	14	-0.4	50360987 B		-0.38	0.7			19776599	200 +					
	15	-0.5	4170168 B		-0.49	0.6	278	1.3	22481188						
	16		09017697 B		-2.56	0.0			29149855	e*					
	17	-2.5	00653316 B		-1.93	0.0			29458206						
	19		27152438 B		-1.34	0.1			58705978						
	20		00000000 B							0 +					
		trix has be													

letter 'B' are biased, and are not unique estimators of the parameters.

47

162

YEAR