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A B S T R A C T   

Fisheries stock assessments increasingly account for size-dependence in natural mortality rates, usually by 
modeling mortality as a power function of body length. Various empirical studies have indicated a scaling of 
mortality with length in the range of − 0.84 to − 1.11, but substantially different scaling exponents ranging from 
− 0.75 to − 1.5 have been proposed on theoretical grounds or derived from some empirical models. To resolve 
these controversies and provide a well-supported default estimate of scaling for stock assessments, we re- 
analyzed two major data sets used in previous studies that supported different scaling exponents, and a com-
bined data set. Both original data sets and the combined data yielded within-population exponents close to − 1 
when analyzed using joint-slope mixed-effects models with population as a random effect. When population 
effects were disregarded, regression models yielded exponents that did not correctly reflect within-population 
scaling. The greatest deviations from the correct within-population scaling of approximately − 1 occurred in 
multiple regression models of mortality, size, and growth parameters. We conclude that within- and among- 
population scaling of natural mortality should be clearly distinguished, and that within-population scaling of 
natural mortality with length in fish populations is highly consistent at approximately − 1. We also explored 
empirical models for predicting the intercept of the mortality-length relationship for a given population from 
growth parameters.   

1. Introduction 

Modeling of natural mortality M forms part of all age and size-based 
fisheries assessment methods, from Beverton and Holt’s (1957) 
yield-per-recruit model to today’s integrated assessment models 
(Methot and Wetzel, 2013; Brodziak et al., 2011). Traditionally, natural 
mortality has been assumed to be constant (independent of size and age, 
and time invariant) within the recruited stock. Natural mortality is 
regarded as difficult to estimate within stock assessment models and it is 
common practice to fix M or estimate a prior for M from empirical 
models relating M in the recruited stock to growth parameters, envi-
ronmental temperature, or longevity (Pauly, 1980; Then et al., 2015; 
Beverton and Holt, 1959; Hoenig, 1983). 

More complex and realistic mortality models are increasingly being 
used in fisheries models and stock assessments. In particular, size- 
dependent and equivalent age-dependent patterns are often incorpo-
rated into assessments. Accounting for such patterns is particularly 
important for example when juvenile fish are harvested or stocked into 
the population (Lorenzen, 2005) and has become increasingly common 
practice in assessments. Lorenzen (1996, 2000, 2005) conducted an 

extensive meta-analysis of mortality-size relationships in juvenile and 
adult fishes and pioneered the use of the resulting relationships with a 
mortality-length scaling of approximately − 1 in fish population 
modeling and assessment. Such ‘Lorenzen M′ natural mortality models, 
often converted to age-based mortality relationships using a 
stock-specific growth function and scaled to constant M estimates for the 
recruited stock, have found wide application in fisheries stock assess-
ments (e.g. McKechnie et al. (2017); ICCAT International Commission 
for the Conservation of Atlantic Tunas (2018), SEDAR (Southeast Data, 
Assessment and Reviews (2018)) and other applications such as 
mark-recapture studies (Coggins et al., 2006; Lorenzen, 2006). 

The scaling of M with body size in fishes has been investigated at the 
population and community level (Peterson and Wroblewski, 1984; 
McGurk, 1986; Lorenzen, 1996). From a theoretical perspective, mul-
tiple authors have suggested a ‘metabolic’ scaling exponent for mortality 
with length of − 0.75 (Peterson and Wroblewski, 1984; Andersen, 
2019). Major empirical studies have demonstrated a broadly consistent 
allometric scaling with weight exponents between − 0.28 and − 0.37 
and/or corresponding to length exponents between − 0.84 and − 1.11 
assuming isometric growth (Table 1; except for two studies based on the 
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same data set, Gislason et al., 2010 and Charnov et al., 2013). 
Gislason et al. (2010) and Charnov et al. (2013) aimed to place the 

size-dependence of M within the wider context of fish life histories, in 
effect unifying concepts of life history correlates commonly applied to 
constant M values for mature fish with size-dependent mortality pat-
terns. For this purpose, Gislason et al. (2010) assembled a data set 
comprising M-at-size estimates together with growth parameters for the 
respective populations. Some populations are represented by multiple M 
estimates and some by only one. Using multiple regression of M against 
growth parameters, Gislason et al. (2010) estimated a steep scaling of 
natural mortality with length of − 1.61 and Charnov et al. (2013) pro-
posed a simplified general model for size-dependent mortality of M(L)=
(L/L∞)− 1.5 K. This model and the implied -1.5 scaling of M with length, 
colloquially known as ‘Charnov M′ has since been used occasionally in 
stock assessments (e.g. SEDAR (Southeast Data, Assessment and Reviews 
(2020)) as an alternative to the “Lorenzen M” models with a more 
moderate length scaling of mortality of around − 1. 

Assessment results are often sensitive to the scaling and intercept 
parameters of the mortality-length relationship, which are fixed a priori 
in most assessments. Considerable discussion has therefore ensued in 
stock assessment panels about the reasons for and implications of the 
substantially different scaling relationships implied by the Lorenzen and 
Charnov M models. Here we revisit evidence for population-level scaling 
in both data sets from which the different models were derived and a 
combined data set. We also re-evaluate patterns of population-level and 
ensemble-level scaling and their relationships with life history traits. We 
conclude by providing robust estimates for within-population scaling of 
natural mortality with body length for use in stock assessments and 
explore empirical models for predicting the intercept of mortality-length 
relationships from growth parameters. 

2. Materials and methods 

2.1. Data 

We retrieved the data sets used in the studies of Lorenzen (1996) 
(which includes the data from McGurk, 1986) and Gislason et al. (2010). 
The data used by Lorenzen (1996) included only mortality and corre-
sponding weight estimates, but no length data or growth parameters. We 
used length-weight relationships and growth parameters from FishBase 
(Froese and Pauly, 2021) or from the original or additional data sources 
to convert weight to length and add growth parameter estimates for each 
population. For length-weight relationships, we used those directly 
associated with the original study when possible, but resorted to average 
relationships provided by FishBase otherwise. For growth parameters, 
we took a different approach. Since the Lorenzen (1996) data include 
many studies on freshwater fishes and juveniles of marine fishes con-
ducted on relatively small spatial scales and often with limited repre-
sentation of large and old individuals, growth parameters corresponding 
to the study populations were often unavailable or unreliable. For 
growth parameters we therefore used averages for the species and 

region, or global averages for the species derived from FishBase unless 
reliable estimates were provided in the original study, or no estimates 
were available in FishBase. In the former case, we used the specific es-
timates. In the latter case, we conducted a literature search for growth 
estimates that could be transferred. Using these approaches, we ob-
tained growth parameter estimates for all populations represented in 
Lorenzen (1996). 

It should be noted here that the Lorenzen (1996) data were assem-
bled to cover a wide range of fish sizes and ecosystems and include a 
mixture of relatively short-term ecological studies of localized fresh-
water fish populations as well as typically longer-term and larger-scale 
studies in marine populations. The Lorenzen (1996) data cover a sub-
stantially wider range of body lengths and natural mortality rates than 
the Gislason et al. (2010) data (Fig. 1). In particular, the Lorenzen 
(1996) data include a large number of observations for small fish below 
10 cm in length. Moreover, the original mortality and size data were 
supplemented with life history information that often represents global 
averages. By contrast, the Gislason et al. (2010) data have been 
assembled from fisheries surveys and assessments of commercially 
important marine fish stocks and only studies with very reliable data on 
all life history parameters were included. This has resulted in a smaller 
data set covering a more restricted length range. The combined data set 
therefore represents a compromise of data contrast and quality attri-
butes. The data are provided as supplementary information in Table S1. 

Both the Lorenzen (1996) and Gislason et al. (2010) data contain a 
mixture of populations for which multiple mortality estimates were 
obtained for fish at different sizes, and populations that are represented 
by only one estimate. We refer to these data sets as ensembles because 
they combine selectively sampled data from populations that do not 
necessarily co-occur in nature. The data sets thus differ (to an unknown 
extent) from community-level data which would be collected from 
co-occurring and potentially interacting populations while aiming for 

Table 1 
Previous estimates of the scaling of natural mortality with body length in fishes.  

Exponent c Method Source 

-1.02 Functional regression, juvenile/adult 
marine fish 

(McGurk, 1986, 1987) 

-0.86 Theil regression, juvenile/adult fish (Lorenzen, 1996) 
-1.11 Functional regression, Pacific salmon (McGurk, 1996) 
-1.12 Survival modeling of fish stocking 

experiments 
Lorenzen (2000) 

-1.0 Simplified model 
-0.81 Multiple regression for fishes (McCoy and Gillooly, 

2008) 
-1.61 Multiple regression (L) (Gislason et al., 2010) 
-1.46 Multiple regression (L/L∞) (Charnov et al., 2013) 
-1.5 Simplified model  

Fig. 1. Natural mortality M and length L in the data sets assembled by (a) 
Lorenzen (1996) and (b) Gislason et al. (2010). 
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representative sampling of size and age grups. 
We created sub-samples of both data sets with only populations for 

which multiple mortality estimates were included, and combined data 
sets while eliminating duplicates of studies that were included in both. 

2.2. Analyses 

We re-analyzed the data used by Lorenzen (1996) (extended with 
length data and growth parameters) and by Gislason et al. (2010). We 
started by examining the spread of length and mortality estimates 
graphically. We then applied multiple different models to both data sets 
and a combined data set (Table 2). The models were: (1) a joint-slope 
mixed-effects model of mortality vs. body length L, with population as 
a random effect applied to the intercept; (2) a joint-slope mixed-effects 
model of mortality M vs. body length relative to population asymptotic 
length (L/L∞), with population as a random effect; (3) a regression 
model of mortality vs. body length L; (4) a regression model of mortality 
M vs. body length relative to population asymptotic length (L/L∞); (5) a 
multiple regression model of M vs. L and L∞; (6) a multiple regression 
model of M vs. L, L∞, and growth rate parameter K. (7) a multiple 
regression model of M vs. (L/L∞) and growth rate parameter K. Model 
(1) provides the most direct estimate of within-population scaling of 
mortality with length, because it accounts for population effects and 
uses only direct measurements of mortality and size. Model (2) brings in 
additional life history information (L∞) to construct the composite 
variable (L/L∞) and re-scales the length range for all populations to a 
relative scale between 0 and 1. Models (3) and (4) are the conventional 
regression equivalents of models (1) and (2), which means they do not 
account for population effects and therefore allow the exponent to 
deviate from the best estimate of the within-population exponent. 
Models (5), (6) and (7) further open the slope estimate to the influence 
of covariates, the growth parameters L∞ and K. We applied this set of 
models to the full data used by Lorenzen (1996), Gislason et al. (2010), 
and a combined set. We also applied them to sub-sets of these data 
containing only populations for which multiple mortality estimates and 
corresponding body size have been reported. This restricted the analysis 
to only those populations which provided direct information on 
within-population scaling of mortality. We also estimated the scaling of 
M separately for immature and mature fish by dividing the data set into 
immature and mature fish based on an average fish length at maturity at 
2/3 L∞ (Charnov, 1993; Charnov et al., 2013). 

After establishing strong evidence for a universal scaling of M with L 
in fish populations of approximately − 1, we applied this scaling to all 
individual mortality estimates and for each value of M(L) calculated the 
corresponding mortality at unit length M1 =M(L) x L and the mortality at 
L∞, ML∞ = M(L) x (L/L∞). Mortality at unit length (M1) allows for easy 

comparison of the overall level of size-dependent mortality among 
populations, while mortality at asymptotic length (ML∞) characterizes 
late adult mortality. Mortality at asymptotic length (ML∞) is closely 
related to constant adult M traditionally used in fisheries assessments. 
We then explored empirical models to predict M1 and ML∞ from growth 
parameters. We also tested the utility of a previously established 
empirical predictor of constant adult mortality M from growth param-
eters (the (Then et al., 2015) growth-based predictor) for predicting ML∞ 
by estimating the relationship between the Then predictions of MThen-g 
and our estimates of ML∞. 

Finally, we graphically explored within and among-population re-
lationships between natural mortality and body length to better un-
derstand how analyses across multiple populations that do not account 
for population effects can yield scaling parameters that deviate sub-
stantially from those governing the within-population scaling of 
mortality. 

3. Results 

The joint slope mixed effects models with random intercepts for 
populations indicate very consistent slopes close to − 1 for relationships 
between lnM and lnL or ln(L/L∞) across all data sets (Table 2, Fig. 2). 
When random intercept effects for population are eliminated, the 
resulting linear regression of lnM vs. lnL yields a slope that is less 

Table 2 
Estimates of the scaling of natural mortality with body length from different data sets and models. In the models, subscript j denotes a random effect of population j.  

Model Lorenzen (1996) expanded with length data and 
life history parameters 

Gislason et al. (2010),Charnov et al. (2013) Combined  

Populations with multiple 
estimates (n = 175) 

All populations 
(n = 308) 

Populations with multiple 
estimates (n = 114) 

All populations 
(n = 168) 

Populations with multiple 
estimates (n = 268) 

All populations 
(n = 445) 

(1) lnM=aj + c lnL -1.04 [− 1.26, − 0.83] -0.95 [− 1.06, 
− 0.84] 

-0.90[− 1.22, − 0.57] -0.95 [− 1.20, 
− 0.71] 

-0.98 [− 1.13, − 0.83] -0.97 [− 1.08, 
− 0.87] 

(2) lnM=aj + c ln(L/ 
L∞) 

-0.93 [− 1.11, − 0.75] -1.09 [− 1.23, 
− 0.96] 

-0.98 [− 1.34, − 0.62] -1.04 [− 1.37, 
− 0.71] 

-1.07 [− 1.24, − 0.91] -1.15 [− 1.27, 
− 1.03] 

(3) lnM=a + c lnL -0.97 [− 1.18, − 0.76] -0.94 [− 1.04, 
− 0.83] 

-0.55 [− 0.84, − 0.28] -0.72 [− 0.95, 
− 0.48] 

-0.83 [− 0.96, − 0.70] -0.91 [− 1.00, 
− 0.82] 

(4) lnM=a + c ln(L/ 
L∞) 

-0.89 [− 1.04, − 0.72] -1.07 [− 1.20, 
− 0.95] 

-0.90 [− 1.28, − 0.52] -1.00 [− 1.35, 
− 0.66] 

-1.03 [− 1.18, − 0.89] -1.15 [− 1.26, 
− 1.03] 

(5) lnM=aj + c ln(L) 
+ d ln(L∞) 

-1.13 [− 1.33, − 0.93] -1.21 [− 1.33, 
− 1.10] 

- 1.38 [− 1.81, − 0.94] -1.58 [− 1.94, 
− 1.21] 

- 1.15 [− 1.28, - 1.01] -1.25 [− 1.36, 
− 1.15] 

(6) lnM=a + c ln(L) 
+d ln(L∞) + f lnK 

-1.19 [− 1.38, − 1.00] - 1.26 [− 1.37, 
− 1.14] 

- 1.38 [− 1.70, − 1.07] -1.61 [− 1.89, 
− 1.34] 

- 1.32 [− 1.45, - 1.20] - 1.36 [− 1.45, 
− 1.26] 

(7) lnM=a + c ln(L/ 
L∞) + f lnK 

-1.17 [− 1.35 − 0.99] -1.24 [− 1.36, 
− 1.13] 

-1.29 [− 1.56, − 1.03] -1.46 [− 1.71, 
− 1.22] 

-1.31 [− 1.43, − 1.19] -1.35 [− 1.44, 
− 1.25]  

Fig. 2. Estimates of the scaling of natural mortality with body length from 
different data sets and models, for populations with multiple estimates 
(Table 2). Data sets: Lorenzen (1996) (■,□), combined (●, ○) and Gislason 
et al. 2010 (▴,Δ). Solid symbols denote models that use absolute length L 
whereas open symbols denote models that use relative length (L/L∞). 
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negative than the corresponding joint slope estimate for the mixed ef-
fects model. This holds across all data sets. The slope of lnM vs. ln(L/L∞) 
is not as strongly affected by the removal of random effects. However, 
when that regression model is extended to a multiple regression model 
with ln(L/L∞) and lnK as independent variables, the slope of lnM vs. lnL 
is estimated to be much more steeply negative (− 1.2 to − 1.46). 

To test whether the estimated slope of lnM vs. lnL of around − 1 
applies throughout the juvenile and adult life stages or only to juveniles, 
we split the data at L/L∞ =2/3, the average relative length at maturity 
(Charnov, 1993; Charnov et al., 2013). The slopes in both life stages 
were significantly negative at − 0.87 [ − 1.05, − 0.69] for juveniles and 
− 0.72 [− 1.24, − 0.20] for mature fish, and not significantly different 
between stages (combined data for populations with multiple 
estimates). 

Following the above results where analyses of all data sets indicate a 
scaling of M with L of approximately − 1, we fixed the scaling parameter 
at this value. We then explored relationships between the intercept of 
the mortality-length relationship and life history and parameters 
(Table 3). The intercept of a population-level mortality-length rela-
tionship may be described by either mortality at a fixed length such as 
unit length (M1), or by mortality at asymptotic length for the population 
(ML∞). As mentioned above, mortality at unit length (M1) allows for easy 
comparison of the overall level of size-dependent mortality among 
populations, while mortality at asymptotic length (ML∞) characterizes 

late adult mortality and is related to the constant M traditionally used in 
fisheries assessments. Empirical predictors for M1 and ML∞ from life 
history and environmental parameters are given in Table 3. Significant 
predictors for M1 included L∞ and K with positive coefficients. The best 
predictor with the smallest RMSE was a multiple regression model 
incorporating L∞ and K (Model 4, Table 3, RMSE=0.78). Significant 
predictors for ML∞ included K with a positive coefficient and L∞ with a 
negative coefficient. Note that L∞ has a negative coefficient as a pre-
dictor for ML∞ but a positive coefficient for M1. The best predictor of 
ML∞ with the smallest RMSE was a single regression model using K 
(Model 6, Table 3, RMSE=0.78). It should be noted that some predictors 
for M1 and ML∞ are equivalent both conceptually and in predictive 
power. For example, models (4, Table 3) and (6, Table 3) use informa-
tion from the same parameters, L∞ and K, but L∞ is implicit in the 
definition of ML∞ in model (6, Table 3). The models developed here are 
similar in predictive performance to ‘Charnov-type’ models that do not 
account for population effects (and misrepresent population-level 
scaling of M) but nonetheless predict M at the ensemble-level: a model 
of this structure fitted to the same data shows slightly higher predictive 
performance than the best model using population-level scaling 
(RMSE= 0.74 vs. 0.78) while the original Charnov model shows slightly 
lower performance (RMSE= 0.82 vs. 0.78)(Table 3). 

The intercept of the mortality-length relationship is positively 
related to maximum growth in the population. Model 4, Table 3, with 
coefficients of both lnL∞ and lnK not significantly different from 1 im-
plies that M1 is proportional to K L∞, the maximum length growth rate in 
the von Bertalanffy growth model. This relationship is clearly evident in  
Fig. 3(a). The maximum growth rate K L∞ is highly variable among 
populations but on average, increases with L∞ (Fig. 3b). When com-
bined, these relationships give rise to a pattern where on average, large- 
growing species and populations are subject to higher mortality-at- 
length than smaller-growing ones (Fig. 3c). Fig. 4 shows this pattern 
more clearly, illustrating average mortality-length relationships for four 
species with four different asymptotic lengths (based on Model (4), 
Table 3, and the empirical relationship between K L∞). On average, 
larger-growing species are subject to higher mortality-at-length than 
smaller-growing ones throughout their lifetime, but experience lower 
mortality in adulthood due to their large size. 

In addition to the empirical predictors developed in Table 3, previ-
ously published predictors of mortality M in the adult phase of the life 
cycle can be used to estimate ML∞. For example, the growth-based 
empirical predictor MThen-g developed by Then et al. (2015) can be 
used to estimate ML∞ and explain some variability in the data. Based on 
the combined data from populations with multiple values of M and L 
(n = 266, after exclusion of two extreme outliers), ln(ML∞) = − 0.16 
[− 0.29, 0.03] + 0.87 [0.72, 1.03] MThen-g (K, L∞). Given a coefficient 
not significantly different from 1 and an intercept of − 0.16, the best 
general estimate is that ML∞ is at 0.85 of the growth-based predictor of 
M. Since when M~L− 1, ML∞/ML = L/ L∞, ML intersects constant M near 
the center of the adult length range (0.66 L∞ to L∞), at 0.85 L∞ for the 
growth-based predictor of M. 

To explore why ensemble-level scaling of M with L is more variable 
and can differ systematically from the very consistent within-population 
scaling, it is useful to examine population and ensemble-level patterns 
explicitly (Fig. 5). We illustrate these patterns using the Gislason et al. 
(2010) data which show the greatest differences between population 
and ensemble-level scaling patterns, while noting that qualitatively 
similar patterns of lesser magnitude are also seen in the Lorenzen (1996) 
and combined data (Table 2, Fig. 2). The composition of the data set in 
terms of the asymptotic length L∞ of the stocks and the lengths L for 
which mortality estimates have been obtained are shown in Fig. 5(a). 
For any given stock, L∞ is a life history parameter while the length L to 
which the mortality M estimate refers is determined by the method of 
field sampling and/or analysis for mortality estimation. In the data set, 
some stocks are represented by separate mortality estimates for multiple 
lengths while others are represented with only one estimate. Since L∞ is 

Table 3 
Regression models for mortality M1 at unit length (1 cm) and ML∞ at L∞, given a 
scaling of M ~ L− 1. Based on the combined data from populations with multiple 
values of M and L, n = 266 (after exclusion of two extreme outliers). Also pro-
vided for comparison of predictive performance are two ‘Charnov-type’ M pre-
dictors, one fitted to the same data set (Model 7 in Table 2) and the original 
Charnov model derived in Charnov et al. (2013).  

Model Parameters [95% CI] R2 P RMSE  
a b c    

Mortality at 
unit length 
(M1)        

(1) lnM1 =a 2.79 
[2.67, 
2.91]       

(2) lnM1 =a + b 
lnL∞ 

0.86 
[0.37, 
1.34] 

0.56 
[0.42, 
0.69]  

0.20 < 0.0001  0.89 

(3) lnM1 =a + c 
lnK 

3.03 
[2.77, 
3.30]  

0.21 
[0.01, 
0.41] 

0.02 0.040  0.99 

(4) lnM1 =a + b 
lnL∞ + c lnK 

0.65 
[0.23, 
1.07] 

0.91 
[0.77, 
1.05] 

0.87 
[0.68, 
1.05] 

0.39 < 0.0001  0.78 

Mortality at L∞ 

(ML∞)        
(5) lnML∞=a 
+ b lnL∞ 

0.86 
[0.38, 
1.34] 

-0.44 
[− 0.58, 
− 0.31]  

0.14 < 0.0001  0.89 

(6) lnML∞=a 
+ c lnK 

0.42 
[0.21, 
0.63]  

0.93 
[0.77, 
1.09] 

0.34 < 0.0001  0.78 

(7) lnML∞=a 
+ b lnL∞ + c 
lnK 

0.65 
[0.23, 
1.07] 

NS 0.87 
[0.68, 
1.05] 

0.34 < 0.0001  0.78 

Comparison 
with M 
predictors        

Best fit (Model 
7,Table 2] 
lnM=a + b ln 
(L/L∞) + c 
lnK 

0.28 
[0.07, 
0.48] 

-1.30 
[− 1.42, - 
1.19] 

1.08 
[0.92, 
1.24] 

0.67 < 0.0001  0.74 

Charnov model 
lnM=a + b ln 
(L/L∞) + c 
lnK 

0 -1.5 1    0.82  
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the asymptotic or mean maximum length of fish in the population, 
L≤ L∞, many mortality estimates were obtained for lengths L close to L∞, 
but some have been obtained for substantially smaller and younger fish 
in the same population (low L/L∞). Importantly, the majority of mor-
tality estimates for fish at low L/L∞ have been obtained from species that 
grow to a very large individual size. This may reflect the selection of 
studies included but also the fact that very small fish are often poorly 
represented in fisheries surveys, so that only juveniles of larger-growing 
species are well represented and assessed. Since the main focus of our 
analysis is the estimation of the scaling of mortality M with length L, it is 
also useful to examine a plot of L∞ against L (Fig. 5b). This illustrates 
that M estimates for the largest size fish represent large-growing fish 
near their L∞, but estimates for intermediate sizes represent a mixture of 
estimates for juveniles of large-growing fish and mostly adults of fish 
that grow to intermediate maximum sizes. The implication of this 
pattern for the ensemble-level mortality-length relationship is that the 
largest-growing fish, which on average suffer high mortality-at-length 
(Fig. 3 and 4), are strongly represented throughout the 
intermediate-to-large size range, while smaller-growing fish with lower 
mortality-at-length predominate in the small-to-intermediate size range. 
Overall, this distribution of data from different populations results in an 
ensemble-level mortality-length relationship that is less steep than the 
underlying population level scaling (− 0.72 vs. − 1 in this case) (Fig. 5c). 
The imbalanced distribution of mortality estimates for juvenile fish (low 
L/L∞) is strikingly illustrated when data for all populations are scaled 
relative to L∞ (Fig. 5d-f). Data for juveniles originate very predomi-
nantly from populations of large-growing fish with high L∞ (Fig, 5 d) 
and medium-to-low K (Fig, 5 e). The ensemble-level relationship of M to 
L/L∞ scales at − 1.04 (Table 2, Fig. 5f). The multiple regression model 
lnM = 1.46 ln(L/L∞) + lnK improves the overall fit to the data by 
modeling the effect of the imbalanced representation of populations 
between adult and juvenile fish, but it does so by distorting the scaling of 
M with L/L∞ in a way that is not representative of its within-population 
scaling. The performance of the model in this case is very much predi-
cated on the peculiarities of the data set for which it has been developed. 

4. Discussion 

4.1. Natural mortality and body size in fish populations 

By re-analyzing the data sets assembled by Lorenzen (1996), Gisla-
son et al. (2010) and a combined data set using joint slope mixed effects 
models, we provide strong evidence that within fish populations, natural 
mortality scales with length to the power of − 1. This corroborates a 
range of earlier empirical studies that have yielded exponents close to 
− 1 (Table 1). Furthermore, we show that natural mortality is 
size-dependent in both juvenile and adult fish and that the scaling is not 
significantly different between juvenile and adult life stages. A quali-
tatively similar result was also derived by Charnow et al. (2013). 
Therefore, it is appropriate to model natural mortality in fish pop-
ulations throughout the juvenile and adult stages as a function of length 
to the power of − 1. Constant mortality in the recruited phase, the 
traditional assumption in fisheries models, is a simplification of the 
actual mortality pattern. 

The intercept of the mortality-length relationship is positively 
related to maximum body growth in the population: M1 is proportional 
to K L∞, the maximum length growth rate in the von Bertalanffy growth 
model. Maximum growth rate is variable among populations but on 
average, increases with asymptotic size. Therefore, large-growing spe-
cies and populations are subject to higher mortality-at-length than 
smaller-growing species throughout their lives, but suffer low adult 
mortality as a result of their large adult size. This generalizes a similar 
result obtained by Gislason et al. (2008) for North Sea fish communities. 
Growth-mortality tradeoffs are well documented in ecology. The nature 
of the growth-length-mortality tradeoffs identified here, however, with 
large-growing animals “paying” for low adult mortality by suffering 

Fig. 3. Relationships between: (a) natural mortality at unit length (M1) and 
maximum length growth rate (K L∞) in the population; (b) (K L∞) and 
asymptotic length (L∞); (c) M1 and L∞ (c). Combined data for all populations 
with multiple values of M and L per population. 

Fig. 4. Length-dependence in natural mortality M for populations with 
different asymptotic lengths L∞, based on Model (4) (and equivalent to Model 
(6)), Table 3. 
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higher mortality-at-length warrants further analysis from an ecological 
and evolutionary perspective. 

4.2. Modeling size-dependent natural mortality in stock assessment 
applications 

The aim of modeling size-dependent mortality in stock assessments is 
to account for changes in mortality with size and age of fish within the 
assessed stock (population). Therefore, in the absence of any stock- 
specific information on scaling, such models should use the best gen-
eral estimate of mortality-length scaling, derived from the joint slope 
mixed-effects models accounting for population effects: − 1. Substan-
tially different scaling exponents such as the theoretical metabolic 
scaling of − 0.75 (Peterson and Wroblewski, 1984) or the ‘Charnov M′

scaling of − 1.5 (Charnov et al., 2013) are not representative of the 
scaling M within fish populations (even though they may describe 
mortality-size relationships at the assemblage or ecosystem scales under 
certain conditions, see below). While many general ecological implica-
tions of size-dependence in natural mortality rates hold regardless of the 
precise scaling (Andersen, 2019, 2020), the purpose of modeling such 
relationships in stock assessment applications is to derive quantitative 
estimates of stock status and evaluate the effects of alternative man-
agement measures and therefore, the quantitative characterization of 

the scaling relationship matters. Use of scaling exponents substantially 
different from best estimate of − 1 are likely to lead to systematic biases 
in assessments. 

We explored empirical relationships for predicting the intercepts (M1 
and ML∞) of the mortality-length relationship from growth parameters 
(L∞, K). The empirical predictors explored here are structurally similar 
to established predictors for constant adult M, such as the Then et al. 
(2015) estimator, but perform less well in terms of their prediction error 
(RMSE=0.78 for models 4, 6, and 7, Table 3, vs. RMSE=0.6 for the Then 
growth-based estimator). This is likely to reflect the variability found in 
the large, combined data set (see materials and methods). We also tested 
the utility of predicting the intercepts of the mortality-length relation-
ship from the MThen-g prdictor for (constant) adult M (Then et al., 2015). 
We found that on average, empirical predictions of constant M were 
equal to size-dependent M values around the center of the adult size 
range. This supports the established practice of scaling the ‘Lorenzen M′

so that its average over the adult size or age groups equals empirical 
estimates of constant M (SEDAR (Southeast Data, Assessment and Re-
views), 2018). 

Fig. 5. Population and ensemble-level patterns in the Gislason et al. (2010) data: (a) Body length lnL vs. asymptotic length lnL∞; (b) asymptotic length lnL∞ vs. 
length lnL; (c) natural mortality lnM vs. lnL; (d) lnL∞ vs. ln(L/ L∞); (e) lnK vs. ln (L/ L∞); and (f) lnM vs. ln(L/L∞). Solid lines indicate population-level relationships, 
while dashed lines indicate ensemble-level relationships estimated without accounting for population effects. Short lines denoting populations represented by 
samples from a very narrow length range have been omitted for clarity. 
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4.3. Deviations from within-population scaling at the ensemble or 
ecosystem level 

Scaling exponents substantially different from the best within- 
population estimate of − 1 have been derived from the application of 
single and multiple linear regression models to ensembles of data of 
multiple populations without accounting for population effects (Gisla-
son et al., 2010; Charnov et al., 2013). These ensemble-level estimates 
are sensitive to the assembly of populations and length samples in the 
combined data set. In general, ensemble-level scaling estimates do not 
represent within-population scaling of mortality correctly and should 
not be used for this purpose in stock assessments. Nonetheless, to the 
extent that an ensemble of mortality-size data from multiple populations 
is reflective of the structure of actual ecosystems, relationships esti-
mated from such data may apply at the ecosystem level (but not within 
the component populations). 
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