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1 Abstract

Standardized video counts of cobia (Rachycentron canadum) were generated from video cameras deployed by the
Southeast Reef Fish Survey during 2011–2022 (note that no sampling occurred in 2020 due to covid-19). The analysis
included samples taken between Cape Hatteras, North Carolina and St. Lucie Inlet, Florida, from 14 to 115 m deep.
The index is meant to describe the population abundance trend of cobia in the region using a variety of predictor
variables that could influence predictions of their abundance and video detection. We compared multiple model
structures using AIC and ultimately applied a zero-inflated negative binomial model to standardize the video count
data with eight predictor variables. While the final model fit well based on various model diagnostics, the sparsity of
cobia observations in the survey resulted in an index with low precision and difficulty estimating the uncertainty of
model parameters. The 2011–2022 index values and uncertainty included a calibration factor to account for a change
in camera type after 2014.

2 Background

The Marine Resources Monitoring, Assessment, and Prediction (MARMAP) program has conducted most of the
historical fishery-independent sampling in the U.S. South Atlantic (North Carolina to Florida). MARMAP has used
a variety of gears over time, but chevron traps are one of the primary gears used to monitor reef fish species and
have been deployed since the late 1980s. In 2009, MARMAP began receiving additional funding to monitor reef fish
through the SEAMAP-SA program. In 2010, the SouthEast Fishery-Independent Survey (SEFIS) was initiated by
NMFS to work collaboratively with MARMAP/SEAMAP-SA using identical methods to collect additional fishery-
independent samples in the region. Together, these three programs are now called the Southeast Reef Fish Survey
(SERFS). In 2010, video cameras were attached to some traps deployed by SERFS, and beginning in 2011 all traps
included video cameras (Figure 1).

The SERFS currently samples between Cape Hatteras, North Carolina, and St. Lucie Inlet, Florida. This survey
targets hardbottom habitats between approximately 15 and 115 meters deep. SERFS began affixing high-definition
video cameras to chevron traps on a limited basis in 2010 (Georgia and Florida only), but, since 2011, has attached
cameras to all chevron traps as part of their normal monitoring efforts. In 2015, the video cameras were changed
from Canon to GoPro to reduce costs and implement a wider field of view, thus observing more fish. A calibration
study (detailed below) with both camera types used simultaneously was undertaken to account for differences in fish
counts.

Hard-bottom sampling stations were selected for sampling in one of three ways. First, most sites (74.4%) were
randomly selected from the SERFS sampling frame that consisted of approximately 4,300 sampling stations on or
very near hard bottom habitat. Second, some stations (15.1%) in the sampling frame were sampled opportunistically
even though they were not randomly selected for sampling in a given year. Third, new hard-bottom stations were
added during the study period through the use of information from various sources including fishermen, charts, and
historical surveys (10.5%). These new locations were investigated using a vessel echosounder or drop cameras and
sampled if hard bottom was detected. Only those new stations landing on or near hardbottom habitat were included
in the analyses. All sampling for this study occurred during daylight hours between April and October on the R/V
Savannah, R/V Palmetto, R/V Sand Tiger, or the NOAA Ship Pisces using identical methodologies as described
below. Samples were intentionally spread out spatially on each cruise (see Figure 2 in Bacheler and Carmichael
(2014)).

Chevron traps were constructed from plastic-coated, galvanized 2-mm diameter wire (mesh size = 3.4 cm2) and
measured 1.7 m × 1.5 m × 0.6 m, with a total volume of 0.91 m3. Trap mouth openings were shaped like a teardrop
and measured approximately 18 cm wide and 45 cm high. Each trap was baited with 24 menhaden (Brevoortia spp.).
Traps were typically deployed in groups of six, and each trap in a set was deployed at least 200 m from all other
traps to provide some measure of independence between traps. A soak time of 90 minutes was targeted for each trap
deployed.
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Canon Vixia HFS-200 high-definition video cameras in Gates underwater housings were attached to chevron traps in
2011–2014, facing outward over the mouth. In 2015, Canon cameras were replaced with GoPro Hero 4 cameras over
the trap mouth. Fish were counted exclusively using cameras over the trap mouth. A second high-definition GoPro
Hero, Hero 3+, or Hero 4 video or Nikon Coolpix S210/S220 still camera was attached over the nose of most traps
in an underwater housing, and was used to quantify microhabitat features in the opposite direction. Cameras were
turned on and set to record before traps were deployed, and were turned off after trap retrieval. Trap-video samples
were excluded from our analysis if videos were unreadable for any reason (e.g., too dark, camera out of focus, files
corrupt) or the traps did not fish properly (e.g., bouncing or dragging due to waves or current, trap mouth was
obstructed).

In advance of the switch to GoPro cameras exclusively in 2015, we conducted a calibration study in the summer of
2014 where Canon and GoPro cameras were attached to traps side-by-side and fish were counted at the same time.
A total of 54 side-by-side comparisons were recorded. Cobia were observed in only 3 calibration videos, so we used a
more general calibration for all paired calibration samples, as recommended by Bacheler et al. (2023). This allowed
us to use a robust calibration factor that expanded Canon counts to make them comparable to GoPro counts.

Relative abundance of reef fish on video has been estimated using the MeanCount approach (Conn (2011); Schobernd
et al. (2014)). MeanCount was calculated as the mean number of individuals of each species over a number of video
frames in the video sample. Video reading time was limited to an interval of 20 total minutes, commencing 10 minutes
after the trap landed on the bottom to allow time for the trap to settle. One-second snapshots were read every 30
seconds for the 20-minute time interval, totaling 41 snapshots read for each video. The mean number of individuals
for each target species in the 41 snapshots is the MeanCount for that species in each video sample. Zero-inflated
modeling approaches described below require count data instead of continuous data like MeanCount. Therefore,
these analyses used a response variable called SumCount, which was simply the sum of all individuals seen across all
video frames. SumCount and MeanCount track exactly linearly with one another when the same numbers of video
frames are used in their calculation (Bacheler and Carmichael (2014)). Therefore, SumCount values were only used
from videos where 41 frames were read (94.4% of all samples).

SERFS employed video readers to count fish on videos. There was an extensive training period for each video reader,
and all videos from new readers were re-read by fish video reading experts until they were very high quality. After
that point, 10% or 15 videos (whichever was larger) were re-read annually by fish video reading experts as part
of quality control. Video readers also quantified microhabitat features (e.g., substrate composition), in order to
standardize for habitat types sampled over time. Water clarity was also scored for each sample as poor, fair, or
good. If bottom substrate could not be seen, then water clarity was considered poor, and if bottom habitat could be
seen but the horizon was not visible, water clarity was considered fair. If the horizon could be seen in the distance,
water clarity was considered to be good. Including water clarity in index models allowed for a standardization of fish
counts based on variable water clarities over time and across the study area. A CTD cast was also taken for each
simultaneously deployed group of traps, within 2 m of the bottom, and water temperature from these CTD casts
was available for standardization models.

3 Data and Treatment

Overall, there were 16,370 survey videos with data available covering a period of 13 years (2011–2022; note no
sampling occurred in 2020 due to covid-19). Although data were available from 2010, they were not considered here
due to limitations in spatial coverage and a different camera used in that year. For the years considered, several data
filters were applied. We removed any data points in which the survey video was considered unreadable by an analyst
(e.g., too dark, corrupt video file), or if the trapping event was flagged for any irregularity that could have affected
catch rates (e.g., trap dragged or bounced). Additionally, any survey video for which fewer than 41 video frames
were read was removed from the full data set. Standardizing the number or readable frames for any data point was
essential due to our use of SumCount as a response variable (see above). We also identified any video sample in
which corresponding predictor variables were missing and removed them from the final data set. Of the 16,370 video
samples considered for inclusion, 2,566 were removed based on the data filtering process described above, leaving
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13,804 videos included in the analysis, of which 207 were positive for cobia (1.5% overall). The spatial distribution
of the videos included in the analysis cover the area from Cape Hatteras, North Carolina, to St. Lucie Inlet, Florida
(Figure 2).

4 Standardization

Response Variable

We modeled SumCount as the response variable. SumCount measured the total number of cobia observed across all
41 frames of each video.

Explanatory Variables

We considered eight explanatory variables: year, season, depth, latitude, water temperature, turbidity, current
direction, and substrate composition. Although all of these explanatory variables were considered, we included in
the final formulation only those that improved model performance based on AIC (assuming models converged).

YEAR (y) – Year was included because standardized video counts by year are the objective of this analysis. We
modeled data from 2011–2022 (excluding 2020 when no sampling occurred). Annual summaries of data points
considered are outlined in Table 1.

SEASON (t) – Season is a temporal parameter based on the day of the year of sampling (Figure 3). The season
parameter is treated as a factor with days distributed among quartiles.

DEPTH (d) – Water depth was treated as a factor with four levels based on quartiles (Figure 3). Annual depth
distribution for survey data are outlined in Table 1.

LATITUDE (lat) – The latitude of video samples (Figure 3) was divided into 4 levels based on quartiles.

TEMPERATURE (temp) – The bottom water temperature was collected from cluster of stations and incorporated
as a predictor variable. Bottom temperatures ranged from 12.4 to 32.6 degrees Celsius (Figure 3). For the model,
temperature was treated as a factor with 4 levels based on quartiles.

TURBIDITY (wc) – Turbidity can affect both species distribution and the ability of an analyst to observe and
identify species on videos. Turbidity information is recorded during video analysis based on the ability of an analyst
to perceive the horizon and surrounding habitat, and it was scored at three levels: poor, fair, and good. Given that
poor water clarity occurred rarely and was associated with very few cobia observations, it was removed from all
analyses, leaving only fair and good levels.

CURRENT DIRECTION (cd) – This categorical variable describes current direction based on the video point of
view. Current direction was included to better account for variability in detection due to the current moving fish
away or towards the camera. This variable is assigned one of three levels during video processing: away, sideways,
or towards.

SUBSTRATE COMPOSITION (sc) – Substrate composition is an estimate of the proportion of the visible substrate
that is hardbottom and is assigned during video processing. This variable was treated as a categorical variable with
4 levels: none (0%), low (1–9%), moderate (10–39%), and high (≥ 40%).

5



April 2024 South Atlantic Cobia

5 Zero-Inflated Model

The recommendation of the video index workshop (Bacheler and Carmichael (2014)) was to apply a zero-inflated
modeling approach to the development of fishery-independent video indices. Zero-inflated models are valuable tools
for modeling distributions that do not fit standard error distributions due to an excessive number of zeroes. These
data distributions are often referred to as “zero-inflated” and are a common condition of count based ecological
data. Zero inflation is considered a special case of over-dispersion that is not readily addressed using traditional
transformation procedures (Hall (2000); Zeileis et al. (2008)). Due to the high proportion of zero counts found in
our data set, we used a zero-inflated mixed model approach that accounts for the high occurrence of zero values, as
well as the positive counts. The model does so by combining binomial and count processes (Jackman (2024); Zeileis
et al. (2008)).

The modeling approached used here was similar to that used in many previous SEDARs. We initially considered a
full null model (1) using both a zero-inflated Poisson (ZIP) and a zero-inflated negative binomial (ZINB) formulation
as:

Sumcount = y + wc + cd + sc + d + t + lat + temp | y + wc + cd + sc + d + t + lat + temp (1)

In this formulation, variables to the left of the “|” apply to the count sub-model, and variables to the right apply to the
binomial sub-model. We compared the fit and variance structure of each model formulation using AIC and likelihood
ratio tests (Zuur et al. (2009)) to determine the most appropriate model error structure for the development of a
cobia video index. The results of these tests showed clear support for the ZINB formulation (Table 2). These results
concur with our expectations based on the over dispersion of video survey data and with the recommendations of
the video index development panel (Bacheler and Carmichael (2014)).

We used a step-wise backwards model selection procedure based on AIC to systematically exclude unnecessary
parameters from our full model formulation. We first conducted model selection on the left (count) sub-model with
the right (binomial) sub-model specified as intercept only. This resulted in the best model being one that excluded
all predictor variables except year (y), turbidity (wc), and substrate composition (sc). We then performed model
selection on the right (binomial) sub-model were all coviariates were included except latitude (lat). Thus, our final
ZINB model formulation, based on the results of AIC and likelihood ratio tests (Zuur et al. (2009)), included three
predictors on the negative binomial side (y, wc, and sc) and seven predictors on the binomial side (y, wc, cd, sc, d, t,
and temp). The data were fit well using the final (best) model (Figure 4). All data manipulations and analyses were
conducted using R version 4.3.2 (R Core Team (2023)). Modeling was executed using the zeroinfl function in the
pscl package (Jackman (2024), Zeileis et al. (2008)) available from the Comprehensive R Archive Network (CRAN).

6 Calibration of Gear

Because camera gear changed in 2015 (from Canon to GoPro), index values in 2011-2014 were adjusted to make
them comparable to values in 2015–2022. Cobia were only observed on 3 videos during the calibration study, so we
instead used calibrations from all species. MeanCounts from GoPros cameras were regressed on MeanCounts from
Canon cameras to estimate a slope of 1.606 and a standard error of 0.027 (Figure 5). The slope (i.e., calibration
factor) was used to adjust the 2011–2014 index values to make them comparable to data from later years.

7 Uncertainty

Uncertainty in the index was computed using a bootstrap procedure with n = 1,000 replicates. In each replicate,
a data set of the original size was created by drawing observations (rows) at random with replacement. This was
done by year, to maintain the same annual sample size as in the original data. The model (Equation 1) was fitted to
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each data set, and uncertainty (CVs) was computed. All of the 1,000 runs converged. Uncertainty in the calibration
factor was included in the bootstrap procedure by drawing a random value from a normal distribution with a mean of
1.606 and a standard error of 0.027 (estimates from the calibration regression). These values, one for each bootstrap
replicate, were used to scale up the 2011–2014 index estimates. Thus, this method accounts for the adjustment in
the 2011–2014 estimates, as well as the corresponding uncertainty.

8 Results and discussion

The final ZINB model included three predictors on the negative binomial side (y, wc, and sc) and seven predictors
on the binomial side (y, wc, cd, sc, d, t, and temp). This final model fit well (Figure 4) and model residuals were
reasonable (Figure 6). However, during the model selection process, candidate models frequently had singular design
matricies resulting in an inability to estimate parameter variance. This behavior is frequently ascribed to collinearity
among covariates. In an attempt to reduce this suspected collinearity, we examined correlation among covariates
to potentially exclude covariates with high correlation (|r| ≥ 0.7; Dormann et al. (2013)). However, no correlations
exceeded the threshold. In an additional attempt to reduce collinearity, we substituted all the original covariates with
coordinate values of the first 5 dimensions from a multiple factor analysis of the covariates. While this procedure
eliminated coolinearity among model predictor variables, the design maticies were still singular for some candidate
models. Thus, we ultimately concluded the root cause of the model design matrix singularity is the sparcity of cobia
observations in the survey data and no model covariate structure was found to eliminate the problem. Additionally,
during the bootstrap procedure where the best model was repeatedly refit to data sampled from the original data,
model design matrix singularity was again encountered for many of the replicates. We suspect this may have caused
the estimated CV about the index trend to be inflated (Table 3; Figure 7).

For cobia, the proportion positive was low and variable over time ranging from the highest in 2015 (2.8%) and lowest
in 2012 (0.7%; Table 3). The standardized index was highest in 2017 and CVs for the index were high and variable
ranging between 0.33 to 0.97 (Table 3). The standardized and nominal indices tracked each other reasonably well
with the largest deviations in 2012 and 2017. The nominal index was within the 95% confidence intervals of the
standardized index in all years except 2012 (Figure 7).

The focus of this document is primarily on construction and technical evaluation of an index of cobia from the SERFS
video survey covering the geographic area from Cape Hatteras to South Florida. However, the applicability of this
index to inform the SEDAR 95 assessment regarding coastwide abundance of cobia is perhaps a more important
question and will rely on consideration of cobia biology, movement, geographic range, and other characteristics
relevant to the coverage of the SERFS survey. Such consideration should occur within the Index portions of the Data
Workshop webinars. An example of why such consideration is appropriate is the recent shift in the distribution of
the proportion of recreational angler trip interceptions reporting cobia as indicated by MRIP data (Figure 8). These
data suggest that the majority of successful cobia trips may have recently shifted north of the area sampled within
the SERFS program and potentially signalling that the SERFS survey may not be an accurate indicator of cobia
abundance coast-wide.
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Table 1. Number of videos, depth range, latitude range, and day of the year range of samples included in the analyses.

Year Number of
video samples

Depth(m)
range

Latitude
(°N) range

Day of the
year range

2011 543 15-94 27.23-34.54 140-299
2012 1017 15-105 27.23-35.01 115-284
2013 1114 15-98 27.33-35.01 115-278
2014 1364 16-109 27.23-35.01 114-295
2015 1374 15-110 27.26-35.02 112-296
2016 1409 16-115 27.23-35.01 125-300
2017 1409 15-111 27.23-35.02 117-273
2018 1647 16-114 27.23-35.00 116-278
2019 1538 14-110 27.23-35.01 121-269
2020 0 - - -
2021 1373 16-109 27.23-35.01 119-274
2022 1016 16-113 27.23-35.01 117-271
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Table 2. Comparison of zero-inflated Poisson and zero-inflated negative binomial models using preliminary (full)
model error structure comparison.

Model df Likelihood AIC χ2 p-value
ZIP 58 -1841 3797

ZINB 59 -1467 3052 747.1 <0.0001
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Table 3. The relative nominal SumCount, number of videos included (N), proportion of videos in which cobia were
observed (i.e., proportion positive), standardized index, and CVs for the SERFS cobia video index, 2011–2022.

Year Relative
nominal

SumCount

N Proportion
positive

Standardized
index

CV

2011 0.233 543 0.009 0.218 0.59
2012 1.967 1017 0.007 0.982 0.92
2013 0.737 1114 0.010 0.599 0.41
2014 0.633 1364 0.015 0.739 0.34
2015 1.660 1374 0.028 1.517 0.32
2016 1.749 1409 0.016 1.283 0.38
2017 1.507 1409 0.017 2.596 0.46
2018 0.939 1647 0.019 1.309 0.36
2019 0.835 1538 0.014 1.012 0.38
2021 0.506 1373 0.012 0.518 0.43
2022 0.232 1016 0.009 0.226 0.49

11



April 2024 South Atlantic Cobia

Figure 1 Chevron traps used by SERFS showing the GoPro cameras over the trap mouth and nose.
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Figure 2 Bubble plots of cobia SumCounts from videos collected by the Southeast Reef Fish Survey, 2011–2022.
Black points show locations where cobia were not observed on video and red bubbles show where cobia
were observed on video, with the size of the bubbles scaled to their video SumCount. Note that points
overlap often. No sampling occurred in 2020 due to the covid-19 pandemic.
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Figure 3 Distribution of data collected as continuous variables for positive (red) and zero (orange) counts. Vertical
lines represent break points for factor definitions.
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Figure 4 Model diagnostic plot of fitted model values (red line) against the original data distribution for the
preferred model for cobia.
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Figure 5 Top row: relationship between all species MeanCounts using GoPro and Canon cameras from the 2014
camera calibration study using all data. Bottom row: standardized residuals from all data.
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Figure 6 Residuals for all levels of each categorical predictor variable included in the zero-inflated negative binomial
model.
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Figure 7 Cobia relative standardized index (red line and points) with 2.5% and 97.5% confidence intervals (red
dashed lines) and the relative nominal index (black line with points) from SERFS video data using a
zero-inflated negative binomial model.

18



April 2024 South Atlantic Cobia

Figure 8 Temporal and spatial distribution of the proportion of recreational angler trip interceptions reporting
cobia as indicated by the MRIP program.
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