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Abstract
The state of biodiversity for most of the world is largely enigmatic due to a lack
of long-term population monitoring data. Citizen science programs could sub-
stantially contribute to resolving this data crisis, but there are noted concerns on
whether methods can overcome the biases and imprecision inherent to aggre-
gated opportunistic observations. We explicitly test this question by examining
the temporal correlation of population time-series estimated from opportunistic
citizen science data and a rigorous fishery-independent survey that concur-
rently sampled populations of coral-reef fishes (n = 87) in Key Largo, Florida,
USA, over 25 years. The majority of species exhibited positive temporal correla-
tions between population time-series, but survey congruence varied considerably
amongst taxonomic and trait-based groups. Overall, these results suggest that
citizen scientists can be effective sentinels of ecological change, and that there
may be substantial value in leveraging their observations to monitor otherwise
data-limited marine species.

KEYWORDS
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1 INTRODUCTION

Ecological change is unfolding rapidly inmany ecosystems
(Blowes et al., 2019; Dornelas et al., 2014), yet our under-
standing of how and why changes are occurring remains
highly limited for most regions and taxa on Earth due to a
paucity of long-termmonitoring data. Although thousands
of population monitoring programs have been conducted
on various taxa across the world, only a small fraction of
species are known to have any time-series of population
abundance (McRae et al., 2017; Moussy et al., 2021). Given
this, adopting and adapting to novel sources of ecologi-
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cal data is imperative in order to quantify and ultimately
respond to ongoing drivers of biodiversity change (Edgar
et al., 2016; Kindsvater et al., 2018).
Citizen science programs that collate participants’

species encounters are amassing data at scales far beyond
even the most comprehensive datasets from structured
surveys for many ecoregions on Earth (Amano et al.,
2016). There is considerable interest in using citizen sci-
ence data to monitor animal populations in the wild, as
it could greatly expand the taxonomic and geographic
scope of current monitoring programs (Amano et al., 2016;
Bayraktarov et al., 2019; Neate-Clegg et al., 2020). A major
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concern, however, is that data from decentralized citizen
science programs are inherently unstructured and there-
fore driven by variable human behavior, effort, and skill,
that introduces potential biases and stochastic errors in
the observation process that could skew our perspective
on how biodiversity is changing (Bird et al., 2014; Dobson
et al., 2020). Statistical techniques could potentially com-
pensate for this variable observation process using survey
metadata (e.g., observer identity, search time, etc.), to still
yield relatively accurate estimates of population and com-
munity change from unstructured data collection (Bird
et al., 2014; Isaac et al., 2014; Kelling et al., 2019; Strien
et al., 2013). If this is indeed the case, then citizen science
programs could complement, if not radically transform,
our capability to monitor the changing state of Earth’s
biodiversity.
Direct multispecies comparisons of both population

trends and trajectories inferred from citizen science data
and structured ecological surveys have now been exam-
ined for a number of taxa, including birds (Boersch-Supan
et al., 2019; Horns et al., 2018; Neate-Clegg et al., 2020;
Walker & Taylor, 2017, 2020) and insects (Dennis et al.,
2017; Van Strien et al., 2013), to variable success. Though
some programs exhibit considerable agreement with ref-
erence surveys (Dennis et al., 2017; Van Strien et al.,
2013), in other cases the majority of species may show
divergent population trends (Neate-Clegg et al., 2020). To
date most of these comparisons have occurred at very
broad spatial scales (e.g., national or global), where spatial
mismatches in sampling between reference datasets can
readily obscure any tests of true comparability. To critically
test this question requires the rare conditions of citizen
science and structured multispecies monitoring programs
operating concurrently in the same assemblage with fine-
scale spatiotemporal overlap relevant to local population
dynamics.
The Florida Keys region hosts one of the largest reef

complexes in the Americas, and is fairly unique for its
long history of biodiversity monitoring through the Reef
Visual Census (RVC), a multidecadal fishery-independent
structured visual survey of coral-reef fishes that sam-
ples the breadth of the Florida Reef Tract to aid in the
sustainable management of the multispecies reef fish-
eries (Ault et al., 1998; Brandt et al., 2009; Smith et al.,
2011). The RVC survey provides a long record into the
ecological changes that have unfolded as reef ecosys-
tems in the Florida Keys have shifted considerably from
climate-driven mass coral bleaching events (Somerfield
et al., 2008), disease outbreaks (Palandro et al., 2008), and
escalating exploitation pressure on the reef-fish commu-
nity (Ault et al., 2005, 2014). Within this same region,
Reef Environmental Education Foundation (REEF) also
began its Volunteer Fish Survey Project (VFSP) in 1993,

which collates species encounters and relative abundance
observations from trained citizen scientists during rov-
ing dive surveys. The REEF VSFP has now amassed
∼10 million survey records globally (REEF, 2023), repre-
senting one of the largest temporal datasets on marine
biodiversity in existence. The high degree of spatiotem-
poral overlap of the REEF VFSP and RVC programs
in this region therefore provides a rare opportunity to
directly compare opportunistic citizen science data with
a rigorously-designed structured survey to critically assess
the value of aggregated citizen science observations for
tracking the population dynamics of a diverse fish assem-
blage.
Here, we test whether structured and opportunistic sur-

veys yield similar or divergent population trajectories for
87 coral-reef fish species in the Florida Keys, using a
multivariate state-space time-series approach that jointly
models the observed data for each survey asmanifestations
of shared underlying population states. Assessing whether
ecological data from various sources offer comparable or
divergent views of ongoing biodiversity change is funda-
mental for overcoming the current biodiversity data crisis
and to understand the complex responses of biodiversity to
human stressors.

2 METHODS

2.1 Reef Visual Census (RVC)

The RVC program has been ongoing in the Florida Keys
since 1979 (Bohnsack & Bannerot, 1986), first by the
National Oceanographic and Atmospheric Administra-
tion Southeast Fisheries Science Center, and subsequently
as a collaborative effort by several government agen-
cies and academic partners (Brandt et al., 2009; Smith
et al., 2011). The survey consists of visual counts, and
estimates of size distributions, for all reef-fishes that are
observed by a pair of trained stationary divers in a 15 m
diameter circular plot over a 20-min time-frame. Plots
are selected through a probabilistic sampling design in
a two-stage scheme. The “primary sample units” (PSUs)
are 200 × 200 m grid cells defined on a digital map
of the bathymetry and benthic habitats of the Florida
Keys (Smith et al., 2011). Each year, PSUs are randomly
selected for sampling within each reef stratum across the
region (e.g., inshore patch reefs, mid-channel patch reefs,
offshore patch reefs, and fore reef, at varying depths).
The allocation of sampling effort among these strata is
optimized based on stratum area within the sampling
domain and the variance of density estimates for target
species (Smith et al., 2011). From this stratified random
sample of PSUs, a random sample of between 2 and 4
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“secondary sample units” (SSUs), consisting of visual
counts in the circular plots by stationary diver pairs (Bohn-
sack & Bannerot, 1986), were conducted within each
PSU.

2.2 Reef Environmental and Education
Foundation Volunteer Fish Survey Project
(REEF VFSP)

The REEF VFSP collates data from recreational scuba
divers and snorkelers reporting their fish encounters dur-
ing roving-diver surveys (Pattengill-Semmens&Semmens,
2003). REEF VFSP surveys are distinct from RVC sur-
veys in that observers are mobile and surveys vary in
duration and area searched. Sampling effort also varies
substantially among sites and habitats (Tables S1 and
S2), as it is driven by diver preferences. Rather than
reporting direct counts, REEF surveyors score the total
number of individuals encountered for each species as
one of four rank-abundance categories (1, 2–10, 11–100,
or> 100), along with accompanying survey metadata such
as diver identity and surveyor experience, dive site loca-
tion, date, total dive time, visibility, habitat type, and
current.

2.3 Merging data sources

We intersected the REEF and RVC datasets in space and
time, including observations recorded in both surveys from
1993 to 2018. We retained REEF surveys from dive sites
that overlapped with the benthic habitat map and sam-
pling grid of the RVC program (Smith et al., 2011), and
from this we retained all REEF dive sites and RVC PSUs
that fell within the bounds of the Key Largo subregion,
which had the greatest overlap in sampling throughout
the Florida Keys sampling domain (Figure S1). Each REEF
dive site was also assigned a benthic habitat class and reef
stratum based on its spatial location. We only included
REEF surveys from sites and divers with at least 10 and 5
observations, respectively, throughout the period. In total
we identified 3368 RVC surveys conducted at 2434 sam-
pling sites and 9512 REEF surveys at 60 dive sites in Key
Largo from 1993 to 2018. We used these datasets to con-
struct population time-series for species that were sighted
in at least 70% of years in both surveys, had a total sighting
frequency over 1%, and were reef-associated and not com-
monly misidentified. In total there were 87 species from a
range of taxonomic groups that met these criteria (Table
S3).

2.4 Multivariate state-space models

To assess whether the RVC and REEF reef-fish surveys
yield comparable population insights over time, we used
a multivariate state-space model that estimates underly-
ing population trajectories based on the observations from
both surveys (Holmes et al., 2012; Ward et al., 2010). The
state-space approach to population time-series assumes
that the true population abundance (on a loge-scale;
𝑥𝑡 = log(𝑁𝑡)) changes from year-to-year according to a first
order autoregressive process with annual log-normal devi-
ations (𝑤𝑡) driven by demographic processes (ie. process
variance, 𝜎2):

𝑥𝑡 = 𝑥𝑡−1 + 𝑤𝑡

𝑤𝑡 ∼ 𝑁
(
0, 𝜎2

)
The annual abundance estimate that we actually

observe in a survey (𝛼𝑡) emerges from the true unob-
served population state in a given year (𝑥𝑡) with additional
stochastic white noise that represents the sampling vari-
ance in these annual estimates (𝜏2):

𝛼𝑡 = 𝑥𝑡 + 𝑣𝑡
𝑣𝑡 ∼ 𝑁

(
0, 𝜏2

)
Extending this state-space approach to two surveys, each

with their own time-series of relative abundance (𝛼𝑅𝑉𝐶,𝑡
and 𝛼𝑅𝐸𝐸𝐹,𝑡), we can directly estimate the degree of inter-
annual synchrony between their latent population states
(𝑥𝑅𝑉𝐶, 𝑡 and 𝑥𝑅𝐸𝐸𝐹,𝑡) if we treat their true population
deviations (𝑤𝑅𝑉𝐶,𝑡 and 𝑤𝑅𝐸𝐸𝐹,𝑡) as jointly arising from a
correlated stochastic process :

[
𝑥RVC
𝑥REEF

]
𝑡

=

[
𝑥RVC
𝑥REEF

]
𝑡−1

+

[
𝑤RVC
𝑤REEF

]
𝑡

[
𝑤RVC
𝑤REEF

]
𝑡

∼ MVNormal
([

0

0

]
, Σ

)

Σ =

[
𝜎2RVC 𝜌𝜎RVC𝜎REEF

𝜌𝜎RVC𝜎REEF 𝜎2REEF

]

From the variance-covariance matrix (Σ) describing the
within survey variances (𝜎2

𝑅𝑉𝐶
and𝜎2

𝑅𝐸𝐸𝐹
) and their covari-

ance (𝜌𝜎𝑅𝑉𝐶𝜎𝑅𝐸𝐸𝐹), we can directly estimate the degree
of inter-annual synchrony (ρ) in abundance fluctuations
(𝑤𝑅𝑉𝐶,𝑡 and 𝑤𝑅𝐸𝐸𝐹,𝑡) in the population states from each
survey. We then assume the observed time-varying year
effects in each survey (i.e., 𝛼𝑅𝑉𝐶,𝑡 and 𝛼𝑅𝐸𝐸𝐹,𝑡) arise from
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the population states with independent measurement
errors in each survey (𝑣𝑅𝑉𝐶,𝑡 and 𝑣𝑅𝐸𝐸𝐹,𝑡):[

𝛼RVC
𝛼REEF

]
𝑡

=

[
𝑥RVC
𝑥REEF

]
𝑡

+

[
𝑣RVC
𝑣REEF

]
𝑡

𝑣RVC,𝑡 ∼ 𝑁
(
0, 𝜏2RVC

)
𝑣REEF,𝑡 ∼ 𝑁

(
0, 𝜏2REEF

)
For our analysis,we estimate themean abundance through
time (𝛼𝑡; t = 1993, . . . , 2018) in each survey directly from
diver observations in each dataset, but also condition these
abundance estimates onmultiple other survey-level factors
that we expect to influence the true abundance (e.g., site
or habitat effects) or the observations of a species’ abun-
dance (e.g., diver identity or dive length) on a given survey.
Thesemodeled factors additionally account for the uneven
sampling that occurs over space, environments, and time
within and among years when estimating annual expected
abundance in both surveys.
For the RVC surveys, we conditioned annual abundance

estimates on the spatial location and environmental fea-
tures of each stationary count survey. The spatial clustering
of multiple SSUs within a broader PSU grid cell is cap-
tured with a PSU varying effect, 𝛼𝑝, with similar varying
terms for persistent abundance differences among benthic
habitat types, 𝛼ℎ, reef strata, 𝛼𝑠𝑡, and the month of sam-
pling in a given year, 𝛼𝑚. We also included a quadratic
effect for depth of the survey (in covariate matrix, 𝑋).
Counts in each SSU were reported as averages between
the diver pairs, we treated these as true counts to include
overdispersion by rounding each noninteger value upward
to its nearest whole value. We model these counts from
a log-link negative binomial distribution with a quadratic
parameterization using the inverse shape parameter (𝜙) for
overdispersion:

Negative Binomial(𝑦𝑖|𝜇𝑖, 𝜙)
log (𝜇𝑖) = 𝛼𝑡 + 𝛼𝑝 + 𝛼st + 𝛼ℎ + 𝛼𝑚 + 𝛽𝑋𝑖

𝑉𝑎𝑟 (𝑦𝑖) = 𝜇𝑖 + 𝜇2
𝑖
∕𝜙.

For the REEF surveys, observations of a species (𝑦𝑖) are
reported as one ofK= 5 ordered abundance categories (Y*:
0, 1, 2–10, 11–100, or > 100) with the probability of observ-
ing a particular category on a given survey i emerging
from the latent (unobserved) abundance (𝜂𝑖). The latent
abundance (𝜂𝑖) for a given survey i, will depend on a vari-
ety of mediating factors that we expect to shape the true

abundance or the observation process on a survey beyond
just the population abundance in a given year t (𝛼𝑡). We
included varying effect terms for persistent abundance
differences among survey sites (𝛼𝑠), site benthic habitat
classes (𝛼ℎ) and reef stratum (𝛼𝑠𝑡), and calendar months
(𝛼𝑚). We also include terms that we expect to shape a
diver’s observations including diver identity (𝛼𝑑), whether
that survey occurred with other divers at the same sites
on the same day (𝛼𝑐) or month of a given year (𝛼𝑚𝑐), and
covariates estimated for each survey (in design matrix 𝑋)
including total dive time (in minutes), current during that
dive (ranked qualitatively on a 3-point scale), water visi-
bility (ranked qualitatively on a 7-point scale), the average
depth (ranked qualitatively on a 14-point scale; and depth
squared), and whether the observing diver was of “expert”
(divers with a minimum of 35 surveys in the region and
a 90% success rate in identifying 100 species from that
region) or “novice” experience. We modeled the probabil-
ity of observing each abundance category for a species on
a dive survey as an ordinal logistic regression, where cut-
points (𝑐1, … , 𝑐𝐾−1), estimated with an induced Dirichlet
prior (see Appendix), categorize the latent abundance into
probability intervals based on a set of linear predictors for
𝜂𝑖:

Ordered Logistic(𝑦𝑖| 𝜂𝑖, 𝑐1∶𝐾−1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

logit
−1
(𝑐1 − 𝜂𝑖) Y∗ = 0

logit
−1
(𝑐2 − 𝜂𝑖) − logit

−1
(𝑐1 − 𝜂𝑖) Y∗ = 1

logit
−1
(𝑐3 − 𝜂𝑖) − logit

−1
(𝑐2 − 𝜂𝑖) Y∗ = 2 − 10

logit
−1
(𝑐4 − 𝜂𝑖) − logit

−1
(𝑐3 − 𝜂𝑖) Y∗ = 11 − 100

1 − logit
−1
(𝑐4 − 𝜂𝑖) Y∗ = 100+

𝜂𝑖 = 𝛼𝑡 + 𝛼𝑠 + 𝛼ℎ + 𝛼st + 𝛼𝑚 + 𝛼𝑑 + 𝛼𝑐 + 𝛼mc + 𝛽𝑋𝑖.

We estimated the parameters of this joint model using
Stan (Carpenter et al., 2017), as implemented in cmdstanr
(Gabry & Cešnovar, 2022). The full model, prior specifica-
tions, and diagnostic criteria are included in the Appendix.
Each model was run for 1000 iterations across 6 chains,
with the first 200 samples discarded as burn-in, for a total
of 4800 posterior estimates.
All code, model diagnostics, and visualizations of model

fits are available at: https://github.com/dagreenberg/reef_
timseries_comp.

2.5 Post hoc analyses

We used the posterior distribution of the correlation coef-
ficient in abundance fluctuations between surveys (ρ) as
a direct estimate of population time-series congruence for
each species. We examined the posterior estimates of ρ
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n

Pomacentridae 6

Serranidae 6

Epinephelidae 4

Chaetodontidae 4

Lutjanidae 7

Labridae 8

Pomacanthidae 5

Scaridae 11

Monacanthidae 3

Haemulidae 9

Acanthuridae 3

Gobiidae 3

CI 80% 90%

�

F IGURE 1 (A) Species-level estimates of the temporal correlation of abundance change among surveys (ρ), colored by taxonomic
affiliation in B, indicating the posterior median (circle), mode (triangle), 80% (thick line) and 90% (thin line) credible intervals. (B) Posterior
distributions of the mean correlation estimate in year-to-year population fluctuations between surveys (ρ) for each major taxonomic group
(Families or sub-Families) examined. Points indicate the median and bars represent the 80/90% credible intervals of the distribution.

among all species, and compared group-level differences
in terms of taxonomy (Family, for n > 3; Table S3), col-
oration (“drab” or “colorful”), gregariousness (“conspicu-
ous” or “cryptic”), and aggregation (“solitary,” “shoaling,”
or “schooling”), and body size (in 3 bins, based on the
upper/lower 20% of our sample: “small” (< 16.4 cm),
“medium” (16.4–72.4 cm), or “large” (> 72.4 cm)). We
also examined the linear correlation among species’ esti-
mates of ρ and their mean abundance in each survey. We
interpret the strength of evidence for differences directly
based on the summary statistics of the aggregated posterior
parameter estimates and their credible intervals (CI).
To determine whether our inferences on survey agree-

ment would be robust under lower REEF sampling effort
in the Key Largo region, we also implemented a sensitivity
test whereby we randomly omit 75% of all observations in
each year.We repeated this process for 20 random subsam-
ples for the 9 species with the highest median estimates of
ρ to test for overall changes in the posterior estimates of ρ.

3 RESULTS

The temporal correlation between population time-series
estimated from RVC and REEF datasets varied consider-

ably among species (Figure 1a). There was evidence for
highly complimentary population states in many species
(e.g., Figure 2a–c), while others showed uncorrelated or
even divergent trajectories (e.g., Figure 2d). Median tem-
poral correlations between surveys ranged from −0.55 for
Goldspot Goby (Gnatolepis thompsoni) to 0.93 for Brown
Chromis (Chromis multilineata), with 62% of species
(54/87) having a median estimate of ρ > 0.25 (Figure 1a)
and 75% (64/87) with a posterior mode ρ> 0.25 (Figure 1a).
Species’ mean abundance throughout the sampling period
were also broadly correlated (r = 0.67, 95% CI: 0.57 to
0.79) between surveys (Figure 3), suggesting they are
also recovering similar assemblage-wide patterns of abun-
dance. There were considerable differences in the mean
temporal correlation between surveys across taxonomic
groups (Figure 1b). Congruence in survey estimates was
highest for damselfishes (Pomacentridae; �̄� = 0.54 [90%
CI: 0.29 to 0.75]), hamlets (Serranidae; �̄� = 0.51 [90% CI:
0.23 to 0.72]), groupers (Epinephelidae; �̄� = 0.49 [90% CI:
0.18 to 0.72]), butterflyfishes (Chaetodontidae; �̄� = 0.36
[90% CI: 0.03 to 0.68]), and snappers (Lutjanidae; �̄� = 0.33
[90% CI: 0.04 to 0.60]). Divergence in survey estimates was
highest for gobies (Gobiidae; �̄� = −0.29 [90% CI: −0.67 to
0.17]) and surgeonfishes (Acanthuridae; �̄� = −0.10 [90%
CI: −0.53 to 0.33]), with moderate and variable agreement
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Mycteroperca bonaci

Spotted Goatfish
Pseudupeneus maculatus
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RVC REEF
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Chaetodon striatus

1995 2000 2005 2010 2015

0.
5

1.
0

1.
5

2.
0

Year

−1 0 1

ρ
Redband Parrotfish
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F IGURE 2 Examples of species’ relative abundance time-series estimated from structured RVC surveys (in blue) and opportunistic
REEF citizen scientist surveys (in red). Solid lines and points represent median estimates of the annual expected abundance (αt) with both
process and measurement deviance, while dashed lines indicate the model-estimated estimated population state (xt) with only process
deviance. Shaded areas represent 90% Bayesian credible intervals for the latent population states. Time-series plots for all species comparisons
are available in the Appendix.

among species from other groups (Figure 1b). These taxo-
nomic differences appear to be shaped in part by certain
species’ traits (Figure 4). There was some evidence that
small to medium-sized species had lower estimates of ρ
relative to the largest species in our sample (Δ�̄� = −0.11
[80% CI: −0.28 to 0.06] and −0.12 [80% CI: −0.27 to 0.02],
respectively). Species that tend to be solitary had higher
agreement than those that gather in schools (Δ�̄� = 0.24
[80% CI: 0.04 to 0.43]) and slightly higher than shoals
(Δ�̄� = 0.10 [80% CI: −0.05 to 0.25]). Colorful species
had slightly lower agreement compared to drab species
(Δ�̄� = −0.09 [80% CI: −0.21 to 0.03), while conspicuous
and cryptic species exhibited no difference (Δ�̄� = 0.06 [80%
CI:−0.13 to 0.24]).We found no evidence for a relationship
between congruence and mean abundance (Figure S2).
For 9 species with the highest posterior estimates of ρ, we
found that iteratively removing 75% of observations in the

REEF dataset by year resulted in less certain but otherwise
unchanged posterior modes in almost every case (Figures
S3 and S4), indicating that population indices built on far
less data would still show similar levels of congruence, but
with greater uncertainty.

4 DISCUSSION

Overall we found strong agreement in abundance time-
series estimated from opportunistic citizen science data
when compared to concurrent structured surveys for the
majority, but not all, of the coral-reef fish species we exam-
ined. Species with higher agreement between datasets
tended to be larger-bodied and solitary, but taxonomic
differences in survey congruence were far greater than
any individual species trait we examined. This taxonomic
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F IGURE 3 Comparison of species’ geometric mean relative
abundance (on a log10 scale) across all years between surveys.
Estimates of species’ average abundance from structured Reef
Visual Census (RVC) surveys (x-axis) and opportunistic citizen
science surveys (y-axis) collated by the Reef Environmental
Education Foundation (REEF) in Key Largo, Florida, USA. Each
observation is colored by the posterior mode estimate of the
temporal correlation between surveys (𝜌) with tails representing
90% credible intervals. The diagonal indicates the 1:1 line. The
median correlation (r) in species’ mean abundance across the
posterior is reported with 95% credible intervals in the parentheses.
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F IGURE 4 Posterior distributions of the mean correlation in
year-to-year population fluctuations between surveys (ρ) among
species with different traits (in order from top): species that are
either colorful or drab, species that tend to be conspicuous or more
cryptic in their behavior, species that tend to be solitary, may form
temporary small groups, or form coordinated schools, or
sized-based categories indicating small (< 16.4 cm total length,
smallest 20% of species sample), medium (16.4 to 72.4 cm; middle
60%) or large species (> 72.4 cm; largest 20%). Points indicate the
median of the mean parameter estimates and tails indicate the
80/90% credible intervals.

structuring in agreement suggests that there are likely
shared ecological or behavioral characteristics of clades
that we did not examine influencing their enumeration in
stationary fixed-area counts in RVC versus roving counts
by REEF divers. The RVC sampling protocol was princi-
pally designed to quantify the abundance and biomass of
the snappers (Lutjanidae) and groupers (Epinephelidae)
that are central targets of the Florida Keys fisheries (Ault
et al., 1998; Ault et al., 2005), but the accuracy of these
methods for enumerating other incidentally sampled fish
species is likely to vary widely. It is therefore promising
generally that survey congruence was particularly high
amongst the snappers and groupers where we expect the
comparison between surveys to be the most appropriate.
After substantially reducing sampling effort in the citizen
science dataset we found that estimates of temporal corre-
lation were largely unchanged relative to the full dataset
for species with high agreement (Figure S2). This suggests
that even in regions with substantially less survey effort
than the Florida Keys we may expect population insights
from citizen scientists to still be robust.
Disagreement in population trajectories may also

emerge in part from the spatial distribution of sampling
in each survey. REEF surveys tend to be highly aggregated
toward high-relief spur-and-groove reef sites in the Key
Largo region (Table S3), which are popular with divers
due to the overall abundance and diversity of fishes. The
abundance fluctuations observed at these particular sites
may or may not be representative of the broader popu-
lation context, which likely depends on species’ habitat
preferences and distribution throughout the reef complex.
Though this spatial aggregation of effort in the citizen sci-
ence dataset poses clear biases with spatial representation,
the repeated sampling of the same sites also provides an
advantage for disentangling persistent spatial differences
in abundance from potential temporal fluctuations. The
Florida Reef Tract exhibits considerable fine-scale spatial
variation in coral composition and cover (Somerfield et al.,
2008), and many reef-associated fishes exhibit strong site
fidelity and fine-scale habitat preferences (Sale, 1991).
This would suggest a high heterogeneity in abundance
across sites, and indeed spatial components of variance in
abundance are far greater than temporal variance in both
surveys (Figures S5 and S8). That most species showed
varying levels of agreement between surveys despite
these large differences in spatial sampling representation
suggests that at some level these high-value habitats must
be important bellwethers for the overall population and
that citizen science programs are especially suited to
monitoring economically and ecologically important sites
within coastal regions.
Overall our results suggest that opportunistic citizen sci-

ence can be a valuable source for ecological insights into
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changing coastal ecosystems and that these data have the
potential to strengthen our ability to manage biodiversity
in the face of human impacts. Estimates of changes in rela-
tive abundance are vital for evidenced-based management
and developing effective policy to safeguard populations
and biodiversity generally. Exploited marine species that
have data-rich stock assessments are more likely to be
sustainably managed relative to their data-deficient coun-
terparts (Hilborn et al., 2020). Yet the availability of
species-specific data to enable these assessments is gen-
erally limited to only large commercial stocks (Ovando
et al., 2021b), while the vast majority of smaller-scale
fisheries frequently have limited data available to inform
management (Carruthers et al., 2014; Costello et al., 2012).
Fisheries-independent monitoring data are often a crucial
supplement to catch estimates for assessing stock status
(Dennis et al., 2015; Ovando et al., 2021a), but these data
require significant time, financial investment and effort
to obtain and are unlikely to be cost effective for many
exploited species. In this regard, marine citizen science
programs could be a useful compliment to or surrogate for
independent monitoring for the many data-limited fish-
eries that provide a vital source of food security for coastal
populations around the world.
Taken together, our findings demonstrate that citizen

scientists can be effective ecological sentinels in captur-
ing the population dynamics of fish in coastal ecosystems
when analytical frameworks are designed to account for
lurking biases in the data that emerge from collective
opportunistic sampling. The coming decades are poised to
bring about substantial changes to practically all of Earth’s
ecosystems, yet only a limited few are currently being
broadly monitored. The expansion and adoption of citizen
science programs holds considerable potential to expand
biodiversity monitoring on a global scale and support local
management efforts in the face of ongoing environmental
change.
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