

SEDAR

Southeast Data, Assessment, and Review

SEDAR 91

US Caribbean Spiny Lobster Puerto Rico

SECTION II: Data Workshop Report

<January 2025>

SEDAR 4055 Faber Place Drive, Suite 201 North Charleston, SC 29405

This information is distributed solely for the purpose of peer review. It does not represent and should not be construed to represent any agency determination or policy.

Table of Contents

1. INTRODUCTION	4
1.1 WORKSHOP TIME AND PLACE	4
1.2 TERMS OF REFERNCE	4
1.3 LIST OF PARTICIPANTS	4
1.4 LIST OF DATA WORKSHOP WORKING PAPERS & REFERNCE DOCUMENTS	6
2. LIFE HISTORY	9
2.1 Overview	9
2.2 Stock Definition and Description	9
2.3 Meristic & Conversion factors	
2.4 Natural Mortality	10
2.5 Reproduction	10
2.6 Age and Growth	10
3. COMMERCIAL FISHERY STATISTICS	15
3.1 Biological Sampling	
3.1.1 Overview	
3.1.2 Length Composition Sampling Intensity	
3.1.3 Length Distributions	
3.1.4 Adequacy of Size Composition Data for Characterizing Catch	
3.2 Commercial Landings	
3.2.1 Overview	
3.2.2 Outlier Analysis	
3.2.3 Adoption (partial) of Electronic Reporting Since 2020 3.2.4 Expansion Factors and Calculation of Commercial Landings	
3.2.5 Puerto Rico Caribbean Spiny Lobster Fishery	
3.3 Commercial Discards	18
3.4 Commercial Effort	
4. RECREATIONAL FISHERY STATISTICS	27
5. MEASURES OF POPULATION ABUNDANCE	27
5. Overview	27
6. RESEARCH RECOMMENDATIONS	28
6.1 Life History Research Recommendation	28

7. LITERATURE CITED	6.2 Commer 6.2.1 Len	cial Fishery Statistics gth Composition Research Recommendations	
ALLING	7. LITERAT	JRE CITED	
ALLING			
A PHILIA			
A PHILA			
A BELLER			
ALLA			
A BELLA			
A BELLA			
REFER		\sim	
A BELLA			
A BELLE			
A A A A A A A A A A A A A A A A A A A			
SCH REAL			
		$\mathbf{V}\mathbf{Y}$	
		¢	
	$\mathbf{\mathbf{b}}$		

1. INTRODUCTION

1.1 WORKSHOP TIME AND PLACE

The SEDAR 91 Data Workshop was held November 13-15, 2024, in St Thomas, USVI. In addition to the in-person workshop, a series for webinars were held before (June and October 2024) the meeting.

1.2 TERMS OF REFERNCE

Data Workshop Terms of Reference:

- 1. Review available data inputs and provide tables and figures including, but not limited
 - to:
- a. Commercial and recreational catches and/or discards.
- b. Length/age composition data
- c. Life history and ecological information
- d. Indices of abundance
- e. Include data through at least 2022.
- 2. Provide recommendations for future research in areas such as sampling, fishery monitoring, and stock assessment. Include specific guidance on research goals, data to be collected, and how the research will inform stock assessment.
- 3. Prepare the Data Workshop report providing complete documentation of workshop actions and decisions in accordance with project schedule deadlines (Section II of the SEDAR assessment report).

1.3 LIST OF PARTICIPANTS

Data Workshop Participants

Matt Damiano (Lead Analyst)	NMFS/SEFSC
Adyan Rios	NMFS/SEFSC
Sarah Beggerly	NMFS/SEFSC
J.J. Cruz-Motta	CFMC SSC, UPRM
Jorge R. Garciá	CFMC SSC
Katherine Godwin	UM-CIMAS
Sennai Habtes	USVI DPNR
Daniel Matos-Caraballo	PR DNER
Kevin McCarthy	NMFS/SEFSC
Maggie Rios	USVI DPNR
M. Refik Orhun	NMFS/SEFSC
Wilson Santiago Soler	PR Fisheries Liaison
Michelle Scharer	CFMC SSC

Juan J. Agar	SEFSC
Danielle Olive	
Eva M. Collazo Montarez	DPNR/DFW
Elizabeth Kadison	UVI/SSC
Ana Medina	
Abdiel Connelly	SAMAR
Daryl Bryan	Stakeholder – STT
Nelson Crespo	Stakeholder - PR

Staff

Stuff	
Julie A. Neer	SEDAR Staff
Graciela Garcia-Moliner	
Emily Ott	SEDAR Staff
5	

Data Process Webinar Observers

Judd Curtis	
Maria López-Mercer	
Gerson Martinez	Stakeholder STX
Martha Prada	
Vanessa Martinez	
Jesus Rivera Verónica Seda	
Verónica Seda	PR-DNER Fisheries Lab
Rachael Silvas	SAFMC
Sarah Stephenson	SERO
Sarah Stephenson Ramirez Edgardo.	
Casev Butler	
Cindy Grace-McCaskey Kimberly Johnson	
Kimberly Johnson	NMFS/SEFSC
May Lehmensiek	
Jesus Leon	
Martha Prada	DRNA
Vanessa Ramirez	
Noemi Peña Alvard	PR DNER
Aida Rosario	PR DNER

1.4 LIST OF DATA WORKSHOP WORKING PAPERS & REFERNCE DOCUMENTS

Document #	Title	Authors	Date
			Submitted
	Documents Prepared for the Dat		
SEDAR91-DW-	Summary of participatory modeling	Juan Agar, Mandy	11/1/2024
01	workshops to understand ecological,	Karnauskas, Kelsi	
	social and economic dimensions of	Furman, Matt	
	the U.S. Virgin Islands lobster	McPherson, Manoj	
	fishery	Shivlani	
SEDAR91-DW-	Summary of participatory modeling	Mandy	11/1/2024
02	workshops to understand ecological,	Karnauskas, Juan	
	social and economic dimensions of	Agar, Matt	
	the Puerto Rican lobster fishery	McPherson, Kelsi	
		Furman, Manoj	
		Shivlani	
SEDAR91-DW-	PR/DNER/Commercial Fisheries	Daniel Matos-	11/15/2024
03	Statistics Program Report Signs of	Caraballo, Jesús	
	the Abundance of Spiny Lobster	León-Fernández,	
	Panulirus argus Observed by	Luis A. Rivera-	
	Commercial Landings Reported	Padilla, and	
	during 2014-2023	Wilson Santiago-	
		Soler	
SEDAR91-DW-	SEDAR 91 Trip Interview Program	Katherine Godwin,	11/20/2024
04	(TIP) Size Composition Analysis of	Adyan Rios	
	Caribbean Spiny Lobster (Panulirus		
	argus) in Puerto Rico, U.S.		
	Caribbean, 1981-2023		
SEDAR91-DW-	SEDAR 91 Trip Interview Program	Katherine Godwin,	11/20/2024
05	(TIP) Size Composition Analysis of	Adyan Rios	11/20/2027
	Caribbean Spiny Lobster (Panulirus	1 Myall 1105	
	argus) in St. Thomas/St. John, U.S.		
	Caribbean, 1981-2023		
SEDAR91-DW-	SEDAR 91 Trip Interview Program	Katherine Godwin,	11/20/2024
	1 0	Adyan Rios	11/20/2027
06	CELET SIZE COMPOSITION ADAILYSIS OF T		1
06	(TIP) Size Composition Analysis of Caribbean Spiny Lobster (Panulirus		
	Caribbean Spiny Lobster (Panulirus		
	Caribbean Spiny Lobster (Panulirus argus) in St. Croix, U.S. Caribbean,		
\mathcal{O}	Caribbean Spiny Lobster (Panulirus argus) in St. Croix, U.S. Caribbean, 1981-2023	-	11/24/2024
SEDAR91-DW-	Caribbean Spiny Lobster (Panulirus argus) in St. Croix, U.S. Caribbean,	M. Refik Orhun, Katherine Godwin,	11/24/2024

	in Puerto Rico, US Caribbean, 1983-2023	Stephanie Martínez Rivera	
SEDAR91-DW- 08	SEDAR 91 Commercial Landings of Caribbean Spiny Lobster (Panulirus argus) in St. Thomas and St. John, US Caribbean, 1975-2023	Martínez Rivera M. Refik Orhun, Katherine Godwin, Kim Johnson, and Stephanie Martínez Rivera	11/24/2024
SEDAR91-DW- 09	SEDAR 91 Commercial Landings of Caribbean Spiny Lobster (Panulirus argus) in St. Croix, US Caribbean, 1975-2023	M. Refik Orhun, Katherine Godwin, Kim Johnson, and Stephanie Martínez Rivera	11/24/2024
	Reference Docume	nts	
SEDAR91- RD01	On the productivity and technical efficiency of the Puerto Rican queen conch Aliger gigas fishery	Juan Agar and Daniel Solis	10/9/2024
SEDAR91- RD02	Socio-economic Profile of the Small- scale Dive Fishery in the Commonwealth of Puerto Rico	Juan J. Agar and Manoj Shivlani	10/9/2024
SEDAR91- RD03	Determining the age-size relationship of Panulirus argus in the southwest area of Puerto Rico	Ana G. Medina Martinez	10/9/2024
SEDAR91- RD04	Annual Juvenile Recruitment of Spiny Lobsters, Panulirus Argus (Decapoda, Palinuridae), in a Shallow Seagrass Bed and a Deeper Hard Bottom off Western Puerto Rico	Nilda M. Jiménez, Ernest H. Williams, Jr. and Aida Rosario	10/10/2024
SEDAR91- RD05	Patterns of Spiny Lobster (Panulirus argus) Postlarval Recruitment in the Carribbean: A CRTR Project	Mark J. Butler IV, Angela M. Mojica, Eloy Sosa-Cordero, Marines Millet and Paul Sanchez- Navarro	10/10/2024
SEDAR91- RD06	Developing a population assessment for Caribbean spiny lobster <i>Panulirus argus</i> in the United States Virgin Islands: lessons learned	Lee Richter ¹ and Michael W Feeley ²	11/7/2024
SEDAR91- RD07	Estimate of In-water Size Structure of Spiny Lobsters in St. Thomas	Tyler B. Smith, Sarah L. Heidmann, Rosmin S. Ennis, Viktor W. Brandtneris,	11/7/2024

		Adeline Shelby, Jeremiah	
		Blondeau	
SEDAR91-	Displaced juvenile and subadult	Michael J.	11/14/2024
RD08	Caribbean spiny lobsters show strong	Childress a,*,	
	orientation toward home dens	Coral Holt a,	
		Rodney D.	
		Bertelsen b	
SEDAR91-	Ocean acidification disrupts the	Philip M.	11/14/2024
RD09	orientation of postlarval Caribbean	Gravinese,	
	spiny lobsters	Heather N. Pag,	
		Casey B. Butler,	
		Angelo Jason	
		Spadaro,	
		Clay Hewett,	
		Megan	
		Considine,	
		David Lankes &	
		Samantha Fisher	
SEDAR91-	Relationships between postlarval	Emily	11/14/2024
RD10	settlement and commercial landings	Hutchinson,	11/17/2027
KD10	of Caribbean spiny lobster (Panulirus	Thomas R.	
	argus) in Florida (USA)	Matthews,	
	argus) in Fiorida (USA)	Gabrielle F.	
		Renchen	
SEDAR91-	Gastric mill ossicles record	Emily	11/14/2024
RD11	chronological age in the Caribbean	Hutchinson,	11/14/2024
KD11	spiny lobster (<i>Panulirus argus</i>)	Thomas. R	
	spirty tooster (1 unutil us urgus)	Matthews, Erica	
		Ross, Samantha	
		Hagedorn, Mark J. Butler IV,	
		J. Dutiel IV,	
SEDAR91-12	Spiny Lobster SEAMAP Program	Department of	11/14/2024
SEDIMOT 12	Survey 2021-23	Natural and	11/17/2027
	- Survey 2021-25	Environmental	
		Resources	
SEDAR91-13	Progress Report: Independent	INCOULCES	11/14/2024
SLDAR/I-13	fishery data collection for lobster	Juan J. Cruz	11/17/2027
J	(Panulirus argus) and conch (Lobatus	Motta	
	gigas) under the SEAMAP-C	Iviona	
	program		

2. Life History

2.1 Overview

No new life history information was available for the SEDAR Panel to discuss during the data workshop. Therefore, sections 2.2-2.8 were carried over from SEDAR 57.

2.2 Stock Definition and Description

The Caribbean spiny lobster, *Panulirus argus* (hereafter referred to as spiny lobster), occurs in the Caribbean Sea, the Gulf of Mexico and the Western Central and South Atlantic Ocean. North Carolina marks its northernmost limit whereas Brazil marks its southernmost limit (Bliss 1982). The spiny lobster occurs from the extreme shallows of the littoral fringe to depths exceeding 100 meters (Kanciruk 1980; Munro 1974). CFMC (1981) reports that its distribution off Puerto Rico extends to the edge of the shelf, which is described as the 100–fathom contour (183 meters). Shallow areas with mangroves and seagrass (*Thalassia testudinum*) beds serve as nursery areas where available (Munro 1974). Generally, spiny lobsters move offshore when they reach reproductive size (Phillips et al. 1980). These animals are primarily carnivores, and serve as the major benthic carnivores in some ecosystems (Kanciruk 1980), feeding upon smaller crustaceans, mollusks and annelids (Cobb and Wang 1985).

2.3 Meristic & Conversion factors

Length-weight conversions were estimated using the Trip Interview Program (TIP) database. TIP records were filtered according to island platform (Puerto Rico, St. Thomas/St. John, and St. Croix). Records were further filtered such that retained records consisted only of those with paired length-weight measurements that had reported units of measure (e.g., mm or kg) and corresponding measurement type (e.g., carapace length or whole weight). A subsequent evaluation of data entry and/or measurement errors led to the removal of 33 records for Puerto Rico (Table 2.1.)

Length-weight (L-W) relationships were fit as log-linear functions in the R statistical computing software (Quinn and Deriso 1999, R Development Core Team 2012). The relationship for cephalothorax length (CL; mm) to weight (kg whole weight) is:

 $W = aL^b$

Model fitting was carried out using linear regression on the log transformed equation:

$$log(W) = log(a) + b * log(L)$$

Resulting L-W relationships are found in Table 2.2. For Puerto Rico, a total of n=22,980 L-W observations were available from TIP (n male=12,019; n female=10,961) from 1980 to 2016 (Fig. 2.1). The largest individual by length was 196 mm CL, which was also the largest individual by weight (4.536 kg). Cephalothorax length to weight conversions by Island Platform are shown in Table 2.2.

Spatial analysis of Puerto Rico L-W data according to four Caribbean spatial areas suggested that L-W curves were not significantly different (p-value = 1.0; Table 2.3).

2.4 Natural Mortality

During SEDAR 8, various sources are referenced with respect to natural mortality, including Olsen and Koblic 1975, Medlev and Ninnes 1996, and FAO 2001. Natural mortality was specified at 0.36 for adult lobsters and used for all ages during SEDAR 8. During SEDAR 46 (Spiny lobster St. Thomas/St. John and St. Croix), consideration was given to natural mortality estimates from tagging studies, with estimates typically varying between 0.26 and 0.44 year⁻¹ for adult spiny lobster, with the most reliable estimates suggested to be in the range of 0.30 to 0.40 (FAO 2001). A point estimate of 0.34 year⁻¹, calculated from a variant of Pauly's equation, is also widely reported (Cruz et al. 1981). Point estimates based on longevity were also considered, but require evidence of maximum age, which is difficult to obtain for lobsters (Kanciruk 1980). This issue is reinforced by additional statements made by Olsen and Koblic (1975). Further discussion about spiny lobster longevity can be found on pg 27, SEDAR 46, Data and Assessment Workshop report (SEDAR 2016). Several spiny lobster stock assessments in the Caribbean have used 0.34 to 0.36 year⁻¹ in base model runs (Cruz 2001; Gongora 2010; SEDAR 2005; Babcock et al. 2014). During the SEDAR 57 data workshop, participants identified a mark- recapture dataset from a study undertaken by the St. Thomas Fishermen's Association (Olsen et al. 2017). Analysts determined obtaining an estimate of natural mortality from this study for use in the assessment was not feasible; this was potentially due to an underestimate of reporting practices stated by Olsen et al. (2017), which resulted in an unreasonably high (M > 2.0year⁻¹) estimates of natural mortality (see SEDAR 57 Final Assessment Report).

2.5 Reproduction

Die (2005) estimated a logistic maturity curve from TIP prior to 1990, when landing of egg bearing females was permitted. Data from Puerto Rico and St. Thomas/St. John were aggregated for the purpose of model fitting. Two model parameterizations were considered, in both cases, length at 50% maturity were similar being either 91 mm or 92 mm CL.

For SEDAR 8 (2005), fecundity-at-length was obtained for Cuba spiny lobster (FAO 2001):

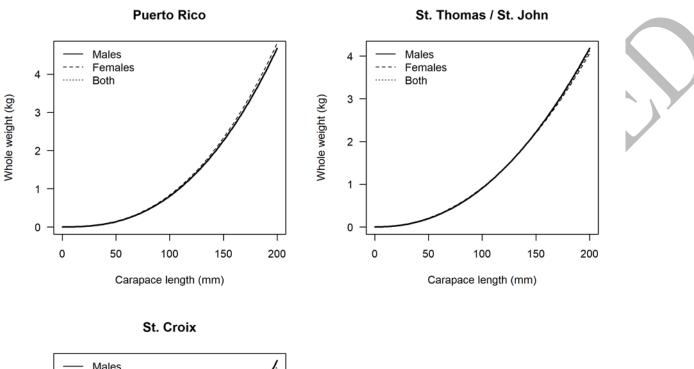
$E = 0.5911L^{4.5677}$

where E is number of eggs and L is carapace length in mm.

2.6 Age and Growth

During SEDAR 8, von Bertalanffy growth curves for males and females were obtained from Leon et al. (1994) for Cuba (SEDAR 2005). Since SEDAR 8, several additional publications have become available for von Bertalanffy growth curves from regions such as Cuba, Puerto Rico, and Mexico (Table 2.3). Also, during SEDAR 46 (Spiny lobster St. Thomas/St. John & St. Croix), von Bertalanffy growth parameters from Leon et al. (1995) were reviewed, noting similar values used in other stock assessment (i.e., Gongora 2010; Babcock et al. 2014). These point estimates were also compared to a more recent study by Leon et al. (2005) and analyses in SEDAR 46 were based on a single growth curve for both sexes. During the SEDAR 57 data workshop, participants identified a mark-recapture dataset from a study undertaken by the St. Thomas Fishermen's Association (Olsen et al. 2017). During SEDAR 57, analysts determined that obtaining a growth curve from this study for use in the assessment was not feasible. This was due to an absence of the largest size classes in the data set, though results verified that growth in Puerto Rico (Table 2.3) was generally consistent with growth in St. Thomas/St. John (see SEDAR 57 Final Assessment Report).

2 F 2 F 6 F 7 F 6 F 6 F 6 F 6 F		209 340 340 300 310 514	0.907 0.67 0.498 0.38 0.552	M M M M
6 F F 64 F 65 F 11 F		340 300 310	0.498 0.38	M M
F 4 F 6 F 1 F 1 F		300 310	0.38	М
4 F 5 F 1 F 1 F		310		
6 F 1 F 1 F			0.552	
1 F 1 F		514		М
51 F			0.83	М
		275	0.364	М
6 F		290	0.442	М
0 1		262	0.33	М
57 F		202	1.03	М
1 F		814	0.814	Μ
9 F		952	0.64	М
	_	123	11.4	М
		101	8.871	М
		1	1.142	М
		20.574	0.56	М
	7	20.32	0.506	М
		20.574	0.59	М
		20.574	0.682	М
$ \land \lor $		60.7	4.075	М
		192	0.68	М
			49 F 952 123 101 1 20.574 20.32 20.574 20.574 20.574 20.574 60.7	49 F 952 0.64 123 11.4 101 8.871 1 1.142 20.574 0.56 20.32 0.506 20.574 0.59 20.574 0.682 60.7 4.075


Table 2.1 Records manually removed from Puerto Rico TIP prior to CL-W model fitting.

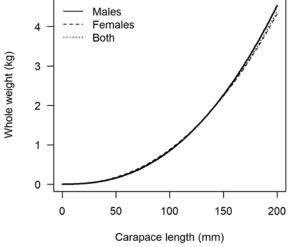

weight) for Puerto Rico.				
Island platform	Year	n	a	b
Puerto Rico				
Males	1980-2016	12,019	6.836E-05	2.536
Females	1980-2016	10,961	7.612E-05	2.521
Males + Females	1980-2016	22,980	4.166E-05	2.511

Table 2.2 Fitted conversion functions from cephalothorax length (mm) to weight (kg whole weight) for Puerto Rico.

Table 2.3 von Bertalanffy growth parameters, noting values used in	SEDARs 8 and 46 (i.e.,
Leon et al. (1995)) and with emphasis on subsequent studies.	

Study	Region/Country	Source	Sex	ex CL∞	
			XX	(mm)	
Leon et al. (1995)	Cuba	Length frequency	М	184	0.24
			F	155	0.22
Leon et al. (2005)	Cuba	Length frequency	Both	184	0.2
Mateo (2004)	Puerto Rico	Length frequency	M (1999)	197	0.2
			M (2000)	195	0.2
			F (1999)	191	0.2
			F (2000)	185	0.2
Velazquez-	Mexico, Yucatan	Length frequency	М	203	0.2
Abunader et al. (2015)			F	189	0.3

Figure 2.1 Length-weight curves for spiny lobster of Puerto Rico, St. Thomas/St. John, and St. Croix.

3. Commercial Fishery Statistics

3.1 Biological Sampling

3.1.1 Overview

The NOAA Fisheries, Southeast Fisheries Science Center Trip Interview Program (TIP) collects length and weight data from fish landed by commercial fishing vessels, along with information about fishing area and gear. Data collection began in the 1980s with frequent updates in best practices; the latest being in 2017. Data are collected by trained shore-based samplers (Beggerly et al., 2022).

3.1.2 Length Composition Sampling Intensity

The TIP data pertaining to Caribbean Spiny Lobster in Puerto Rico consists of 69,212 length observations across 7,894 unique port sampling interviews (Figure 3.1.1). Of the Caribbean spiny lobster measured, 69,065 were CL observations (99.8%). Plots and summary statistics of the currently available CL frequency data of Caribbean spiny lobster sampled from the predominant gears in Puerto Rico are included in the working paper (Godwin et al. 2024).

3.1.3 Length Distributions

A variety of fishing gears were used by Puerto Rico commercial fishers to catch Caribbean spiny lobster. A generalized linear mixed model (GLMM) was fit to TIP data to compare mean CL composition among gear types. The purpose of the analysis was to identify gear groups among the commercial fishing gears with groups based upon Caribbean spiny lobster size composition. Gears with size compositions that were not significantly different were assigned to the same gear group. The analysis identified no difference in mean size composition among gear specific size compositions and the gears with confidential data are provided in Table 3.1.1. Summary statistics produced by the GLMM analysis of the available length frequency data from 1981 to 2023 are also included in Table 3.1.1. Gear groups were identified based on GLMM analysis using a gamma-distributed dependent variable and a covariate to account for changes in mean CL over time. Random effects for interview ID and categorical year were included to account for non-independence of observations.

The aggregated density plot for all gears combined of Caribbean spiny lobster CL collected across the time series 1981-2023 are summarized in Figure 3.1.2. Aggregated density plots of Caribbean spiny lobster landed by nonconfidential gears are summarized in Figure 3.1.3.

3.1.4 Adequacy of Size Composition Data for Characterizing Catch

Due to reasonable levels of available data throughout the time series, TIP data can be considered to inform selectivity and annual population trends in the SEDAR 91 assessment. A weight-length analysis was not conducted to identify outliers in the TIP data. A cutoff of 2.5cm minimum and 25cm maximum CL was implemented to remove notable outliers in the TIP dataset (Godwin et al 2024).

Decisions:

- Consider TIP data to inform selectivity and annual population trends in the SEDAR 91 assessment.
- Compare SEAMAP-C data and data from two pilot studies (MER Consultants at sea size composition and HJR Reefscaping at sea CL composition studies) with TIP data.
- Supply complete TIP time series for use in SEDAR 91 analyses.

3.2 Commercial Landings

3.2.1 Overview

Commercial fishery landings in Puerto Rico, were obtained from self-reported fisher logbook data (Caribbean Commercial Logbook, CCL). Commercial fishery landings data for Caribbean Spiny Lobster in Puerto Rico were available for the years 1983-2023.

3.2.2 Outlier Analysis

An outlier analysis was conducted by using a mean and standard deviation method. If the landings of Caribbean Spiny Lobster reported on a trip were greater than three standard deviations from the mean (i.e., 99.73% quantile), they were marked for removal from the dataset. Outliers were identified for each gear group across all years. Total landings with and without outliers are shown in Figure 3.2.1 and the percent change in landings with outliers removed is shown in Table 3.2.1.

Decisions:

- SEDAR 91 Panel decided to define as outliers trips with landings of 1,000 pounds or more. Reports from those trips should be investigated and if found errant, remove them from the commercial landings' series for Puerto Rico.
- The panel recommended that the lead analyst be given the freedom to explore the assessment start year, tentatively recommending 1985. Members of the panel suggested that landings reported prior to 1985 may have included eatches from outside of Puerto Rico's EEZ.

3.2.3 Adoption (partial) of Electronic Reporting Since 2020

Starting in 2020, commercial fishers have had an electronic reporting option for reporting landings on their fishing trips. According to DRNA the adoption rate of electronic reporting is estimated to be around 40%. Due to differences in variable names and other database issues, integration of those electronically reported data into the CCL, and ultimately the Accumulated Landing System (ALS), has been difficult and has necessitated many labor-intensive adjustments to integrate these to the landings datasets for each year since its adoption.

3.2.4 Expansion Factors and Calculation of Commercial Landings

Expansion factors to account for known underreporting and to better estimate commercial landings in Puerto Rico have been in use since landings data collection began in 1983. Port samplers go to a fishing landings center and record the landings of all vessels at that location.

The port sampler observed landings at each location/day are compared to the commercial logbooks with reported landings at the same location/day combination. The ratio of reported landings to observed landings, across all locations within a coast (as defined by DRNA) is the expansion factor for that coast. Expansion factors are not species specific. Expansion factors are usually smaller than 1, meaning not all landings observed by port agents are reported by the fisher:

Expansion Factor = Sum of Reported Landings/Sum of Observed Landing

The landings are then expanded by the inverse of the expansion factor (aka the expansion factor): Expansion Factor = 1/ Expansion Factor

From 1983 to 2002, one expansion factor was used for all of Puerto Rico to expand the reported commercial landings. Starting in 2003 expansion factors by coast were adopted; i.e., separate expansion factors estimated and used for North, East, South and West Coast, Figure 3.2.2 shows Municipalities of Puerto Rico. A more detailed map of the municipalities and Fishing Landings Centers is shown in Appendix 1.

Since the beginning of electronic reporting, data accessibility, and calculation of expansion factors has been challenging. To provide expansion factors for the years 2020-23 (years of electronic reporting), the mean coast specific expansion factors calculated over the years 2014-2019 were used to calculate the expanded landings.

3.2.5 Puerto Rico Caribbean Spiny Lobster Fishery

Commercial fishery landings in Puerto Rico were obtained from self-reported fisher logbook data (Caribbean Commercial Logbook, CCL) that are mailed or delivered to the Puerto Rico Department of Natural and Environmental Resources (DNER or DRNA in Spanish). Commercial landings were reported by species, fishing gear, and the fishing center where the catch was landed.

Commercial fishery landings data for Caribbean Spiny Lobster in Puerto Rico were available for the years 1983-2023. The gear grouping followed the recommendations of the prior Caribbean Spiny Lobster assessment and its update (SEDAR 57, 2019; SEDAR 57 Update, 2022) shown in Orhun et al. (2024) with the addition of "NETS" as separate gear group. The commercial landings were presented in pounds by year and fishing gear groups are shown in Table 3.2.2.

Decision:

- The SEDAR 91 panel decided to combine all net gears; i.e., cast net, gill net and trammel net as a separate "NETS" gear group. The panel also decided to give the lead analyst freedom to explore fleet structure in the assessment model.

3.3 Commercial Discards

Species-specific commercial discard reporting was not established in Puerto Rico for Caribbean Spiny Lobster during the period 1983-2023.

3.4 Commercial Effort

Commercial trips with reported Caribbean Spiny Lobster landings per year and gear group were compiled from 1983 to 2023 (Table 3.4.1).

Table 3.1.1 GLMM analysis summary results for Puerto Rico TIP Caribbean Spiny Lobster CL (cm) from 1981 to 2023. The column titled "group" indicates the group(s) where mean CL are not statistically different from other gears with matching group number(s). The "n" column indicates the number of unique lengths recorded for each gear. The "Percentage" column indicates the percent of the total recorded lengths for each gear. Only nonconfidential data shown.

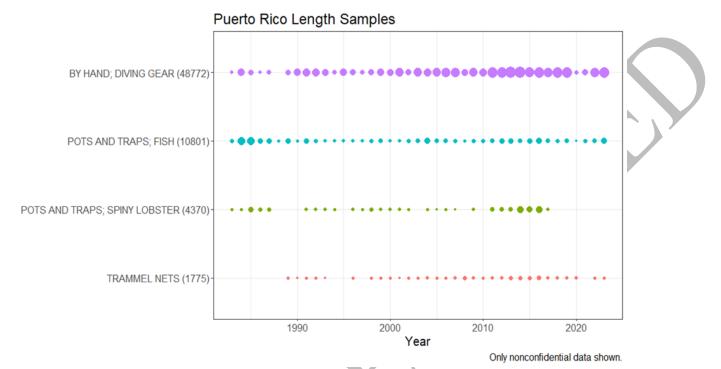
Gear	Mean (cm)	Estimated Marginal Mean	LCL	UCL	Group	Lobster (n)	Interview (n)	Percentage
BY HAND; DIVING GEAR	10.14	2.30	2.30	2.31	1	48,772	5,977	71.59
POTS AND TRAPS; FISH	9.79	2.32	2.30	2.33	1	10,801	1,020	15.85
POTS AND TRAPS; SPINY LOBSTER	9.92	2.29	2.28	2.31	1	4,370	304	6.41
TRAMMEL NETS	10.21	2.31	2.29	2.32	1	1,775	221	2.61

SEDAR 91 SAR SECTION II

Year		Expanded Landings	Difference (%)	
1002	(lbs.)	outlier analysis (lbs.)		
1983	· · · · · · · · · · · · · · · · · · ·	447,524	0.2	
1984	· · · · · · · · · · · · · · · · · · ·	418,530	0.4	
1985	,	374,344	0.6	
1986		260,191	7.0	
1987		181,639	11.7	
1988	· · · · · · · · · · · · · · · · · · ·	240,642	4.5	
1989	· · · · · · · · · · · · · · · · · · ·	338,746	6.9 8.3	
1990	· · · · · · · · · · · · · · · · · · ·	302,116	8.3	
1991	· · · · · · · · · · · · · · · · · · ·	379,740	8.5	
1992	· · · · · · · · · · · · · · · · · · ·	237,424	11.5	
1993	281,659	249,645	11.4	
1994	300,095	286,801	4.4	
1995	392,427	375,510	4.3	
1996	392,777	371,898	5.3	
1997		336,134	7.4	
1998	381,511	339,054	11.1	
1999	· · · · · · · · · · · · · · · · · · ·	370,992	11.2	
2000		415,172	7.7	
2001		398,978	3.0	
2002	· · · · · · · · · · · · · · · · · · ·	313,213	10.3	
2002	· · · · · · · · · · · · · · · · · · ·	361,077	8.8	
2003		471,092	1.1	
2005		291,249	2.5	
2006		271,272	1.9	
2000		254,987	4.0	
2008		294,887	10.6	
2009		312,692	3.2	
2010		264,583	8.6	
2010		269,733	1.2	
2011		378,357	1.2	
2012		274,367	0.4	
2013		<i>c</i>	1.3	
2014		293,023 406,909	2.6	
		<i>c</i>		
2016	* *	434,089	2.6	
2017		275,150	2.4	
2018		496,520	4.2	
2019		475,101	2.7	
2020		292,654	2.0	
2021	· · · · · · · · · · · · · · · · · · ·	411,649	1.2	
2022		499,588	6.5	
2023		560,874	9.0	
Tota	15,001,928	14,228,146	5.2	

Table 3.2.1 Comparison expanded landings before and after outlier removal of commerciallandings of Caribbean Spiny Lobster in pounds for Puerto Rico.

Table 3.2.2 Commercial landings of Caribbean Spiny Lobster in pounds by gear group that reported Caribbean Spiny Lobster landings in Puerto Rico. 'Expanded Lbs' are the total landings of Caribbean Spiny Lobster in pounds estimated by applying the expansion factors. *Data are not confidential


*Data are not c	confidential.			
YEAR	EXPANDED	EXPANDED	EXPANDED	EXPANDED
	DIVING ALL	NETS LBS	POTS AND	TOTAL LBS
	LBS		TRAPS ALL	
			LBS	
1983	411,599	207	36,702	448,508
1984	377,932	109	42,302	420,343
1985	135,604	11,271	229,650	376,525
1986	103,758	7,147	168,852	279,757
1987	63,963	3,942	137,916	205,821
1988	112,287	12,473	127,260	252,020
1989	132,658	13,485	217,796	363,939
1990	119,915	10,595	198,905	329,415
1991	157,496	31,938	225,511	414,945
1992	96,077	20,794	151,446	268,317
1993	122,488	22,096	137,075	281,659
1994	123,167	17,009	159,919	300,095
1995	165,732	32,725	193,970	392,427
1996	174,057	24,704	194,016	392,777
1997	151,841	26,728	184,527	363,096
1998	176,607	24,306	180,598	381,511
1999	169,835	33,766	214,253	417,854
2000	228,922	19,000	201,719	449,641
2001	200,313	11,377	199,739	411,429
2002	175,330	7,015	166,892	349,237
2003	162,356	27,797	205,809	395,962
2004	211,980	21,675	242,838	476,493
2005	135,117	9,094	154,477	298,688
2006	136,014	10,046	130,342	276,402
2007	153,650	8,168	103,797	265,615
2008	209,971	11,713	108,345	330,029
2009	199,276	6,323	117,544	323,143
2010	168,271	26,834	94,525	289,630
2011	172,693	3,942	96,383	273,018
2012	224,069	10,270	149,720	384,059
2013	177,514	15,684	82,223	275,421
2014	175,756	23,536	97,514	296,806
2015	236,900	22,221	158,458	417,579
2016	237,239	25,657	182,837	445,733
2017	163,971	14,150	103,784	281,905
2018	321,863	22,634	173,834	518,331
2019	279,995	29,248	178,953	488,196
2020	151,397	17,657	129,696	298,750
2021	222,740	16,936	176,852	416,528
2022	281,371	29,344	223,432	534,147
2023	354,023	32,621	229,533	616,177
Total	7,775,747	716,237	6,509,944	15,001,928

 $\overline{\langle}$

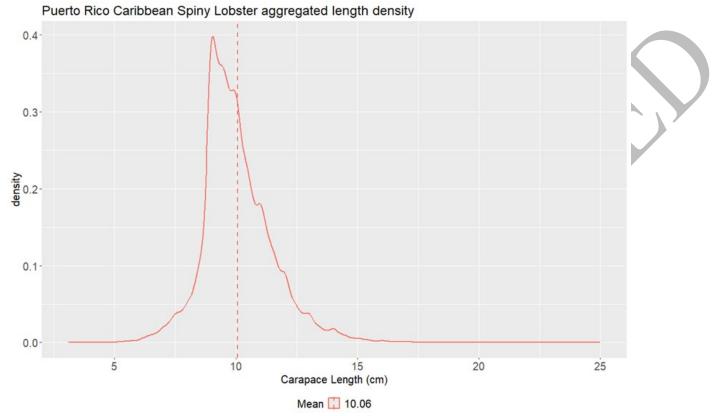

Spiny Lobster landings in Puerto Rico. *Data are not confidential.							
YEAR	TRIPS	TRIPS NETS	TRIPS	TRIPS GRAND			
	DIVING		POTS AND	TOTAL			
			TRAPS				
1983	23,265	37	1,128	24,430			
1984	22,786	36	1,651	24,473			
1985	6,626	840	11,718	19,184			
1986	4,933	604	5,812	11,349			
1987	2,834	305	4,898	8,037			
1988	3,740	372	4,448	8,560			
1989	3,507	294	6,273	10,074			
1990	2,914	903	6,841	10,658			
1991	4,971	1,138	8,824	14,933			
1992	3,359	870	4,701	8,930			
1993	4,866	1,222	5,400	11,488			
1994	5,939	1,111	6,731	13,781			
1995	8,744	1,607	10,996	21,347			
1996	9,629	1,898	12,320	23,847			
1997	8,756	1,647	9,522	19,925			
1998	9,749	1,051	9,361	20,161			
1999	10,216	1,667	11,708	23,591			
2000	8,500	1,181	8,931	18,612			
2001	9,158	1,042	8,672	18,872			
2002	9,104	677	8,600	18,381			
2003	5,319	607	4,732	10,658			
2004	5,744	592	3,764	10,100			
2005	5,166	414	3,063	8,643			
2006	5,340	742	2,669	8,751			
2007	5,544	522	1,934	8,000			
2008	5,375	488	1,714	7,577			
2009	5,856	293	2,218	8,367			
2010	4,712	411	2,028	7,151			
2011	6,872	237	2,062	9,171			
2012	7,417	482	2,533	10,432			
2013	8,191	712	2,276	11,179			
2014	8,379	968	2,518	11,865			
2015	8,253	909	2,976	12,138			
2016	7,409	892	2,998	11,299			
2017	5,217	536	1,872	7,625			
2018	8,149	798	1,952	10,899			
2019	8,665	933	2,718	12,316			
2020	4,593	665	1,979	7,237			
2021	6,716	635	2,425	9,776			
2022	7,449	991	2,683	11,123			
2023	8,448	855	2,575	11,878			
Total	302,410	32,184	202,224	536,818			
	<i>.</i>						

Table 3.4.1 Number of commercial trips reported by gear group that included Caribbean

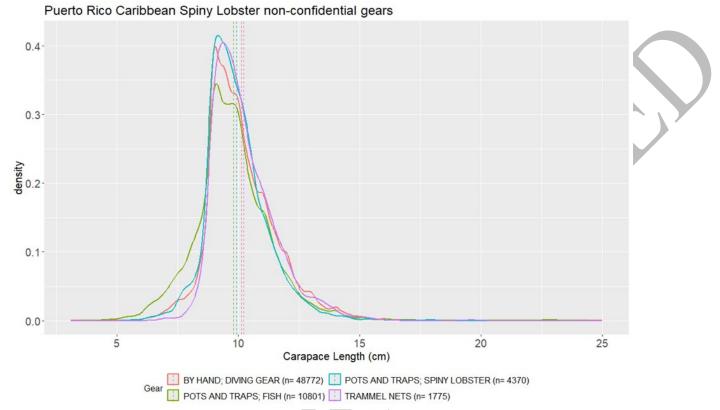

 Spiny Lobster landings in Puerto Rico. *Data are not confidential.

Figure 3.1.1 Plot showing relative number of Caribbean Spiny Lobster CL in Puerto Rico across time collected. Each point is color specific to the gear it represents. Gears are arranged from most to least abundant.

Figure 3.1.2 Aggregated density plot of cephalothorax lengths (cm) of Caribbean Spiny Lobster in Puerto Rico, all gears combined. Dotted line represents mean CL.

Figure 3.1.3 Aggregated density plot of cephalothorax length (cm) of nonconfidential gears recorded for Caribbean Spiny Lobster in Puerto Rico from 1981 to 2023. Dotted line represents mean CL. Mean lengths can be found in **Table 3.1.1**.

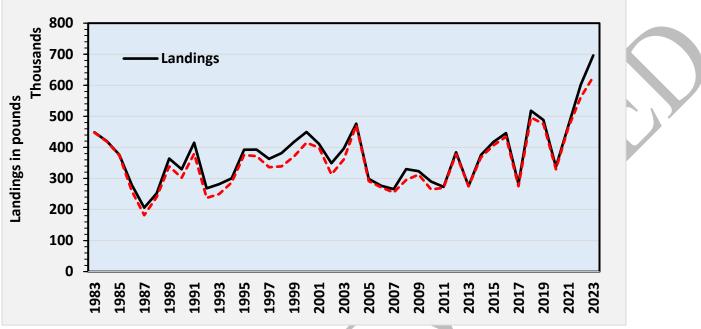
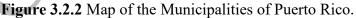



Figure 3.2.1 Commercial landings (pounds) of Caribbean Spiny Lobster of Puerto Rico with and without the outliers removed.

4. Recreational Fishery Statistics

There are currently no data available on recreational landings in Puerto Rico.

5. Measures of Population Abundance

5.1 Overview

The panel was presented with a summary of the fishery-independent research conducted by SEAMAP-C during 2021-2023 (RD-12). Concerns were raised about using the data for an index of relative abundance, principally due to short time series and unequal sample sizes among years. The panel recommended that the data not be considered for use as an index of relative abundance in the PR assessment model, but noted that the CL composition data from all three years were substantive and warrant consideration for model-fitting.

Concerning fishery-dependent information, rising landings and decreasing or flat effort trends in the self-reported commercial logbook data demonstrated potential signs of hyperstability in catch-per-unit-effort. Members of the panel noted that the number of trips is likely not the best measure of effort for trap fisheries, for which effort is best measured in number of traps, for trips reporting that gear. The panel discussed possible alternative explanations for the patterns in landings and effort, including years of potentially high recruitment. The panel discussed the feasibility of standardizing a fishery-dependent index of relative abundance using the landings divided by the number of traps. However, the panel agreed that although there may be consistent trap effort reporting in logbooks, there is no such means for dive fisheries or nets, and the mechanism(s) that would explain the trend are not likely to be discernable, even though standardization.

Decision:

- No data were recommended for use in constructing an index of abundance for spiny lobsters in Puerto Rico.

6. Research Recommendations

- When developing new research projects, consider how those projects can be designed to include data collection and/or analyses that would inform ecosystem models and analyses. The original objectives of the project should not be compromised, however.

6.1 Life History Research Recommendation

- Life history studies focused on the US Caribbean generate region-specific parameters for growth, fecundity, natural mortality.
- Look for ongoing growth/aging work via SEAMAP-C and DNER who is involved in doing histology for reproductive analyses.
- Merge selectivity studies, life history data collection, and fishery-independent survey frameworks to determine how to get best data for stock assessment.

6.2 Commercial Fishery Statistics

6.2.1 Length Composition Research Recommendations

- Compare SEAMAP-C, HJR Reefscaping, and MER Consultants CL composition to TIP size composition.

6.1.1 Commercial Landings Research Recommendations

- Track number of fishers/year in relation to annual landings- how does it vary?
- Support connectivity studies consider spiny lobster as one stock vs. by island (metapopulation).
- Investigate weak/lack of correlation between TIP and landings data
- Demand analysis: look at price per pound (survey), market preferences, trends and correlation with landings, and for all islands.
- Investigate species associations with spiny lobster.
- Investigate recruitment connectivity between island platforms; e.g., STX seeding PR and other "hypotheses".
- Increase funding for port samplers to improve TIP data collection in PR.
- Increase IT support for automated expansion factors calculation for the landings.

6.2.3 Discards and Discard Mortality Research Recommendations

Discard information in the catch reports does not allow data on length or sex in current reporting schema.

6.3 Indices Research Recommendations

There were no recommendations from the panel regarding use of fishery-independent data in the Puerto Rico assessment model. However, the panel recommended that analysts not explore standardization of fishery-dependent data for use as an index of relative abundance.

7. Literature Cited

- Babcock, E.A., W.J. Harford, R. Coleman, J. Gibson, J. Maaz, J.R. Foley, and M. Gongora. (2014) Bayesian depletion model estimates of spiny lobster abundance at two marine protected areas in Belize with or without in-season recruitment. ICES Journal of Marine Science: fsu226.
- Beggerly, Sara, Molly Stevens, and Heather Baertlein. 2022. "Trip Interview Program Metadata." North Charleston, SC.
- Bliss, D. 1982. Shrimps, Lobsters and Crabs . New Century Publishers, Piscataway, New Jersey. 242 pp.
- Butler, M.J., Mojica, A.M., Sosa-Cordero, E., Millet, M., Sanchez-Navarro, P., Maldonado, M.A., Posada, J., Rodriguez, B., Rivas, C.M., Oviedo, A., Arrone, M., Prada, M., Bach, N., Jimenez, N., Garcia Rivas, M., Forhan, K., Behringer, D.C. Jr., Matthews, T., Paris, C. Cowen, R. 2010. Patterns of Spiny Lobster (*Panulirus argus*) Postlarval Recruitment in the Caribbean: A CRTR Project. -In: 62 Proceedings of the Sixty-Second Annual Gulf and Caribbean Fisheries Institute. -- pp. 360-369.-- Cumana Venezuela, November, 2009
- CFMC. 1981. Draft Environmental Impact Statement/Fishery Management Plan and Regulatory Analysis for the Spiny Lobster Fishery of Puerto Rico and the U.S. Virgin Islands. Caribbean Fishery Management Council. 7-15p.
- Chen, Y., Jackson, D.A. and Harvey H.H. 1992. A comparison of von Bertalanffy and polynomial functions in modeling fish growth. CFFAS 49:1228-1235.
- Cruz, R., R. Coyula and A.T. Ramirez. 1981. "Crecimiento y mortalidad de la langosta Espinosa (*Panulirus argus*) en la Plataforma suroccidental de Cuba. Rev. Cub. Inst. Pesq., 6(4): 89-119.
- Die, D. Maturity of spiny lobsters in the US Caribbean. Caribbean Southeast Data Assessment Review Workshop Report SEDAR-RW-03.
- FAO. 2001. Report on the FAO/DANIDA/CFRAMP/WECAFC Regional Workshops on the Assessment of the Caribbean Spiny Lobster (*Panulirus argus*). Belize City, Belize, 21 April-2 May 1997 and Merida, Yucatan, Mexico, 1-12 June 1998. FAO Fisheries Report. No. 619. Rome, FAO. 2001. 381p.
- Godwin, K., A. Rios. 2024. SEDAR 91 Trip Interview Program (TIP) Size Composition Analysis of Caribbean Spiny Lobster (Panulirus argus) in Puerto Rico, US Caribbean, 1981-2023. SEDAR-91-DW-04. 8pp.
- Goedeke, T. L., A. Orthmeyer, P. Edwards, M. K. Dillard, M. Gorstein, and C. F. G. Jeffrey.
 2016. Characterizing Participation in Non- Commercial Fishing and other Shore-based
 Recreational Activities on St. Croix, U.S. Virgin Islands. NOAA Technical
 Memorandum NOS NCCOS 209. Silver Spring, MD. 93 pp.
- Gongora, M. 2010. Assessment of the spiny lobster (*Panulirus argus*) of Belize based on fishery dependent data. Belize Fisheries Department, P.O. Box 148, Princess Margaret Drive, Belize City, Belize.
- Kanciruk, P. and W. F. Herrnkind. 1976. Autumnal Reproduction In *Panulirus argus* at Bimini, Bahamas. Bulletin of Marine Science. 26: 417-432
- Leon, M.E., R. Puga, and R. Cruz. 1995. Intensidad de pesca con refugios artificiales (pesqueros) y trampas (jaulones) sobre el recurso langosta (*Panulirus argus*) en el sur de Cuba. Rev. Cub. Inv. Pesq. 19(2): 22- 26.

- Leon, M.E., J.L. Martinez, D.L. Cota, S.H. Vazquez, and R. Puga. 2005. Decadal variability in growth of the Caribbean spiny lobster Panulirus argus (Decapoda: Paniluridae) in Cuban waters. Revista de Biologia Tropical 53 (3-4): 475-486.
- Mateo, I. 2004. Population dynamics for spiny lobster *Panulirus argus* in Puerto Rico: a progress report. Proceedings of the 55th Gulf and Caribbean Fisheries Institute.
- Medina Martinez, A. (2024). Determining the age-size relationship of Panulirus argus in the southwest area of Puerto Rico. [SEDAR91-RD-03].
- Medley, P.A.H. and C.H. Ninnes. 1997. A recruitment index and population model for spiny lobster (Panulirus argus) using catch and effort data. Canadian Journal of Fisheries and Aquatic Sciences 54: 1414-1421.
- Munro, J. 1974. "The biology, ecology, exploitation and management of Caribbean reef fishes. Part VI – Crustaceans (Spiny lobsters and crabs). Univ. West Indies Zool. Dept. Res. Rept. 3: 1-57.
- Olsen, D.A. and I.G. Koblic. 1975. Population dynamics, ecology, and behavior of spiny lobsters, Panulirus argus of St. John, U.S.V.I. Growth and Mortality. Bull. Nat. Hist. Mus. L.A. County, (20): 17-22.
- Olsen, D.A., Nowlis, J., Bryan D. 2017. A study of the Virgin Islands spiny lobster fishery: growth, population size and mortality. Proceedings of the 66th Gulf and Caribbean Fisheries Institute.
- Orhun, M. Refik, Katherine Godwin, Kim Johnson and Stephanie Martínez Rivera. 2024. SEDAR 91 Commercial Landings of Caribbean Spiny Lobster (Panulirus argus, Panulirus guttatus) in Puerto Rico, US Caribbean, 1983-2023. SEDAR91-DW-07. SEDAR, North Charleston, SC. 23 pp.
- Phillips, B. F., J. S. Cobb, and R. W. George. 1980. "General Biology." In: The Biology and Management of Lobsters, Vol. I: Physiology and Behavior, pp 1639. J.S. Cobb and B.F. Phillips, Eds. New York: Academic Press.
- Quinn TJ, Deriso RB (1999) Quantitative fish dynamics. Oxford University Press, New York, NY
- R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
- Saul, S. 2004. A Review of the Literature and Life History Study of the Caribbean Spiny Lobster, Panulirus argus. Caribbean Southeast Data Assessment Review Workshop Report SEDAR-DW-05.
- SEDAR 2005. Southeast Data, Assessment, and Review Stock Assessment Report of SEDAR 8 Caribbean Spiny Lobster. Charleston, SC.
- SEDAR 2016. Southeast Data, Assessment, and Review Stock Assessment Report of SEDAR 46 Caribbean Data-Limited Species. North Charleston, SC.
- SEDAR 57. 2019. "SEDAR 57 Stock Assessment Report U.S. Caribbean Spiny Lobster." North Charleston SC. http://sedarweb.org/sedar-57. SEDAR, North Charleston, SC. 232 pp.
- SEDAR 57 Update. 2022. "SEDAR 57 Stock Assessment Update St. Thomas and St. John Caribbean Spiny Lobster." SEDAR, North Charleston, SC. 13 pp.
- Valle-Esquival, M, and G. Díaz, G. 2004. An Update on the Reported Landings, Expansion Factors and Expanded Landings for the Commercial Fisheries of the United States Virgin Islands (with Emphasis on Spiny Lobster and the Snapper Complex).

NOAA/NMFS/SEFSC Miami Laboratory SFD-2004/051 (SEDAR-8-DW-09). 48pp.

- Valle-esquivel, M., and R. J. Trumble. 2016. Pilot Study of the Recreational Queen Conch (*Strombus gigas*) and Spiny Lobster (*Panulirus argus*) Fishery in Puerto Rico for the Gulf States Marine Fisheries Commission. MRAG Americas, Inc. 136 pp.
- Velazquez-Abunader, I., Gomez-Munoz, V.M., Salas, S., Ruiz-Velazco, J.M.J. 2015. Intercohort growth for three tropical resources: tilapia, octopus, and lobster. Rev. Biol. Trop. 63:617-627.

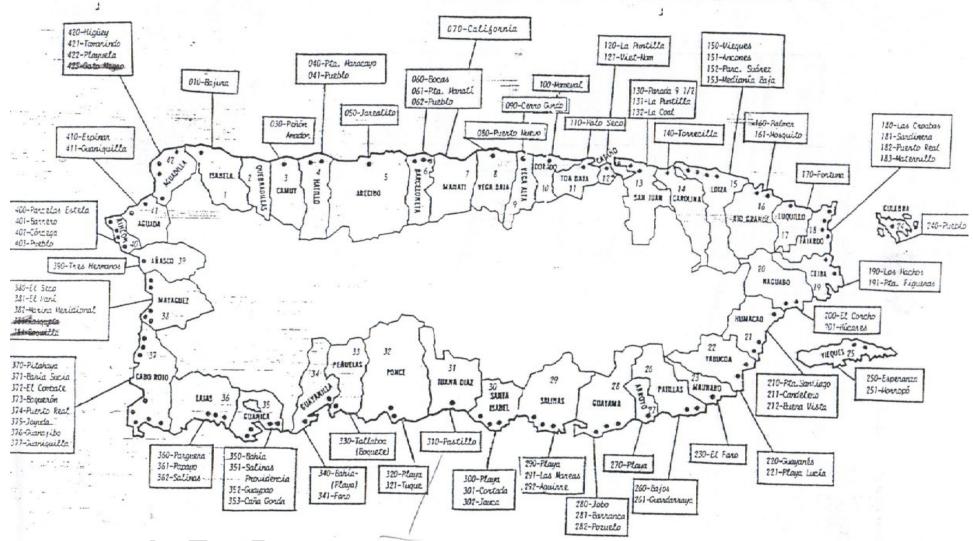


Figure Appendix 1. Map of Fishing Landing Centers in the Municipalities of Puerto Rico.

SEDAR 91 SAR SECTION II