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ARTICLE

Accounting for variable recruitment and fishing mortality in
length-based stock assessments for data-limited fisheries
Merrill B. Rudd and James T. Thorson

Abstract: In fisheries with limited capacity for monitoring, it is often easier to collect length measurements from fishery catch
than quantify total catch. Conventional stock assessment tools that rely on length measurements without total catch do not
directly account for variable fishing mortality and recruitment over time. However, this equilibrium assumption is likely
violated in almost every fishery, degrading estimation performance. We developed an extension of length-only approaches to
account for time-varying recruitment and fishing mortality. This Length-based Integrated Mixed Effects (LIME) method at a
minimum requires a single year of length data and basic biological information but can fit to multiple years of length data, catch,
and an abundance index if available. We use simulation testing to demonstrate that LIME can estimate how much fishing has
reduced spawning output in the most recent year across a variety of scenarios for recruitment and fishing mortality. LIME
improves data-limited fisheries stock assessments by its flexibility to incorporate additional years or types of data if available and
obviates the need for equilibrium assumptions.

Résumé : Dans les pêches caractérisées par une capacité de surveillance limitée, il est souvent plus facile de recueillir des
mesures de la longueur sur les prises que de quantifier les prises totales. Les outils traditionnels d’évaluation des stocks qui
reposent sur les mesures de la longueur sans données sur les prises totales ne tiennent pas directement compte de la variabilité
dans le temps de la mortalité par pêche et du recrutement. Cette hypothèse d’équilibre n’est toutefois probablement pas
respectée dans presque toutes les pêches, ce qui se traduit par une performance réduite des estimations. Nous avons mis au point
une extension des approches reposant uniquement sur la longueur pour tenir compte de la variabilité temporelle du recrute-
ment et de la mortalité par pêche. Cette méthode axée sur les effets mixtes intégrés basés sur la longueur (LIME) nécessite au
minimum une seule année de données sur la longueur et de renseignements biologiques de base, mais peut être calée sur
plusieurs années de données sur la longueur, les prises et un indice d’abondance, si ces données sont disponibles. Nous avons fait
des essais de simulation pour démontrer que la méthode LIME peut estimer la réduction causée par la pêche de l’apport de la
reproduction durant l’année la plus récente pour un éventail de scénarios de recrutement et de mortalité par pêche. L’approche
LIME améliore les évaluations de stocks pour les pêches caractérisées par des données limitées parce qu’elle permet d’intégrer
d’autres années ou types de données éventuellement disponibles et elle élimine la nécessité de faire appel à des hypothèses
d’équilibre. [Traduit par la Rédaction]

Introduction
Many fisheries worldwide lack the quality and quantity of data

used in classical stock assessments but must deal with limited
information to make management decisions (Quinn et al. 2016).
Stock assessments can provide a quantitative starting point for
developing management strategies and monitoring the impacts
of management. For example, the Magnuson–Stevens Fisheries
Conservation and Management Act mandates fisheries managers
in the United States to set catch limits based on the “best available
science”, involving advice from stock assessment to inform those
limits (Darcy and Matlock 1999; Methot et al. 2014). The Marine
Stewardship Council similarly requires fisheries seeking certifica-
tion to go through a stock assessment process to determine their
sustainability (Gulbrandsen 2009). In the case of small-scale fish-
eries in developing nations, it is possible to manage a fishery using
only harvest control rules to meet management objectives, with-
out formal stock assessment estimating status relative to refer-

ence points (Mahon 1997). However, beyond their use to evaluate
management strategies for fishery resources (Carruthers et al.
2014), modeling tools can help with community engagement in
the scientific process, such as conflict resolution (Butler et al.
2006) and integration of local knowledge to support cooperation
between fishers and scientists (Neis 1992; Azzurro et al. 2011).

Many stocks worldwide remain unassessed, e.g., the UN Food
and Agriculture Organization global fishery statistics database
includes 19 624 unique combinations of country and taxa (FAO
2016), while the RAM Legacy Stock Assessment Database only in-
cludes 1268 stock assessments (Ricard et al. 2012). The regions of
the world with the fewest stock assessments relative to the num-
ber of stocks perform worse across fishery management attri-
butes (Melnychuk et al. 2017), indicating that the presence of
fishery monitoring and assessment may have some relation
with successful management. In the following, we define “data-
limited” as any stock with uninformative data (no contrast to
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provide information on rates of change) or lacking data types
typically used in statistical estimates of stock status (e.g., fishery-
independent surveys, proportion at ages) (Costello et al. 2012;
Dowling et al. 2016). Data-limited stock assessment methods are in
great demand in both developed and developing nations due to
the ubiquity of data-limited fisheries and the need for science-
based management decisions (Wetzel and Punt 2011; Dowling
et al. 2015; Chrysafi and Kuparinen 2016).

Length-based assessment methods are a vital component of the
data-limited stock assessment toolbox because it is much easier to
obtain reliable length measurements of a portion of the fishery
catch than to measure total catch or record effort data for many
small-scale or nontarget species (Harley et al. 2001; Kokkalis et al.
2015; Nadon et al. 2015; Prince et al. 2015b). Similarly, age infor-
mation and a fishery-independent survey that are representative
of total abundance are prohibitively expensive or impossible to
collect for most fisheries in the world. Prominent length-based
methods for estimating reference points in data-limited fisheries
include length-based spawning potential ratio (LB-SPR) (Hordyk
et al. 2015) and mean-length mortality estimation methods
(Nadon et al. 2015). LB-SPR uses length-composition data and as-
sumptions about biological parameters to make a rapid assess-
ment of stock status relative to unfished levels assuming
equilibrium conditions (Hordyk et al. 2015; Prince et al. 2015b).
While LB-SPR can use multiple years of length data, status deter-
mination is based on one year of data at a time (i.e., estimates of
status over multiple years are based on that year’s length compo-
sition alone). Mean-length mortality estimators (e.g., Gedamke
and Hoenig 2006), first developed by Beverton and Holt (1957),
assume that fishing mortality directly influences mean length of
the catch and have been used for assessments in the US South
Atlantic, Pacific islands, and Caribbean (Ehrhardt and Ault 1992;
Ault et al. 2005, 2008; Gedamke and Hoenig 2006; Nadon et al.
2015). As measures of stock status, these length-based methods
derive the spawning potential ratio (SPR) reference point, defined
as the proportion of unfished reproductive potential at a given
level of fishing pressure (Goodyear 1993).

Length-based assessment methods estimating stock status as-
sume that recruitment and fishing mortality arise from determin-
istic relationships or have not changed over a period significant
for management and the life history of the species (termed “equi-
librium assumptions”). Equilibrium assumptions are often vio-
lated (Gedamke and Hoenig 2006), as recruitment is quite variable
for most species and fishing mortality changes with markets and
other socioeconomic factors in the fishing community (Thorson
et al. 2013, 2014a). Stochastic ocean conditions and productivity
regime shifts may cause recruitment to vary erratically, gradually,
or periodically at any given time (Vert-pre et al. 2013; Thorson
et al. 2014b; Szuwalski et al. 2015). However, the violation of the
equilibrium assumption may be difficult to detect. For example,
the equilibrium assumption may appear valid when the mean
length is constant over time (Gedamke and Hoenig 2006; Nadon
et al. 2015). If recruitment is then constant over time, increasing
fishing mortality will lead to decreasing mean length as the larger
individuals are harvested and only smaller individuals remain in
the population. However, constant fishing mortality and a recruit-
ment pulse would also lead to a decrease in mean length, with
more young individuals entering the population. Given both vari-
able fishing mortality and recruitment processes occurring on the
same population as well as errors when measuring mean length,
a mean-length time series may appear constant when time-varying
population processes are instead cancelling each other out.

As an alternative to the equilibrium assumptions, a mixed-
effects model can be used to deal with important demographic
changes by estimating random variation in recruitment, fishing
mortality, or other biological processes as well as the magnitude
(variance) of random variation in each process (de Valpine and
Hastings 2002; Buckland et al. 2004; Schnute and Haigh 2007;

Thorson and Minto 2015). Mixed-effects models can directly ac-
count for variation arising from natural processes or measure-
ment processes separately and therefore improve performance in
nonlinear fisheries models (de Valpine and Hastings 2002; Ono
et al. 2012; Thorson et al. 2015b). A main criticism of length-based
methods with equilibrium assumptions is that with a single year
of length-composition data and general understanding of biolog-
ical parameters, it is impossible to determine whether a larger
proportion of small fish in the catch is caused by strong cohort in
recent years or by the removal of larger fish from the system.
Accounting for random variation in recruitment, fishing mortal-
ity, and observation error arising from the process of sampling
fish lengths from the population helps to tease apart each of these
processes and better identify the true state of the fish population.

The aim of this study is to introduce a new length-based, inte-
grated, mixed-effects (LIME) model and demonstrate its statistical
performance when estimating reference points assuming that
only length-composition and basic biological information are
available. This method builds upon the catch curve stock-
reduction analysis model (Thorson and Cope 2014), which in-
cludes an estimate of mortality from the age composition and at
least one year of total fishery catch to estimate maximum sustain-
able yield (MSY) based reference points without assuming infor-
mation about final biomass relative to unfished biomass (as
generally used in stock reduction analysis). As an extension, LIME
uses samples of length in place of the more resource-intensive
samples of age and can estimate the SPR reference point if catch
data are unavailable. To demonstrate the LIME model, we used
simulation testing to (i) demonstrate that LIME is unbiased across
several life-history types and patterns of fishing mortality and
recruitment variability and able to include more years of length
measurements and catch and (or) abundance index data, (ii) exam-
ine the sensitivity of the model to sample size of length measure-
ments and error in input parameters, and (iii) compare LIME
against LB-SPR to assess performance under various violations of
model assumptions, including the timing of sampling within the
year and modeling monthly time steps.

Methods
LIME is an age-structured population dynamics model with the

ability to (1) account for variable fishing mortality and recruit-
ment when only length data are available and (2) treat multiple
years and types of data in an integrated manner to improve esti-
mates of fishing mortality changes over time. The minimum in-
puts for the LIME assessment method are data on the length
composition of the catch from a single year as well as assumed
life-history information, including the length at age relationship,
an assumed natural mortality rate, and length at 50% maturity.
LIME estimates annual fishing mortality rates, lengths at 50% and
95% selectivity to the fishing gear, and the Dirichlet-multinomial
parameter � as fixed effects. The effective sample size of length
data is linearly related to the input sample size with intercept (1 +
�)−1 and slope �(1 + �)−1 (Thorson et al. 2017a). LIME can be differ-
entiated from other age-structured models (e.g., Stock Synthesis)
in that annual recruitments are treated as random effects, where
mean and standard deviation of a distribution for recruitment are
additionally estimated as fixed effects. Another key difference is
that LIME does not require catch data: if no information on the
scale of population size is available, recruitment will be estimated
relative to average levels for an unfished population. As measures
of stock status, we derived the SPR reference point to compare
results with LB-SPR. We also derived the F30% and F40% reference
points (the fishing mortality rates that would result in SPR of 30%
and 40%, respectively; Clark 2002). We derived MSY by finding the
fishing mortality rate that results in the highest yield per recruit.
When total catch data were available (thereby providing informa-
tion on scale of the population size), LIME would estimate equi-
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librium recruitment, which would scale the MSY based on a
per-recruit equation to a scale appropriate for the population size.

We developed an operating model to simulate true populations
and generate data under a variety of fishing, recruitment, and
life-history scenarios. We then used this operating model to ex-
plore the estimation performance of LIME for different scenarios
regarding recruitment, fishing mortality, data availability, and
life history (Fig. 1). We conducted all simulation modeling using
the open-source statistical software R (R Core Team 2016) and
all estimation in the R package Template Model Builder (TMB)
(Kristensen et al. 2016) as implemented in our R package LIME
(https://github.com/merrillrudd/LIME, doi:10.5281/zenodo.834404,
version 1.0.0).

Operating model
We tested LIME for three different life-history types chosen to

reflect the types of taxa for which length-based assessments are
commonly demanded (Fig. 2). These life-history types were (a) a
short-lived fish, mimicking rabbitfish (Siganus sutor): L∞ = 36.2 cm,
k = 0.87, M = 1.49, Lm

50 = 20.2 cm, maximum age = 4; Hicks and
McClanahan 2012), (b) a medium-lived fish, mimicking spotted
rose snapper (Lutjanus guttatus): L∞ = 64.6 cm, k = 0.21, M = 0.43, Lm

50 =
34.0 cm, maximum age = 15; Bystrom 2015), and (c) a longer-lived
fish, mimicking red grouper (Epinephelus morio): L∞ = 90.0 cm, k =
0.13, M = 0.18, Lm

50 = 50.0 cm, maximum age = 26; Heemstra and
Randall 1993) (Table 1). Each simulated population began with
biomass at a fraction of unfished biomass, drawn from a uniform
distribution between 0.05 and 0.95.

For each life-history scenario, we tested LIME performance un-
der three scenarios of fishing mortality and recruitment variabil-
ity (Fig. 3). The first is the “equilibrium scenario”, which matches
the nonvariable fishing mortality and recruitment assumptions of
LB-SPR. The equilibrium scenario involved fishing mortality and
recruitment constant over a 20 year period, with a standard devi-
ation for fishing mortality and recruitment set to a negligible 0.01.
The second scenario, the “two-way base scenario”, involved a lin-
ear change from the fishing mortality that would result in the
randomly chosen initial depletion to the rate associated with 20%
SPR (F20%) over the first 7 years of the 20 year time series. This
change could be positive or negative depending on the F associ-
ated with randomly selected value for initial depletion and F20%.
Over the next 7 years of the time series, F was constant at F20% and
then the fishing rate decreased linearly down to half of F20% for the
last 6 years of the time series. F20% was calculated deterministi-
cally based on the biological information and selectivity associ-
ated with each life-history type. Thus, this value would not vary
between different scenarios of variability within a life-history
type. The fishing mortality time series in the “two-way base sce-
nario” varied between simulation iterations in (a) the randomly
chosen initial depletion and (b) the lognormally distributed devi-
ations around this two-way trip (following the same equation for
lognormal recruitment deviates in Table 2, eq. 1, except using the
standard deviation for fishing mortality, �F, equal to 0.2). While
we calculated F20% for the medium-lived and longer-lived life-
history types, we fixed F20% to 3.0 for the short-lived life-history
type. Based on the assumption of instantaneous annual fishing

Fig. 1. Diagram of the simulation study. “LC” stands for length composition and numbers indicate number of years in the 20 year time period
modeled. In the case of the instantaneous annual length measurement scenario, we compared multiple sample sizes of length measurements
annually (1000, 500, 200, 100, 50, and 20). For the other scenarios, we assumed the base case of 200 length measurements annually. [Colour online.]
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mortality, F20% for the short-lived fish was calculated to be much
greater than could be supported even by very high fishing capac-
ity. Recruitment was variable and autocorrelated over a 20 year
period (Table 2, eq. 2). This scenario included a standard deviation
of recruitment residuals �R equal to 0.737 and a first-order autore-
gressive coefficient equal to 0.426, the mean of the predictive
distribution from a meta-analysis of recruitment variability in
global fish orders (Thorson et al. 2014b). A third scenario, the
“one-way base scenario”, involved the same recruitment variabil-
ity and autocorrelation as the “two-way scenario” but with fishing
mortality changing linearly from the rate that would result in the
randomly chosen initial depletion to F20% over the 20 year period.
Thus, this change could be positive or negative depending on the
F associated with the randomly chosen initial depletion relative to
F20% for the life-history type. This combination of scenarios tests
the ability to track how the population processes are changing
over time with variability in the system.

In the operating model, we assumed that the natural mortality
rate was constant, known, and independent of size or age. We
modeled individual growth using a von Bertalanffy growth func-
tion (Table 3, eq. 1; Fig. 2). We assumed that maturity at length mj
was based on a one-parameter logistic function (Table 3, eq. 2;
Fig. 2). We converted maturity at length to maturity at age using a
normal distribution with standard deviation a function of the
coefficient of variation of the age–length curve (Table 3, eq. 3).
Selectivity at length follows a two-parameter logistic model
(Table 3, eq. 4; Fig. 2), with estimated parameter length at 50%
selectivity and a second parameter � representing the difference
between length at 95% and 50% selectivity. We modeled mass at
age as an allometric function of individual length at age (Table 3,
eq. 5). We calculated annual total biomass as a function of the
abundance and mass at age (Table 3, eq. 6). Spawning biomass was
a function of the total annual biomass and the proportion mature
at age (Table 3, eq. 7). These processes contributed to an underly-
ing age-structured model (Table 3, eq. 8). Parameter definitions
and input values are listed in Table 1.

Data generation
We generated length data by simulating underlying age-

structured dynamics and then sampling length composition from

the vulnerable population instantaneously at the beginning of
each year. First, we calculated the probability of being in a length
bin for individuals of each age (Table 2, eq. 3). We then calculated
the probability of harvest in each length bin each year as the
proportion of the abundance at age vulnerable to the fishing gear
each year multiplied by the probability of being in a length bin
given age (Table 2, eq. 4). We used a multinomial probability
distribution to generate the length frequency of samples of the
catch in each length bin over time (Table 2, eq. 5).

We assumed that a sample size n of 200 individuals were mea-
sured annually and that this was the “true” sample size of the
length data. We compared the base case of 200 length measure-
ments annually to model performance under sample sizes of 1000,
500, 100, 50, and 20. We used the large sample size of 1000 to
confirm that the model is unbiased and precise across data avail-
ability scenarios under ideal circumstances and then tested the
alternate, lower sample sizes to assess performance under more
realistic sample sizes.

We tested seven different scenarios of data availability. Two
scenarios included only length data, assuming that 1 or 10 years
of length data were available (the “one-length composition”,
“10-length compositions” scenarios). Data from these two scenarios
were used to demonstrate the value of additional years of length
data for each life-history type. We also explored five scenarios of
additional data availability to demonstrate the integrated nature
of LIME. The data availability scenarios included (i) a “data-rich”
scenario with 20 years of total catch, 20 years of an abundance
index, and 20 years of length data, used as proof-of-concept that
LIME works when a high amount of informative data exists,
(ii) “index plus 10” with 20 years of an abundance index and
10 years of length data, (iii) “index plus 1” with 20 years of an
abundance index and 1 year of length data, (iv) “catch plus 10” with
20 years of total catch data and 10 years of length data, and
(v) “catch plus 1” with 20 years of total catch data and 1 year of
length data. We assume that catch and abundance indices are
lognormally distributed with a log standard deviation of 0.2
(Table 1). The “catch plus 1” scenario is essentially a stock-
reduction analysis while replacing the assumed information re-
garding final biomass (as used in the stock-reduction analysis)

Fig. 2. Selectivity, maturity, and length at age curves for the three life-history types tested in the simulation study mimicking (a) rabbitfish
(Siganus sutor), a short-lived fish (asymptotic length L∞ = 36.2 cm, von Bertalanffy k = 0.87, natural mortality M = 1.49, length at 50% maturity
Lm

50 = 1 year, maximum age A = 4 years; Hicks and McClanahan 2012), (b) spotted rose snapper (Lutjanus guttatus), a medium-lived fish (L∞ =
64.6 cm, k = 0.21, M = 0.43, Lm

50 = 4 years, A = 15 years; Bystrom 2015), and (c) red grouper (Epinephelus morio), a longer-lived fish (L∞ = 90 cm, k =
0.13, M = 0.18,Lm

50 = 7 years, A = 26 years; Heemstra and Randall 1993). [Colour online.]
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with a length-based catch curve to estimate fishing mortality in
the final year, which is analogous to Thorson and Cope (2014),
except using length-composition samples. We calculated the ex-
pected catch at age using the Baranov catch equation (Table 2,
eq. 6), summing to obtain total annual catch (Table 2, eq. 7), based
on the true fishing mortality time series and selectivity specified
in the operating model. The generated standardized abundance
index It was proportional to spawning biomass (Table 2, eq. 8).

When not otherwise stated, we generated data on an annual
time step, which assumes that length-composition data are col-
lected instantaneously at the beginning of the year. In fisheries
where only length data and biological information are available
(i.e., no catch or abundance index), it is possible that length data
would be available on less than an annual time step. We tested
scenarios where length data were collected on a monthly time
step and then either pooled into an annual time step or kept on a
monthly time step. The monthly data collection scenario is more
representative of fisheries occurring year-round, with no specific
season. Furthermore, length data on a monthly time step would
be more representative of short-lived fish growth to account for
fish observed between the midpoints of each age class.

Estimation model
The structure of LIME follows the structure of the operating

model using eqs. 1–8 in Table 3 and eqs. 3, 4 and 6–8 in Table 2 to

derive the predicted catch, index, and length composition. LIME
requires at least 1 year of length data but is flexible to include
annual fishery catch and (or) an abundance index. During our
simulation testing, we assumed that LIME had the correct values
for the von Bertalanffy length at age relationship, including as-
ymptotic length (L∞), growth coefficient (k), and age at length =
0 (t0−), length–mass parameters, natural mortality (M), and the one-
parameter logistic maturity at length schedule. Future studies can
obtain these values from local studies, FishBase (Froese 1990), or
global meta-analyses of fish life-history parameters (Thorson et al.
2017b). We tested LIME performance under violations of these
assumptions in sensitivity analyses. We also fixed the values for
catch and abundance index observation error and coefficient of
variation in the process error for the age–length curve. For all data
availability scenarios, the model estimates as fixed effects the
annual fishing mortality, lengths at 50% and 95% selectivity, the
recruitment standard deviation, and the Dirichlet-multinomial
parameter � related to the effective sample size of length mea-
surements in each year. In scenarios when catch data are unavail-
able, there is no information on the scale of the population. In
these scenarios, we fixed mean recruitment to a relative value of
1.0 so that the model does not estimate the scale of the population
but only the annual deviations in recruitment, and estimates of
relative reference points (e.g., SPR) can be derived but reference

Table 1. Parameter definitions, including parameter input values for the base scenario for each of the three life-history types, and whether the
parameter is fixed (“Fixed”) or estimated (“Est.”) depending on the data availability scenario or if the parameter is used in data generation only
(“Sim.”).

Input value for life-history type Data scenario

Symbol Description Short Medium Longer Rich Index + LC Catch + LC LC only

Biological
L∞ Asymptotic length 36.2 cm 64.6 cm 90.0 cm Fixed Fixed Fixed Fixed
k Brody growth coefficient 0.87 0.21 0.13 Fixed Fixed Fixed Fixed
t0 Age at length = 0 −0.01 −0.01 −0.01 Fixed Fixed Fixed Fixed
Lm

50 Length at 50% maturity 20.2 cm 34.0 cm 50.0 cm Fixed Fixed Fixed Fixed
� Length−mass scalar 0.0597 0.0245 0.0264 Fixed Fixed Fixed Fixed
� Length−mass allometric 2.75 2.79 2.96 Fixed Fixed Fixed Fixed
A Maximum age 4 18 26 Fixed Fixed Fixed Fixed
M Natural mortality 1.49 0.43 0.18 Fixed Fixed Fixed Fixed
h Steepness parameter 1 1 1 Fixed Fixed Fixed Fixed
CVL Coefficient of variation for the

length−age curve
0.1 0.1 0.1 Fixed Fixed Fixed Fixed

J Maximum length bin 54 cm 97 cm 135 cm Fixed Fixed Fixed Fixed
R0 Equilibrium recruitment 1 1 1 Est. Fixed Est. Fixed
�R Recruitment standard deviation 0.737 0.737 0.737 Est. Est. Est. Est.
� Recruitment autocorrelation 0.426 0.426 0.426 Sim. Sim. Sim. Sim.
Nonbiological
Ls

50 Length at 50% selectivity 11.3 cm 20.0 cm 25.0 cm Est. Est. Est. Est.
� Difference Ls

95 − Ls
50 (expressed

here as ratio the Ls
95/Ls

50 to
compare across life histories)

1.3 1.3 1.3 Est. Est. Est. Est.

q Catchability coefficient 1×10−5 1×10−5 1×10−5 Est. Est. Fixed Fixed
�F Fishing mortality penalty

standard deviation
0.2 0.2 0.2 Fixed Fixed Fixed Fixed

�c Standard deviation for observed
catch

0.2 0.2 0.2 Fixed Fixed Fixed Fixed

�I Standard deviation for observed
abundance index

0.2 0.2 0.2 Fixed Fixed Fixed Fixed

� Dirichlet-multinomial parameter
related to effective sample size

10 10 10 Est. Est. Est. Est.

n Sample size of length
measurements

200 200 200 Fixed Fixed Fixed Fixed

� Cumulative normal probability
distribution

Note: Values separated by commas indicate alternate values for sensitivity analysis. Note that scenarios including length composition (LC) are divided into two
scenarios with either 1 or 10 years of length data. Parameter input values are based on short-lived Siganus sutor (Hicks and McClanahan 2012), medium-lived Lutjanus
guttatus (Bystrom 2015), and longer-lived Epinephelus morio (Heemstra and Randall 1993).
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points based on the scale of the population (e.g., MSY) are not
meaningful. By contrast, when total catch data are available for at
least one year, we can estimate mean recruitment and derive
spawning biomass. When an index of abundance was available,
we estimated the catchability coefficient for that index as an ad-
ditional parameter q. A list of parameters estimated and fixed for
each scenario is presented in Table 1.

We treated annual recruitment as a random effect in LIME,
where recruitment each year is a function of an expected recruit-
ment based on a Beverton–Holt stock–recruitment relationship
(Table 4, eq. 1) and the estimated recruitment standard deviation
(Table 4, eq. 2). For the simulation experiments in this paper,
we fixed the steepness parameter h of the Beverton–Holt stock–
recruitment function at 1.0, meaning that expected recruitment is

Fig. 3. Scenarios of fishing mortality and recruitment under equilibrium and variable conditions for the three life-history types with
corresponding trajectories of relative spawning biomass. Shaded regions represent the area between the 5th and 95th percentiles of the
generated data and the lines show three randomly chosen iterations out of 100 as examples. Scenarios labeled “equilibrium” demonstrate that
the initial depletion may start between 0.05 and 0.95, but fishing mortality remains constant to produce that level of depletion and
recruitment is constant at 1.0 over time. Scenarios labeled “two-way” demonstrate fishing mortality that increases to a fishing mortality rate
F20%− that results in 20% spawning potential ratio over the first 7 years, stays at F20% for 7 years, and then drops to half of F20% for the last
6 years. Scenarios labeled “one-way” demonstrate a change from equilibrium fishing mortality resulting in an initial depletion between 0.05
and 0.95 to the fishing mortality F20% over the 20 year period. [Colour online.]

Table 2. Functions for generating data in the operating model.

Equation Description

1 	t � Lognormal(0, �R) Nonautocorrelated recruitment deviations

2 
t � 	t t � 1


t � 	t
t�1��1 � �2 t  1

Autocorrelated recruitment deviations

3

pj,a �� ��j � La

LaCVL
�, j � 1

��j � La

LaCVL
� � ��j � 1 � La

LaCVL
�, 1 � j � J

1 � ��j � 1 � La

LaCVL
�, j � J

Probability of being in a length bin given age

4

�j � pj,a
�a�0

A
Na,tSa

Nt

Predicted probability of harvest by length bin

5 �̃j � Multinomial(n, �j) Generated probability of harvest by length bin

6 Ca,t � [FtSa/(M � FtSa)]Na,t[1 � exp(M � FtSa)] Annual catch at age

7
Ct � �

a�0

A

Ca,t

Annual catch

8 It � qBt Abundance index

Note: All except sqs. 2 and 5 are also used in the Length-based Integrated Mixed Effects (LIME) estimation model to predict values for
the observed data.
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constant among years and independent of the spawning stock
biomass the previous year. It is possible to fix the steepness pa-
rameter at a value less than 1.0, where the mean of the lognormal
distribution is the predicted number of recruits from the Bever-
ton–Holt stock–recruitment relationship, as opposed to 1.0 or the
equilibrium unfished recruitment. We chose to test LIME with 1.0
for the mean of the lognormal distribution to determine how well

the model can estimate annual recruitment with all variation
from recruitment deviates. Unfished spawning biomass is calcu-
lated using the same equation as fished spawning biomass
(Table 3, eq. 7) but without the fishing mortality and selectivity
terms (Table 3, eq. 9). Unlike the operating model, we did not
account for autocorrelation in recruitment in the LIME estimation
model.

Table 3. Population dynamic equations used in the operating model and LIME estimation model.

Equation Description

1 La � L∞{1 � exp[�k(a � t0)]} von Bertalanffy length at age a

2 mj � 1/�1 � exp	Lm
50 � j
� Maturity at length

3
ma � �

j�1

J

mj(1/LaCVL�2�)exp��(j � La)
2/2LaCVL

2�
Maturity at age

4 Sj � 1/	1 � exp���ln(19)	j � Ls
50
�/	Ls

95 � Ls
50

 Logistic selectivity at length

5 wa � �La
� Mass at age

6
Bt � �

a�1

A

Na,twa

Annual total population biomass

7
SBt � �

a�0

A

Na,twama

Annual spawning biomass

8

Na,t � � Rt, a � 0
Na�1,t exp(�M � FtSa�1), 0 � a � A and t � 1

Na�1,t exp(�M � FtSa�1)

1 � exp(�M � FtSa�1)
, a � A and t � 1

Na�1,t�1 exp(�M � Ft�1Sa�1), 0 � a � A and t  1
(Na�1,t�1 � Na,t�1) exp(�M � Ft�1Sa�1), a � A and t  1

Abundance at age over time

9
SB0 � �

a�0

A

R0 exp(�aM)wama

Unfished spawning biomass

10
E0 � �

a�0

A

exp(�aM)wama

Expected lifetime egg production (unfished)

11
Ef � �

a�0

A

exp[�a(M � FSa)]wama

Expected lifetime egg production (fished)

12 SPR � Ef/E0 Spawning potential ratio

Table 4. Components of the joint likelihood function in the LIME model as well as performance metrics across iterations of generated data.

Equation Description

1
�Rt �

4hR0SBt�1

SB0(1 � h) � SBt�1(5h � 1)

Expected annual recruitment based on Beverton−Holt
stock−recruitment relationship

2 Rt � Lognormal(�Rt, �R
2) Annual recruitment Rt arising from a lognormal distribution

3 Ft � Normal(Ft�1, �F
2) Penalty on annual fishing mortality Ft

4 �R � Lognormal(0.7, 0.22) Recruitment standard deviation penalty

5
logL(�j, �|�̃j, n) � log�(n � 1) � � [log�(n�̃j � 1)] � log�(�n)

�log�(n � �n) � � [log�(n�̃j � �n�j) � log�(�n�j)]

Dirichlet-multinomial log-likelihood

6 neff � (1 � �n)/(1 � �) Effective sample size

7
Ct

obs � Lognormal��
a�0

A

Ct, �C
2� Lognormal likelihood (catch)

8 It
obs � Lognormal	qBt, �I

2
 Lognormal likelihood (abundance index)

9 MRE � median[(xestimated � xtrue)/xtrue] Median relative error to quantify bias

10 MARE � median|[(xestimated � xtrue)/xtrue]| Median absolute relative error to quantify precision
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We applied a random-walk penalty on annual estimates of fish-
ing mortality, which shrinks the estimate of fishing mortality in
year t + 1 towards its estimate in year t (Table 4, eq. 3). Drastic
changes in fishing mortality between years are unlikely in the real
world given costs of entering or leaving a fishery, but the random-
walk process accommodates gradual changes in fishing mortality
(Nielsen and Berg 2014). However, a fixed value of 0.2 for the
standard deviation of the fishing mortality penalty does allow the
model to estimate variability in fishing mortality if supported by
the data (e.g., exit and entry from the fishery).

We also placed a lognormal penalty on the standard deviation
of recruitment deviations, �R. Based on the meta-analysis con-
ducted by Thorson et al. (2014), the log of the mean was set to the
log of 0.737, with a log standard deviation of 0.353 (Table 4, eq. 4).
The prior aids in the convergence of the �R parameter estimation,
preventing the estimate from going to an unlikely value. There is
also an upper bound on �R at 2.0.

The joint log-likelihood of the observed data is the sum of the
log-likelihoods of the observed length data, log probability of fish-
ing mortality and recruitment variation, and the log-likelihood of
the catch and abundance index, if available. We include bias cor-
rection for recruitment deviations using the TMB bias correction
feature (Thorson and Kristensen 2016). For scenarios that include
abundance index and catch data, a lognormal probability distri-
bution was assumed to describe error in both data types (Table 4,
eq. 7, eq. 8). The respective observation errors �I and �C are fixed a
priori (not estimated as parameters). We assumed that the length
data arose from a Dirichlet-multinomial probability distribution
with estimated parameters �c related to the effective sample size
of length measurements each year. Many stock assessment meth-
ods use a multinomial distribution to fit age or length data, but
the effective sample size must be calculated externally (Francis
2014). By contrast, the Dirichlet distribution can represent vari-
ability in the proportions in each length bin, but the parameters
do not correspond to the easily interpretable effective sample size
of length data for which model results are highly sensitive. The
Dirichlet-multinomial is an alternative to these two distributions,
estimating an additional parameter � within the integrated model
(Thorson et al. 2017a). The effective sample size is a nonlinear
function of input sample size (Table 4, eq. 6) (Thorson et al. 2016).
As � approaches infinity, the effective sample size is equal to the
observed sample size, and the multinomial distribution is a spe-
cial case of the Dirichlet-multinomial distribution.

In model runs, we assessed that the model had converged if the
final gradient for all parameters was less than 0.001. If the initial
model run did not converge (resulting in NAs or a high final
gradient), the model would be run up to 10 additional times with
starting values equal to the estimates from the nonconverged
model plus a random number drawn from a normal distribution
with mean zero and standard deviation 0.2. For each combination
of life-history type, data availability scenario, fishing mortality
pattern, and recruitment dynamics, we obtained 100 iterations of
generated data and ran the estimation model for each set.

Comparison to LB-SPR
We ran LB-SPR from the R package LBSPR (Hordyk et al. 2015)

with 1 year (LBSPR1) and 10 years (LBSPR10) of length data using
the operating model described above. LB-SPR requires as input the
length data in each year and the ratio of natural mortality to the
von Bertalanffy growth coefficient (M/k) as well as inputs similar to
those required for LIME: the von Bertalanffy asymptotic length
parameter, coefficient of variation of the asymptotic length,
length at 50% and 95% maturity, length–mass parameters, and
starting values for the length at 50% and 95% selectivity (Table 1).
We assumed that the coefficient of variation of the asymptotic
length was equivalent to the coefficient of variation of the entire
age–length curve. For the base runs, we used the true value for the
length at 95% maturity and selectivity from the two-parameter

logistic curves used in the operating model. LB-SPR uses these
inputs to calculate the abundance at relative age at equilibrium.
LB-SPR estimates the ratio of fishing mortality to natural mortal-
ity and the lengths at 50% and 95% selectivity to best fit the pre-
dicted and observed length composition proportions and derives
SPR, outputting estimates for these four values for each year with
length data (Hordyk et al. 2015).

We note that this simulation experiment is comparing perfor-
mance of LIME and LB-SPR using an operating model that is more
similar to LIME. To further compare the strengths and limitations
of each method, we used the LBSPR package to simulate length
data under the LB-SPR equilibrium, length-based structure, so that
we could also test LIME and LB-SPR using an operating model that
is more similar to LB-SPR.

A major issue in the comparison of models was the time step
used. To test model performance, we tested both the LIME and the
LB-SPR methods using the monthly data generation feature in the
operating model, where sampling is spread out over all 12 months
instead of collected instantaneously at one point. We then com-
pared LIME and LB-SPR performance pooling the monthly length
data into an annual distribution and then running each model on
an annual time step. These additional simulation tests were de-
signed to compare these two methods under different data-
generating models, with the goal of providing guidance for which
methods may be appropriate under a variety of real-world condi-
tions.

Reference points
We calculated SPR (Table 3, eqs. 10–12) as a biological reference

point, used as a proxy for MSY when information on the scale of
population size is not available, and for comparison with LB-SPR.
A harvest strategy that targets a fishing mortality rate that is
expected to result in 40% of unfished spawning output (termed
“40% SPR”) is considered risk averse for many species (Clark 2002).
Therefore, we calculated these values as examples of possible fish-
ing mortality reference points that could be used to compare with
other length-based assessment methods.

Sensitivity tests
Preliminary exploration suggested that LIME performed poorly

for short-lived species when using an annual time step; therefore,
we explored LIME performance on a monthly time step. We gen-
erated monthly length data for the short-lived life-history type
and ran LIME on a monthly time step by specifying the number of
years as number of months and ages as fractions of a year and
dividing the input natural mortality rate M by 12 so that mortality
and growth occur in each month (Appendix, Fig. A1).

We also included sensitivity tests to LIME base models to under-
stand biases associated with imperfect knowledge about species
biology, fishery characteristics, and low sample sizes. We assessed
the performance of LIME with (a) parameter misspecification of
±25% for each of the life-history inputs (M, CVL, L∞, k, and Lm

50) and
(b) sample sizes of length data of 20, 50, 100, 500, and 1000 inde-
pendent samples annually.

Model performance
To assess the ability of the model to accurately and precisely

estimate quantities of management interest, we consider bias and
precision (Table 4, eqs. 9 and 10) between estimated and true SPR
in the last year of data across the 100 iterations of simulated data.
We used median relative error (Table 4, eq. 9) to quantify bias and
median absolute relative error (Table 4, eq. 10) to quantify preci-
sion. To understand the ability of the model to accurately capture
uncertainty, we computed the “interval coverage”, the proportion
of iterations out of 100 where the true value of a population pa-
rameter in the terminal year is within the 50% confidence inter-
vals. A well-performing model would have close to nominal
coverage (i.e., a 50% coverage interval will contain the true value
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in 50% of simulation replicates). Coverage is presented to illus-
trate whether confidence intervals accurately capture model un-
certainty.

Results

LIME performance across life-history, variability, and data
scenarios

Based on the Monte Carlo simulations, LIME can estimate unbi-
ased SPR when length data are available and biological character-
istics are correctly specified across various scenarios of fishing
mortality and recruitment patterns (Fig. 4). When tested using the
same model structure and assumptions in the operating model,
LIME performed best for short-lived fish, with increasing bias and
decreasing precision for medium-lived fish and a further deterio-
ration for longer-lived fish (Table 5). The bias in SPR in the termi-
nal year was 0.002 for short-lived, –0.003 for medium-lived, and
0.016 for longer-lived fish across all data availability and popula-
tion variability scenarios with 200 length measurements annu-
ally. Additional scenarios illustrate further LIME strengths and
weaknesses (Table 5). With only 1 year of length data, LIME esti-
mated SPR with bias of –0.038 for the short-lived life history,
–0.186 for medium-lived, and –0.152 for longer-lived across vari-
ability scenarios. Integrating 10 years of length data improved
accuracy in the estimation of SPR in the terminal year on average
for each life history type (short-lived from –0.038 to –0.016,
medium-lived from –0.186 to –0.048, and longer-lived from –0.152
to 0.102). The only exception within variability scenarios was de-
creased accuracy with 10 years of length data for the longer-lived
life-history type under the one-way variability scenario (from
–0.181 to 0.200). While 10 years of length data increased precision
of SPR estimates for the short-lived life-history type over 1 year of
length data (from 0.072 to 0.041), the additional length data de-
creased precision on average for the medium- and longer-lived
life-history types (medium-lived from 0.334 to 0.391 and longer-
lived from 0.529 to 0.626) (Table 5).

LIME provides the added advantage over other length-based
assessment methods of including a catch time series and abun-
dance index, if available, which further increases accuracy and
precision under most cases. Across all scenarios, including an
abundance index decreased bias (from –0.047 to 0.020) compared
with when only length data were available. An abundance index

particularly improved LIME performance for the short- and
medium-lived life-history types. Breaking down by life-history
types, bias decreases with an abundance index included for the
short-lived life-history type (from –0.026 to 0.005) and medium-
lived life-history type (from –0.126 to 0.025) but increases for the
longer-lived life-history type (from –0.049 to 0.072) on average.
Across all life-history types, including an abundance index in-
creases precision (short-lived from 0.054 to 0.052, medium-lived
from 0.346 to 0.190, and longer-lived from 0.594 to 0.257).

Adding a catch time series to length data decreased bias mini-
mally on average across all scenarios (from –0.047 to 0.031). The
improvement in accuracy is strongest under equilibrium condi-
tions (from –0.036 to –0.007). Given variable fishing mortality and
recruitment including catch data with length composition in-
creased bias (from –0.055 to 0.118). This was mainly due to high
bias in the “catch plus 1” scenario for short-lived fish (Table 5;
Fig. 4). Excluding this anomalous scenario, including a catch time
series decreased bias for a population with variability (from
–0.055 to 0.047). The “catch plus 10” scenario removed the bias
from the “catch plus 1” scenario for the short-lived life-history
type under variability scenarios. However, the “catch plus 10”
scenario did not necessarily improve bias or precision over the
“catch plus 1” scenario for the medium- and longer-lived life-
history types under variability scenarios (Table 5). This indicates
that it may be advisable to include a catch time series only when
more than 1 year of length data are available for a short-lived
life-history type and consider the possibility of overestimating
SPR when fishing mortality is changing over time for medium-
and longer-lived life-history types when catch data are included.

LIME converged for 95% of iterations of generated data across
life-history types, variability scenarios, data availability scenarios,
and sample sizes of length data. LIME converged for 100% of iter-
ations of generated data for the data-rich scenario (Fig. 5). With
only length data, LIME converged for 95% of iterations across
scenarios. The LIME convergence rate was 92% including catch
data and 94% including an abundance index. Nonconvergence was
always due to a high final gradient in parameter estimation, as op-
posed to any parameter being estimated at the upper or lower bound.

The interval coverage for a 50% confidence interval of LIME was
61% across all scenarios of life history, variability scenarios, data
availability, and sample sizes of length data. This indicates that

Fig. 4. Distribution of relative error ((estimated – true)/true) for spawning potential ratio (SPR) in the current year for 100 iterations of
simulated populations across the Length-based Integrated Mixed Effects (LIME) method and length-based SPR (LB-SPR) data availability
scenarios for the three life-history types and scenarios of equilibrium and variable fishing mortality and recruitment with 200 samples of
length measurements annually. The gray bean represents the “data-rich” scenario, which verifies that LIME is unbiased and most precise
when an unrealistically high amount of data are available. Darker colours represent data availability scenarios with 10 years of length data
and lighter colors represent the scenario with 1 year of length data available. Each life-history type has a different y-range. [Colour online.]
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confidence interval estimates from LIME are generally informa-
tive about model uncertainty but may be wider (more conserva-
tive) on average. LIME estimated confidence intervals that were
too narrow or wide for individual life history, variation, and data
availability scenarios (Fig. 5). The “catch plus 1” scenario had the
lowest coverage across life-history and variability scenarios (42%),
likely because this data availability scenario had the most bias,

and thus the true SPR would likely not fall within the confidence
intervals at the expected rate. For the short-lived life-history type,
LIME interval coverage was only 43%. While the method is ex-
pected to be unbiased for this life-history type on average, the
confidence intervals are often too tight to include the true SPR
within the 50% intervals at a rate of 50%. LIME estimated wider
confidence intervals for the medium-lived life-history type, with

Table 5. LIME performance in estimation of SPR in the terminal year across life-history types, scenarios of data availability, and patterns in
fishing mortality and recruitment variability, compared with length-based SPR (LB-SPR).

Short Medium Longer

Data availability
scenario Equilibrium

Variability,
two-way F

Variability,
one-way F Equilibrium

Variability,
two-way F

Variability,
one-way F Equilibrium

Variability,
two-way F

Variability,
one-way F

Bias (MRE)
Rich −0.019a −0.017a 0.023a −0.004a 0.005a 0.034a 0.001a 0.012a 0.023a

Index + LC10 −0.014a −0.039a 0.023a −0.049a −0.001a 0.094b 0.125c 0.173c 0.076b

Index + LC1 0.012a −0.006a 0.033a −0.003a 0.060a 0.065b 0.040a −0.061b 0.029a

Catch + LC10 −0.018a −0.045a 0.018a −0.021a 0.150c 0.165c −0.002a 0.124c 0.280d

Catch + LC1 0.029a 0.796e 0.972e −0.056b 0.119c 0.193c 0.010a −0.146c 0.236d

LC10 −0.022a −0.056a 0.016a −0.086b −0.137c 0.072b 0.104c −0.006a 0.200d

LC1 −0.045a −0.082b −0.025a −0.140c −0.355e −0.154c 0.166c −0.468e −0.181c

LBSPR10 −0.570e −0.676e −0.708e 0.006a −0.405e 0.196c 0.062b −0.359e 0.452e

LBSPR1 −0.603e −0.698e −0.738e −0.030a −0.372e −0.181c 0.059b −0.403e 0.296d

Precision (MARE)
Rich 0.027a 0.069b 0.028a 0.038a 0.044a 0.101c 0.038a 0.042a 0.089b

Index + LC10 0.039a 0.051b 0.038a 0.185c 0.176c 0.295d 0.244d 0.449e 0.352e

Index + LC1 0.046a 0.079b 0.062b 0.105c 0.207d 0.235d 0.180c 0.223d 0.223d

Catch + LC10 0.025a 0.055b 0.035a 0.080b 0.382e 0.476e 0.077b 0.423e 0.630e

Catch + LC1 0.060b 0.796e 0.972e 0.129c 0.429e 0.496e 0.161c 0.313e 0.714e

LC10 0.028a 0.063b 0.031a 0.246d 0.499e 0.470e 0.498e 0.743e 0.702e

LC1 0.072b 0.126c 0.039a 0.216d 0.437e 0.362e 0.301e 0.705e 0.549e

LBSPR10 0.570e 0.676e 0.708e 0.066b 0.412e 0.404e 0.078b 0.367e 0.486e

LBSPR1 0.603e 0.698e 0.738e 0.113c 0.478e 0.432e 0.120c 0.501e 0.536e

Note: Bias (top) is measured as MRE and precision (bottom) is measured as MARE from 100 iterations of generated data using the LIME age-structured operating
model assuming instantaneous sampling with 200 length measurements annually.

aBias/precision less than 5%.
bBias/precision less than 10%.
cBias/precision less than 20%.
dBias/precision less than 30%.
eBias/precision greater than 30%.

Fig. 5. Proportion of iterations out of 100 where the true value of the SPR lies within the 50% confidence intervals for each life-history type
across various patterns of fishing mortality and recruitment (gray circles) compared with the convergence rates for the same scenario (pink
triangles). [Colour online.]
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interval coverage 72%, and longer-lived life-history types, with an
interval coverage of 67%.

LIME sensitivity to sample size, input parameters, and
selectivity estimation

With 1 year of length data, LIME estimated SPR with greater
precision with more length measurements but not necessarily
with greater accuracy (Table 6). Across all life history types, accu-
racy and precision improved greatly in the equilibrium scenario
between 20 and 1000 length measurements collected annually.
The short-lived life-history type experienced the strongest im-
provements in accuracy and precision (Table 6). This pattern was
strongest with a population in equilibrium but was generally
maintained for scenarios of variability as well. Accuracy generally
reached a plateau with greater than 100 samples of length mea-
surements for the short-lived life-history type. Alternatively, accu-
racy and precision improved for the medium- and longer-lived
life-history types with at least 500 samples of length measure-
ments for a population at equilibrium. With variability, there
were no clear patterns in accuracy improvement for the medium-
and longer-lived life-history types with increasing sample size of
length measurements. This indicates that accuracy in SPR esti-
mates is more likely to be improved with more data types than
increasing sample size, particularly for medium- and longer-lived
life histories (Tables 5 and 6).

Like all age- or length-based methods, LIME performance is sen-
sitive to the correct specification of life-history information
(Fig. 6). When all biological parameters were correctly specified,
LIME estimated unbiased SPR on average with 10 years of length
data (bias = –0.017). When L∞ was misspecified as 25% greater than
the truth, bias increased (to –0.554), meaning that on average,
LIME estimated SPR to be lower than the truth. In this case, we
would expect to see larger fish in the observed data. If those fish
are not present in the length data, length-based models attribute
the difference to a higher fishing mortality and thus a lower SPR
than the truth. On the other hand, when L∞ was misspecified as
25% lower than the truth, LIME estimated SPR higher than the
truth on average (bias = 0.761). Assuming k was 25% lower than the
truth, LIME estimated SPR higher than the truth on average (bias =
0.478). When k was assumed to be 25% higher than the truth, LIME
estimated SPR lower than the truth on average but to a lower

degree than the other biases due to life history misspecification
(bias = –0.146). However, this lack of severe bias is simply due to
some model runs resulting in estimates much greater than or
lower than the truth, while none are unbiased. When M was fixed
25% higher than the truth, LIME estimated SPR to be higher than
the truth (bias = 0.285). A fish that is faster to die can generally
sustain a higher fishing pressure, and the interpretation of the
higher SPR is that the population has more of its potential spawn-
ing biomass than it truly does. When M was assumed to be 25%
lower than the truth, LIME estimated SPR lower than the truth
(bias = –0.352).

Fixing length at 50% maturity at a value 25% higher than the
truth resulted in negative bias in SPR (bias = –0.383). In this case,
the LIME model attributes a lower proportion of the population as
being mature, leading the estimated SPR to be lower than the
truth. The opposite is true when length at maturity was 25% lower
than the truth; estimates of SPR were biased higher than the truth
(bias = 0.152). LIME was relatively insensitive to misspecification of
CVL for the age–length curve, but a higher CVL resulted in a rela-
tively lower estimate of SPR on average (bias = –0.044) and a
higher CVL resulted in a relatively higher estimate of SPR on av-
erage (bias = 0.047).

Comparing LIME and LB-SPR
Simulation testing demonstrated that the LIME and LB-SPR

methods perform well under different conditions. LB-SPR is bi-
ased when the equilibrium conditions are violated (Table 5). How-
ever, testing of LB-SPR against the age-structured LIME operating
model with instantaneous sampling at the beginning of each year
resulted in poor performance for the short-lived life-history type
under equilibrium conditions (Tables 5 and 7; Fig. 7). We verified
that LB-SPR performs well across life-history types when tested
using an operating model that matches its model assumptions.
LIME, on the other hand, overestimated SPR for the short-lived
life-history type with 1 year of length data and, similar to the
performance under its own operating model, had low precision
for the medium- and longer-lived life-history types with 10 years of
length data (Table 7). When length data were collected monthly
and pooled into an annual length composition, LB-SPR perfor-
mance improved over the annual model for the short-lived life-
history type, but LIME overestimated SPR (Table 7; Fig. 7). Running

Table 6. LIME bias and precision in estimating SPR in the terminal year for a variety of sample sizes of independent length measurements (in all
cases, 1 year of length data are provided to the model).

Short Medium Longer

Sample
size Equilibrium

Variability,
two-way F

Variability,
one-way F Equilibrium

Variability,
two-way F

Variability,
one-way F Equilibrium

Variability,
two-way F

Variability,
one-way F

Bias (MRE)
1000 −0.033a −0.070b −0.029a 0.034a −0.369e −0.201d −0.061b −0.449e −0.201d

500 −0.028a −0.117c −0.041a −0.001a −0.505e −0.157c −0.031a −0.621e −0.145c

200 −0.045a −0.082b −0.025a −0.140c −0.355e −0.154c 0.166c −0.468e −0.181c

100 −0.027a −0.070b −0.028a −0.055b −0.370e −0.201d −0.127c −0.480e −0.206d

50 −0.082b −0.124c −0.041a −0.182c −0.499e −0.163c −0.141c −0.621e −0.107c

20 −0.171c −0.153c −0.043a −0.295d −0.431e −0.214d −0.465e −0.751e −0.451e

Precision (MARE)
1000 0.070b 0.148c 0.048a 0.110c 0.443e 0.422e 0.240d 0.648e 0.474e

500 0.053b 0.172c 0.047a 0.125c 0.514e 0.423e 0.245d 0.663e 0.519e

200 0.072b 0.126c 0.039a 0.216d 0.437e 0.362e 0.301e 0.705e 0.549e

100 0.087b 0.147c 0.046a 0.217d 0.453e 0.429e 0.397e 0.665e 0.503e

50 0.108c 0.178c 0.046a 0.343e 0.510e 0.455e 0.421e 0.665e 0.506e

20 0.228d 0.168c 0.045a 0.374e 0.469e 0.610e 0.547e 0.754e 0.615e

Note: Bias (top) is measured as MRE and precision (bottom) is measured as MARE from 100 iterations of generated data using the LIME age-structured operating
model assuming instantaneous sampling.

aBias/precision less than 5%.
bBias/precision less than 10%.
cBias/precision less than 20%.
dBias/precision less than 30%.
eBias/precision greater than 30%.
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LIME on a monthly time step with monthly length data decreased
bias compared with running on an annual time step (from 0.468
to –0.040 with 10 years of monthly length data and from 0.484 to
0.034 with 1 year of monthly length data) (Table 7).

Discussion
This study demonstrates that LIME can be a valuable tool for

fisheries stock assessment when at least 1 year of length data and
basic biological information are available for the species (Table 8).
LIME estimates reference points more accurately than LB-SPR un-
der many common scenarios. The LIME assessment method has
several characteristics that make it particularly useful in situa-
tions where an abundance index and (or) catch data cannot be
collected reliably, as data collection programs improve to include
more data types and when recruitment and fishing mortality are
believed to be changing more rapidly than would match the equi-

librium assumptions required for existing methods with the same
data requirements.

The length-based aspect of the model setup allows the analyst to
fit to length-, rather than age-, composition data from the catch.
The current toolbox of data-limited stock assessment methods
includes length-only methods with equilibrium assumptions
(Hordyk et al. 2015; Kokkalis et al. 2015; Nadon et al. 2015), ad hoc
assumptions about changes in mortality (Gedamke and Hoenig
2006), or age-structured models that cannot fit to length-composition
data (Martell and Froese 2013; Thorson and Cope 2014). MULTIFAN
(Fournier et al. 1990) and Stock Synthesis (Methot and Wetzel
2013) can use length instead of age data to gain information on
cohort strength and total mortality but require a catch time series
to estimate stock status. The flexibility of LIME to fit to length
composition, as opposed to age composition, is more realistic for
capacity-limited fisheries. LIME can be used in conjunction with

Fig. 6. Comparison of the distribution of estimation error for SPR in the terminal year with the life-history parameters fixed at ±25% of their
true value from 100 iterations of generated data across the various life-history scenarios for the equilibrium (blue) and the two-way fishing
mortality scenario with variable and autocorrelated recruitment (red), with other biological parameters fixed at their true values, including
10 years of length data with 200 length measurements annually. Life-history parameters include natural mortality, asymptotic length, the
von Bertalanffy growth coefficient, length at 50% maturity, and the coefficient of variation for the age–length curve. [Colour online.]

Table 7. Comparison of LIME and LB-SPR performance in estimation of SPR in the terminal year between equilibrium scenarios with length data
collected annually and using an annual model, length data collected monthly but pooled annually for an annual model, and using the LB-SPR
operating model.

Short Medium Longer

Data
availability
scenario

Annual
data and
model

Monthly data,
annual model

Monthly data,
monthly model LB-SPR

Annual
data and
model

Monthly
data, annual
model LB-SPR

Annual
data and
model

Monthly
data, annual
model LB-SPR

Bias (MRE)
LC10 −0.022a 0.468e −0.040a 0.068b −0.086b 0.072b −0.133c 0.104c 0.184c −0.112c

LC1 −0.045a 0.484e 0.034a 0.195c −0.140c −0.104c −0.097b 0.166c 0.168c −0.113c

LBSPR10 −0.570e 0.136c NA −0.005a 0.006a 0.090b 0.002a 0.062b 0.117c 0.010a

LBSPR1 −0.603e 0.111c NA 0.021a −0.030a 0.056b −0.003a 0.059b 0.114c −0.030a

Precision (MARE)
LC10 0.028a 0.468e 0.102c 0.140c 0.246d 0.272d 0.260d 0.498e 0.442e 0.429e

LC1 0.072b 0.484e 0.130c 0.233d 0.216d 0.209d 0.133c 0.301e 0.311e 0.167c

LBSPR10 0.570e 0.138c NA 0.050b 0.066b 0.094b 0.048a 0.078b 0.117c 0.050b

LBSPR1 0.603e 0.154c NA 0.152c 0.113c 0.139c 0.138c 0.120c 0.157c 0.149c

Note: We also compared the annual model runs with monthly length data run on a monthly time step for the short-lived life-history type. Bias (top) is measured
as MRE and precision (bottom) is measured as MARE from 100 iterations of generated data.

aBias/precision less than 5%.
bBias/precision less than 10%.
cBias/precision less than 20%.
dBias/precision less than 30%.
eBias/precision greater than 30%.
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other length-based methods as a diagnostic tool to see if varia-
tions in recruitment or fishing mortality is being predicted by the
model based on the length data and how the results of the multi-
ple assessment types would vary in light of those possibly violated
assumptions.

The integrated nature of LIME is useful in situations where mon-
itoring programs are continuing to be developed over time, incor-
porating more years of length data or other data types in the same
assessment framework. LB-SPR is a quick way of conducting an
assessment with only 1 year of length data, but as monitoring
programs improve, the method must be applied independently
over multiple years (Prince et al. 2015a, 2015b). There are also
many catch-based methods that assume that a catch time series is

available, but they are not thoroughly tested in fitting to length-,
rather than age-, composition data (Martell and Froese 2013;
Sabater and Kleiber 2014; Thorson and Cope 2014). LIME allows for
these data to be included into the same assessment framework
rather than requiring a switch between assessment models as
monitoring programs develop and new data types become avail-
able (Maunder and Punt 2013). Also, few existing models can in-
corporate an abundance index and length data without catch
data. LIME can be used in this scenario to estimate a relative SPR
reference point with no measure of scale. This scenario is com-
mon for small-scale fisheries, bycatch species, or other fisheries
where trends in abundance are available but total harvest is not.

Fig. 7. Comparison of the LIME and LB-SPR methods in the equilibrium state via the distribution of relative error (estimated – true)/true) for
SPR in the current year for 100 iterations of simulated populations from the LIME age-structured operating model using annual length
composition collected instantaneously in the year (a–c), monthly length data collection pooled into annual length compositions (d–f), and the
LB-SPR operating model based on relative ages (g–i). The methods are compared across life-history types. Darker colors represent data
availability scenarios with 10 years of length data, and lighter colors represent the scenario with one year of length data available. Each
scenario has a different y-range. [Colour online.]

Table 8. Summary table of key questions and conclusions.

Objective Conclusion

1. Is LIME unbiased:
a. across life-history types? Yes, if the assumption of instantaneous length sampling is met and growth

parameters are known with no error. Performance is best for life histories
with longevity less than 20 years under this assumption

b. with population variability? Yes. It is recommended to use more than 1 year of length data for short- and
medium-lived life-history types and include catch or an abundance index
if longer-lived

c. with inclusion of catch and (or) an
abundance index?

Yes, with more than 1 year of length data for short-lived species. May
overestimate SPR for medium- and longer-lived species if the population
is not in equilibrium

2. Is LIME sensitive to:
a. sample size of length

measurements?
Yes. Accuracy and precision generally improve with higher annual sample

size. There is a performance plateau for 100 samples for short-lived fish
and 500 samples for medium- or longer-lived fish

b. error in input parameters? Relatively insensitive to error in the CV of the age−length curve. If
asymptotic length, von Bertalanffy growth coefficient, or length at 50%
maturity is input lower than the truth or natural mortality is input
higher than the truth, SPR will be estimated higher than the truth (and
vice versa)

3. Comparison of LIME and LB-SPR
under equilibrium conditions

a. Instantaneous annual sampling
from age-structured model

LIME unbiased across life-history types; LB-SPR estimates lower SPR for
short-lived life history

b. Continuous sampling (monthly)
from age-structured model

LIME should use monthly time steps for short-lived species but can use
annual time steps for medium- and longer-lived species

c. Length-structured operating
model

LIME overestimates SPR for short-lived and underestimates SPR for medium-
and longer-lived. LB-SPR unbiased across life-history types

Rudd and Thorson 1031

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

N
M

FS
B

F 
on

 0
1/

08
/2

5
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Finally, the mixed effects aspect of LIME extends length-based
methods by estimating changes in recruitment and fishing mor-
tality over time. Estimating random effects has been integrated
into existing stock assessment models, such as Stock Synthesis
(Thorson et al. 2015a) and the state-space assessment model frame-
work (Nielsen and Berg 2014). Many assessments for European
stocks now use the state-space assessment model to separate pro-
cess and observation errors as an objective method of weighting
data in age-structured models (Berg et al. 2014). Computing the
marginal likelihood for mixed-effects models was previously
too computationally challenging, hindering wide application of
mixed-effects models. Now, programs such as TMB can do these
computations much faster than previous options (Nielsen and
Berg 2014). To illustrate the benefits of LIME, a vignette is available
on the repository site that walks the user through a simple exam-
ple, with tips for model interpretation and convergence. An app
using the R package shiny (Chang et al. 2017) is also available on the
repository site (https://github.com/merrillrudd/LIME_shiny) that
allows analysts to run the model in a graphical user interface.

Simulation testing in this study demonstrated the best LIME
performance with only length data for the short-lived life-history
type, with comparatively lower performance for medium- and
longer-lived fish. With only length data, LIME performs well for
the shorter-lived fish likely because the model is tracking cohorts
through the length data to estimate recruitment deviations. This
is likely difficult for the longer-lived life histories due to variation
in the age–length relationship (especially for older fish) and be-
cause each individual cohort represents a small proportion of
total abundance (hence requiring more samples to track each
individual cohort). The increasing uncertainty in a longer-lived
fish’s age with increasing length blurs the cohorts as they age,
making it difficult to track recruitment events without a much
longer time series of length data. With 10 years of length data,
accuracy in estimating SPR increases but precision decreases for
the medium- and longer-lived life-history types, providing sup-
port for the increased ability to track recruitment events but prop-

agating uncertainty in the age–length curve for older individuals.
With short-lived fish that only live to 4 years old, each length
more clearly matches up with an age group. Regardless of fish
growth, 1 year of length data holds information on an entire gen-
eration for a short-lived fish. Even if recruitment is occurring
monthly or seasonally and not annually, a 10 year time series of
length data can inform variation in cohort strength across several
generations of the short-lived fish.

By testing LIME and LB-SPR using multiple operating models,
we identified scenarios in which each method excels. LB-SPR per-
forms better than LIME for estimating SPR if the population is at
equilibrium and only length data are available. If the population
is not in equilibrium, then LIME performs better. If the data are
collected continuously throughout the year (e.g., monthly), LIME
is expected to estimate higher SPR than the truth for short-lived
fish. In this case, analysts should run LIME using monthly (or
shorter) time steps to account for fish growth during the year. This
bias does not occur for medium- or longer-lived fish, where the
growth during the year is less rapid. On the other hand, LB-SPR
likely underestimates SPR for short-lived fish if data are collected
instantaneously but is unbiased if data are collected continuously.

An important question for management is often how many
years or how much data are enough, particularly for fisheries
where funding for monitoring is limited. The simulation testing
in this study demonstrated that we can get accurate but highly
uncertain estimates of SPR, fishing mortality, and recruitment
from only 1 year of length data on average (Fig. 8). As expected,
collecting more data (10 years of length data instead of 1) resulted
in greater accuracy and precision in LIME estimates of SPR (Fig. 4;
Table 5). When using only length data, LIME performance is best
with at least 500 independent length measurements per year for
medium- and longer-lived life histories but is expected to perform
well with 100 or more length measurements per year for short-
lived life-history types (Table 6). However, including an abun-
dance index or catch time series improves bias and precision to a
greater extent than collecting more independent length measure-

Fig. 8. Example of model estimates (colour lines) with 95% confidence intervals (shaded areas) and the true simulated population dynamics
(broken line) for each of the data availability scenarios for one iteration of a simulated population with a medium-lived life history,
200 length measurements annually in the length data, for the base variation scenario. [Colour online.]
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ments (Tables 5 and 6). Managers must determine how much un-
certainty they are comfortable with to set monitoring goals.
Collecting more years of length data, taking more independent
length measurements during each year of length data collection,
conducting surveys, and monitoring catch data hold varying lev-
els of information used to estimate variable fishing mortality and
recruitment. Their costs and benefits should be weighed to help
managers prioritize data collection.

Including an abundance index or catch time series improves
LIME performance in most scenarios. Catch data provide useful
information on the scale of the population, which is not possible
with length data alone. The abundance index provides useful in-
formation to help inform the trajectory of the population from
which the length data arose. The abundance index could be more
informative on the state of the population than length data alone,
as long as the abundance index is proportional to abundance and
any significant changes in fishing mortality and recruitment oc-
curred during the surveyed time series. Our simulation study
shows that the biases associated with including a time series with
1 year of length data are often overcome with more years of length
data. The exception is for the longer-lived life-history type for
which LIME performs worse when including an abundance index
with 10 years of length composition data than if the abundance
index was excluded.

However, the simulation study also identified some potential
issues with data conflict when an abundance index or catch time
series is included with length data. Data conflict can be diagnostic
of poor data quality, such as catch misreporting, indices from
spatial areas with ontogenetic differences, or length data not rep-
resentative of the fishery. Data quality is an equally important
issue as limited data types and should be considered in LIME
applications. In the case of this study, however, poor data quality
was not the culprit behind any data conflict because we used the
true catch data, abundance index from a single area, and repre-
sentative length data to test LIME. To avoid data conflict, Maunder
and Piner (2017) recommend modeling process error explicitly,
most commonly via time-varying recruitment, as a better alterna-
tive to down-weighting or eliminating data conflicts. LIME takes
this approach, but data conflict may still occur, particularly be-
cause recruitment deviations are treated as a random effect even
if this is not the correct model process for which the data hold
conflicting information (Maunder and Piner 2017). Other options
to avoid data conflict are to estimate the variance parameter for
observed data outside of the stock assessment model (Lee et al.
2014; Maunder and Piner 2017). Alternatively, an analyst could
identify whether data conflict is occurring in the LIME model by
likelihood profiling individual data components (Ichinokawa
et al. 2014) or retrospective analysis, which quantifies the impact
of additional years of data on the stock assessment output
(Hurtado-Ferro et al. 2014).

Like all length-based assessment methods, fixing the biological
parameters at their true values is an important first step for esti-
mating unbiased reference points. LB-SPR circumvents this strong
assumption by using Beverton–Holt life-history invariants to esti-
mate the expected age or length structure, as opposed to assum-
ing known values of natural mortality and growth (Prince et al.
2015a). Sensitivity tests in this study demonstrating the impact of
misspecifying biological parameters provide support for local
studies of species growth rates for stocks assessed using LIME.
Analysts should be aware of how SPR is expected to be biased
given their assumptions on fixed values for input parameters or
model structure. A next step for LIME is to use Bayesian priors on
biological parameters to more thoroughly represent the uncer-
tainty in population parameter estimates relevant to manage-
ment (e.g., from FishLife; Thorson et al. 2017b). Sensitivity tests
and likelihood profiles should be conducted on different levels of
dome-shaped selectivity to understand how SPR is expected to be
biased if the model structure is misspecified.

Length-based stock assessments are good starting points for
making management decisions with limited data and monitoring
capacity. The shrinkage of poorly estimated parameters towards
an estimated distribution (as implemented within mixed-effects
models) has been shown to increase accuracy and precision in
stock assessments (Thorson et al. 2013; Nielsen and Berg 2014), but
high uncertainty in estimates of stock status will always result if
there are only 1 or 2 years of length data. Any stock assessment
deals with data limitation and uncertainty and it is vital to appro-
priately represent and communicate this uncertainty to manag-
ers.

Ideally, conclusions on stock status should be drawn using an
ensemble of assessment models with varying structure and as-
sumptions (Stewart and Martell 2015; Anderson et al. 2017). In the
data-limited context, existing models represent a relatively small
range of alternative model assumptions. We have shown that
LIME presents a way to represent both process and observation
uncertainty. LIME can complement other length-based (Gedamke
and Hoenig 2006; Hordyk et al. 2015; Nadon et al. 2015) and catch-
only methods (Carruthers et al. 2014; Rosenberg et al. 2014) with
the strength of estimating recruitment variability. More accurate
and precise estimates of recruitment variability can help decipher
whether decreased mean length is due to fishing pressure or re-
cruitment variability and understanding the range of possible
levels of recruitment into the future. We therefore conclude that
LIME is a step forward in dealing with uncertainty in decision-
making for fisheries where length data are collected.
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Appendix

Fig. A1. Size at age for the yearly (blue) versus monthly
(white–orange) time steps for the short-lived life-history type. White
lines (monthly) overlapping blue lines (yearly) demonstrate that size
at age is identical at the start of each year and orange lines
increasing in density indicate the size at age distributions during
the following months within each year. [Colour online.]
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