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Patterns of Spiny Lobster (Panulirus argus) Postlarval Recruitment in the Caribbean:  

A CRTR Project 
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ABSTRACT 
As part of the Coral Reef Targeted Research (CRTR) Program, a partnership between the Global Environment Facility and the 

World Bank, our research team examined the recruitment patterns of Caribbean spiny lobster (Panulirus argus) postlarvae among 
regions in the Caribbean, with a particular focus on Mesoamerica.  Our goal was to collect comparable information on postlarval 

supply among regions and to provide data to test predictions of connectivity generated from a coupled biophysical oceanographic 

model of lobster larval dispersal.  Here we present the results of the postlarval recruitment monitoring program.  We monitored the 
catch of postlarvae on Witham-style collectors at sites in the Caribbean from March 2006 to May 2009, although the duration and 

frequency of sampling varied among locations.  Recruitment varied considerably among months and locations.  It peaked in the 

Western Caribbean in the fall (Oct - Dec), whereas in Florida, Puerto Rico, and Venezuela peaks were in spring (Feb - April) with a 
smaller peak in the fall.  Sites generally fell into two groups with respect to monthly variability in recruitment: low variability sites 

(e.g., Honduras, southern Mexico, Venezuela) and high variability sites (e.g., Florida, San Andres Islands, Puerto Rico, northern 

Mexico). Recruitment magnitude varied locally, but generally increased (lowest to highest) from Puerto Rico, San Andres Islands, 
Honduras, Mexico, Venezuela, to Florida.  Recruitment trends mirrored fishery catch in some locations, implying a recruit-to-stock 

linkage. Recruitment was significantly correlated among several sites, suggesting similarity in their larval sources and oceanograph-

ic regimes. 
 

KEY WORDS:   Connectivity, recruitment, postlarvae, spiny lobster, Panulirus argus 

 

Comparación de los Patrones de Reclutamiento de Larvas de Langosta en el Caribe:  

Un Proyecto del CRTR 
 
Como parte del Programa de Investigación Enfocada en Arrecifes de Coral (Coral Reef Targeted Research - CRTR Program), 

una sociedad entre la Fondo Mundial para el Medio Ambiente y el Banco Mundial, el grupo de trabajo de conectividad del CRTR  

estudio el reclutamiento de peces, corales y langosta en el Caribe occidental. Nuestra equipo de investigación se enfoco particular-
mente en la langosta espinosa del Caribe (Panulirus argus).  El objetivo del proyecto fue el de recoger y comparar información 

acerca del origen y suministro de post-larvas de langosta en el Caribe, proporcionando datos empíricos para poner a prueba las 

predicciones de conectividad de dispersión de larva de langosta generadas a través de un modelo bio-físico oceanográfico.  El Grupo 
de Conectividad del CRTR también proporcionó becas para estudiantes de postgrado, talleres para científicos y manejadores de 

recursos de la región Caribe para discutir la importancia de la conectividad y el reclutamiento de larvas en el manejo de recursos 
marinos.  En este proyecto monitoreamos la retención de post-larvas de langosta utilizando colectores estilo Witham en diferentes 

localidades del Caribe entre marzo del 2006 y mayo del 2009; sin embargo, la duración y frecuencia del muestreo no fue igual en 

todas las localidades.  El reclutamiento de larvas varió considerablemente entre meses y localidades, mientras que en el Caribe 
occidental el reclutamiento se aumento durante el otoño (octubre – diciembre), en la Florida, Puerto Rico, y Venezuela el mayor 

aumento en el reclutamiento fue observado durante la primavera (diciembre - abril) con un pico más pequeño en el otoño.  La 

magnitud del reclutamiento varió localmente, pero aumentó de manera progresiva (orden ascendente) de Puerto Rico, Archipiélago 
de San Andrés, Honduras, México, Venezuela, a la Florida.  Las localidades muestreadas se clasificaron en dos grupos con respecto 

a la variabilidad mensual de reclutamiento observada, la cual es fuertemente influenciada por patrones oceanográficos: 1) sitios de 

menor variabilidad de reclutamiento (Honduras, sur de México, Venezuela) y sitios de mayor variabilidad de reclutamiento (Florida, 
Archipiélago de San Andrés, Puerto Rico, norte de México). 

 

PALABRAS CLAVES:  Conectividad, reclutamiento, langosta, Panulirus argus 
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INTRODUCTION 

Connectivity in marine ecosystems generally refers to 

the exchange of individuals among populations through 

larval dispersal, an interconnection that influences the 

dynamics and genetics of those populations, as well as their 

management.  Investigating the scale of marine larval 

dispersal is critical to understanding connectivity among 

populations, especially for marine species whose adult 

movement is limited (Cowen et al. 2006).  With major 

declines in fishery stocks and marine biodiversity world-

wide, and an increasing demand for ecosystem-based 

management approaches that rely heavily upon marine 

protected areas (Worm et al. 2006, Guarderas et al. 2008, 

Pauly 2009), the identification of spatial scales of popula-

tion connectivity is imperative for better resource manage-

ment (Sale et al. 2005). 

In the Caribbean, understanding population connectiv-

ity of the Caribbean spiny lobster (Panulirus argus; 

Latreille 1804) is perhaps more important and more 

daunting than for any other species because of its economic 

significance to the region and its long larval duration, 

respectively.  The Caribbean spiny lobster is the target of 

the most valuable and widespread fishery in the Caribbean 

(Bohnsack et al. 1994, Harper 1995, Hunt 2000, Chavez 

2008).  Most stocks, however, are considered fully- or over

-exploited (FAO 2006).  Like all spiny lobsters (Phillips et 

al. 2006), P. argus has a protracted planktonic larval 

duration (PLD) that has long been suspected to be 5 - 9 

months (Lyons 1980), and recently confirmed to be 5 to 7 

months based on laboratory rearing of larvae (Goldstein et 

al. 2008).  This is one of the longest PLDs known for a 

marine animal in the Caribbean.  For years, the larval 

dispersal distance was thought to scale generally with 

larval PLD (Largier 2003, Siegel et al. 2003), the assump-

tion being that the longer that larvae remain in the plank-

ton, the further that ocean currents would transport them 

away from their natal spawning source.  Because P. argus 

possesses an extraordinary long PLD, scientists have long 

presumed its pan-Caribbean dispersal (Lyons 1980) and 

low genetic variation among Caribbean lobster populations 

supported this hypothesis (Silberman and Walsh 1994, 

Sibelman et al. 1994).  

Yet, differences among larval stages in diel and 

ontogenetic vertical migratory behavior along with 

complex ocean hydrodynamics moderate the dispersal of 

marine fish larvae (Paris et al. 2007, Sponaugle et al. 2002, 

Cowen et al. 2006), and lobster may be no different. 

Although lobster larvae appear capable of a high degree of 

dispersal, the implications of connectivity studies for other 

species provide reasons to suspect that such dispersal 

maybe more restricted than previously believed.  In lieu of 

better scientific information on the true connectivity of 

lobster populations, all Caribbean nations have taken the 

more conservative and politically tractable approach of 

managing their respective lobster fisheries by assuming 

self-recruitment.  That is, fishery management is based on 

the presumption that the adults in an area produce the 

postlarvae that eventually arrive back to the same area 

many months later and thus give rise to their fishery stocks.  

This is almost certainly wrong for most regions.  However, 

there is currently no strong scientific basis for determining 

how connected each country’s lobster stock may be to 

itself or to other regions.   The technological tools needed 

to address this problem have long eluded us, and solving it 

would indeed be a break-through for science and lobster 

management in the Caribbean.  

To ascertain larval connectivity in the sea, researchers 

have relied on one of three approaches: investigations of 

genetic structure and similarities among populations 

(reviewed by Hedgecock et al. 2007 and by Weersing and 

Toonen 2009), mark-recapture based studies of larvae 

bearing natural geochemical or artificial tags (reviewed by 

Thorrold et al. 2007), and predictions of larval dispersal 

from coupled physical-biological models (reviewed by 

Werner et al. 2007).  Each approach has its advantages and 

limitations, but for our study of Caribbean spiny lobster 

Comparaison de Modeles de Recrutement de Homard Post-Larvaire dans les Caraïbes:  

Un Projet de CRTR 
 

Dans le cadre du programme Coral Reef Targeted Research (CRTR), une association entre Global Environment Facility et la 

Banque Mondiale, le Groupe de travail de Connectivité CRTR a étudié le poisson, le corail et le recrutement de homard dans les 

Caraïbes de l'ouest.  Notre équipe de recherche particulière s'est concentrée sur la langouste antillaise (Panulirus argus).  Notre but 
était de recueillir des renseignements comparables sur les réserves post-larvaires parmi les régions dans les Caraïbes et fournir des 

données pour évaluer des prédictions de connectivité produite d'un modèle océanographique biophysique couplé de dispersion de 

langouste larvaire.  Le projet a fourni aussi des bourses aux doctorants antillais et aux ateliers pour les scientifiques et les directeurs 
de ressource pour discuter le rôle de la connectivité larvaire et du recrutement dans la gestion de ressource.  Nous avons surveillé la 

capture de post-larves sur les collectionneurs de Witham-style sur sites dans les Caraïbes de mars 2006 à mai 2009, bien que la durée 

et la fréquence d'échantillonnage varient selon les endroits.  Le recrutement a varié considérablement selon les mois et les endroits. Il 
a culminé dans les Caraïbes de l'ouest à l'automne(octobre - décembre), alors qu'en Floride, au Porto Rico et au Venezuela les pics 

étaient au printemps (décembre - avril) avec un plus petit pic à l'automne.  L'ampleur du recrutement a varié localement, mais a 

généralement augmenté (du plus bas au plus haut) de Porto Rico, Îles de San Andres, Honduras, Mexique, Venezuela, à la Floride. 
Les endroits entraient généralement dans deux groupes en ce qui concerne la variabilité mensuelle dans le recrutement, qui est forte-

ment sous l'influence de l'océanographie : les sites de basse variabilité de recrutement (par ex, le Honduras, le Mexique du sud, le 

Venezuela) et les sites de variabilité de recrutement élevée (par ex, la Floride, les Îles de San Andres, Porto Rico, le Mexique du 

nord). 

 

MOTS CLÉS:  Recrutement, homard, Panulirus argus, connectivité, CRTR 
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connectivity we chose the latter.  Thus far, genetic 

techniques have failed to identify sufficient genetic 

substructure among lobster populations in the Caribbean, 

which is necessary for inferring patterns of connectivity 

(Silberman and Walsh 1994, Silberman et al. 1994).  We 

are also unaware of any geochemical or artificial "tags" 

that could be used to study larval connectivity in lobsters.  

However, recent developments in biophysical modeling of 

connectivity in Caribbean reef fishes (Cowen et al. 2000, 

2006) are a promising avenue for understanding connectiv-

ity that may work for spiny lobster, assuming that 

knowledge of important larval characteristics (e.g., 

duration, behavior, mortality) can be obtained to appropri-

ately parameterize the models. 

The lobster recruitment project described here is one 

element of a larger study of lobster connectivity in the 

Caribbean, and part of the Coral Reef Targeted Research 

(CRTR) Program, a partnership between the Global 

Environment Facility and the World Bank.  The CRTR 

program is a worldwide initiative seeking to fill critical 

gaps in coral reef ecosystems knowledge and to use that 

information to support management and policy decisions 

that contribute to the long-term sustainability of coral reefs 

worldwide.  As part of CRTR Connectivity Working 

Group, the lobster connectivity research team sought to use 

recent advances in high-resolution oceanographic modeling 

and larval rearing technologies, coupled with laboratory 

and field studies of larval and postlarval behavior and 

patterns of recruitment, to estimate the connectivity of 

lobster populations in the Caribbean.  We focused in 

particular on the Mesoamerican region targeted by the 

CRTR program.  One goal of the lobster connectivity study 

was to collect information on postlarval supply throughout 

the Caribbean to provide empirical data:  

i) For comparable estimates of recruitment magni-

tude and temporal patterns among study regions 

for use by resource managers, and  

ii) To test predictions of connectivity generated from 

a high resolution bio-physical oceanographic 

model of lobster larval dispersal.  

 

 In this paper, we describe the results of the first 

objective: comparisons of postlarval spiny lobster patterns 

of recruitment. 

 

MATERIAL AND METHODS 

“Recruitment” of marine species has been variously 

defined depending on the species and circumstances.  In 

this instance, when we refer to "recruitment" we mean the 

arrival of planktonic spiny lobster postlarvae to coastal 

areas from offshore as measured on artificial collecting 

devices.  Our plan for monitoring lobster recruitment was 

to establish postlarval collectors in Mesoamerica and a few 

other representative regions of the Caribbean; two sites per 

region about 10 km apart, with 3 - 5 postlarval collectors 

per site.  We originally established collector sites in 17 

regions within nine countries and intended to monitor 

postlarval recruitment from as early as March 2006 

(depending on the initial date each site was established) to 

May 2009.  However, we were unable to maintain that 

sampling regime and obtained a year or more of simultane-

ous and comparable data from only six regions (Figure 1).  

Figure 1.  Map of the Caribbean showing the general 
location of the regions where time-series data on Caribbean 
spiny lobster (P. argus) postlarval supply were collected 
(filled circles; USA: Florida Keys; Mexico: Akumal, Cozu-
mel, Xcalak and Banco Chinchorro; Honduras: Cayos 
Cochinos and Roatan; Colombia: San Andres Islands; 
Venezuela: Los Roques; and Puerto Rico: Bramadero) and 
regions where collectors were originally established but 
later abandoned (open circles).  

 

A variety of postlarval collectors have been developed 

to estimate the relative recruitment of spiny lobsters 

worldwide and their general construction and use has been 

reviewed elsewhere (see Phillips & Booth 1994).  At least 

three types of collectors have seen widespread use in 

collecting P. argus postlarvae in the Caribbean: the Phillips

-type collector, the GuSI-type collector, and the Witham-

type collector.  All are effective at capturing P. argus 

postlarvae, although their rates of capture and relative cost 

of construction and maintenance vary (e.g., see Phillips et 

al. 2005).  The modified Witham-type collector is the only 

device whose catch has been shown to be correlated with 

planktonic abundance and with settlement of postlarvae in 

the region “downstream” of the collector (Herrnkind and 

Butler 1994).  We chose Witham-type collectors for use in 

this study for this reason and because of their widespread 

use currently and in previous studies (e.g., Witham et al. 

1968, Little 1977, Little and Milano 1980, Marx 1986, 

Bannerot et al. 1991, Briones- Fourzan 1994, Forcucci et 

al. 1994, Herrnkind and Butler 1994, Acosta et al. 1997, 

Lipcius et al. 1997, Eggleston et al. 1998, and others).  Our 

goal was insuring consistency of methods among our study 

sites and reliable estimates of recruitment, not maximizing 

catch per se.  
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At each site, collectors were placed in shallow water < 

3 m deep over sparsely covered hard-bottom or sandy 

substrates, and areas were chosen where postlarvae were 

likely to be concentrated and thus more likely to encounter 

the collector before entering the nursery proper.  Optimal 

locations included the landward edge of channels leading 

from offshore to coastal lagoons or the edge of an island 

closest to the lagoon where postlarvae are concentrated by 

tidal eddies.  Natural settlement habitats (e.g., algal-

covered hard-bottom, dense seagrass, reef, mangroves) 

were intentionally avoided when selecting locations for 

collectors because collectors placed directly within nursery 

areas yield unreliable estimates, presumably because 

collectors are less attractive to postlarvae in such habitats.  

Witham-type collectors float just below the surface and are 

easily seen, thus other important criteria we considered for 

collector site selection were security (to reduce the 

potential for theft) and navigational hazards.  Collectors 

were permitted to soak for one month prior to the initiation 

of data collection and the air conditioning filter material 

used in construction of the collectors was replaced every 

three months on a rotational basis among collectors.  We 

sampled the collectors once a month seven days following 

the new moon and recorded the number of transparent and 

pigmented postlarvae, as well as the number of newly 

metamorphosed early benthic juvenile lobsters on each 

collector.  These three measures were summed to estimate 

monthly recruitment per collector per month. Only data 

from sites providing the longest concurrent data sets were 

included in this analysis. 

 

RESULTS 

Recruitment of P. argus postlarvae varied considera-

bly among months at individual locations and among 

locations each month. In the Western Caribbean (i.e., 

Mexico, Honduras and Colombia) recruitment generally 

peaked in the fall (Oct - Dec), whereas in Florida, Puerto 

Rico, and Venezuela peaks occurred in the winter-spring 

(Dec - April) with a smaller peak in the fall (Figure 2). 

Locations fell into two general groups with respect to 

monthly variability in recruitment, standardized for 

recruitment magnitude (i.e., comparison of coefficients of 

variation in monthly recruitment).  Sites where recruitment 

varied little among months (e.g., Honduras, southern 

Mexico, Venezuela) and sites with high variability in 

recruitment (e.g., Florida, San Andres Islands, Puerto Rico, 

northern Mexico; Figure 2).  Recruitment of postlarvae was 

nearly three times as variable among regions in the 

Caribbean (CV = 81%) as compared to recruitment 

between sites within a region that were generally < 10 km 

apart (CV = 32%).    

We assessed the concordance in the recruitment of P. 

argus postlarvae (mean number of postlarvae per Witham-

type collector per month) among regions in the Caribbean 

from March 2006 through April 2009 using a Pearson 

correlation analysis, the results of which are depicted in a 

correlation matrix (Table 1).  Only six of the 36 relation-

ships where correlation analysis was possible (e.g., where n 

> 4) were significant; however, many of the results 

suffered from low samples sizes (i.e., too few months with 

overlapping data sets).  Significant positive relationships in 

the temporal pattern of P. argus recruitment occurred 

between and among sites in southern Mexico (i.e., Xcalak 

and Akumal) and Honduras (i.e., Roatan and Cayos 

Cochinos).  In contrast, recruitment in the San Andres 

Islands of Colombia (east of Nicaragua) was significantly 

negatively correlated with those at Cozumel.  Recruitment 

in Florida was the most unique among the sites we studied 

(i.e., no r-values > 0.50), but this may have been a 

sampling artifact because the data were more complete for 

Florida and the correlations between Florida and the other 

sites thus based on more data. 

The overall magnitude of P. argus recruitment 

increased (lowest to highest) from Puerto Rico, San Andres 

Islands, Honduras, Mexico, Venezuela, to Florida (Figure 

3).  Recruitment magnitude (mean number of recruits per 

month) averaged per country was also correlated (r = 

0.764; p = 0.065; n =  6) with the average fishery landings 

of P. argus for these countries based on the most recent 

landings data for 2000 - 2004 (FAO 2006; Figure 4).  At 

one location included in this study, the Florida Keys, a long 

time-series of postlarval catch and fishery landings exists 

and are highly correlated.  Postlarval recruitment in the 

Florida Keys over the past 20 years or so explains nearly 

70% of the commercial fishery landings (measured as 

CPUE in kg/trip) 14 months later (r = 0.698, p = 0.006, n = 

14; Figure 5). 

 

DISCUSSION 

Our goals for this field study-based portion of the 

CRTR spiny lobster connectivity project were two-fold.  

First, to determine the spatio-temporal patterns of recruit-

ment among locales in the Caribbean to explore potential 

similarities that might aid in more regional spiny lobster 

management.  Second, to provide data for validation of 

biophysical modeling that we are conducting to predict 

lobster connectivity among regions in the Caribbean 

(Butler et al. In review).  The second goal is still in 

progress; this paper focuses on the first.  Although the level 

of participation from partners in several of our originally 

established sampling locations was disappointing and 

greatly diminished the geographic representation and 

temporal continuity of the data set as originally envisioned, 

the resultant data still provide the single most widespread 

and comparable examination of P. argus recruitment in the 

Caribbean.  

As is the case for all studies of lobster postlarval 

recruitment, we too observed considerable variability in the 

monthly arrival of P. argus postlarvae on artificial 

collectors at each study site.  Such temporal variability in 

recruitment is presumably a result of both biological and 

physical phenomena.  Spatio-temporal variation in 
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biological events such as spawning (Bertelsen and 

Matthews 2001), mortality of larvae and postlarvae (Acosta 

and Butler 1999), and postlarval attraction to local 

nurseries (Goldstein and Butler 2009) all contribute to 

monthly fluctuations in recruitment, as does variation in 

oceanographic circulation in different seasons (Cowen et 

al. 2003, Briones et al. 2008) and at different scales (Paris 

et al. 2007) that affects the dispersal of larvae and 

postlarvae.  Our attention here is not on those short-term 

fluctuations in recruitment or what processes create them, 

but instead on regional similarities in those patterns.   

Figure 2.  Time-series of Caribbean spiny lobster postlarval recruitment (mean number of recruits per collector per month) 
at study sites reporting at least months of data from March 2006 through April 2009.  
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Figure 3.   Mean recruitment (mean number of recruits per 
collector per month) (± 1 SD) of postlarval Caribbean spiny 
lobster at study sites reporting at least 6 months of data 
from March 2006 through April 2009.  Note the difference in 
scale on the y-axis for the different plots. 

Figure 4.  (Top) Mean recruitment (mean number of re-
cruits per collector per month) (± 1 SD) of Caribbean spiny 
lobster postlarvae summarized per country reporting at 
least 6 months of data from March 2006 through April 2009. 
Inset photo: postlarval P. argus (photo credit: William Herrn-
kind). (Bottom) Mean annual Panulirus argus fishery land-
ings (metric tons) by region from 2000 through 2004 (FAO, 
2006). Inset photo:  commercial fisherman with trap in Flori-
da (photo credit: John Hunt). 

Figure 5,  Time-series showing the Caribbean spiny lobster 
postlarval index with a 14 month time lag (black line) rela-
tive to five indices of adult lobster abundance (panels).  
Index values were standardized to their means to permit 
easier visualization. 

The seasonal patterns in recruitment that we observed 

differed among regions in the Caribbean, but were 

generally consistent with previous observations (Little 

1977, Little and Milano 1980, Marx 1986, Bannerot et al. 

1991, Acosta et al. 1997, Eggleston et al. 1998, Cruz et al. 

2001, Briones-Fourzan 1994, Kojis et al. 2003, Gordon and 

Vasquez 2005, Briones-Fourzan et al. 2008).  In brief, 

recruitment peaks in the fall in the Western Caribbean (i.e., 

Mexico, Honduras and Colombia) and in the spring (Feb - 

April) in most of the rest of the Caribbean (e.g., Antigua, 

Cuba, Florida, Puerto Rico, Virgin Islands, Venezuela) 

where a smaller fall peak sometimes occurred.  These 

patterns do not correspond in a straightforward way with 

spawning.  In much of the Caribbean, P. argus spawns 

throughout the year, although its magnitude is greatest in 

the late spring and early summer in many areas, the 

extreme being in Florida where spawning occurs only in 

late spring to early summer (Bertelson and Matthews 

2001).  Recent success at rearing P. argus in the laboratory 

through all of its larval stages indicates that its pelagic 
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larval duration is about six months long, but varies between 

4.5 and 7.5 months (Goldstein et al. 2008), which is similar 

to the hypothesized PLD based on examination of field 

data (Lyons 1980).  A spring peak in spawning would 

logically correspond with a fall peak in recruitment, which 

applies to the results for some sites but not all.  Delayed 

larval metamorphosis and mixing of larval sources may 

explain the disconnect between spawning schedules and 

recruitment in many regions of the Caribbean.  Postlarvae 

are indeed capable of delaying metamorphosis by a few 

days if appropriate nursery habitat is not encountered 

(Goldstein and Butler 2009), but we as yet do not know if 

larvae are capable of doing this. 

With respect to monthly variability in recruitment, our 

sites generally fell into two groups: low variability sites 

(e.g., Honduras, southern Mexico, Venezuela) and high 

variability sites (e.g., Florida, San Andres Islands, Puerto 

Rico, northern Mexico).  We hypothesize that these 

differences, if indeed representative of the true condition 

given the limited sample sizes in some sites, may also 

represent the influence of different oceanographic regimes.  

Regions experiencing a more consistent supply of larvae 
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Table 1.  Correlation matrix comparing the relationships among regions in the Caribbean in the recruitment of P. argus 
postlarvae (mean number of postlarvae per Witham-type collector per month) among sampling dates from March 2006 
through April 2009.  Sampling locations are given at the top and left of the matrix (Florida = FL; Akumal, Mexico = Akumal; 
Cozumel, Mexico = Cozumel; Xcalak, Mexico = Xcalak; Chinchorro Bank, Mexico = Chinchorro; Cayo Cochinos, Honduras = 
Cochinos; Bramadero, Puerto Rico = PR; Los Roques, Venezuela = VE; San Andres Island, Columbia = CO; Roatan, Hon-
duras = Roatan).  The Pearson correlation coefficient, the significance of the correlation (shown as a P-value), and sample 
size (n) are given within each cell of the table. Sample size varied among correlations due to differences in sampling dates 
among recruitment monitoring stations during the study period.  The lower left portion of the matrix is redundant so is blacked 
out.  Photo inset is of a Witham-type collector, the type used in this study (photo credit: John Hunt).  

(i.e., low variability sites) may perhaps be those more 

directly connected to one or a few source regions rather 

than many, as might be the case for sites whose recruitment 

is tied together within an oceanic gyre.  Our sites within the 

Bay of Honduras, which is subject to a persistent cyclonic 

gyre, may be just such an example.  In contrast, other sites 

experience high variability in recruitment and these tend to 

occur in areas dominated by strong boundary currents (e.g., 

Florida Keys, Mexican Caribbean coast) that are strongly 

influenced by sea level anomalies and hurricanes (Briones-

Fourzan et al. 2008). 

Recruitment was also significantly correlated among 

several of our study sites, which again suggests similarities 

in stock source and oceanographic regimes.  The concord-

ance in recruitment patterns among certain regions in the 

Caribbean, particularly in Mesoamerica where this study 

focused, match expectations based on examination of 

oceanographic current patterns and recent results of 

biophysical modeling of lobster connectivity in the 

Caribbean (Butler et al. In review).  The gyre that domi-

nates the oceanography of the southern Bay of Honduras 

provides a compelling example of the importance of 
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advective and retentive oceanography features in influenc-

ing recruitment.  The presence of persistent retentive 

features such as large gyres may not only influence 

recruitment magnitude, but also the variation in recruit-

ment.  Recruitment magnitude, its variability, and what 

these measures imply with respect to larval connectivity 

among adult populations is relevant to management of 

lobsters in the region, and thus the socio-economic well 

being of fishers.  For example, Marine Stewardship 

Council decisions on fishery certifications - such as those 

now underway for portions of the Mexican Caribbean coast 

- is based not only on local management practices, but also 

on whether management in an area can sustain fisheries, 

which is dubious if most larvae are from exogenous 

sources.  Determination of the sources of larvae for a 

particular region is an obvious solution, but many of the 

techniques used to empirically study larval dispersal in 

other marine species are not applicable to spiny lobsters. 

Lobsters have no calcified internal structures (e.g., otoliths 

in fish), so the use of geochemical markers for assessing 

connectivity is not possible (see Thorrold et al. 2007).  To 

date, genetic studies of lobster connectivity have not been 

particularly successful given high genetic variability and 

poor subpopulation genetic structure (Silberman et al. 

1994, Sarver et al. 2000).  So researchers have instead 

relied on oceanographic simulation modeling to examine 

larval dispersal in spiny lobsters, including studies of P. 

argus in the Bahamas (Stockhausen and Lipicius 2001, 

Lipcius et al. 2001), Mexico (Briones-Fourzan et al. 2008), 

and the south Atlantic (Rudorff et al. 2008).  However, the 

results of these models are not likely to be reliable because 

none developed so far for P. argus have included the 

details of larval biology.  This is a crucial distinction 

because an overwhelming number of studies on other taxa 

have shown that dispersal of passive planktonic particles is 

remarkably different than that for larvae with behavior (see 

Sponaugle et al. 2002, Pineda et al. 2007, Paris et al. 2007 

for reviews). 

Although postlarval recruitment magnitude varied 

locally at our study sites, it generally increased (lowest to 

highest) from Puerto Rico, San Andres Islands, Honduras, 

Mexico, Venezuela, to Florida.  Those trends in magnitude 

generally mirror fishery catch in those locations, with the 

obvious exception of Venezuela (Figure 4).  This implies a 

recruit-to-stock linkage, although not necessarily the 

reverse given the dispersal capabilities of lobster larvae.  

The possible relationship between postlarval recruitment 

and fishery landings in the countries studied here highlights 

the importance of understanding recruitment and connec-

tivity for fishery management.  For example, long-term 

monitoring of P. argus postlarval supply has been success-

ful in Cuba, Florida, and Mexico where data has been 

collected for a few decades (Acosta et al. 1997, Cruz et al. 

2001, Briones-Fourzan et al. 2008).  The goal of those 

monitoring studies is an attempt to mimic the success in 

Western Australia where fishery catch is accurately 

predicted from postlarval supply on artificial collectors and 

used in management of fishing effort on adult stocks.  The 

same degree of success in predicting lobster stocks from 

postlarval recruitment has not been fully achieved in the 

Caribbean (Butler and Herrnkind 1997, Lipcius et al. 1997, 

Cruz et al. 2001) where adult stock structure is more 

fragmented and currents that transport larvae are more 

complex than off the coast of Western Australia.  Although 

significant correlations between postlarval recruitment and 

fishery stocks are known at some Caribbean locations (e.g., 

Cuba and Florida), those relationships are insufficiently 

accurate for prediction of fishery catch for management 

purposes.  Nevertheless, lobster recruitment monitoring 

data have proven useful for other purposes such as stock 

assessment (Muller et al. 1997), the examination of 

potential linkages between recruitment and meterological 

or oceanographic phenomena (Acosta et al. 1997, Eg-

gleston et al. 1998, Briones-Fourzan et al. 2008), and for 

experimental or stock enhancement purposes (Marx 1986, 

Bannerott et al. 1991, Field and Butler 1994, Herrnkind 

and Butler 1994, Butler and Herrnkind 1997, Lipcius et al. 

1997, and others).  

Although measurement of postlarval abundance (i.e., 

recruitment magnitude as defined here) is of obvious 

relevancy to the maintenance of adult lobster stocks, it is 

not the sole determinant.  The availability of nursery 

habitat can be important locally in regulating P. argus post-

settlement survival (Butler and Herrnkind 1997), as it is 

more generally for other reef taxa (Steneck et al. 2008), 

and limitations in nursery habitat quality can create 

demographic bottlenecks that decouple the relationship 

between postlarval supply and adult stocks.  Statistical 

relationships between postlarval recruitment and fishery 

landings obtained through monitoring are no substitute for 

knowledge of the ecological processes that link life stages.  

Indeed, an over-reliance on monitoring and fishery-

dependent assessments and models alone can lead to 

undesirable surprises.  Recently, troubling signs have 

emerged in the predicted future fishery for P. cygnus in 

Western Australia, arguably one the best managed fisheries 

in the world and the first to receive the sustainability 

certification of the Marine Stewardship Council.  Measures 

of postlarval recruitment have plummeted the past few 

years and foretell a significant downturn in the fishery 

despite little evidence of a spawning stock decline (pers. 

comm.; S. DeLestang, Western Australia Fisheries 

Management Agency).  The situation points to changes in 

oceanic conditions that may influence the survival or 

dispersion of planktonic larvae, and there is now a 

scramble better understand those processes.  

In the Caribbean, the science needed to understand 

spiny lobster recruitment processes and connectivity also 

continues, but it is largely uncoordinated among countries 

and uneven in its geographic distribution due to regional 

variation in financial support and scientific capacity.  

Fishery regulations in the Caribbean are a hodge-podge, 
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although efforts to better coordinate them are underway in 

various forums and workshops.  Still, enforcement is 

universally weak and current regulations insufficient to 

curtail the rapid decline in Caribbean lobster stocks so 

evident in recent years (FAO 2006).  If adult stocks 

throughout the Caribbean are indeed largely a reflection of 

postlarval recruitment, as evidence (including that shown 

here) indicates, then a determined Caribbean-wide effort to 

increase spawning stocks is the only management option 

available to enhance larval recruitment and avoid a 

collapse of the fishery.  Combined with protection of 

critical coastal nursery habitats for lobster, building lobster 

spawning stocks should be a Caribbean-wide priority for 

management. 
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