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Abstract
Although incorporating detailed reproductive data into all stock assessments is not a practical goal, the need to

understand how reproductive biology affects population productivity is being increasingly recognized. More research
focused on reproductive biology—coupled with a shift towards a resilience perspective in fisheries science—is resulting
in challenges to many long-held assumptions; the emergence of important new issues; and identification of the need
to improve data and methods used in reproductive studies. Typically, data for reproductive studies are based on
an assessment of gonadal development, which is most accurately evaluated with histology. This special section of
Marine and Coastal Fisheries contains contributions from a workshop on the gonadal histology of fishes that was
held in Cadiz, Spain, during June 2009. These papers cover a wide range of species and reproductive topics while
introducing improved and new histological techniques. In this introduction, we address the following needs: (1) to
employ standardization, thereby improving our ability to conduct comparative studies; (2) to better understand
patterns of gonadal development and spawning events over time; and (3) to move beyond the spawning stock biomass
paradigm. We identify the contributions of special section papers to these topics and conclude by suggesting needs
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for future research and integration of reproductive data into both conceptual and quantitative models to better
understand how reproductive performance affects population dynamics.

With the recognition that many marine stocks are either
fully exploited or overexploited (Hutchings and Reynolds 2004;
Grafton et al. 2007), management objectives are shifting from
the optimization of yield to achieving conservation and recovery
of fish stocks. In addition, the realization that traditional stock
assessments are oversimplifications of complex systems has led
to a call for a better understanding of biological processes and
ecosystems (Walters and Martell 2004; Jakobsen et al. 2009).
Although the incorporation of detailed reproductive data into all
stock assessments is not a practical goal, the need to understand
factors driving population productivity (Worm et al. 2009) and
the role reproductive biology plays in this productivity (Kjesbu
2009; Lowerre-Barbieri 2009) is being increasingly recognized.
This is evidenced by the number of recent peer-reviewed articles
(Figure 1) and books on fish reproductive biology (e.g., Rocha
et al. 2008; Jakobsen et al. 2009; Jamieson 2009) as well as
key papers highlighting the relationship between reproductive
biology and stock sustainability (Winemiller and Rose 1992;
Murawski et al. 2001; Berkeley et al. 2004; Marshall and Brow-
man 2007a; Morgan et al. 2009; Murua et al. 2010).

As knowledge of fish reproductive biology rapidly evolves
and as fisheries science shifts from an equilibrium perspective
to a resilience perspective (Hughes et al. 2005), a number of
long-held assumptions are being challenged and important is-
sues requiring more study are emerging. Applied fisheries repro-
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FIGURE 1. Number of peer-reviewed publications by year (1970–2009) that
have focused on fish reproductive biology. Data for the figure were generated
by using a series of key words (fish reproduction, spawning, fecundity, and
oocyte) to search abstract databases (JSTOR, ScienceDirect, and Academic
Search Premier). Publications listed in multiple databases were included only
once.

ductive biology (AFRB; Kjesbu 2009) has traditionally focused
on estimating size and age at sexual maturity and fecundity as
important components of life tables (Stearns 1992), whereas
there is little focus on assessing reproductive traits at the in-
dividual level and how they may impact reproductive success
(Lowerre-Barbieri 2009; Wright and Trippel 2009). However,
reproductive success is what allows species to persist, and it will
depend on both the reproductive output (i.e., egg production) and
the factors that affect the survival of that output. A long-held
assumption has been that the only adult reproductive trait affect-
ing reproductive success is egg production and that spawning
stock biomass (SSB) can be used as a proxy for egg production
(Trippel 1999). However, studies have increasingly shown that
older, larger females may disproportionately contribute to both
egg production and reproductive success (Law 2000; Murawski
et al. 2001; Berkeley et al. 2004). In addition, another long-held
assumption is that in a species with an annual reproductive cycle,
all mature females spawn during each year. However, skipped
spawning (i.e., mature individuals not spawning within a repro-
ductive cycle) appears to be more common in fishes than previ-
ously thought (Rideout et al. 2005; Jørgensen et al. 2006; Secor
2008; Rideout and Tomkiewicz 2011, this special section). It has
also been widely assumed that high fecundity confers greater
resilience to fishing pressure, but most exploited marine species
are highly fecund (Murua and Saborido-Rey 2003) and many are
overfished (Sadovy 2001). However, these same species differ
in a range of other reproductive traits, including maturity and
longevity, gender and mating systems, spatial attributes (e.g.,
spawning migrations, spawning site selection, and fidelity), and
the temporal pattern of reproduction over a lifetime (i.e., repro-
ductive timing; Murua and Saborido-Rey 2003; Patzner 2008;
Lowerre-Barbieri et al. 2011, this special section). Adaptations
to offset natural mortality have led to the selection of these
traits; that is, regardless of extremely high fecundity and low
larval survival rates, certain adult traits have resulted in greater
numbers of surviving offspring. Given that a species’ reproduc-
tive compensatory ability depends on the selection pressures
under which it evolved (Garrod and Horwood 1984), we need
to better understand these reproductive traits, their genetic basis
and phenotypic plasticity, and the role they play in population
productivity and resilience to fishing pressure (Lowerre-Barbieri
2009); such an understanding will improve our predictions of
population growth and recovery rates of overfished populations.

To achieve this understanding will take collaboration and
synthesis of knowledge from various fields as well as improved
and standardized means of collecting, analyzing, and discussing
reproductive data. Although reproductive data come from a
range of sampling techniques, including egg and larval surveys,
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visual observation, and tagging, the basis of most reproductive
data is a measure of gonadal development or reproductive state
(West 1990). Gonadal development can be assessed through
macroscopic evaluation, whole-oocyte analysis, the gonadoso-
matic index, or gonadal histology. Although gonadal histol-
ogy is expensive and time consuming, it is also considered the
most accurate means to assess reproductive state (West 1990;
Kjesbu et al. 2003) and is commonly used either to provide data
for reproductive parameter estimates or to validate less-costly
methods of assessing gonadal development. Thus, similar to re-
cent efforts to review, standardize, and disseminate advances
in otolith research and its application to fishery science (Secor
et al. 1995; Elsdon et al. 2008), there is a need to review gonadal
histology techniques for a wide range of species and regions,
to standardize histological indicators and terminology, and to
present new applications of these techniques to address emerg-
ing issues in fish reproductive biology.

These were the objectives of the Fourth Workshop on Go-
nadal Histology of Fishes, which was held in June 2009 in Cadiz,
Spain, and was jointly sponsored by Fish Reproduction and
Fisheries (FRESH; European Cooperation in Science and Tech-
nology [COST] Action FA0601) and the American Fisheries
Society (AFS) Marine Fisheries Section. Presentations from
this meeting form the basis of the papers in this special section.
Although histological analysis has been widely applied in stud-
ies of maturity and fecundity and with the daily egg production
method (DEPM), to our knowledge this collection of papers is
the first to present novel approaches for improving our ability
to study these topics (Ganias et al. 2011, this special section;
Nunes et al. 2011, this special section) as well as addressing
a number of emerging reproductive topics and histological ap-
plications (Alonso-Fernandez et al. 2011, this special section;
Kjesbu et al. 2011, this special section; Serra-Pereira et al. 2011,
this special section; Tomkiewicz et al. 2011, this special section).
In addition, these papers cover a wide range of species, and sev-
eral papers act to bridge the understanding between researchers
studying warmwater versus coldwater species (Brown-Peterson
et al. 2011, this special section; Lowerre-Barbieri et al. 2011;
Rideout and Tomkiewicz 2011), for which the methodology,
terminology, and commonly accepted assumptions are often
different.

The objective of this article is to address our emerging un-
derstanding of fish reproductive biology and its relationship to
sustainability. We begin with an overview of universal reproduc-
tive traits and milestones within gametogenesis. We then present
the need to standardize both the histological indicators used to
identify these milestones and the terms used to describe them,
which would improve our ability to compare reproductive traits
among species, over their spatial range, and under different fish-
ing regimes. To understand the physiological processes underly-
ing reproductive milestones, there is a need to better understand
gonadal development and spawning events over time. Thus, in
the reproductive timing section, we introduce the range of re-
productive timing strategies exhibited in fishes, the relationship

between oocyte recruitment pattern and fecundity estimates, and
the manner in which advanced histological techniques can be
used to study oogenesis and spermatogenesis. Other reproduc-
tive traits addressed in this section include hermaphroditism and
time of transition in sequential hermaphrodites and the spawn-
ing fraction and spawning interval in batch spawners. The im-
portance of moving beyond an SSB-driven conceptual model of
reproductive potential is presented in the third section, which ad-
dresses three emerging issues: fisheries-induced evolution, the
interaction between energetics and reproductive performance,
and skipped spawning. We conclude with a section on future
needs for research and integration of reproductive data into both
conceptual and quantitative models to improve our understand-
ing of population growth and sustainability.

UNIVERSAL REPRODUCTIVE TRAITS AND
TERMINOLOGY

Reproductive strategies in marine fishes are extremely di-
verse (see Balon 1975; Murua and Saborido-Rey 2003; Patzner
2008), yet all strategies contain certain universal reproductive
traits. By developing a conceptual model of reproductive sys-
tems based on universal traits (Figure 2) and by identifying
a common terminology (Brown-Peterson et al. 2011), we can
build the necessary framework to improve communication and
standardization, which will improve the ability to conduct com-
parative analyses and to assess individual variability in these
traits. For all fish species, individuals reach sexual maturity,
participate in one or more reproductive cycles, release gametes
or offspring once or more within a given reproductive cycle,
reach maximum reproductive age (often synonymous with max-
imum age), and die. Reproductive cycles represent the gonadal
development needed for mature fish to spawn at the appro-
priate time. In iteroparous species, which go through multiple
reproductive cycles in a lifetime, reproductive cycles also in-
clude removal of residual oocytes by atresia and regeneration of
oocytes for the next spawning season. Although most exploited
marine species exhibit annual reproductive cycles (Bye 1984;
Rideout et al. 2005), other periodicities also occur. In addition,
skipped spawning is increasingly recognized as a component of
many species’ reproductive strategies (Rideout and Tomkiewicz
2011).

Gametogenesis is also similar for all teleosts, and most stud-
ies focus on oogenesis. Spermatogenesis (i.e., the development
and growth of sperm) proceeds through universal stages of
development, including spermatogonia, spermatocytes, sper-
matids, and spermatozoa. Oogenesis (i.e., the development and
growth of oocytes) is also similar for all fish (McMillan 2007;
Mommsen and Korsgaard 2008) and typically shows the follow-
ing progression: (1) oogonia, (2) primary growth (PG) oocytes,
(3) a previtellogenic stage in which oocytes increase in size and
often acquire oil droplets and cortical alveolar (CA) vesicles,
(4) a largely estradiol-driven vitellogenic stage, and (5) oocyte
maturation (OM) and ovulation. We describe oogenesis in detail
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FIGURE 2. Conceptual model of universal reproductive traits in fishes. All fish reach sexual maturity, go through one or more reproductive cycles, release
gametes or offspring one or more times within a given reproductive cycle, reach maximum reproductive age, and die.

given that it has been more widely studied than spermatogenesis
and the stages are used to assess a number of important repro-
ductive parameters. Oogonia divide by mitosis and form germ
cell nests. Once the oogonia initiate meiosis, they enter into the
chromatin nucleolus stage of development and are considered
oocytes. This stage of development occurs prior to the typically
identified basophilic stages of PG, which include the perinucle-
olar stage, when meiosis is arrested, and the development of the
Balbiani body (Wallace and Selman 1981; Grier et al. 2009).
Most AFRB studies do not identify specific stages in PG; rather,
they classify these stages as PG oocytes, and this is the most de-
veloped stage observed in immature females. Secondary growth
in exploited marine species is typically identified as beginning
with the CA stage and progressing through several substages

of yolk deposition or vitellogenesis (primary [Vtg1], secondary
[Vtg2], and tertiary [Vtg3]), OM, and finally ovulation
(Figures 3, 4). Oocyte maturation indicates the resumption of
meiosis and involves several nuclear and cytoplasmic events
(Figure 4): germinal vesicle migration, yolk coalescence (prote-
olysis of yolk), and germinal vesicle breakdown (Clelland and
Peng 2009). In addition, hydration is an important cytoplasmic
event that occurs in many species, particularly in marine
species with pelagic eggs. Hydration results in a significant
and rapid uptake of fluid by the oocyte (Fulton 1898; Wallace
and Selman 1981), which causes the oocyte to swell. Ovulation
occurs when the follicle ruptures after the completion of OM.
These remnant follicles are then called postovulatory follicles
(POFs).

FIGURE 3. Progression of oocyte growth and developmental stages that are most commonly identified in fishes: primary growth (PG), cortical alveolar (CA),
and yolked or vitellogenic (Vtg; Vtg1, Vtg2, and Vtg3 = primary, secondary, and tertiary vitellogenesis, respectively). Species shown is the spotted seatrout
Cynoscion nebulosus.
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FIGURE 4. Progression of oocyte maturation in fishes: early germinal vesicle migration (GVM), late GVM with yolk coalescence (YC; proteolysis of yolk),
germinal vesicle breakdown (GVBD), undergoing hydration after completion of GVBD, and fully hydrated at the time of ovulation. After ovulation, the ruptured
oocyte follicle remains in the ovary and is called a postovulatory follicle (POF). Species shown is the spotted seatrout.

Our understanding of the initial stages of secondary growth
is still evolving, and the traditional AFRB definition (i.e., the
appearance of CA oocytes) differs from other definitions of sec-
ondary growth based on initiation of vitellogenesis (Patiño and
Sullivan 2002; Grier et al. 2009). Wallace and Selman (1981)
defined the CA stage as the first gonadotropin-dependent stage
of development, but more recent studies have suggested that it
may be mediated through growth hormones (Canosa et al. 2007).
Because the neuroendocrine control of this stage of oocyte
growth is still not well understood and because not all fish
develop cortical alveoli prior to vitellogenic oocytes, Grier et al.
(2009) considered the CA stage to be part of PG. However, there
are important applications associated with identifying the first
developmental stage, which indicates commitment to a given re-
productive cycle; these applications include determining fecun-
dity type and assessing maturity. Most, if not all, marine species
demonstrate a previtellogenic oocyte developmental stage that
occurs only in sexually mature or maturing females. This stage
of development is characterized by an increased oocyte diam-
eter; is typically associated with the presence of oil droplets,
cortical alveoli, or both; and is commonly called the CA stage.
However, in some species such as the bluefin tuna Thunnus
thynnus, the lipid droplets are the predominant cytoplasmic in-
clusions; thus, Abascal and Medina (2005) called it the “lipid
stage.” In addition, for coldwater species this stage is often called
“endogenous vitellogenesis” (Murua et al. 2003; Rideout et al.
2005; Vitale et al. 2005). Once fish develop CA oocytes, oo-
genesis typically continues through vitellogenesis and the fish
spawn in the upcoming spawning season (Wright 2007). The CA
stage of development identifies those fish that have the neces-
sary energy reserves and have received the appropriate signals
to either develop for the first time (sexual maturity) or begin
recrudescence for an upcoming spawning season. Thus, we de-
fine secondary growth as including the CA stage, as do Murua
et al. (2003), Abascal and Medina (2005), and Luckenbach et al.
(2008), but we recognize that this area needs further study.

Although there are universal reproductive traits, the
terminology used to describe them is diverse and rapidly

proliferating. Thus, an emerging issue in AFRB is the need
for common terminology. Because many studies have assessed
gonadal development to evaluate maturity and fecundity,
certain concepts and developmental stages are commonly
reported in the reproductive literature. However, the terms
employed to describe them are often inconsistent and specific
to a study, a species, or a region, making communication
and comparative analyses difficult. In an effort to address
the need for a common vocabulary, we have developed a list
of commonly used reproductive terms and their definitions
based on classic and current literature (Table 1). These terms
have been used throughout the papers in this special section,
indicating their applicability to a wide range of species and
topics.

The need for standardized terms to describe gonadal
development was the topic of a keynote presentation and
the subject of the paper by Brown-Peterson et al. (2011).
Brown-Peterson et al. (2011) break the reproductive cycle into
a series of developmental phases, including (1) immature, the
reproductive phase that precedes sexual maturity and is highly
variable in duration; (2) developing, which signals commitment
to a given reproductive cycle and occurs in both maturing
fish and mature fish undergoing recrudescence; (3) spawning
capable, used to identify fish that will spawn during the current
reproductive cycle based on advanced gametogenesis (this
phase includes the actively spawning subphase); (4) regressing,
which signals fish that are completing their spawning period;
and (5) regenerating, indicating sexually mature fish that
have completed their spawning period and that no longer
have secondary growth oocytes, but typically regenerate their
reserve of PG oocytes at this time (McMillan 2007). The
most developed oocytes in immature females are PG oocytes,
whereas early developing females have CA oocytes and
developing females have vitellogenic oocytes (Vtg1, Vtg2, or
both substages; see Figure 3). The spawning capable phase
will have either Vtg3 oocytes or histological indicators of
spawning; this phase has different implications depending on
whether a fish has determinate or indeterminate fecundity.
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TABLE 1. Definitions of commonly used reproductive terms.

Term Definition References

Oogenesis Development and growth of oocytes from oogonia through
maturation. Stages of oogenesis: oogonia (Oo), primary growth
(PG), cortical alveolar (CA), vitellogenic (Vtg) or yolked (Yo),
and oocyte maturation (OM).

Wallace and Selman 1981;
Hunter and Macewicz
1985; Patiño and Sullivan
2002; Kjesbu 2009

Spermatogenesis Morphological and physiological changes during development of
male germ cells. Stages of spermatogenesis: spermatogonia (Sg),
spermatocytes (Sc), spermatids (St), and spermatozoa (Sz).

Nagahama 1983; Grier and
Uribe-Aranzábal 2009

Primary growth First stage of oocyte growth in arrested meiosis. Occurs in immature
and mature females. Characterized by basophilic staining. Stages
include single nucleolus, multiple nucleoli, and perinucleolar.

Wallace and Selman 1981

Secondary growth Second stage of oocyte growth in arrested meiosis, indicating that
oocytes have begun development for an upcoming spawning
season. Occurs only in mature or maturing fish. Stages include
CA and Vtg; Vtg is often divided into three substages: primary
(Vtg1), secondary (Vtg2), and tertiary (Vtg3).

Matsuyama et al. 1990;
Abascal and Medina 2005;
Luckenbach et al. 2008

Oocyte maturation Resumption of meiosis and achievement of oocyte maturational
competence, ending in ovulation. OM includes two nuclear
events: germinal vesicle migration (GVM) and germinal vesicle
breakdown (GVBD). In some species, OM may also include the
formation of large oil droplets or lipid coalescence (LC), yolk
coalescence (YC); and hydration (H).

Jalabert 2005; Grier et al.
2009

Reproductive phases Phases of gonadal development prior to spawning, associated with
spawning, and postspawning that occur in all fishes. Phases are
defined as immature; developing; spawning capable, which
includes the actively spawning subphase; regressing; and
regenerating.

Brown-Peterson et al. 2011,
this special section

Determinate fecundity Recruitment of oocytes from PG to secondary growth occurs prior
to an individual’s spawning period.

Hunter et al. 1992; Murua
and Saborido-Rey 2003

Indeterminate fecundity Recruitment of oocytes from PG to secondary growth continues
throughout an individual’s spawning period.

Hunter et al. 1992; Murua
and Saborido-Rey 2003

Batch spawner Females capable of ovulating and spawning multiple batches of
oocytes during the individual spawning period. Batch spawners
can have determinate or indeterminate fecundity.

Murua and Saborido-Rey
2003

Total spawner Females ovulate and spawn all developing oocytes in a single event
or over a very short time period as part of a single episode.

Murua and Saborido-Rey
2003

Skipped spawning Failure of sexually mature fish to spawn during a reproductive
season. Failure to spawn can be recognized by a lack of ovarian
development (Vtg) or by massive atresia prior to the spawning
period.

Rideout et al. 2005

Maturation Synonymous with sexual maturity in both males and females;
maturation is attained once in a lifetime.

Rideout et al. 2005

For fish with determinate fecundity and no recent POFs, the
spawning capable phase indicates that the spawning period is
imminent and fecundity estimates based on fish in this phase are
considered the most accurate due to potential downregulation
(Thorsen et al. 2006; Witthames et al. 2009). For fish with
indeterminate fecundity, the spawning capable phase indicates
that the fish are capable of spawning and thus have entered
the spawning population. The regressing phase in species with

indeterminate fecundity typically is identified by high levels of
atresia as the surplus production of secondary growth oocytes is
resorbed (Murua et al. 2003; Murua and Motos 2006), whereas
coldwater species with determinate fecundity typically have
POFs and few residual secondary growth oocytes during this
phase (Brown-Peterson et al. 2011). Species-specific histo-
logical criteria can be used to develop more specific divisions
(subphases) while still preserving the overall reproductive
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terminology for comparative purposes. This terminology can
easily be modified for teleosts with alternate reproductive
strategies, such as sequential hermaphrodites (addition of a
transition phase) and livebearers (addition of a gestation phase).

To further demonstrate the applicability of this new termi-
nology, it was adapted to describe the reproductive cycle of
oviparous elasmobranchs, and this is presented by Serra-Pereira
et al. (2011). For females, progression of oocyte development
in the ovary and changes in the oviducal glands and uterus are
incorporated into the terminology. For males, a combination of
spermatogenic stages and changes in sperm ducts and claspers is
used to define reproductive phases. All five reproductive phases
described for teleosts can be identified in oviparous female
elasmobranchs, although the duration of the phases varies by
species. In contrast, the regressing and regenerating phases do
not seem to occur in all oviparous male elasmobranchs, whereas
the other three reproductive phases can be identified (Serra-
Pereira et al. 2011).

REPRODUCTIVE TIMING: GONADAL DEVELOPMENT
AND SPAWNING

A necessary step in evaluating the processes underlying ob-
served patterns in reproductive biology is a better understanding
of gonadal development and spawning over time. This was the
topic of a keynote address and the review paper by Lowerre-
Barbieri et al. (2011). Reproductive timing occurs over four
temporal scales: lifetime, annual, seasonal, and diel. An un-
derstanding of development at these different scales and the
interactions between them can improve our understanding of
fish reproduction. For example, although sexual maturation oc-
curs at the lifetime scale, there is an interaction effect with
the reproductive cycle, meaning that maturing fish must recruit
oocytes to secondary growth at the appropriate time of the year
to be capable of spawning at the beginning of the spawning sea-
son. Most species recruit oocytes from PG to secondary growth
and complete the secondary growth of oocytes in less than 1
year (Rideout et al. 2005). However, some fishes, such as the
Greenland halibut Reinhardtius hippoglossoides, have such slow
oocyte growth rates that CA oocytes are recruited a year prior to
the season in which they will be spawned (Junquera et al. 2003).

Reproductive timing strategies in marine fishes fall along
a continuum from semelparous total spawners to iteroparous
batch spawners with extended spawning seasons and long repro-
ductive life spans. Oocyte developmental patterns reflect these
timing strategies in terms of oocyte recruitment from PG to
secondary growth and within secondary growth (Figure 5). At
the lifetime scale, semelparous species, which participate in
only one reproductive cycle and then die, recruit all of their
oocytes into secondary growth. In contrast, iteroparous species,
which are more common and have the potential to participate in
multiple reproductive cycles, constantly maintain a reserve of
PG oocytes (Murua and Saborido-Rey 2003). For both semel-

parous and iteroparous species, two spawning patterns within a
reproductive cycle are demonstrated: (1) total spawners, which
spawn either in one event or over a short time period and thus
have relatively synchronous secondary growth oocyte develop-
ment (e.g., Atlantic herring and coho salmon; Figure 5); and
(2) batch spawners, which develop and release multiple batches
of eggs within a spawning season (e.g., European eel, Atlantic
cod, Atlantic sardine [also known as European pilchard], and
spotted seatrout; Figure 5).

Iteroparous batch spawners, in turn, demonstrate different
oocyte recruitment patterns, and these are affected in part by
oocyte developmental rates and their relationship to metabolic
rates and water temperature. However, temperature is only one
component of a fish’s environment, and the selection of spawn-
ing pattern and duration of the spawning season may be driven
by other factors; in fact, tropical fish species can range from
spawning a few times per year to repeatedly over many months
(Sadovy 1996). Nevertheless, coldwater species exhibit slower
oocyte developmental rates (Rideout et al. 2005) and often have
short spawning seasons, resulting in discontinuous recruitment
from PG to secondary growth and determinate fecundity, as ob-
served in the Atlantic cod (Kjesbu 2009; Pavlov et al. 2009).
In contrast, many batch spawners in warmwater habitats exhibit
continuous oocyte recruitment, repeatedly recruiting oocytes
from PG to secondary growth, thus increasing their fecundity
and their ability to spawn over an extended time period. These
species are considered to have indeterminate fecundity (Hunter
and Goldberg 1980). Oocyte recruitment rates within secondary
growth (i.e., from CA through the substages of vitellogenesis)
also fall along a continuum from quite synchronous to com-
pletely asynchronous (Figure 5).

Although conceptual definitions of determinate and indeter-
minate fecundity are easy to understand, our ability to prove
these recruitment patterns is more difficult. The traditional
method of distinguishing between determinate and indetermi-
nate fecundity has been based on whether oocyte size distribu-
tions demonstrate a significant gap between secondary growth
oocytes and PG oocytes (Hunter and Macewicz 1985; Murua
et al. 2003; Pavlov et al. 2009). Other criteria have also been
used in conjunction with the gap to indicate determinate fe-
cundity: most notably a decrease in the number or size of ad-
vanced vitellogenic oocytes as the season progresses (Hunter
et al. 1992; Greer-Walker et al. 1994; Murua and Saborido-Rey
2003). However, to conclusively demonstrate discontinuous re-
cruitment, it is necessary to evaluate oocyte development in
individual fish over time; this is now possible with advanced
histological quantification techniques and in-captivity studies
(see Advanced Histological Techniques section below).

Methodology used to estimate annual fecundity in marine
fishes differs depending on fecundity type. In species with
determinate fecundity, potential annual fecundity is estimated
based on the number of developing oocytes just prior to spawn-
ing (Murua et al. 2003). Because the accuracy of this method is
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FIGURE 5. Oocyte dynamics drive the availability of fully developed oocytes for recruitment to oocyte maturation and thus are correlated with spawning patterns.
Spawning patterns fall along a continuum from (A) semelparous total spawners with synchronous development of all oocytes to (F) iteroparous batch spawners
with asynchronous development of secondary growth oocytes. Semelparous species die after participating in one reproductive cycle and do not maintain a reserve
of primary growth (PG) oocytes. However, they can be either (A) total spawners with synchronous oocyte development, such as the coho salmon Oncorhynchus
kisutch (demonstrated here with all oocytes in the perinucleolar stage), or (B) batch spawners with asynchronous secondary growth development, such as the
European eel Anguilla anguilla. All iteroparous species maintain a reserve of PG oocytes (C–F). However, (C) iteroparous total spawners have synchronous
development of secondary growth oocytes, as seen in the Atlantic herring Clupea harengus. Iteroparous batch spawners can exhibit (D) discontinuous oocyte
recruitment and determinate fecundity wherein all oocytes to be spawned in a season are recruited to secondary growth prior to the first spawning event, such as
in the Atlantic cod Gadus morhua, or (E), (F) continuous oocyte recruitment throughout the spawning season and indeterminate fecundity. Oocyte recruitment
rates within secondary growth also differ, ranging from (E) relatively synchronous development of batches, such as in the Atlantic sardine Sardina pilchardus
(also known as European pilchard), to (F) asynchronous development, exhibiting a wide range of secondary growth stages at any given time, such as in the spotted
seatrout.

dependent on the underlying oocyte recruitment pattern, oocyte
recruitment has been more intensely studied in species that are
suspected to have determinate fecundity, and these are often
fishes from coldwater habitats (Pavlov et al. 2009). However,
species with indeterminate fecundity are more common (Murua
and Saborido-Rey 2003). In these species, estimation of the
standing stock of advanced oocytes in the ovary or potential an-
nual fecundity is meaningless because oocytes are continuously
recruited to this stock. Thus, the annual fecundity of species
with indeterminate fecundity is calculated by estimating the
number of oocytes spawned per batch, the percentage of females
spawning per day (spawning fraction), and the duration of the
spawning season (Hunter et al. 1985; Murua and Saborido-Rey
2003). Because accurate estimates of batch fecundity and
spawning frequency will give accurate estimates of annual
fecundity regardless of fecundity type, indeterminate fecundity
for many warmwater species is assumed but not proven.

Advanced Histological Techniques
Traditionally, histological “staging” has been applied to

females to understand their developmental state at the time
of capture. However, histological techniques are rapidly
improving with greater application of quantitative techniques
to understand oocyte dynamics, finer temporal resolution of
histological indicators, and greater application to males and
hermaphrodites. Stereology is a method that is increasingly
used in fish reproductive studies to extract quantitative informa-
tion about three-dimensional structures from two-dimensional
images based on systematic plane sections separated by a
known distance (Sterio 1984; Gundersen 1986; Gundersen et al.
1988; Anderson 2003). The autodiametric method is based on
predicting the number of vitellogenic oocytes per gram of ovary
(i.e., oocyte packing density) from the mean diameter of vitel-
logenic oocytes (Thorsen and Kjesbu 2001; Alonso-Fernandez
et al. 2009; Witthames et al. 2009). The physical disector, a
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stereological method, is used to calibrate estimates of oocyte
density from image analyses and to adjust for atresia (Kjesbu
et al. 2010a; Korta et al. 2010c). These methods can then be used
to rapidly estimate fecundity in species with determinate fecun-
dity based on ovarian histological slides (Thorsen and Kjesbu
2001; Witthames et al. 2009; Kjesbu et al. 2011). It is more dif-
ficult to use stereological methods to estimate batch fecundity
in indeterminate species (Witthames et al. 2009; Kjesbu et al.
2010b), but oocyte-stage-specific algorithms for oocyte packing
density and oocyte diameter can be developed to improve our
ability to do so (Kurita and Kjesbu 2009; Korta et al. 2010c).
Design-based stereology is a newer method that does not require
information about the geometry of the objects being quantified.
Thus, when design-based stereology is combined with the
disector and fractionator methods and used along with statistical
sampling methods (e.g., systematic uniform random sampling),
it is possible to obtain unbiased estimates of the number of
oocytes in all developmental stages (Korta et al. 2010b).

These advanced histological techniques are being used
to better understand oocyte dynamics within the PG stage.
Although the developmental stages within PG have been previ-
ously described (Wallace and Selman 1981; Tyler and Sumpter
1996), there is renewed interest in identifying and quantifying
these stages (Grier et al. 2007, 2009; Korta et al. 2010c; Kjesbu
et al. 2011). Using design-based stereology, Korta et al. (2010b)
quantified chromatin nucleolar, and perinucleolar oocytes in
the European hake Merluccius merluccius showing that the
number of chromatin nucleolar oocytes increased at the end
of the spawning season. This suggests that recruitment to the
primary growth for the next spawning season may occur even
as the present spawning season is ending. The ecophysiological
significance of oocyte recruitment patterns in these very early
developmental stages is not yet known but potentially can help
us to better understand oocyte developmental stages associated
with the sexual maturation process (Okuzawa 2002), their
relationship to energetic thresholds (Thorpe 2007), and shifts
in habitat usage (see Moving Beyond Spawning Stock Biomass
section). Similarly, Kjesbu et al. (2011) used simple oocyte
packing density theory to quantify PG oocytes and secondary
growth oocytes in the Atlantic cod, a species with determinate
fecundity. By following individuals in captivity over time,
Kjesbu et al. (2011) were able to demonstrate that only maturing
females or mature females undergoing recrudescence developed
the circumnuclear ring stage of PG. In addition, some individ-
uals showed arrested oocyte development at this stage, whereas
CA oocytes occurred in all females that were developing for
the upcoming reproductive cycle. Kjesbu et al. (2011) also
demonstrated that the diameter of CA oocytes was smaller than
previously believed, which has important implications for fecun-
dity estimates based on the standing stock of secondary growth
oocytes. In addition, these studies quantifying the number of
oocytes in various stages of PG will help to improve our under-
standing of PG recruitment and the significance of the size of the
PG reserve in iteroparous species over the reproductive cycle.

Although less research has been conducted on spermatogen-
esis, this field is also evolving (Trippel 2003; Grier and Uribe-
Aranzábal 2009). The male reproductive phases cannot be based
solely on the presence of spermatozoa in the testes (Grier and
Taylor 1998; Brown-Peterson et al. 2002) but rather must take
into account the amount of active spermatogenesis along the
germinal epithelium (Grier and Uribe-Aranzábal 2009; Brown-
Peterson et al. 2011). The presence of a continuous or discon-
tinuous germinal epithelium provides a temporal marker for
estimating whether males are in the early, intermediate, or late
portion of the spawning season (Brown-Peterson 2003; and see
Brown-Peterson et al. 2011), thus allowing a level of individual
assessment that is not possible for females. However, there is
also a need to develop a quantifiable measure of spermatogen-
esis. Tomkiewicz et al. (2011) present the spermatogenic ma-
turity index, a novel quantification of testis development based
on weighted area fractions of different gamete and somatic tis-
sues. The index results in a development score ranging from
0 to 1, which can then be used to assess temporal patterns in
testicular development or can be examined for correlation with
morphological and physiological parameters.

Hermaphroditism
Histological analysis is also used to identify hermaphroditic

species (Sadovy and Shapiro 1987). Hermaphroditism in fishes
is widespread and often misdiagnosed, leading to the need
for more conclusive diagnostic criteria and clarified terminol-
ogy (Sadovy de Mitcheson and Liu 2008). Two patterns of
hermaphroditism have been identified in fishes: (1) sequential
hermaphroditism, in which fish have a functional primary (i.e.,
initial) sex and then transition to a functional terminal sex (in-
cluding protogyny [from male to female] and protandry [from
female to male]); and (2) simultaneous hermaphroditism, in
which functional testicular and ovarian tissues occur in the same
individual at the same time or within a short time period. Sadovy
de Mitcheson and Liu (2008) presented the following criteria for
diagnosis: (1) direct observations of individuals spawning first
as one sex and later as the other sex in the field or laboratory; (2)
simultaneous occurrence of mature testicular and ovarian tissues
in gonads (i.e., mature gametes); or (3) a detailed gonadal his-
tological series depicting the sex change process in mature fish.

The appearance of gonadal tissue from sequential
hermaphrodites in transition will differ depending on the type
of hermaphroditism and gonadal structure (Sadovy and Shapiro
1987). In sequential hermaphrodites, small amounts of nonfunc-
tional terminal sex gametes (i.e., PG oocytes or spermatogonia)
typically appear long before transition (Smith 1965; Reinboth
1982, 1988). However, fish in the transition phase demonstrate a
clear proliferation of terminal sex gametes and atresia of the pri-
mary sex gametes (Brown-Peterson et al. 2011). In delimited go-
nads, there is a membrane of connective tissue separating male
from female tissues. This is the pattern seen in the protogynous
red porgy Pagrus pagrus, wherein male tissue develops outside
of the ovary. At transition, testicular tissue proliferates while
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ovarian tissue regresses and is no longer identifiable in the func-
tional male (Kokokiris et al. 2006). In undelimited gonads, male
and female tissues may be spatially distinct or intermixed, but
they are not separated by connective tissue (Sadovy and Shapiro
1987). For example, the protogynous red grouper Epinephelus
morio exhibits crypts of male tissue interspersed within ovarian
tissue (Brulé et al. 1999). Histological appearance of terminal
sex gonads also varies in the amount of remnant gonadal struc-
ture retained from the primary sex. The ovarian lumen is retained
in the testes of some protogynous species (see Brown-Peterson
et al. 2011); is greatly reduced and not clearly visible in others,
such as the Mediterranean rainbow wrasse Coris julis, a protog-
ynous labrid (Alonso-Fernandez et al. 2011); or is not retained
at all, as seen in some serranid species (Sadovy and Domeier
2005). In addition, the ovaries of many protandrous species with
undelimited germinal tissue retain no trace of the earlier testic-
ular structure, appearing similar to ovaries from gonochoristic
species (Moore 1979).

This variability in gonadal structure makes conclusive iden-
tification of hermaphroditism difficult. Sadovy de Mitcheson
and Liu (2008) reported that misdiagnoses are most often due
to (1) a lack of histological analysis to rule out possible juve-
nile bisexuality in gonochores or nonfunctional hermaphrodites;
(2) the assumption that a testis with a lumen is indicative of
a terminal sex male; or (3) an inappropriate definition of the
transition phase. Nonfunctional hermaphroditism is defined as
a species or population in which individuals can possess both
ovarian and testicular tissue but only reproduce as either a male
or a female throughout their lifetime; such species or popula-
tions are thus functionally gonochoristic (Sadovy de Mitcheson
and Liu 2008). Alonso-Fernandez et al. (2011) use histologi-
cal analysis to evaluate hermaphroditism in three species: the
Mediterranean rainbow wrasse, which demonstrates a sequential
pattern; painted comber Serranus scriba, which is a simultane-
ous hermaphrodite; and annular sea bream Diplodus annularis,
which is a rudimentary or nonfunctional hermaphrodite.

Spawning Fraction and Interval
Estimates of how frequently fish spawn are important for un-

derstanding both egg production and reproductive success. New
quantitative techniques are improving our understanding of
oocyte growth rates, spawning fractions, and spawning intervals
in species with indeterminate fecundity (see Ganias et al. 2011;
Uriarte et al. 2010) and have important implications for the
DEPM of estimating SSB. Traditionally, estimates of spawning
fraction are based on the proportion of collected females under-
going OM or with POFs, but there can be problems with actively
spawning females being contagiously distributed—aggregating
and thus occurring in higher proportions at the time and place
of spawning than in the overall population. Using a decade
of DEPM survey data, Uriarte et al. (2010) showed how
high-temporal-resolution data on OM stages and degeneration
of POFs can be used to develop a matrix system that defines
the probability of these stages belonging to a specific spawning

cohort. Using this method on the European anchovy Engraulis
encrasicolus in the Bay of Biscay, Uriarte et al. (2010) identified
five spawning cohorts (i.e., from 1 d prior to spawning to 3
d postspawning) and validation of their method was assisted
through the use of individuals with both OM and POFs. The re-
sulting spawning fraction estimate was considerably higher than
previous estimates, which implies that the SSB of Bay of Biscay
European anchovy may be lower than previously estimated.

In a similarly novel approach, Ganias et al. (2011) used
oocyte growth rates to study the spawning interval in Atlantic
sardine. If oocyte growth rates remain consistent and if there
is no lag time between the completion of vitellogenesis and
initiation of OM, then the growth rate of vitellogenic oocytes
should reflect the time between spawning events (i.e., the spawn-
ing interval). Ganias et al. (2011) estimated oocyte growth rates
based on temporal parameters typically estimated for the DEPM:
(1) time difference between various stages of OM and time of
spawning and (2) known ages of POFs based on the stage of de-
generation. Ganias et al. (2011) then used these measures of time
to estimate how long it should take for an oocyte in the earliest
stage of vitellogenesis to complete the process of vitellogenesis
and OM. Spawning interval estimates based on this approach
were quite similar to those based on the more labor-intensive
DEPM.

MOVING BEYOND SPAWNING STOCK BIOMASS
Our understanding of how fishing impacts populations is

changing, as evidenced by a paradigm shift from single-species
to ecosystem-based approaches (Walters and Martell 2004;
Francis et al. 2007) and a concurrent shift from an equilibrium
perspective to a resilience perspective (Hughes et al. 2005).
Stock assessment models are used to estimate sustainable yields
and to develop management objectives associated with harvest
control measures (i.e., minimum size limits, closed seasons,
closed areas, bag limits, etc.) that are typically based on
biological reference points associated with the level of fishing
at which there would be negative consequences (Marshall et al.
2003). Reproductive success has been integrated into this tra-
ditional framework through the stock–recruitment relationship,
which attempts to evaluate how current stock abundance (i.e.,
SSB) relates to future abundance of catchable fish (Mehault
et al. 2010); the population’s maximum reproductive rate
or compensatory reserve is represented by the slope of the
spawner–recruit curve near the origin (Myers et al. 1999). Data
used to estimate SSB for iteroparous species include estimated
abundance of mature females at age, mean weight at age,
the proportion of females that are mature at a given age, and
estimates of natural mortality and fishing mortality to predict
survivorship in any given year (Murawski et al. 2001). Although
this is a useful paradigm based on basic life history tables, it
is also clearly an oversimplification. Stocks do not exist in a
vacuum. Natural mortality is stochastic and is affected by life
stage, other species within the ecosystem, and fishing mortality.
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FIGURE 6. Reproductive performance includes egg or offspring production and behavior and is associated with density-dependent and fitness feedback loops. An
individual’s genotype and phenotype and a number of ecological factors affect its reproductive performance, which in turn influences adult and offspring survival.
Ecological determinants depend on spatiotemporal factors, including a stock’s abundance, and physiology drives an individual’s response to them. Changes in the
ecological determinants affect which phenotypes demonstrate the greatest reproductive success. This figure was adapted from Ricklefs and Wikelski (2002) and
Young et al. (2006).

In addition, reductions in fishing mortality are often insufficient
to produce the necessary population growth and stock recovery
of overfished species (Hutchings and Reynolds 2004).

There is also a need to distinguish between stock yield,
which is usually well correlated with year-class strength, and
stock resilience, which should be more closely linked to factors
associated with reproductive success (Lowerre-Barbieri 2009).
Reproductive success is accomplished through trade-offs
between the rate of reproductive output and the survivorship
rate associated with that output. To integrate the concept of
reproductive success or parental fitness into stock assessment
processes, Trippel (1999) introduced the term “stock repro-
ductive potential,” defined as the “annual variation in a stock’s
ability to produce viable eggs and larvae that may eventually re-
cruit to the adult population or fishery.” It has been increasingly
shown that SSB is an insensitive index of stock reproductive
potential (Marshall 2009), and total egg production has been
suggested as an alternative index (Marshall 2009; Morgan et al.
2009; Mehault et al. 2010; Murua et al. 2010). Reproductive
characteristics such as sex ratio, annual variation in size and
age at sexual maturation, and fecundity will affect total egg
production. Because population fecundity varies among species
(Pitcher and Hart 1982; Wootton 1984; Helfman et al. 1997),
for a given species within its range (Beacham and Murray 1993;
Witthames et al. 1995; Korta et al. 2010a), over time (Healey and
Heard 1984; Bailey and Almatar 1989; Rijnsdorp 1991; Zwolin-
ski et al. 2001), and with demographics (Murawski et al. 2001;
Berkeley et al. 2004; Lowerre-Barbieri et al. 2009), achieving
an understanding of reproductive potential necessitates a better
understanding of the relationships among stock structure, total

egg production, and population growth (Lowerre-Barbieri
et al. 1998). In addition, new information on factors affecting
offspring survival as related to the age, reproductive history,
and condition of their parents holds important implications for
the development of effective fishery management strategies
(Jakobsen et al. 2009). These factors include egg quality (Kam-
ler 2006), where and when fish spawn (Begg and Marteinsdottir
2002; Rowe and Hutchings 2003; Lowerre-Barbieri 2009),
depensation or the Allee effect (Frank and Brickman 2000;
Hutchings and Reynolds 2004), and size-specific fishing mor-
tality, which has the potential to act as a selection agent, thereby
leading to fisheries-induced evolution (Dunlop et al. 2009).

Reproductive strategies are complex, adaptable systems that
have evolved to overcome a given regime of natural mortality
(Lowerre-Barbieri 2009). An emerging concept in reproductive
biology is the physiology–life history nexus paradigm, which
was proposed by Ricklefs and Wikelski (2002) and applied to
fish by Young et al. (2006). Within the context of this paradigm,
the observed spawning pattern of an individual or population
is dependent on reproductive performance, which will be af-
fected by how environmental parameters and past experiences
have driven the phenotypic expression of the underlying geno-
type (Figure 6). Reproductive performance, in turn, can impact
other individuals in the population through density-dependent
compensatory mechanisms as well as by affecting fitness, thus
determining which genotypes remain in the population. In other
words, the behavior associated with any given spawning event
will have both a fitness effect and a density-dependent effect
that can influence future spawning events at the individual and
population levels. Gamete developmental patterns, endogenous
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rhythms affecting reproductive timing, and gender systems are
all part of a species’ genotype. However, the phenotypic ex-
pression of when an individual will mature, when a sequential
hermaphrodite will undergo transition, and when (or whether)
an individual will opt out of a reproductive cycle (i.e., skipped
spawning) will be affected by exogenous factors, such as en-
vironment (e.g., photoperiod, temperature, etc.), energy supply,
and population density. Similarly, there will be genetic attributes
that restrict the range of environments within which a species
can spawn, but the phenotypic expression that drives individual
site selection and fidelity to a given site in consequent spawn-
ing events will be affected by short-term environmental cues
and past experience. Thus, a species’ resilience to fishing will
depend on its genotypically determined traits, the degree of
phenotypic plasticity in these traits, and the factors that drive
individual plasticity in the traits. Emerging issues associated
with this ecophysiological paradigm and addressed in this sec-
tion include (1) fisheries-induced evolution, (2) the interaction
between energetics and reproductive performance, and (3)
skipped spawning.

Fisheries-Induced Evolution
Fisheries-induced evolution refers to the rapid evolution of

biological attributes in response to selective and high fishing
mortality (Law and Grey 1989). The capacity for such rapid
genetic change has been confirmed through controlled selec-
tion experiments (Conover and Munch 2002). The reproduc-
tive attributes that are most commonly assessed in association
with fisheries-induced evolution are the onset of sexual matu-
rity (Law and Grey 1989; Hutchings and Myers 1993; De Roos
et al. 2006); tradeoffs between reproductive performance and en-
ergy allocation, including migratory behavior (Jørgensen et al.
2008); and sex allocation in hermaphrodites (Sattar et al. 2008).
However, it is difficult to assess the impacts of selective fishing
pressure on fitness without a better understanding of how eco-
logical determinants will affect phenotypic plasticity and thus
reproductive performance.

A good example of this is the complex process of sexual
maturation. This ontogenetic shift from an immature state,
where all energy is allocated to survival and somatic growth,
to a reproductively mature state, where energy will be required
for gametogenesis and reproductive behavior, is multifaceted
and associated with biochemical, physiological, behavioral,
and ecological shifts (Okuzawa 2002). In addition, the size
and age at which a fish matures are postulated to profoundly
affect its reproductive success (Roff 1992; Stearns 1992).
There is currently concern that the number of highly exploited
stocks demonstrating decreases in size and age at maturity
may be indicative of fisheries-induced evolution (Marshall
and Browman 2007b; Rochet 2009; Dunlop et al. 2009).
Probabilistic maturation reaction norms, which describe the
probability of maturing as a function of age and size, have been
proposed as a statistical tool to distinguish between ecological
and evolutionary determinants of maturation. However, the

ecological factors affecting the process of sexual maturation
are not well understood (Marshall and Browman 2007b), and
the underlying biological data used to estimate maturity differ
depending on the sampling design, the method used to assess
ovarian development, and the stage of development considered
to be indicative of maturity (Lowerre-Barbieri et al. 2011).

Although maturity estimates play an important role in under-
standing fisheries-induced evolution and in stock assessment, a
standardized method to produce these estimates is still lacking.
Representative samples can be difficult to obtain due to differ-
ential habitat usage of immature and mature fish (Tomkiewicz
et al. 1997). In addition, although histological gonadal evalu-
ation has been shown to be more accurate than macroscopic
evaluation (Murua et al. 2003; Tomkiewicz et al. 2003; Vitale
et al. 2006), there is no clear histological indicator that can be
used to separate immature females from mature regenerating
females in those species for which POFs from a past spawning
season cannot be identified at the time of recrudescence. Thus,
Hunter and Macewicz (1985, 2003) and Murua et al. (2003)
recommended using data for maturity analysis only from those
times when there are few or no regenerating females—typically
just prior to or early in the spawning season. Estimates of size
at sexual maturity based on this technique are usually smaller
than those based on data collected throughout the year (Hunter
and Macewicz 2003), highlighting the importance of standard-
ized biological methods for assessing maturity. The Interna-
tional Council for the Exploration of the Sea has recognized the
need for improved and standardized methods to estimate size
and age at maturity and the importance of histological analy-
sis for confirming gonadal state (ICES 2006). In an effort to
meet these needs, the council has conducted a series of eight
workshops covering 18 species over the last 3 years. Guidelines
for the workshops and for collecting maturity data and histo-
logical analyses for maturity workshops have been developed
(ICES 2010), and the need to standardize terminology was also
highlighted in these workshops.

Gender system also affects a species’ resilience to fishing
and potential for fisheries-induced evolution (Sattar et al. 2008).
Sequential hermaphroditism is a life history pattern that is po-
tentially more susceptible to fisheries-induced evolution given
that (1) fish in the terminal sex have already undergone natural
selection in the primary sex and (2) the larger size of the terminal
sex often results in greater fishing pressure due to size-selective
fishing practices. The relative impact of fishing will depend in
part on the factors driving sexual transition (Armsworth 2001;
Heppell et al. 2006). Heavy fishing on species with low pheno-
typic plasticity in the timing of transition can result in skewed
adult sex ratios and sperm limitation, leading to lower popula-
tion productivity (Koenig et al. 1996; Vincent and Sadovy 1998;
Alonzo and Mangel 2004; Brooks et al. 2008). In species with
greater plasticity, fishing pressure can result in decreased size
and age at transition (Armsworth 2001; Rochet 2009). Other
behaviors in hermaphroditic reef fishes can also affect their re-
silience to fishing (e.g., hermaphroditic species that aggregate to
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spawn) and sex-specific differences in catchability (Rowe and
Hutchings 2003).

Within this special section, several papers either directly or
indirectly address reproductive and histological issues that are
important to understanding fisheries-induced evolution in terms
of sexual maturity and gender system. Lowerre-Barbieri et al.
(2011) review the underlying physiology affecting reproductive
timing at varying temporal scales (i.e., lifetime, annual,
intraseasonal, and diel) and discuss potential implications for
fitness. Two papers present methods that might help improve our
ability to distinguish immature females from mature inactive
females. Kjesbu et al. (2011) demonstrate that for Atlantic cod,
the circumnuclear ring stage can be used to distinguish between
immature and mature inactive females. There is potential
for similar transitional oocyte developmental phases in other
species, and this is an important area for future research. Nunes
et al. (2011) present results on liver tissue histology differences
that are associated with the spawning season and that may
have future application for assessing sexual maturity. Changes
in the size and age of sexual transition are a special case of
sexual maturity and are important to assessing fisheries-induced
evolution in sequential hermaphrodites. Histological analysis
plays an important role in identifying gender type and size and
age at transition, as shown by Alonso-Fernandez et al. (2011)
for the Mediterranean rainbow wrasse.

Energetics and Reproductive Performance
Because reproductive activity has an energetic cost (Roff

1983), females are limited in the time and resources they can
devote to producing offspring as these expenditures can decrease
future growth, condition, survival, and reproductive output. A
species’ life history strategy is driven by how much and when
energy is allocated to these various components (Trivers 1972).
Thus, the trade-off between survival, reproduction, and growth
determines (1) the size and age at the onset of sexual maturity in
relation to maximum body size and (2) a species’ reproductive
life span, which can be from 1 year (semelparity) to more than 30
years in iteroparous rockfishes Sebastes spp. This was the topic
of a keynote address by Saborido-Rey et al. (2010b) and is an
emerging issue in reproductive biology. Optimal energy alloca-
tion is dependent on inherited components (energetic thresholds
and endogenous rhythms) and on the environment encountered
by the individual (e.g., food, environmental proximate cues, and
temperature because of its effect on metabolic rates), as is seen
in Iberian Atlantic sardine (Nunes et al. 2011). Within a repro-
ductive cycle, the temporal pattern of energy gain with respect
to reproductive behavior and spawning is species specific and
falls somewhere between two extremes: capital breeders and
income breeders (Houston et al. 2007). Capital breeders build
their energy reserves by feeding prior to the spawning season
and then use this stored energy for reproduction. In addition,
they often expend energy on reproductive traits other than egg
production, such as extensive spawning migrations or parental

care (Jager et al. 2008). In contrast, a pure income breeder would
continuously replenish energy reserves throughout the spawning
season without the need for energy storage. Within a population,
energy reserves can also drive demographic differences in re-
productive timing and fecundity. For example, in many species,
the larger, older females are reported to develop earlier, spawn
more frequently, and have longer individual spawning seasons
than younger, smaller fish (Kawaguchi and Yamamoto 1990;
Ganias et al. 2003; Wright and Trippel 2009). In addition, there
is a strong relationship between body size and fecundity; thus,
older females may disproportionately contribute to egg produc-
tion (Berkeley et al. 2004).

Skipped Spawning
Although we do not yet fully know what factors or inter-

actions cause an individual fish to opt out of spawning in a
reproductive cycle, the rapid increase in research on skipped
spawning is greatly improving our understanding. This was the
topic of a keynote address and is an important emerging issue
that links energetics and reproductive performance (Rideout and
Tomkiewicz 2011). Increasing evidence suggests that skipped
spawning is part of the reproductive strategy of many species
if they cannot meet or maintain necessary energy and may be
more common in long-lived species that have either temporally
restricted food availability (e.g., capital breeders) or high en-
ergetic costs associated with reproduction, such as extensive
spawning migrations (Jørgensen et al. 2006; Jager et al. 2008;
Secor 2008; Rideout and Tomkiewicz 2011). Recent in-captivity
studies have evaluated the physiological attributes associated
with skipped spawning in Atlantic cod in the northeast Arctic
and have demonstrated that females opting out of a reproductive
cycle had lower condition, smaller livers, and lower plasma 17β-
estradiol levels than normally developing females and exhibited
arrested oocyte development in the early CA stage (Skjæraasen
et al. 2009).

Histological analysis plays an important role in assessing
skipped spawning (Rideout et al. 2005), which is proving to be
more common than previously believed and may be an adaptive
trait (i.e., resulting in increased lifetime reproductive output)
rather than an abnormality (see Rideout and Tomkiewicz 2011).
Our ability to identify skipped spawning will depend on the du-
ration of the spawning season in comparison with the duration of
histological indicators of spawning activity (Lowerre-Barbieri
et al. 2009). Many temperate and high-latitude species have
determinate fecundity (Pavlov et al. 2009), and low water tem-
perature in these habitats affect ovarian processes, such as the
resorption rates of POFs (Fitzhugh and Hettler 1995; Lowerre-
Barbieri et al. 2011). Resorption of POFs typically occurs
within a span of several days in warmwater species (Hunter and
Macewicz 1985), but POFs can remain identifiable for months
in coldwater species (Saborido-Rey and Junquera 1998). Thus,
for determinate species, skipped spawning can be identified
by (1) the presence of POFs but without the development of
secondary growth oocytes during the time of year when females
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typically exhibit recrudescence or (2) high rates of atresia at
any of the oocyte developmental stages (Rideout et al. 2005;
Saborido-Rey et al. 2010a; Rideout and Tomkiewicz 2011).
Although sexually mature fishes collected during the spawning
season either with no ovarian development or with resorption of
all vitellogenic oocytes have been thought to indicate skipped
spawning in warmwater species with indeterminate fecundity
(Brown-Peterson et al. 2008; Zupa et al. 2009), skipped
spawning in these species is harder to prove. This is because
these species typically have extended population spawning
seasons with variable individual spawning periods, have faster
POF resorption rates (Lowerre-Barbieri et al. 2011), and can
exhibit high levels of oocyte atresia (i.e., resorbing a batch of
oocytes) that is not indicative of the end of the spawning season
(Lowerre-Barbieri et al. 1996; Rideout and Tomkiewicz 2011).

CONCLUSIONS AND FUTURE DIRECTIONS
Ovarian histology became more commonly used in fisheries

science after it was described in several classic papers and after
the development of the POF method to assess spawning fraction
(Wallace and Selman 1981; Hunter and Macewicz 1985; West
1990). As demonstrated by the papers in this special section,
gonadal histology is now frequently applied to a wide range of
reproductive issues and species, and new techniques and appli-
cations are rapidly evolving and improving our ability to study
reproductive processes at the cellular level. In addition to the ap-
plications covered by the papers in this special section, an issue
that was discussed at the workshop but that is not represented
in these papers is our ability to identify gonadal abnormalities
associated with perturbed aquatic ecosystems (see Rice 2003;
Curya and Christensen 2005; Strand et al. 2009). Given the
recent BP Deepwater Horizon oil spill in the Gulf of Mexico
and efforts to assess its impact on living resources (Marscarelli
2010), this is an especially relevant issue. Commonly observed
gonadal abnormalities in perturbed ecosystems include changes
in the expected timing of development (Thomas and Rahman
2009; Zhang et al. 2009), intersex (the occurrence of primary
oocytes in testicular tissue or the occurrence of spermatocytes
in ovarian tissue in nonhermaphroditic species; see Strand
et al. 2009; Sun and Tsai 2009), and increased levels of oocyte
atresia (Johnson et al. 2008). Other gonadal abnormalities that
potentially indicate stressed fish include a high prevalence of
inflammatory lesions (Johnson et al. 2008) and an increased
occurrence of bacterial infections in ovaries, as was observed
in red drum Sciaenops ocellatus (R. M. Overstreet, University
of Southern Mississippi, personal communication).

Although gonadal histology has many useful applications,
it is time consuming, expensive, and limited to providing data
on germ cell development. Thus, there is a need to leverage its
use and, where possible, to combine histological methods with
less-expensive approaches and with methods that can be used to
assess reproductive behavior. Two less-costly methods to assess
gonadal development are the gonadosomatic index and squash

mounts of whole oocytes; if they can be validated with histo-
logical analysis, these methods will have wide application for
assessing gonadal development (Witthames et al. 2009). Other
indices also have important applications in terms of assessing
the relationship between energetics and reproductive biology
(Marshall et al. 1999); these include the hepatosomatic index,
condition indices, and direct measures of tissue energy storage
(Domı́nguez-Petit and Saborido-Rey 2010; Nunes et al. 2011).
However, the reproductive strategy of a population is defined as
much by its behavior as by its egg production; thus, there is a
need to better integrate knowledge of reproductive state with re-
productive behavior, and several key methods are emerging that
will improve our ability to do so. Remote sampling techniques,
such as passive acoustics (Roundtree et al. 2006; Gannon 2008;
Luczkovich et al. 2008), bioacoustics (Lawson and Rose 2000;
Macchi et al. 2005), and telemetry (Robichaud and Rose 2002,
2003), are allowing us to monitor reproductive behavior over
time and space in ways that were not previously possible. Pas-
sive acoustics can be used to identify the spatial distribution
of spawning sites and to monitor reproductive timing based on
courtship sounds at known spawning sites (Walters et al. 2007,
2009; Lowerre-Barbieri et al. 2008). Similarly, remote telemetry
can be used to assess the first occurrence of fish on the spawning
grounds and the individual variability in arrival time (Douglas
et al. 2009). It can also be used to evaluate differential use of
spawning habitat by sex or size and time spent on spawning
grounds (Robichaud and Rose 2002, 2003; Alonso et al. 2009;
Bansemer and Bennett 2009).

Although conserving sufficient reproductive or spawning
potential for a stock to maintain or rebuild itself is a fundamental
goal of fisheries management (Goodyear 1993), we do not yet
fully understand the species-specific aspects of reproductive
strategies that drive reproductive potential (i.e., the production
of eggs that survive to become juveniles). However, this is
rapidly changing as our understanding of reproductive pro-
cesses and their importance to sustainability improves (Kjesbu
et al. 2010b), and management strategy evaluation frameworks
are increasingly being used to assess alternative measures of
reproductive potential (Murua et al. 2010). A fundamental
shift in population dynamics research is the recognition that
reproductive performance can affect recruitment and thus
population growth and resilience (Murawski et al. 2001;
Berkeley et al. 2004; Jakobsen et al. 2009). This realization
has led to an increased awareness of reproductive dynamics
and strategies, and particular emphasis has been given to the
importance of larger and older females for reproductive output
and reproductive success, as age truncation is expected to
decrease a stock’s resilience (Caddy and Agnew 2004) and
increase its recruitment variability (Anderson et al. 2008).
Reproductive traits exhibiting demographic trends will vary
with species but include fecundity (Berkeley et al. 2004; Murua
et al. 2006; Mehault et al. 2010; Thorsen et al. 2010), repro-
ductive timing (Wright and Trippel 2009; Lowerre-Barbieri
et al. 2011), skipped spawning (Rideout et al. 2005; Jørgensen
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et al. 2006; Secor 2008; Rideout and Tomkiewicz 2011), and
egg quality (Kamler 2006). Thus, traditional stock assessments
based on SSB and fishing mortality-based reference points will
underestimate the impacts of age truncation and overestimate a
stock’s resilience (Trippel 1999; Murawski et al. 2001; Marshall
2009).

Reproductive strategies are complex, integrated systems
(Lowerre-Barbieri 2009); reproductive performance includes
egg or offspring production and behavior and is associated
with density-dependent and fitness feedback loops (Figure
6). This improved conceptual model of fish reproduction
provides the basis for assessing fisheries-induced evolution
(Dunlop et al. 2009) and the potential for depensation due
to density-dependent mating strategies (Frank and Brickman
2000; Caddy and Agnew 2004; Rowe et al. 2004). In addition,
genetic studies of highly fecund marine species suggest that the
population of successful breeders may be much smaller than the
adult population and that success is associated with spawning
at the right time and place (Hedgecock 1994; Hauser et al.
2002; Gomez-Uchida and Banks 2006); thus, there is a need to
better understand spatial components of reproductive strategies.
This is especially important given the increased use of marine
protected areas as management measures (Botsford et al.
2009), the increased evidence for natal homing (Thorrold et al.
2001; Robichaud and Rose 2004; Svedang et al. 2007), and the
awareness of spatial effects on recruitment success (deYoung
and Rose 1993; Begg and Marteinsdottir 2002). Lastly, it has
been suggested that a stock’s resilience to fishing pressure
may increase with intraspecific diversity (Frank and Brickman
2000). Thus, there is a need to assess a stock’s reproductive
biology in terms of bottlenecks and variability over time, space,
and demographics (Lowerre-Barbieri et al. 2009). To gain this
level of reproductive knowledge and to better integrate it into
management practices will necessitate standardized reproduc-
tive methods and terminology, a better understanding of internal
and external factors affecting reproductive success in fishes,
and the sharing of results and techniques across geographic
regions, as was done at the Fourth Workshop on Gonadal
Histology of Fishes and in the papers in this special section.
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