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Abstract

Red snapper (Lutjanus campechanus) is an economically important fishery in the Gulf of
America (formerly the Gulf of Mexico). This species is subject to discard mortality from
barotrauma. Novel discard mortality research on this species has estimated delayed mortality in
addition to immediate mortality at the surface (i.e., swim or float). To determine how this
combined mortality measurement changes red snapper discard mortality we conducted a meta-
analysis, combining 11 studies, with 84 distinct estimates from 34 years of research. We assessed
if depth, season, release method, or region predict discard mortality. We found a significant
positive relationship between depth and discard mortality and that, in the western Gulf, fishing in
the summer significantly increases discard mortality compared to fishing in other seasons and
regions. Analyzing studies with well-defined release method treatments, we found that venting
and descending generates a 14.6% decrease in estimated release mortality compared to no
barotrauma mitigation. We estimate a 31% discard mortality at 33m, the median fishing depth of
the private recreational fleet. This more than doubles the estimate of discard mortality generated
by a previous meta-analysis. Given that we generated estimates from both immediate mortality
and delayed mortality, we propose that these updated, higher estimates of discard mortality likely

more representative of the mortality experienced by this recreational fishery.
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Introduction

Catch and release fishing has long been accepted as an effective and intuitive
conservation tactic (Policansky 2022). In theory, fish that do not meet a minimum size limit or
are not the target species can be released alive, having no negative impact on the fish population
(Cooke and Schramm 2007; Raby ef al. 2014). However, in practice, fishing can lead to
mortality, and estimating how many untargeted or undersized fish experience mortality from
fishing is an important part of effectively managing fisheries. Due to size limits and season
closures, 70% of Red Snapper caught in the Gulf of America (formerly the Gulf of Mexico) by
the private recreational and for-hire fisheries are discarded (NMFS Fisheries Statistical Division
2023). Therefore, as new data on discard mortality rates for this species become available,
updated estimates should be used to better predict potential impacts to the fishery as it continues

to be successfully rebuilt (SEDAR 52 2018).

Early research on discard mortality largely focused on immediate mortality from fishing
(i.e., fish dead on release or unable to swim away; Campbell et al., 2014; S. L. Diamond &
Campbell, 2009; Patterson et al. 2002). Immediate mortality is often caused by barotrauma or
hooking injures (Muoneke and Childress 1994; Bartholomew and Bohnsack 2005; Rummer and
Bennett 2005; Burns and Froeschke 2012). Hooking injuries such as lacerations to gill, internal
viscera, or esophagus can lead to immediate mortality at the surface and are easily identifiable
prior to release (Render and Wilson 1994; Bartholomew and Bohnsack 2005; Burns and
Froeschke 2012). Barotrauma occurs due to pressure changes fish experience as they are brought
to the surface. Common symptoms of barotrauma are bulging eyes, a distended abdominal
region, flared opercula, and stomach eversion or prolapse (Rummer and Bennett 2005). These

effects can be particularly problematic for fish that are physoclistous (i.e., do not have a
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pneumatic duct connecting the swim bladder to the digestive tract, which allows fish to fill or
empty their swim bladder rapidly), such as Red Snapper, and therefore cannot acclimate as
quickly to changes in depth. Distended swim bladders can cause fish to be positively buoyant
and unable to easily descend upon release, making them vulnerable to predation from both the
sea and air as well as increased stress due to exposure to higher temperatures and sunlight
(Rummer and Bennett 2005; Wilde 2009; Scyphers et al. 2013). Recent research has focused on
the use of descender devices to reduce discard mortality from barotrauma (Diamond et al. 2011;
Drumihiller et al. 2014; Curtis et al. 2015; Stunz, Curtis and Tompkins 2017; Ayala 2020;
Bohaboy ef al. 2020; Runde et al. 2021). Descender devices force the fish back down to their
capture depth, allowing them to be released at the depth, temperature and pressure to which they

were acclimated.

While hooking injures and barotrauma can be easy for anglers to identify, fish that are
caught often undergo more subtle physical damage and physiological stress which can lead to
delayed mortality (Raby ef al. 2014). For example, barotrauma, handling, and air exposure can
cause changes in heart and ventilation rates, blood pressure, reductions in muscle energy stores,
and other physiological stress responses. These responses, which may take hours to return to
baseline levels, can result in cellular and tissue damage, reduced immunity, and behavioral
changes which can lead to delayed mortality (Wood, Turner and Graham 1983; Davis 2002;
Rummer 2007; Mohan et al. 2020). These physiological changes can leave fish too disoriented to
avoid predation (Parsons and Eggleston 2005; Campbell 2008) and can even cause fish to release
chemical cues that attract predators (Jenkins, Mullen and Brand 2004; Dallas et al. 2010). Due to
these effects, researchers have been increasingly studying both immediate and delayed mortality

when assessing discard mortality. For example, much of the recent research on Red Snapper
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discard mortality has used either acoustic or passive tags to assess any additional mortality that
occurs in fish that appear healthy upon release (Curtis et al. 2015; Stunz, Curtis and Tompkins
2017; Tompkins 2017; Bohaboy et al. 2020; Sauls et al. 2017; Runde et al. 2021).

In 2014, Campbell et al. performed a meta-analysis to assess Red Snapper discard
mortality rates in the Gulf of America and whether they differed based on common fishing
factors such as differences between commercial and recreational fisheries, fishing depth, etc.
(Campbell et al. 2014). This model included studies that estimated immediate mortality, which
was a majority of the published literature at the time but are likely underestimates as they do not
capture mortality that is occurring over hours-days (i.e. delayed). However, the authors
emphasized the need for more research on delayed mortality and cautioned that using only
immediate mortality for estimations provides an incomplete measure of total discard morality
and should only be done as a minimum data collection (Campbell et al. 2014). Due to the novel
research focusing on delayed mortality and descender devices that has occurred since this meta-
analysis was conducted, we have updated this model. We reassessed factors that affect discard
mortality and estimated mortality rates in the recreational Red Snapper fishery in the Gulf of

America using new research and with a focus on studies that include delayed mortality.

Methods

We updated the Campbell et al. 2014 meta-analysis by adding data from studies that
assessed the discard mortality of Red Snapper in the Gulf of America after 2014. As a result, 8
new studies with 101 new point estimates were added to the dataset for a total of 18 studies and
156 individual estimates of discard mortality. This dataset will hereafter be referred to as the

‘mixed mortality’ dataset. Due to concerns that the inclusion of studies that only estimated
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immediate impacts of release mortality would underestimate Red Snapper mortality, as negative
physiological and behavioral effects from being fished can persist (Campbell 2008; Drumbhiller et
al. 2014; Raby et al. 2014), we ran an initial analysis on the mixed morality dataset to explicitly
assess how the addition of delayed morality increases discard mortality estimates. After this
analysis we removed estimates and studies that only measured immediate mortality upon release
(Table S1; removed studies). This generated a database of 11 studies with 94 distinct estimates of
discard mortality throughout the Gulf of America used to assess factors that can be used to
predict discard mortality and will hereafter be referred to as the “full mortality” dataset (Table 1).
Finally, we subset the data to specifically assess the effects of venting and descending devices on
discard mortality. Studies where venting was not completed on all fish in the venting treatment
and an additional laboratory study focused on the effects of venting and descending on Red
Snapper mortality was added (Drumihiller ef al. 2014). This study was excluded from the initial
datasets as release mortality estimates from laboratory settings may not reflect natural morality
due to the exclusion of predators and other such release morality drivers. This dataset had 50
estimates from 8 studies and will hereafter be referred to as the “release method” dataset (Table
S2). Mortality estimates in all databases were classified by depth of catch (m), region (west, east,
and central Gulf), season (summer and not summer), and release method (no venting, some
venting, total venting, and descending device used) when possible. If a point estimate was not

separatable by one of those factors, it was not included in the analysis of that factor.

There were 8 studies with some measures of immediate mortality (Table S1). Two studies
measured discard mortality in the commercial fleet (Nieland e al. 2007; Pulver 2017), and the
remaining studies focused on the recreational fleet (see supplemental methods for more details).

Of the 11 studies in the full mortality database (Table 1), most used acoustic tags to track fish,
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with only one study where fish were marked with passive tags (conventional plastic-tipped dart
tags; Vecchio et al. 2022) and three cage studies (Parker 1985; Render and Wilson 1996;
Diamond and Campbell 2009). Six studies were in the western region (defined as Texas and
Louisiana to MRIP statistical zone 13), three studies were conducted at least partially in the
central region (defined as the rest of Louisiana, Mississippi, Alabama, and the panhandle of
Florida through MRIP statistical zone 7 and Levy County), and only one study assessed discard
mortality in the eastern region (defined as peninsular Florida starting at statistical zone 6 and
Citrus County and continuing south). Regions defined here are stock assessment regions for
SEDAR 74 (Image 1; SEDAR 74, 2022). Of the 94 estimates, 46 occurred during the summer.
Only 5 studies reported surface water temperature and only 4 studies reported temperature by
depth. The average summer temperature was 28.6 °C and the average non-summer temperature
was 22.6 °C. However, temperature could not be used in the model since temperature values
were only available in the western region. Therefore, the metric of season was used instead of
temperature in our models. Depths ranged from 10-85m, with a mean of 45m. A total of 19
estimates were classified as no venting (surface release without barotrauma mitigation), 22
estimates were from descended fish (not always to the sea floor), and the remaining estimates
came from fish where venting procedures were performed prior to surface release. Fish were
classified as ‘total venting’ if all the fish in the treatment group were vented. Fish were classified
as ‘some venting’ if some of the fish from the estimate were vented either through angler
discretion (Vecchio et al. 2022) or because mortality estimates were not broken down by venting
treatment (Render and Wilson 1996). These studies that had estimates of discard mortality that
included both immediate and delayed mortality all came from the recreational fleet. Circle hooks

or a combination of circle and J hooks were used in all studies.
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Of the 8 studies and 50 estimates in the release methods database (Table S2), depths
ranged from 27.5 to 60m. Estimates were evenly spread across summer and not summer although
season was not defined for two studies (Drumbhiller et al. 2014; Runde ef al. 2021). Acoustic
tagging was used to assess delayed mortality in all studies except one, which was conducted in a
laboratory setting (Drumibhiller et al. 2014). 16 of the mortality estimates came from fish released
at the surface with no barotrauma mitigation, 10 of the estimates were from vented fish, and 24
of the estimates were from descended fish. Across all datasets, the sample sizes of fish tested to
generate our estimates varied widely from three to 34,465. Differences in sample sizes were
addressed by giving estimates with smaller sample sizes higher variances around their effect

sizes (and vice versa) and including this variance in our models, as described below.

Analyses were conducted in R using the metafor package (R Core Team, 2020;
Viechtbauer, 2010). Effect sizes were calculated using the escalc function using the frequency of
dead fish out of the total number of fish tested. This function also calculates a variance for each
effect size from the sample size of the estimate. Mixed effect models were run with the rma.mv
function. The calculated effect sizes were used as the response variable. To assess which factors
predict discard mortality using the full mortality database (Table 1), season, region, the
interaction between season and region, depth, and release method were used as predictor
variables. Study and study type (cage, passive tag, acoustic tag) were included as random effects.
Depth was a continuous variable, and the rest of the variables were categorical. Post-hoc tests
were run by separating the analyses into the western and not western (eastern and central regions
combined) regions to allow us to generate separate, more accurate predictions across regions,

seasons, and depths as the effect of season was only present in the western region.
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To explicitly assess the contribution of delayed mortality on discard mortality, the mixed
mortality database (Tables S1 & 1) and additional predictor variables of whether the study
estimated mortality as immediate only or included delayed mortality (0 or 1), whether the study
was on the recreational fleet or not (0 or 1), and whether fish were caught with circle hooks (0 or
1). These predictors were added to explicitly test the contribution of delayed mortality on discard
mortality estimates as well as control for other variables present in this larger database. Study
and study type were used as random effects. The best fit model included the binary variables of
delayed mortality, recreational fleet, and circle hooks as well as the depth, release method, and
season by region interaction variables included in the full mortality model. To further assess the
effects of venting and descending on discard mortality a separate analysis was run using the
release method database (Table S2). The best fit model included release method, depth, season,

depth by season interaction, and uses study as a random effect.

Variances from the calculated effect sizes were included in all models. A backward
stepwise regression model selection procedure was performed using AICs and BICs. Predicted
values and their associated 95% confidence limits were calculated using the predict function in
metafor (Viechtbauer 2010) and converted back to proportions by taking the inverse of the logit-
transformed data (see Campbell et al., 2014 for more details). Heterogeneity in all models were
tested using Cochran’s Q-test. This is a commonly used heterogeneity test, which allows us to
determine if the variability in the meta-analysis indicates ‘true’ variability or is due to sampling
error (Cochran, 1954). Graphs were generated using the ggplot2 package (Wickham et al.,

2022).
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Results

In the full mortality model, summer significantly increased the estimated mortality when
compared to non-summer (estimate=0.76, z9,76=3.27. p<0.01; Fig. 1A; Table S3). There was also
a significant interaction between region and season with the western region showing significantly
higher mortality rate in the summer than in the non-summer. However, this pattern was not true
for the other regions, suggesting that these significant effects of seasonality were driven by the
estimates from the western region (summer*central: estimate=-0.80, z9 76=-3.40, p<0.001;
summer*eastern: estimate=-0.74, z9 76=-3.04, p<0.01; Fig. 1B). There was a significant positive
association between depth and mortality rate (estimate=0.012, z9,76=7.70, p<0.001; Fig. 2A). We
calculated the slope of this positive association for comparison with the estimates generated by
Campbell et al. 2014. Our results estimated a 4% increase in mortality for every 10m increase in
depth, while the Campbell et al. 2014 paper predicted a 3% increase (Fig. 2). Region did not
significantly alter estimated mortality rates as a main effect (Region Central: estimate=0.85,
2976=0.87, p=0.38; Region East: estimate=1.12, z976=1.15, p=0.25). Release method also did not
significantly affect Red Snapper mortality rate (descending: estimate=-0.39, z976=-1.58, p=0.11;
total venting: estimate=-0.38, z9,76=-1.06, p=0.27; some venting: estimate=-1.20, z9,76=-0.92,

1=0.38).

10
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Figure 1: A) The proportional discard mortality of Red Snapper (Lutjanus campechanus) in the

Gulf of America (formerly known and the Gulf of Mexico) was significantly higher in summer

than the non-summer seasonal group (estimate=0.76, z9,76=3.27, p<0.01). B) The western region
had a significantly higher proportional mortality rate in the summer than in non-summer, but this
pattern was not true for the other regions (summer*central: estimate=-0.80, z9.76=-3.40, p<0.001;

summer*eastern: estimate=-0.74, z9.76=-3.04, p<0.01). Points represent average proportional
mortalities and error bars represent 95% confidence intervals. Asterisks indicate significance

level and ‘ns’ indicate comparisons that were not significant.
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Figure 2: A) The proportional discard mortality of Red Snapper (Lutjanus campechanus) in the
Gulf of America (formerly known as the Gulf of Mexico) had a significant positive association
with depth (estimate=0.012, z9,76=7.70, p<0.001). Shown is the slope of the line, indicating a
3.6% increase in mortality with every 10m. Points are raw mortality estimates from the data, the
blue line indicates the predicted mortality by depth from the data and the gray band represents at
95% confidence interval around this prediction. B) There was also a significant positive
association between depth and proportional mortality in the Campbell et al. 2014 paper. Shown
is the slope of the line for the recreational data only (the slope which most closely aligns with our
data), indicating a 3% increase in mortality with every 10m. The points are raw mortality
estimates, and the line indicates the predicted relationship between mortality and depth.

Post-hoc tests addressing the western region separately from the eastern and central
regions found similar results. In the western region, summer mortality was significantly higher
than non-summer (estimate = 0.64, z234=2.75, p<0.01), there was a positive association between
depth and mortality (estimate=0.04, z234=4.01, p<0.001; Fig. 3A). In the eastern and central
regions, season did not significantly predict mortality (estimate=-0.03, z2,35=-0.65, p=0.52), but
depth was positively associated with mortality (estimate=0.02, z235=9.4, p<0.001, Fig.3B).
These models predicted that mortality at the average fishing depth (45m) from the tested studies
in the western region in the winter is 37.3% and that this increases to 53.1% in the summer.

Whereas the estimated mortality in the eastern and central regions is 35.2% regardless of season.

12
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Figure 3: A) In the western region (Texas and Louisiana) of the Gulf of America (formerly
known as the Gulf of Mexico) the proportional discard mortality of Red Snapper (Lutjanus
campechanus) was significantly positively associated with depth (estimate=0.04, z>34=4.02,
»<0.001) and summer led to significantly higher discard mortality than non-summer (estimate =
0.64, z234=2.75, p<0.01). B) In the eastern and central regions (Mississippi, Alabama, and parts
of Louisiana and Florida) there was also a significant positive association between depth and
mortality (estimate=0.01, z235=9.4, p<0.001), but season did not affect discard mortality
(estimate=-0.03, z235=-0.65, p=0.52). Points are raw mortality estimates from the data, the lines
indicate the predicted mortality by depth from the data and the bands represent the 95%
confidence interval around this prediction. Blue and gray lines and bands represent summer and
not summer data, respectively.

Mortality estimates ranged from 0-100% with a mean of 32% and a median of 28% in the
full mortality dataset. The highest mortality estimates occurred during the summer, in the
western region in unvented fish, at 40 and 50m (Diamond & Campbell, 2009). Four studies had
average mortality estimates between 45-65% (Bohaboy et al., 2020; Diamond et al., 2011;
Diamond & Campbell, 2009; Tompkins, 2017) and three studies had average mortality estimates
of less than 20% (Parker, 1985; Render and Wilson 1996; Runde et al., 2021). The full mortality
model predicted that the discard mortality at the average fishing depth from the tested studies

(45m) would be 34%, which more than doubles the 16.4% mortality estimate from Campbell

13
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2014 at the same depth. Additionally, the mixed methods analysis found that mortality estimates
from the recreational fishery that included delayed mortality increased by 8.6%, from 26%
(immediate mortality only) to 35% (including both immediate and delayed mortality) at 45m
(estimate=0.63, z15,120=2.74, p<0.01; Fig. S1). This further supports that including estimates of
delayed mortality are important to accurately assess discard mortality. See supplement for more

detailed results from the mixed mortality model (Table S4).

The release method analysis found that both venting (estimate -0.64, z7.41=-2.00, p<0.05)
and descending (estimate = -0.62, z7,41=-2.64, p<0.001) decreased discard mortality relative to
surface release with no barotrauma mitigation. At the mean depth of the studies used in the
analysis (45m), the model predicts Red Snapper will experience 43.6% mortality if no
barotrauma mitigation is used, 28.8% mortality with venting, and 29.3% mortality with
descending (Fig. 4). We also found a significant interaction between season and depth (estimate
=-0.06, z7,41=-2.96, p<0.01), where there is a significantly steeper depth by mortality slope in the
summer than not in the summer. In summer the model predicts a 15% increase in mortality for

every 10m deeper depth fished, compared with 3% in the non-summer seasons (Fig. 5).
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Figure 4. In the analysis that only includes studies explicitly testing release method, venting
(estimate -0.65, z741=-2.00, p<0.05) and descending (estimate = -0.62, z741=-2.64, p<0.01) both
significantly reduce discard mortality, generating a 14.6% decrease in release mortality. Smaller
points are raw mortality estimates from the data, larger points indicate the predicted mortality by
release method, and the error bars represent the 95% confidence intervals around this prediction.
Asterisks indicate significant differences.
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Figure 5. Analyzing studies with well-defined release method treatments, the slope of the
positive association between depth and mortality is predicted by the season that fish were caught
in (estimate = -0.06, z7,41=-2.96, p<0.01). In summer the model predicts a 15% increase in
mortality every 10m deeper depth fished, compared with 3% in the non-summer seasons. Most
of the estimates (>60%) in this analysis are from the western region and none are from the
eastern region, meaning that these results do not pertain to the eastern Gulf of America (formerly
known as the Gulf of Mexico). Points are raw mortality estimates from the data, the lines
indicate the predicted mortality by depth from the data and the bands represent the 95%
confidence band around this prediction. Blue and gray lines and bands represent summer and not
summer data, respectively.

When testing for heterogeneity the Cochran’s Q-test showed that there was significant
variability among the predictors (mixed mortality: QM 15=417.42, p<0.001; full mortality: QM
9=164.96, p<0.001; release method model: QM 7=36.50, p<0.001) and a significant amount of
residual heterogeneity in the mixed mortality and full mortality models (mixed mortality:

QE120=653.23, p<0.001; full mortality: QE76=121.84, p<0.001), but not in the release method

16
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model (QE41=56.29, p=0.056). These heterogeneity tests suggest that all models predict the
variation in the data well, although remaining residual heterogeneity suggests that the tested
predictors do not encompass all the variation in the data. This is likely because these models had
a wider breadth of data which allows for more unidentified variables driving variation in

mortality estimates.

Discussion

Red Snapper is an economically important fishery in the Gulf of America. Seasonal
closures and size limits cause 70% of Red Snapper that are caught to be discarded (NMFS
Fisheries Statistical Division, 2023). While significant research has been directed to understand
this vital component of mortality that impacts the population, previous estimates relied largely on
methods that were insufficient in estimating delayed mortality. Thus, updating the discard
mortality estimates used in stock assessments with newly available research will help support the
successful rebuilding of the Gulf of America Red Snapper fishery (SEDAR 52, 2018). When
synthesizing new data on release mortality in the recreational Red Snapper fishery, including
only studies which measured both immediate and delayed mortality, we found that estimated
discard mortality was higher in the summer than in other seasons in the western gulf, and
consistent with all studies on the topic, depth of capture was positively associated with discard
mortality. We also found that venting and descending use equally reduce discard mortality
compared to surface release with no barotrauma mitigation. Finally, we found that the updated
model more than doubled the estimated percent discard mortality compared to a previous meta-
analysis that included studies with only immediate discard mortality estimates (Campbell et al.,

2014).
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We found that depth of capture was significantly positively associated with discard
mortality in the Gulf of America (Fig. 2). Studies in this meta-analysis that examined this
question also found that discard mortality increased with increased depth of capture (Curtis et al.,
2015; Diamond & Campbell, 2009; Stunz et al., 2017; Tompkins, 2017). Additionally, a positive
association between capture depth and fishing mortality has been seen in other fisheries (Alds J.,
2008; Bartholomew & Bohnsack, 2005; Campbell et al., 2010; Drumihiller et al., 2014; Hannah
et al., 2008; Sauls, 2014). The previous meta-analysis by Campbell et al. 2014 found that a 10m
increase in depth led to a 3% increase in mortality. Our model found a similar result of 3.6%. In
keeping with a majority of studies we showed a positive relationship between depth of capture
and increased barotrauma (Brown et al., 2010; Ferter et al., 2015; Rummer & Bennett, 2005).
Barotrauma can cause extensive physical and behavioral damage to fish that experience it (Raby
et al., 2014; Rummer & Bennett, 2005). Recent regulations have required venting and
descending devices onboard fishing vessels with a goal of reducing the negative effects from
barotrauma. Managers have been working to mitigate these effects through the use of venting
and descending devices. Only 19 of the estimates in this study did not include either a venting or
a descending device treatment when releasing fish (Table 1), and yet a positive association
between depth and mortality still occurred. This suggests that even if venting or descending can
reduce discard mortality, catching fish at shallower depths is still the most effective way to lower
discard mortality, as the physiological effects of barotrauma are reduced. Additionally, there is
evidence that mortality may reach 100% after a certain depth, due to catastrophic barotrauma
seen at depths of 50m and above (Stunz et al., 2017; Tompkins, 2017). Catastrophic barotrauma

occurs when the swim bladder ruptures and this often leads to mortality (Rummer & Bennett,
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2005; Stunz et al., 2017). However, we did not see a steep increase in mortality at depths below

50m in this analysis.

We also found that discard mortality in the western region was higher in summer than in
non-summer seasons (Fig. 1). The effect of warmer water increasing discard mortality has been
found previously (Bartholomew & Bohnsack, 2005; Diamond & Campbell, 2009; Render &
Wilson, 1994), and it is likely due to a steep thermocline that generates during the warmer
months (Curtis et al., 2015; Stunz et al., 2017). The change in temperature a fish experiences as it
is brought to the surface increases the negative physiological and behavioral affects a fish would
experience normally during capture (Boyd et al., 2010; Campbell, 2008; Muoneke & Childress,
1994). Additionally, oxygen stress can lead to discard mortality and higher temperature waters
do not hold as much oxygen as cooler waters (Bartholomew & Bohnsack, 2005; Rummer, 2007).
We did not see this pattern in the more eastern gulf, potentially due to the eastern and central
data coming predominately from passive tagging, whereas the western gulf data was
predominately collected using acoustic tagging. In the release method dataset, which consisted
primarily of western region estimates (>60%) and had no eastern estimates, we also found that
the positive association between depth and mortality is much stronger in the summer than not in
the summer. In the summer we estimated a 15% increase in mortality for every 10m deeper
depth fished compared to 3% for other seasons combined (Fig. 5). However, we suggest that
future research explicitly assess if the effects of seasonality that we saw in the western region are
comparable to the changes in discard mortality across fishing seasons and to reassess if the more
eastern regions also have a seasonality effect. This could be done using similar tagging

methodologies throughout the Gulf to obtain estimates across open/closed seasons. Thereby
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researchers would collect relevant estimates for all types of regulatory discards generated in the

fishery (i.e. length and season).

In the release method model, we found that venting and descending both reduce discard
mortality by about 14.6% (Fig. 4). Studies that compare vented or recompressed fish directly
with a control group (fish released untreated at the surface) have found that barotrauma
mitigation can effectively reduce discard mortality for Red Snapper (Ayala, 2020; Drumhiller et
al., 2014; Pulver, 2017), including many of the studies used in this analysis (Bohaboy et al.,
2020; Curtis et al., 2015; Runde et al., 2021; Stunz et al., 2017; Tompkins, 2017). However,
sometimes conflicting results across studies generated higher variability in our datasets,
especially for descended treatments. For example, one study found that the positive effects from
venting and descending fish were much greater in the summer (Curtis et al., 2015) whereas
another study found that descending fish was more effective in the winter (Stunz et al., 2017).
This is likely due to the smaller sample sizes within some of the acoustic tagging studies in the
western region, the region where we found seasonal effects on discard morality. A better
understanding of which fishing factors are driving the effectiveness of venting or descending
could help account for this variability and better inform management decisions. We did not find
a significant effect of release methods on discard mortality in the full mortality analysis. This
was likely due to the above-described variability and confounding effects from only some fish

being vented or in other studies (Render & Wilson, 1996; Vecchio et al., 2022).

Focusing on studies that included estimates of both immediate and delayed mortality led
to more than a doubling of estimates of discard mortality of Red Snapper in the Gulf of America
(Campbell et al., 2014). At 33m, the median fishing depth of the Gulf recreational fleet (SEDAR

74 2022), we found that release mortality was 31%, compared to 12.8% as predicted by the
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Campbell model. As the slope of the positive relationship between depth and mortality remained
similar to what was previously reported (Campbell et al., 2014), this over twofold increase in
release mortality occurs across all depths of capture (Fig. 2). Studies that have analyzed
immediate and delayed mortality have also found that immediate mortality estimates
approximately doubled (Curtis et al., 2015) or more than doubled (Diamond & Campbell, 2009)
with the addition of delayed mortality. Our analysis on this topic found that including delayed
mortality generated an increase from 26% mortality to 34% release mortality at the mean depth
from the tested studies (45m; Fig. S1). We conclude that discard mortality estimates used in
assessments should include delayed mortality. In addition to mounting evidence in support of the
inclusion of delayed mortality (Curtis et al., 2015; Davis, 2002; Diamond & Campbell, 2009),

we show that it can significantly increase the expected discard mortality in a fishery.

Season and size limits are still in effect as the Red Snapper fishery in the Gulf of America
continues to rebuild (SEDAR 52, 2018). Therefore, assessments of the mortality of discarded
fish are necessary to continue effectively managing this fishery. Here we provide a model that
can be used to estimate mortality in the recreational fishery by fishing depth throughout the Gulf
and by season in the western Gulf. More studies are required to understand why seasonal effects
were not conserved across regional domains. Additionally, this model predicts a more than
twofold increase in discard mortality estimates than was seen in previous work (Campbell et al.,
2014) through inclusion of new research and by excluding studies that only measure immediate
discard mortality. A simulation study using Gulf of America Red Snapper stock assessment
models showed that reducing discard mortality, especially if discard mortality is larger than
previously estimated, could lead to significant increases in fishing season length as well as

benefits to an array of fisheries performance metrics (Bohaboy et al., 2022). Therefore, although
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the estimates generated here suggest that discard mortality of Red Snapper was previously
underestimated in the Gulf of America, continued efforts to reduce discard mortality are likely to

lead to significant benefits to the fishery.

Mortality from predation was included in the delayed mortality estimates from tagging
studies and therefore was a part of the overall estimates of mortality predicted by our model.
However, as only of few of the studies in this meta-analysis explicitly separated out discard
mortality from predation from discard mortality from other causes, we were not able to explicitly
quantify the effect of predation alone on mortality. Some studies in this analysis reported major
effects of predation on discard mortality, including the presence of sharks or dolphins in 32% of
all Red Snapper releases, 83% of discard mortality resulting from predation (Bohaboy et al.,
2020), and predation being described as ‘inevitable’ when descended Red Snapper were spotted
by a predator (Tompkins, 2017). As shark populations continue to rebound (Froeschke et al.,
2012; Peterson et al., 2017; SEDAR 54, 2017), quantifying the proportion of discard mortality
that comes from predation compared to other factors such as barotrauma may be the next step to

increasing scientific understanding of discard mortality.
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Table 1: List of studies used in a meta-analysis of release mortality of red snapper (Lutjanus

campechanus) in the Gulf of America for which estimates of mortality are categorized by depth

(m); season grouped as not summer (NS) and summer (S); region grouped as east (E), central
(C), and west (W); study type (Type) grouped as caged (C), acoustic tag (AT), and passive tag
(PT); and release method (RM) grouped as not vented (NV), some fish vented (SV), all (total)

fish vented (TV), and descended (D). The number of fish included in each estimate (n) and the

number of “dead” and “alive” fish used to calculate the mortality are also shown.

Mortality n Dead Alive Depth Season Region Type RM Study
0.37 8 3 5 30 NS C AT D  Bohaboy et al. 2020
0.78 9 7 2 30 NS C AT NV Bohaboy et al. 2020
0.23 22 5 17 30 S C AT D Bohaboy et al. 2020
0.33 18 6 12 30 S C AT NV Bohaboy et al. 2020
0.35 17 6 11 50 NS C AT D  Bohaboy et al. 2020
0.56 16 9 7 50 NS C AT NV Bohaboy et al. 2020
0.57 14 8 6 50 S C AT D  Bohaboy et al. 2020
0.80 10 8 2 50 S C AT NV Bohaboy et al. 2020
0.00 7 0 7 30 NS W AT D Curtis etal. 2015
0.25 8 2 6 30 NS W AT NV Curtis et al. 2015
0.14 7 1 6 30 NS w AT TV Curtis et al. 2015
0.33 6 2 4 50 NS w AT D  Curtis et al. 2015
0.33 6 2 4 50 NS W AT D Curtis etal. 2015
0.40 10 4 6 50 NS w AT NV Curtis et al. 2015
0.22 9 2 7 50 NS w AT NV Curtis et al. 2015
0.40 5 2 3 50 NS W AT TV Curtisetal. 2015
0.17 6 1 5 50 S W AT D Curtis etal. 2015
0.87 7 6 1 50 S w AT NV Curtis et al. 2015
0.25 4 1 3 50 S W AT TV Curtisetal. 2015
0.13 30 4 26 30 NS \% C TV Diamond & Campbell 2009
0.42 47 20 27 30 S w C TV  Diamond & Campbell 2009
0.34 32 11 21 40 NS w C TV  Diamond & Campbell 2009
0.42 56 24 32 40 S \W% C TV Diamond & Campbell 2009
0.44 36 16 20 50 NS w C SV Diamond & Campbell 2009
0.69 24 17 7 50 S W C SV Diamond & Campbell 2009
0.13 8 1 7 50 NS W NV Diamond et al. 2011
0.50 8 4 4 50 NS W Diamond et al. 2011
0.75 8 6 2 50 S \\% SV Diamond et al. 2011
0.33 9 3 6 50 S W Diamond et al. 2011
0.21 14 3 11 22 NS C Parker et al. 1987
0.11 30 3 27 30 S C Parker et al. 1987
0.20 282 56 226 21 NS C SV Render & Wilson 1996
0.05 42 2 40 27.5 NS C NV Render & Wilson 1996
0.08 39 3 36 27.5 NS C TV  Render & Wilson 1996
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0.30 12 4 8 75 NS E PT SV Vecchio et al. 2022
0.25 3 1 2 75 S C PT SV Vecchio et al. 2022
0.36 21 8 13 75 S E PT SV Vecchio et al. 2022
0.35 33 12 21 85 NS C PT SV Vecchio et al. 2022
0.34 36 12 24 85 NS E PT SV Vecchio et al. 2022
0.13 71 9 62 27.5 W AT D  Williams-Grove 2015
0.29 86 25 61 27.5 \% AT D  Williams-Grove 2015
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620  Image 1. Map of the Gulf of America (formerly known as the Gulf of Mexico) used for the
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624  areas, divided into 21 statistical fishing zones in the Gulf of America.

625  https://sedarweb.org/documents/sedar-74-gulf-of-mexico-red-snapper-stock-id-process-final-
626  report/

627
628
629
630
631

30


https://sedarweb.org/documents/sedar-74-gulf-of-mexico-red-snapper-stock-id-process-final-report/
https://sedarweb.org/documents/sedar-74-gulf-of-mexico-red-snapper-stock-id-process-final-report/

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

Supplementary Materials

Methods

Data from studies where only immediate mortality was measured (Table 1) had depths
ranging from 0-90m. Half of the studies were from the western region (defined as Texas and
Louisiana to MRIP statistical zone 13), one was from the central region (defined as the rest of
Louisiana, Mississippi, Alabama, and the panhandle of Florida through MRIP statistical zone 7
and Levy County), and three did not specify region. Regions defined here are stock assessment
regions for SEDAR 74(Image 1; SEDAR 74, 2022). Estimates that reported season were split
almost evenly between summer and not summer and only two studies did not include season.
Summer was defined as fish captured from June — September. Only 4 estimates descended fish,
23 vented fish, and 27 did not vent. Five studies used J hooks to catch fish, whereas the rest used

circle hooks or a combination of hook types.

Table S1. A list of studies with estimates of immediate release mortality of red snapper
(Lutjanus campechanus) in the Gulf of Mexico. Estimates of mortality are categorized into depth
(m); fleet type grouped as recreational (Rec) and commercial (Com); season grouped as not
summer (NS) and summer (S); region grouped as east (E), central (C), and west (W); hook type
grouped as circle (C) or J hook (J); and release method (RM) grouped as not vented (NV), some
fish vented (SV), all (total) fish vented (TV), and descended (D). The number of fish included in
each estimate (n) and the number of “dead” and “alive” fish used to calculate the mortality are

also shown.
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Mortality n Dead Alive Depth Fleet Season Region Hook RM Study

0.00 7 0 7 30 Rec NS AW C D  Curtis 2015
0.20 10 2 8 30 Rec NS W C NV  Curtis 2015
0.11 9 1 8 30 Rec NS AW C TV  Curtis 2015
0.00 8 0 8 50 Rec NS AW C D  Curtis 2015
0.30 10 3 7 50 Rec NS W C NV Curtis 2015
0.00 8 0 8 50 Rec NS AW C TV  Curtis 2015
0.00 6 0 6 50 Rec S W C D  Curtis 2015
0.57 7 4 3 50 Rec S W C NV  Curtis 2015
0.25 4 1 3 50 Rec S AW C TV  Curtis 2015
0.00 6 0 6 50 Rec NS W C D  Curtis 2015
0.22 9 2 7 50 Rec NS AW C NV  Curtis 2015
0.21 137 29 108 30 Rec NS w C TV  Campbell et al. 2010
0.23 137 31 106 30 Rec S W C TV Campbell et al. 2010
0.21 282 60 222 60 Rec NS w C TV  Campbell et al. 2010
0.26 282 73 209 60 Rec S W C TV  Campbell et al. 2010
0.28 25 7 18 10 Rec S W J NV  Dorf 2003
0.28 425 120 305 15 Rec S AW J NV  Dorf 2003
0.27 825 225 600 20 Rec S W J NV  Dorf 2003
0.41 525 215 310 25 Rec S AW J NV  Dorf 2003
0.47 225 106 119 30 Rec S AW J NV  Dorf 2003
0.15 100 15 85 35 Rec S W J NV  Dorf 2003
0.40 155 62 93 40 Rec S AW J NV  Dorf 2003
0.63 280 176 104 45 Rec S W J NV  Dorf 2003
0.61 105 64 41 50 Rec S W J NV  Dorf 2003
0.58 240 139 101 55 Rec S AW J NV  Dorf 2003
0.38 125 48 78 60 Rec S W J NV  Dorf 2003
0.37 50 19 32 65 Rec S AW J NV  Dorf 2003
0.33 10 3 7 70 Rec S AW J NV  Dorf 2003
0.23 75 17 58 75 Rec S W J NV  Dorf 2003
0.47 100 47 53 80 Rec S AW J NV  Dorf 2003
0.56 30 17 13 95 Rec S W J NV  Dorf 2003

Gitschlag and Renaud
0.01 140 1 139 24 Rec NS J TV 1994

Gitschlag and Renaud
0.10 31 3 28 30 Rec NS J TV 1994

Gitschlag and Renaud
0.44 61 27 34 40 Rec NS J TV 1994
0.70 40 28 12 10 Com NS w C NV Nieland et al. 2007
0.25 465 117 348 20 Com NS W C NV Nieland ef al. 2007
0.68 789 537 252 30 Com NS AW C NV  Nieland ef al. 2007
0.74 814 602 212 40 Com NS W C NV Nieland ef al. 2007
0.74 1638 1219 419 50 Com NS W C NV Nieland ef al. 2007
0.69 464 322 142 60 Com NS AW C NV  Nieland ef al. 2007
0.78 404 316 88 70 Com NS W C NV Nieland ef al. 2007
0.89 88 78 10 80 Com NS AW C NV  Nieland ef al. 2007
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Nieland et al. 2007

Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Patterson et al.
Pulver 2017

2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001

Table S2. A reduced list of studies used in a meta-analysis to assess how release method effects

discard mortality of red snapper (Lutjanus campechanus) in the Gulf of Mexico. This subsetted

dataset includes only studies where release method was explicitly tested in the study and release

method (RM) is clearly defined as no barotrauma mitigation (S — surface release), vented (V), or

descended (D). An additional laboratory study addressing this question was included (Drumbhiller

et al. 2014). Estimates of mortality are categorized into depth in meters, season grouped as not

summer (NS) and summer (S), region grouped as east (E), central (C), and west (W), and study

type (ST) grouped as caged (C), acoustic tag (AT), and passive tag (PT). The number of fish

included in each estimate (n) and the number of “dead” and “alive” fish used to calculate the

mortality are also shown.
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Mortality n dead alive Depth Season ST Region RM Study

0.778 9 7 2 30 NS AT C S Bohaboy et al. 2020
0.376 8 3 5 30 NS AT C D Bohaboy et al. 2020
0.335 18 6 12 30 S AT C S Bohaboy et al. 2020
0.227 22 5 17 30 S AT C D Bohaboy et al. 2020
0.563 16 9 7 55 NS AT C S Bohaboy et al. 2020
0.353 17 6 11 55 NS AT C D Bohaboy et al. 2020
0.8 10 8 2 55 S AT C S Bohaboy et al. 2020
0.571 14 8 6 55 S AT C D Bohaboy et al. 2020
0o 7 0 7 30 NS AT W D  Curtis et al. 2015
0333 6 2 4 50 NS AT W D  Curtis et al. 2015
0.167 6 1 5 50 S AT W D  Curtis et al. 2015
0333 6 2 4 50 NS AT W D  Curtis et al. 2015
0.14286 7 1 6 30 NS AT w V  Curtis et al. 2015
025 4 1 3 50 S AT w V  Curtis et al. 2015
04 5 2 3 50 NS AT w V  Curtis et al. 2015
025 8 2 6 30 NS AT w S Curtis et al. 2015
0222 9 2 7 50 NS AT w S Curtis et al. 2015
0.875 7 6 1 50 S AT w S Curtis et al. 2015
025 8 2 6 50 NS AT w S Curtis et al. 2015
0 6 0 6 30 C D  Drumihiller et al. 2014
0.1667 6 1 5 60 C D  Drumihiller et al. 2014
0 6 0 6 30 C V  Drumihiller et al. 2014
0 6 0 6 60 C V  Drumihiller et al. 2014
0333 6 2 4 30 C S Drumbhiller et al. 2014
0.833 6 5 1 60 C S Drumbhiller et al. 2014
0.125 8 1 7 40 S AT W D Stunzetal. 2017
0.3333 6 2 4 40 S AT w S Stunz et al. 2017
0.42857 7 3 4 40 S AT w V  Stunzetal. 2017
0.6667 9 6 3 60 S AT w D Stunzetal. 2017
0.6 5 3 2 60 S AT w S Stunz et al. 2017
0.14286 7 1 6 60 S AT w V  Stunzetal. 2017
0o 7 0 7 40 NS AT W D Stunzetal. 2017
0 10 0 10 40 NS AT W S Stunz et al. 2017
0.1111 9 1 8 40 NS AT W V  Stunzetal. 2017
0 8 0 8 60 NS AT W D Stunzetal. 2017
025 8 2 6 60 NS AT w S Stunz et al. 2017
0.2857 7 2 5 60 NS AT w V  Stunzetal. 2017
0.5 14 7 7 50 S AT W D  Tompkins 2017
0.14286 14 2 12 30 S AT W D  Tompkins 2017
0.16667 12 2 10 40 S AT W D  Tompkins 2017
0.64286 14 9 5 60 S AT W D  Tompkins 2017
077 9 7 2 50 S AT W D Diamond et al. 2011
05 4 2 2 50 S AT W V  Diamond et al. 2011




668

669

670

671

672

673

674

675

676

677

678

679

1 12 12 0 50 S AT w S Diamond et al. 2011
0.625 8 5 3 50 NS AT W D Diamond et al. 2011
025 8 2 6 50 NS AT W S  Diamond et al. 2011
0.13 71 9 62 27.5 AT C D  Williams-Grove 2015
0.291 86 25 61 27.5 AT C D  Williams-Grove 2015
0.083 36 3 33 37 NS AT D Runde et al. 2021
Results

Table S3. Shown are the results of the analysis focused on generating discard mortality estimates

of Red Snapper (Lutjanus campechanus) using only mortality estimates that have combined

immediate and delayed morality. The best fit model included depth of capture (m), release

method (descended, vented, or surface release), regions of the Gulf of Mexico (western, central,

or eastern), season (summer or not summer) and an interaction between region and season. Study

and study type (cage, passive tag, acoustic tag) were included as random effects.

estimate se z value p value lower CI upper CI
Intercept -1.3519 0.4426 -3.0542 0.0023 -2.2194  -0.4844
Depth 0.0123 0.0016 7.7005 <.0001 0.0092 0.0154
Descending -0.3878 0.2456 -1.5789 0.1144 -0.8692 0.0936
Some Venting -1.1951 1.2988 -0.9202 0.3575 -3.7408 1.3505
Total Venting -0.3812 0.3447 -1.1059 0.2688 -1.0568 0.2944
Central Region 0.8477 0.4438 0.8700 0.3843 -1.0620 2.7575
Eastern Region 1.1237 0.4451 1.1524 0.2492 -0.7875 3.0349
Summer 0.7557 0.1286 3.2746 0.0011 0.3034 1.2080
Central Region * Summer | -0.8014 0.1367 -3.4045 0.0007 -1.2628  -0.3400
Eastern Region * Summer | -0.7426 0.1521 -3.0353 0.0024 -1.2222  -0.2631
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Table S4. Shown are the results of an analysis focused on estimating how discard mortality

estimates of Red Snapper (Lutjanus campechanus) differ when mortality estimates include only

immediate estimates of discard mortality or have a combination of immediate and delayed

discard mortality (Delayed). The best fit model also included depth of capture (m), fleet type

(recreational or commercial), release method (descended, vented, or surface release), hook type

(circle or J hook), regions of the Gulf of Mexico (western, central, or eastern), season (summer

or not summer), and an interaction between region and season. Study and study type (cage,

passive tag, acoustic tag) were included as random effects.

estimate se z value p value  lower CI upper CI
Intercept -0.1965 0.9003 -0.2182 0.8272 -1.9610 1.5680
Delayed 0.5061 0.2460 2.0571 0.0397 0.0239 0.9882
Depth 0.0176 0.0011 16.7422  <.0001 0.0155 0.0197
Recreational Fleet -1.9406 0.8654 -2.2424 0.0249 -3.6367  -0.2444
Descending -0.5366 0.2115 -2.5374 0.0112 -0.9511 -0.1221
Venting -0.2784 0.2215 -1.2569 0.2088 -0.7126 0.1558
Circle Hook -0.0634 0.4411 -0.1438 0.8856 -0.9279 0.8010
Central Region 0.3162 0.6577 0.4808 0.6307 -0.9729 1.6054
Eastern Region 0.5534 0.6586 0.8402 0.4008 -0.7375 1.8442
Summer 0.4037 0.1287 3.1373 0.0017 0.1515 0.6559
Central Region * Summer | -0.4432 0.1368 -3.2390 0.0012 -0.7114  -0.1750
Eastern Region * Summer | -0.3828 0.1522 -2.5151 0.0119 -0.6811 -0.0845
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Table SS. Shown are the results of the analysis focused on estimating how barotrauma
mitigation affects discard mortality estimates of Red Snapper (Lutjanus campechanus). The best
fit model included depth of capture (m), release method (descended, vented, or surface release),
season (summer or not summer), and an interaction between depth and season. Study was

included as a random effect.

estimate se z value p value  lower CI upper CI
Intercept -2.8921 0.6669 -4.3366 <.0001 -4.1992  -1.5850
Depth 0.0658 0.0134 4.9213 <.0001 0.0396 0.0920
Descending -0.6196 0.2344 -2.6431 0.0082 -1.0791 -0.1601
Venting -0.6437 0.3232 -1.9914 0.0464 -1.2771 -0.0102
Not Summer 2.3009 0.9783 2.3521 0.0187 0.3836 4.2183
Depth * Not Summer -0.0602 0.0203 -2.9636 0.0030 -0.1001 -0.0204
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Figure S1: A) When assessing the effects of the inclusion of delayed mortality when estimating
discard mortality of Red Snapper (Lutjanus campechanus), delayed mortality significantly
increased the predicted discard mortality in the Gulf of Mexico (estimate=0.51, z15,139=2.06,
p<0.05). At the average fishing depth of the tested studies (45m) the estimated mortality is 35%
for studies include delayed mortality (immediate & delayed) compared to 26% for studies that do
not (immediate only). Points are the calculated mean effect sizes and error bars represent the

95% confidence interval.
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Abstract

Red snapper (Lutjanus campechanus) is an economically important fishery in the Gulf of America (formerly the Gulf of Mexico). This species is subject to discard mortality from barotrauma. Novel discard mortality research on this species has estimated delayed mortality in addition to immediate mortality at the surface (i.e., swim or float). To determine how this combined mortality measurement changes red snapper discard mortality we conducted a meta-analysis, combining 11 studies, with 84 distinct estimates from 34 years of research. We assessed if depth, season, release method, or region predict discard mortality. We found a significant positive relationship between depth and discard mortality and that, in the western Gulf, fishing in the summer significantly increases discard mortality compared to fishing in other seasons and regions. Analyzing studies with well-defined release method treatments, we found that venting and descending generates a 14.6% decrease in estimated release mortality compared to no barotrauma mitigation. We estimate a 31% discard mortality at 33m, the median fishing depth of the private recreational fleet. This more than doubles the estimate of discard mortality generated by a previous meta-analysis. Given that we generated estimates from both immediate mortality and delayed mortality, we propose that these updated, higher estimates of discard mortality likely more representative of the mortality experienced by this recreational fishery. 











Introduction

Catch and release fishing has long been accepted as an effective and intuitive conservation tactic (Policansky 2022). In theory, fish that do not meet a minimum size limit or are not the target species can be released alive, having no negative impact on the fish population (Cooke and Schramm 2007; Raby et al. 2014). However, in practice, fishing can lead to mortality, and estimating how many untargeted or undersized fish experience mortality from fishing is an important part of effectively managing fisheries. Due to size limits and season closures, 70% of Red Snapper caught in the Gulf of America (formerly the Gulf of Mexico) by the private recreational and for-hire fisheries are discarded (NMFS Fisheries Statistical Division 2023). Therefore, as new data on discard mortality rates for this species become available, updated estimates should be used to better predict potential impacts to the fishery as it continues to be successfully rebuilt (SEDAR 52 2018).

[bookmark: _Hlk174543395]Early research on discard mortality largely focused on immediate mortality from fishing (i.e., fish dead on release or unable to swim away; Campbell et al., 2014; S. L. Diamond & Campbell, 2009; Patterson et al. 2002). Immediate mortality is often caused by barotrauma or hooking injures (Muoneke and Childress 1994; Bartholomew and Bohnsack 2005; Rummer and Bennett 2005; Burns and Froeschke 2012). Hooking injuries such as lacerations to gill, internal viscera, or esophagus can lead to immediate mortality at the surface and are easily identifiable prior to release (Render and Wilson 1994; Bartholomew and Bohnsack 2005; Burns and Froeschke 2012). Barotrauma occurs due to pressure changes fish experience as they are brought to the surface. Common symptoms of barotrauma are bulging eyes, a distended abdominal region, flared opercula, and stomach eversion or prolapse (Rummer and Bennett 2005). These effects can be particularly problematic for fish that are physoclistous (i.e., do not have a pneumatic duct connecting the swim bladder to the digestive tract, which allows fish to fill or empty their swim bladder rapidly), such as Red Snapper, and therefore cannot acclimate as quickly to changes in depth. Distended swim bladders can cause fish to be positively buoyant and unable to easily descend upon release, making them vulnerable to predation from both the sea and air as well as increased stress due to exposure to higher temperatures and sunlight (Rummer and Bennett 2005; Wilde 2009; Scyphers et al. 2013). Recent research has focused on the use of descender devices to reduce discard mortality from barotrauma (Diamond et al. 2011; Drumhiller et al. 2014; Curtis et al. 2015; Stunz, Curtis and Tompkins 2017; Ayala 2020; Bohaboy et al. 2020; Runde et al. 2021). Descender devices force the fish back down to their capture depth, allowing them to be released at the depth, temperature and pressure to which they were acclimated. 

While hooking injures and barotrauma can be easy for anglers to identify, fish that are caught often undergo more subtle physical damage and physiological stress which can lead to delayed mortality (Raby et al. 2014). For example, barotrauma, handling, and air exposure can cause changes in heart and ventilation rates, blood pressure, reductions in muscle energy stores, and other physiological stress responses. These responses, which may take hours to return to baseline levels, can result in cellular and tissue damage, reduced immunity, and behavioral changes which can lead to delayed mortality (Wood, Turner and Graham 1983; Davis 2002; Rummer 2007; Mohan et al. 2020). These physiological changes can leave fish too disoriented to avoid predation (Parsons and Eggleston 2005; Campbell 2008) and can even cause fish to release chemical cues that attract predators (Jenkins, Mullen and Brand 2004; Dallas et al. 2010). Due to these effects, researchers have been increasingly studying both immediate and delayed mortality when assessing discard mortality. For example, much of the recent research on Red Snapper discard mortality has used either acoustic or passive tags to assess any additional mortality that occurs in fish that appear healthy upon release (Curtis et al. 2015; Stunz, Curtis and Tompkins 2017; Tompkins 2017; Bohaboy et al. 2020; Sauls et al. 2017; Runde et al. 2021).  

In 2014, Campbell et al. performed a meta-analysis to assess Red Snapper discard mortality rates in the Gulf of America and whether they differed based on common fishing factors such as differences between commercial and recreational fisheries, fishing depth, etc. (Campbell et al. 2014). This model included studies that estimated immediate mortality, which was a majority of the published literature at the time but are likely underestimates as they do not capture mortality that is occurring over hours-days (i.e. delayed). However, the authors emphasized the need for more research on delayed mortality and cautioned that using only immediate mortality for estimations provides an incomplete measure of total discard morality and should only be done as a minimum data collection (Campbell et al. 2014). Due to the novel research focusing on delayed mortality and descender devices that has occurred since this meta-analysis was conducted, we have updated this model. We reassessed factors that affect discard mortality and estimated mortality rates in the recreational Red Snapper fishery in the Gulf of America using new research and with a focus on studies that include delayed mortality. 



Methods

We updated the Campbell et al. 2014 meta-analysis by adding data from studies that assessed the discard mortality of Red Snapper in the Gulf of America after 2014. As a result, 8 new studies with 101 new point estimates were added to the dataset for a total of 18 studies and 156 individual estimates of discard mortality. This dataset will hereafter be referred to as the ‘mixed mortality’ dataset. Due to concerns that the inclusion of studies that only estimated immediate impacts of release mortality would underestimate Red Snapper mortality, as negative physiological and behavioral effects from being fished can persist (Campbell 2008; Drumhiller et al. 2014; Raby et al. 2014), we ran an initial analysis on the mixed morality dataset to explicitly assess how the addition of delayed morality increases discard mortality estimates. After this analysis we removed estimates and studies that only measured immediate mortality upon release (Table S1; removed studies). This generated a database of 11 studies with 94 distinct estimates of discard mortality throughout the Gulf of America used to assess factors that can be used to predict discard mortality and will hereafter be referred to as the “full mortality” dataset (Table 1). Finally, we subset the data to specifically assess the effects of venting and descending devices on discard mortality. Studies where venting was not completed on all fish in the venting treatment and an additional laboratory study focused on the effects of venting and descending on Red Snapper mortality was added (Drumhiller et al. 2014). This study was excluded from the initial datasets as release mortality estimates from laboratory settings may not reflect natural morality due to the exclusion of predators and other such release morality drivers. This dataset had 50 estimates from 8 studies and will hereafter be referred to as the “release method” dataset (Table S2). Mortality estimates in all databases were classified by depth of catch (m), region (west, east, and central Gulf), season (summer and not summer), and release method (no venting, some venting, total venting, and descending device used) when possible. If a point estimate was not separatable by one of those factors, it was not included in the analysis of that factor. 

 	There were 8 studies with some measures of immediate mortality (Table S1). Two studies measured discard mortality in the commercial fleet (Nieland et al. 2007; Pulver 2017), and the remaining studies focused on the recreational fleet (see supplemental methods for more details). Of the 11 studies in the full mortality database (Table 1), most used acoustic tags to track fish, with only one study where fish were marked with passive tags (conventional plastic-tipped dart tags; Vecchio et al. 2022) and three cage studies (Parker 1985; Render and Wilson 1996; Diamond and Campbell 2009). Six studies were in the western region (defined as Texas and Louisiana to MRIP statistical zone 13), three studies were conducted at least partially in the central region (defined as the rest of Louisiana, Mississippi, Alabama, and the panhandle of Florida through MRIP statistical zone 7 and Levy County), and only one study assessed discard mortality in the eastern region (defined as peninsular Florida starting at statistical zone 6 and Citrus County and continuing south). Regions defined here are stock assessment regions for SEDAR 74 (Image 1; SEDAR 74, 2022). Of the 94 estimates, 46 occurred during the summer. Only 5 studies reported surface water temperature and only 4 studies reported temperature by depth. The average summer temperature was 28.6 °C and the average non-summer temperature was 22.6 °C. However, temperature could not be used in the model since temperature values were only available in the western region. Therefore, the metric of season was used instead of temperature in our models. Depths ranged from 10-85m, with a mean of 45m. A total of 19 estimates were classified as no venting (surface release without barotrauma mitigation), 22 estimates were from descended fish (not always to the sea floor), and the remaining estimates came from fish where venting procedures were performed prior to surface release. Fish were classified as ‘total venting’ if all the fish in the treatment group were vented. Fish were classified as ‘some venting’ if some of the fish from the estimate were vented either through angler discretion (Vecchio et al. 2022) or because mortality estimates were not broken down by venting treatment (Render and Wilson 1996). These studies that had estimates of discard mortality that included both immediate and delayed mortality all came from the recreational fleet. Circle hooks or a combination of circle and J hooks were used in all studies.

Of the 8 studies and 50 estimates in the release methods database (Table S2), depths ranged from 27.5 to 60m. Estimates were evenly spread across summer and not summer although season was not defined for two studies (Drumhiller et al. 2014; Runde et al. 2021). Acoustic tagging was used to assess delayed mortality in all studies except one, which was conducted in a laboratory setting (Drumhiller et al. 2014). 16 of the mortality estimates came from fish released at the surface with no barotrauma mitigation, 10 of the estimates were from vented fish, and 24 of the estimates were from descended fish. Across all datasets, the sample sizes of fish tested to generate our estimates varied widely from three to 34,465. Differences in sample sizes were addressed by giving estimates with smaller sample sizes higher variances around their effect sizes (and vice versa) and including this variance in our models, as described below. 

Analyses were conducted in R using the metafor package (R Core Team, 2020; Viechtbauer, 2010). Effect sizes were calculated using the escalc function using the frequency of dead fish out of the total number of fish tested. This function also calculates a variance for each effect size from the sample size of the estimate. Mixed effect models were run with the rma.mv function. The calculated effect sizes were used as the response variable. To assess which factors predict discard mortality using the full mortality database (Table 1), season, region, the interaction between season and region, depth, and release method were used as predictor variables. Study and study type (cage, passive tag, acoustic tag) were included as random effects. Depth was a continuous variable, and the rest of the variables were categorical. Post-hoc tests were run by separating the analyses into the western and not western (eastern and central regions combined) regions to allow us to generate separate, more accurate predictions across regions, seasons, and depths as the effect of season was only present in the western region.

To explicitly assess the contribution of delayed mortality on discard mortality, the mixed mortality database (Tables S1 & 1) and additional predictor variables of whether the study estimated mortality as immediate only or included delayed mortality (0 or 1), whether the study was on the recreational fleet or not (0 or 1), and whether fish were caught with circle hooks (0 or 1). These predictors were added to explicitly test the contribution of delayed mortality on discard mortality estimates as well as control for other variables present in this larger database. Study and study type were used as random effects. The best fit model included the binary variables of delayed mortality, recreational fleet, and circle hooks as well as the depth, release method, and season by region interaction variables included in the full mortality model.  To further assess the effects of venting and descending on discard mortality a separate analysis was run using the release method database (Table S2). The best fit model included release method, depth, season, depth by season interaction, and uses study as a random effect. 

Variances from the calculated effect sizes were included in all models. A backward stepwise regression model selection procedure was performed using AICs and BICs. Predicted values and their associated 95% confidence limits were calculated using the predict function in metafor (Viechtbauer 2010) and converted back to proportions by taking the inverse of the logit-transformed data (see Campbell et al., 2014 for more details). Heterogeneity in all models were tested using Cochran’s Q-test. This is a commonly used heterogeneity test, which allows us to determine if the variability in the meta-analysis indicates ‘true’ variability or is due to sampling error (Cochran, 1954).  Graphs were generated using the ggplot2 package (Wickham et al., 2022). 





Results

In the full mortality model, summer significantly increased the estimated mortality when compared to non-summer (estimate=0.76, z9,76=3.27. p<0.01; Fig. 1A; Table S3). There was also a significant interaction between region and season with the western region showing significantly higher mortality rate in the summer than in the non-summer. However, this pattern was not true for the other regions, suggesting that these significant effects of seasonality were driven by the estimates from the western region (summer*central: estimate=-0.80, z9,76=-3.40, p<0.001; summer*eastern: estimate=-0.74, z9,76=-3.04, p<0.01; Fig. 1B). There was a significant positive association between depth and mortality rate (estimate=0.012, z9,76=7.70, p<0.001; Fig. 2A). We calculated the slope of this positive association for comparison with the estimates generated by Campbell et al. 2014. Our results estimated a 4% increase in mortality for every 10m increase in depth, while the Campbell et al. 2014 paper predicted a 3% increase (Fig. 2). Region did not significantly alter estimated mortality rates as a main effect (Region Central: estimate=0.85, z9,76=0.87, p=0.38; Region East: estimate=1.12, z9,76=1.15, p=0.25).  Release method also did not significantly affect Red Snapper mortality rate (descending: estimate=-0.39, z9,76=-1.58, p=0.11; total venting: estimate=-0.38, z9,76=-1.06, p=0.27; some venting: estimate=-1.20, z9,76=-0.92, p=0.38). 
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[bookmark: _Toc115861569]Figure 1: A) The proportional discard mortality of Red Snapper (Lutjanus campechanus) in the Gulf of America (formerly known and the Gulf of Mexico) was significantly higher in summer than the non-summer seasonal group (estimate=0.76, z9,76=3.27, p<0.01). B) The western region had a significantly higher proportional mortality rate in the summer than in non-summer, but this pattern was not true for the other regions (summer*central: estimate=-0.80, z9,76=-3.40, p<0.001; summer*eastern: estimate=-0.74, z9,76=-3.04, p<0.01). Points represent average proportional mortalities and error bars represent 95% confidence intervals. Asterisks indicate significance level and ‘ns’ indicate comparisons that were not significant.
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[bookmark: _Toc115861570]Figure 2: A) The proportional discard mortality of Red Snapper (Lutjanus campechanus) in the Gulf of America (formerly known as the Gulf of Mexico) had a significant positive association with depth (estimate=0.012, z9,76=7.70, p<0.001). Shown is the slope of the line, indicating a 3.6% increase in mortality with every 10m. Points are raw mortality estimates from the data, the blue line indicates the predicted mortality by depth from the data and the gray band represents at 95% confidence interval around this prediction. B) There was also a significant positive association between depth and proportional mortality in the Campbell et al. 2014 paper. Shown is the slope of the line for the recreational data only (the slope which most closely aligns with our data), indicating a 3% increase in mortality with every 10m. The points are raw mortality estimates, and the line indicates the predicted relationship between mortality and depth. 



Post-hoc tests addressing the western region separately from the eastern and central regions found similar results. In the western region, summer mortality was significantly higher than non-summer (estimate = 0.64, z2,34=2.75, p<0.01), there was a positive association between depth and mortality (estimate=0.04, z2,34=4.01, p<0.001; Fig. 3A). In the eastern and central regions, season did not significantly predict mortality (estimate=-0.03, z2,35=-0.65, p=0.52), but depth was positively associated with mortality (estimate=0.02, z2,35=9.4, p<0.001, Fig.3B). These models predicted that mortality at the average fishing depth (45m) from the tested studies in the western region in the winter is 37.3% and that this increases to 53.1% in the summer. Whereas the estimated mortality in the eastern and central regions is 35.2% regardless of season.  
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Figure 3: A) In the western region (Texas and Louisiana) of the Gulf of America (formerly known as the Gulf of Mexico) the proportional discard mortality of Red Snapper (Lutjanus campechanus) was significantly positively associated with depth (estimate=0.04, z2,34=4.02, p<0.001) and summer led to significantly higher discard mortality than non-summer (estimate = 0.64, z2,34=2.75, p<0.01). B) In the eastern and central regions (Mississippi, Alabama, and parts of Louisiana and Florida) there was also a significant positive association between depth and mortality (estimate=0.01, z2,35=9.4, p<0.001), but season did not affect discard mortality (estimate=-0.03, z2,35=-0.65, p=0.52). Points are raw mortality estimates from the data, the lines indicate the predicted mortality by depth from the data and the bands represent the 95% confidence interval around this prediction. Blue and gray lines and bands represent summer and not summer data, respectively.



Mortality estimates ranged from 0-100% with a mean of 32% and a median of 28% in the full mortality dataset. The highest mortality estimates occurred during the summer, in the western region in unvented fish, at 40 and 50m (Diamond & Campbell, 2009). Four studies had average mortality estimates between 45-65% (Bohaboy et al., 2020; Diamond et al., 2011; Diamond & Campbell, 2009; Tompkins, 2017) and three studies had average mortality estimates of less than 20% (Parker, 1985; Render and Wilson 1996; Runde et al., 2021). The full mortality model predicted that the discard mortality at the average fishing depth from the tested studies (45m) would be 34%, which more than doubles the 16.4% mortality estimate from Campbell 2014 at the same depth. Additionally, the mixed methods analysis found that mortality estimates from the recreational fishery that included delayed mortality increased by 8.6%, from 26% (immediate mortality only) to 35% (including both immediate and delayed mortality) at 45m (estimate=0.63, z15,129=2.74, p<0.01; Fig. S1). This further supports that including estimates of delayed mortality are important to accurately assess discard mortality. See supplement for more detailed results from the mixed mortality model (Table S4). 

The release method analysis found that both venting (estimate -0.64, z7,41=-2.00, p<0.05) and descending (estimate = -0.62, z7,41=-2.64, p<0.001) decreased discard mortality relative to surface release with no barotrauma mitigation. At the mean depth of the studies used in the analysis (45m), the model predicts Red Snapper will experience 43.6% mortality if no barotrauma mitigation is used, 28.8% mortality with venting, and 29.3% mortality with descending (Fig. 4). We also found a significant interaction between season and depth (estimate = -0.06, z7,41=-2.96, p<0.01), where there is a significantly steeper depth by mortality slope in the summer than not in the summer. In summer the model predicts a 15% increase in mortality for every 10m deeper depth fished, compared with 3% in the non-summer seasons (Fig. 5).
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Figure 4. In the analysis that only includes studies explicitly testing release method, venting (estimate -0.65, z7,41=-2.00, p<0.05) and descending (estimate = -0.62, z7,41=-2.64, p<0.01) both significantly reduce discard mortality, generating a 14.6% decrease in release mortality. Smaller points are raw mortality estimates from the data, larger points indicate the predicted mortality by release method, and the error bars represent the 95% confidence intervals around this prediction. Asterisks indicate significant differences.
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Figure 5. Analyzing studies with well-defined release method treatments, the slope of the positive association between depth and mortality is predicted by the season that fish were caught in (estimate = -0.06, z7,41=-2.96, p<0.01). In summer the model predicts a 15% increase in mortality every 10m deeper depth fished, compared with 3% in the non-summer seasons. Most of the estimates (>60%) in this analysis are from the western region and none are from the eastern region, meaning that these results do not pertain to the eastern Gulf of America (formerly known as the Gulf of Mexico). Points are raw mortality estimates from the data, the lines indicate the predicted mortality by depth from the data and the bands represent the 95% confidence band around this prediction. Blue and gray lines and bands represent summer and not summer data, respectively.



When testing for heterogeneity the Cochran’s Q-test showed that there was significant variability among the predictors (mixed mortality: QM 15=417.42, p<0.001; full mortality: QM 9=164.96, p<0.001; release method model: QM 7=36.50, p<0.001) and a significant amount of residual heterogeneity in the mixed mortality and full mortality models (mixed mortality: QE129=653.23, p<0.001; full mortality: QE76=121.84, p<0.001), but not in the release method model (QE41=56.29, p=0.056). These heterogeneity tests suggest that all models predict the variation in the data well, although remaining residual heterogeneity suggests that the tested predictors do not encompass all the variation in the data. This is likely because these models had a wider breadth of data which allows for more unidentified variables driving variation in mortality estimates.



Discussion

Red Snapper is an economically important fishery in the Gulf of America. Seasonal closures and size limits cause 70% of Red Snapper that are caught to be discarded (NMFS Fisheries Statistical Division, 2023). While significant research has been directed to understand this vital component of mortality that impacts the population, previous estimates relied largely on methods that were insufficient in estimating delayed mortality. Thus, updating the discard mortality estimates used in stock assessments with newly available research will help support the successful rebuilding of the Gulf of America Red Snapper fishery (SEDAR 52, 2018). When synthesizing new data on release mortality in the recreational Red Snapper fishery, including only studies which measured both immediate and delayed mortality, we found that estimated discard mortality was higher in the summer than in other seasons in the western gulf, and consistent with all studies on the topic, depth of capture was positively associated with discard mortality. We also found that venting and descending use equally reduce discard mortality compared to surface release with no barotrauma mitigation. Finally, we found that the updated model more than doubled the estimated percent discard mortality compared to a previous meta-analysis that included studies with only immediate discard mortality estimates (Campbell et al., 2014).

We found that depth of capture was significantly positively associated with discard mortality in the Gulf of America (Fig. 2). Studies in this meta-analysis that examined this question also found that discard mortality increased with increased depth of capture (Curtis et al., 2015; Diamond & Campbell, 2009; Stunz et al., 2017; Tompkins, 2017). Additionally, a positive association between capture depth and fishing mortality has been seen in other fisheries (Alós J., 2008; Bartholomew & Bohnsack, 2005; Campbell et al., 2010; Drumhiller et al., 2014; Hannah et al., 2008; Sauls, 2014). The previous meta-analysis by Campbell et al. 2014 found that a 10m increase in depth led to a 3% increase in mortality. Our model found a similar result of 3.6%. In keeping with a majority of studies we showed a positive relationship between depth of capture and increased barotrauma (Brown et al., 2010; Ferter et al., 2015; Rummer & Bennett, 2005). Barotrauma can cause extensive physical and behavioral damage to fish that experience it (Raby et al., 2014; Rummer & Bennett, 2005). Recent regulations have required venting and descending devices onboard fishing vessels with a goal of reducing the negative effects from barotrauma. Managers have been working to mitigate these effects through the use of venting and descending devices. Only 19 of the estimates in this study did not include either a venting or a descending device treatment when releasing fish (Table 1), and yet a positive association between depth and mortality still occurred. This suggests that even if venting or descending can reduce discard mortality, catching fish at shallower depths is still the most effective way to lower discard mortality, as the physiological effects of barotrauma are reduced. Additionally, there is evidence that mortality may  reach 100% after a certain depth, due to catastrophic barotrauma seen at depths of 50m and above (Stunz et al., 2017; Tompkins, 2017). Catastrophic barotrauma occurs when the swim bladder ruptures and this often leads to mortality (Rummer & Bennett, 2005; Stunz et al., 2017). However, we did not see a steep increase in mortality at depths below 50m in this analysis.

We also found that discard mortality in the western region was higher in summer than in non-summer seasons (Fig. 1). The effect of warmer water increasing discard mortality has been found previously (Bartholomew & Bohnsack, 2005; Diamond & Campbell, 2009; Render & Wilson, 1994), and it is likely due to a steep thermocline that generates during the warmer months (Curtis et al., 2015; Stunz et al., 2017). The change in temperature a fish experiences as it is brought to the surface increases the negative physiological and behavioral affects a fish would experience normally during capture (Boyd et al., 2010; Campbell, 2008; Muoneke & Childress, 1994). Additionally, oxygen stress can lead to discard mortality and higher temperature waters do not hold as much oxygen as cooler waters (Bartholomew & Bohnsack, 2005; Rummer, 2007). We did not see this pattern in the more eastern gulf, potentially due to the eastern and central data coming predominately from passive tagging, whereas the western gulf data was predominately collected using acoustic tagging. In the release method dataset, which consisted primarily of western region estimates (>60%) and had no eastern estimates, we also found that the positive association between depth and mortality is much stronger in the summer than not in the summer. In the summer we estimated a 15% increase in mortality for every 10m deeper depth fished compared to 3% for other seasons combined (Fig. 5). However, we suggest that future research explicitly assess if the effects of seasonality that we saw in the western region are comparable to  the changes in discard mortality across fishing seasons and to reassess if the more eastern regions also have a seasonality effect. This could be done using similar tagging methodologies throughout the Gulf to obtain estimates across open/closed seasons. Thereby researchers would collect relevant estimates for all types of regulatory discards generated in the fishery (i.e. length and season). 

In the release method model, we found that venting and descending both reduce discard mortality by about 14.6% (Fig. 4). Studies that compare vented or recompressed fish directly with a control group (fish released untreated at the surface) have found that barotrauma mitigation can effectively reduce discard mortality for Red Snapper (Ayala, 2020; Drumhiller et al., 2014; Pulver, 2017), including many of the studies used in this analysis (Bohaboy et al., 2020; Curtis et al., 2015; Runde et al., 2021; Stunz et al., 2017; Tompkins, 2017). However, sometimes conflicting results across studies generated higher variability in our datasets, especially for descended treatments. For example, one study found that the positive effects from venting and descending fish were much greater in the summer (Curtis et al., 2015) whereas another study found that descending fish was more effective in the winter (Stunz et al., 2017). This is likely due to the smaller sample sizes within some of the acoustic tagging studies in the western region, the region where we found seasonal effects on discard morality. A better understanding of which fishing factors are driving the effectiveness of venting or descending could help account for this variability and better inform management decisions. We did not find a significant effect of release methods on discard mortality in the full mortality analysis. This was likely due to the above-described variability and confounding effects from only some fish being vented or in other studies (Render & Wilson, 1996; Vecchio et al., 2022). 

Focusing on studies that included estimates of both immediate and delayed mortality led to more than a doubling of estimates of discard mortality of Red Snapper in the Gulf of America (Campbell et al., 2014). At 33m, the median fishing depth of the Gulf recreational fleet (SEDAR 74 2022), we found that release mortality was 31%, compared to 12.8% as predicted by the Campbell model. As the slope of the positive relationship between depth and mortality remained similar to what was previously reported (Campbell et al., 2014), this over twofold increase in release mortality occurs across all depths of capture (Fig. 2). Studies that have analyzed immediate and delayed mortality have also found that immediate mortality estimates approximately doubled (Curtis et al., 2015) or more than doubled (Diamond & Campbell, 2009) with the addition of delayed mortality. Our analysis on this topic found that including delayed mortality generated an increase from 26% mortality to 34% release mortality at the mean depth from the tested studies (45m; Fig. S1). We conclude that discard mortality estimates used in assessments should include delayed mortality. In addition to mounting evidence in support of the inclusion of delayed mortality (Curtis et al., 2015; Davis, 2002; Diamond & Campbell, 2009), we show that it can significantly increase the expected discard mortality in a fishery. 

Season and size limits are still in effect as the Red Snapper fishery in the Gulf of America continues to rebuild (SEDAR 52, 2018). Therefore, assessments of the mortality of discarded fish are necessary to continue effectively managing this fishery. Here we provide a model that can be used to estimate mortality in the recreational fishery by fishing depth throughout the Gulf and by season in the western Gulf. More studies are required to understand why seasonal effects were not conserved across regional domains. Additionally, this model predicts a more than twofold increase in discard mortality estimates than was seen in previous work (Campbell et al., 2014) through inclusion of new research and by excluding studies that only measure immediate discard mortality. A simulation study using Gulf of America Red Snapper stock assessment models showed that reducing discard mortality, especially if discard mortality is larger than previously estimated, could lead to significant increases in fishing season length as well as benefits to an array of fisheries performance metrics (Bohaboy et al., 2022). Therefore, although the estimates generated here suggest that discard mortality of Red Snapper was previously underestimated in the Gulf of America, continued efforts to reduce discard mortality are likely to lead to significant benefits to the fishery.

Mortality from predation was included in the delayed mortality estimates from tagging studies and therefore was a part of the overall estimates of mortality predicted by our model. However, as only of few of the studies in this meta-analysis explicitly separated out discard mortality from predation from discard mortality from other causes, we were not able to explicitly quantify the effect of predation alone on mortality. Some studies in this analysis reported major effects of predation on discard mortality, including the presence of sharks or dolphins in 32% of all Red Snapper releases, 83% of discard mortality resulting from predation (Bohaboy et al., 2020), and predation being described as ‘inevitable’ when descended Red Snapper were spotted by a predator (Tompkins, 2017). As shark populations continue to rebound (Froeschke et al., 2012; Peterson et al., 2017; SEDAR 54, 2017), quantifying the proportion of discard mortality that comes from predation compared to other factors such as barotrauma may be the next step to increasing scientific understanding of discard mortality.
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[bookmark: _Hlk153890653]Table 1: List of studies used in a meta-analysis of release mortality of red snapper (Lutjanus campechanus) in the Gulf of America for which estimates of mortality are categorized by depth (m); season grouped as not summer (NS) and summer (S); region grouped as east (E), central (C), and west (W); study type (Type) grouped as caged (C), acoustic tag (AT), and passive tag (PT); and release method (RM) grouped as not vented (NV), some fish vented (SV), all (total) fish vented (TV), and descended (D). The number of fish included in each estimate (n) and the number of “dead” and “alive” fish used to calculate the mortality are also shown.
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		0.25

		8

		2

		6

		30

		NS

		W

		AT

		NV

		Curtis et al. 2015



		0.14

		7

		1

		6

		30

		NS

		W

		AT

		TV

		Curtis et al. 2015



		0.33

		6

		2

		4

		50

		NS

		W

		AT

		D

		Curtis et al. 2015



		0.33

		6

		2

		4

		50

		NS

		W

		AT

		D

		Curtis et al. 2015



		0.40

		10

		4

		6

		50

		NS

		W

		AT

		NV

		Curtis et al. 2015



		0.22

		9

		2

		7

		50

		NS

		W

		AT

		NV

		Curtis et al. 2015



		0.40

		5

		2

		3

		50

		NS

		W

		AT

		TV

		Curtis et al. 2015



		0.17

		6

		1

		5

		50

		S

		W

		AT

		D

		Curtis et al. 2015



		0.87

		7

		6

		1

		50

		S

		W

		AT

		NV

		Curtis et al. 2015



		0.25

		4

		1

		3

		50

		S

		W

		AT

		TV

		Curtis et al. 2015



		0.13

		30

		4

		26

		30

		NS

		W 

		C

		TV

		Diamond & Campbell 2009



		0.42

		47

		20

		27

		30

		S

		W 

		C

		TV

		Diamond & Campbell 2009



		0.34

		32

		11

		21

		40

		NS

		W 

		C

		TV

		Diamond & Campbell 2009



		0.42

		56

		24

		32

		40

		S

		W 

		C

		TV

		Diamond & Campbell 2009



		0.44

		36

		16

		20

		50

		NS

		W 

		C

		SV

		Diamond & Campbell 2009



		0.69

		24

		17

		7

		50

		S

		W 

		C

		SV

		Diamond & Campbell 2009



		0.13

		8

		1

		7

		50

		NS

		W 

		

		NV

		Diamond et al. 2011



		0.50

		8

		4

		4

		50

		NS

		W 

		

		

		Diamond et al. 2011



		0.75

		8

		6

		2

		50

		S

		W 

		

		SV

		Diamond et al. 2011



		0.33

		9

		3

		6

		50

		S

		W 

		

		

		Diamond et al. 2011



		0.21

		14

		3

		11

		22

		NS

		

		C

		

		Parker et al. 1987



		0.11

		30

		3

		27

		30

		S

		

		C

		

		Parker et al. 1987



		0.20

		282

		56

		226

		21

		NS

		E 

		C

		SV

		Render & Wilson 1996



		0.05

		42

		2

		40

		27.5

		NS

		W

		C

		NV

		Render & Wilson 1996



		0.08

		39

		3

		36

		27.5

		NS

		W

		C

		TV

		Render & Wilson 1996



		0.06

		50

		3

		47

		35

		NS

		W

		C

		NV

		Render & Wilson 1996



		0.04

		49

		2

		47

		35

		NS

		W

		C

		TV

		Render & Wilson 1996



		0.12

		26

		3

		23

		43.5

		NS

		W

		C

		NV

		Render & Wilson 1996



		0.00

		20

		0

		20

		43.5

		NS

		W

		C

		TV

		Render & Wilson 1996



		0.09

		35

		3

		32

		51.5

		NS

		W

		C

		NV

		Render & Wilson 1996



		0.07

		30

		2

		28

		51.5

		NS

		W

		C

		TV

		Render & Wilson 1996



		0.20

		10

		2

		8

		55

		NS

		W

		C

		NV

		Render & Wilson 1996



		0.00

		7

		0

		7

		55

		NS

		W

		C

		TV

		Render & Wilson 1996



		0.08

		36

		3

		33

		37

		S

		

		AT

		D

		Runde et al. 2021



		0.00

		7

		0

		7

		40

		NS

		W

		AT

		D

		Stunz et al. 2017



		0.00

		10

		0

		10

		40

		NS

		W

		AT

		NV

		Stunz et al. 2017



		0.11

		9

		1

		8

		40

		NS

		W

		AT

		TV

		Stunz et al. 2017



		0.12

		8

		1

		7

		40

		S

		W

		AT

		D

		Stunz et al. 2017



		0.33

		6

		2

		4

		40

		S

		W

		AT

		NV

		Stunz et al. 2017



		0.43

		7

		3

		4

		40

		S

		W

		AT

		TV

		Stunz et al. 2017



		0.00

		8

		0

		8

		60

		NS

		W

		AT

		D

		Stunz et al. 2017



		0.25

		8

		2

		6

		60

		NS

		W

		AT

		NV

		Stunz et al. 2017



		0.29

		7

		2

		5

		60

		NS

		W

		AT

		TV

		Stunz et al. 2017



		0.67

		9

		6

		3

		60

		S

		W

		AT

		D

		Stunz et al. 2017



		0.60

		5

		3

		2

		60

		S

		W

		AT

		NV

		Stunz et al. 2017



		0.10

		7

		1

		6

		60

		S

		W

		AT

		TV

		Stunz et al. 2017



		0.14

		14

		2

		12

		29

		S

		W

		AT

		D

		Tompkins 2017



		0.42

		12

		5

		7

		39

		S

		W

		AT

		D

		Tompkins 2017



		0.50

		14

		7

		7

		49

		S

		W

		AT

		D

		Tompkins 2017



		0.58

		14

		8

		6

		58

		S

		W

		AT

		D

		Tompkins 2017



		0.86

		15

		13

		2

		81

		S

		W

		AT

		D

		Tompkins 2017



		0.16

		49

		8

		41

		10

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.18

		237

		43

		194

		10

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.14

		31

		4

		27

		10

		S

		C 

		PT

		SV

		Vecchio et al. 2022



		0.21

		30

		6

		24

		10

		S

		E

		PT

		SV

		Vecchio et al. 2022



		0.19

		3997

		769

		3228

		25

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.24

		352

		84

		268

		25

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.20

		1259

		251

		1008

		25

		S

		C 

		PT

		SV

		Vecchio et al. 2022



		0.28

		161

		44

		117

		25

		S

		E

		PT

		SV

		Vecchio et al. 2022



		0.22

		6150

		1377

		4773

		35

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.29

		962

		279

		683

		35

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.21

		1766

		367

		1399

		35

		S

		C 

		PT

		SV

		Vecchio et al. 2022



		0.29

		295

		84

		211

		35

		S

		E

		PT

		SV

		Vecchio et al. 2022



		0.24

		1147

		273

		874

		45

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.30

		885

		264

		621

		45

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.23

		333

		76

		257

		45

		S

		C 

		PT

		SV

		Vecchio et al. 2022



		0.30

		288

		86

		202

		45

		S

		E

		PT

		SV

		Vecchio et al. 2022



		0.26

		382

		100

		282

		55

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.31

		586

		181

		405

		55

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.23

		128

		29

		99

		55

		S

		C 

		PT

		SV

		Vecchio et al. 2022



		0.24

		139

		34

		105

		55

		S

		E

		PT

		SV

		Vecchio et al. 2022



		0.31

		125

		38

		87

		65

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.32

		151

		48

		103

		65

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.28

		18

		5

		13

		65

		S

		C 

		PT

		SV

		Vecchio et al. 2022



		0.31

		21

		6

		15

		65

		S

		E

		PT

		SV

		Vecchio et al. 2022



		0.24

		60

		15

		45

		75

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.30

		12

		4

		8

		75

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.25

		3

		1

		2

		75

		S

		C 

		PT

		SV

		Vecchio et al. 2022



		0.36

		21

		8

		13

		75

		S

		E

		PT

		SV

		Vecchio et al. 2022



		0.35

		33

		12

		21

		85

		NS

		C

		PT

		SV

		Vecchio et al. 2022



		0.34

		36

		12

		24

		85

		NS

		E

		PT

		SV

		Vecchio et al. 2022



		0.13

		71

		9

		62

		27.5

		

		W

		AT

		D

		Williams-Grove 2015



		0.29

		86

		25

		61

		27.5

		 

		W

		AT

		D

		Williams-Grove 2015
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Image 1. Map of the Gulf of America (formerly known as the Gulf of Mexico) used for the SEDAR 74 and in the process of being used for SEDAR 98. Three subregions were chosen (east, central, and west), separated by the red lines. Image from SEDAR74 Stock ID process final report. The fishing zones shown here are National Marine Fisheries Service (NMFS) fishing areas, divided into 21 statistical fishing zones in the Gulf of America. https://sedarweb.org/documents/sedar-74-gulf-of-mexico-red-snapper-stock-id-process-final-report/















Supplementary Materials

Methods

Data from studies where only immediate mortality was measured (Table 1) had depths ranging from 0-90m. Half of the studies were from the western region (defined as Texas and Louisiana to MRIP statistical zone 13), one was from the central region (defined as the rest of Louisiana, Mississippi, Alabama, and the panhandle of Florida through MRIP statistical zone 7 and Levy County), and three did not specify region. Regions defined here are stock assessment regions for SEDAR 74(Image 1; SEDAR 74, 2022). Estimates that reported season were split almost evenly between summer and not summer and only two studies did not include season. Summer was defined as fish captured from June – September. Only 4 estimates descended fish, 23 vented fish, and 27 did not vent. Five studies used J hooks to catch fish, whereas the rest used circle hooks or a combination of hook types.





Table S1. A list of studies with estimates of immediate release mortality of red snapper (Lutjanus campechanus) in the Gulf of Mexico. Estimates of mortality are categorized into depth (m); fleet type grouped as recreational (Rec) and commercial (Com); season grouped as not summer (NS) and summer (S); region grouped as east (E), central (C), and west (W); hook type grouped as circle (C) or J hook (J); and release method (RM) grouped as not vented (NV), some fish vented (SV), all (total) fish vented (TV), and descended (D). The number of fish included in each estimate (n) and the number of “dead” and “alive” fish used to calculate the mortality are also shown.

		Mortality

		n

		Dead

		Alive

		Depth

		Fleet

		Season

		Region

		Hook

		RM

		Study



		0.00

		7

		0

		7

		30

		Rec

		NS

		W 

		C

		D

		Curtis 2015



		0.20

		10

		2

		8

		30

		Rec

		NS

		W 

		C

		NV

		Curtis 2015



		0.11

		9

		1

		8

		30

		Rec

		NS

		W 

		C

		TV

		Curtis 2015



		0.00

		8

		0

		8

		50

		Rec

		NS

		W 

		C

		D

		Curtis 2015



		0.30

		10

		3

		7

		50

		Rec

		NS

		W 

		C

		NV

		Curtis 2015



		0.00

		8

		0

		8

		50

		Rec

		NS

		W 

		C

		TV

		Curtis 2015



		0.00

		6

		0

		6

		50

		Rec

		S 

		W 

		C

		D

		Curtis 2015



		0.57

		7

		4

		3

		50

		Rec

		S 

		W 

		C

		NV

		Curtis 2015



		0.25

		4

		1

		3

		50

		Rec

		S 

		W 

		C

		TV

		Curtis 2015



		0.00

		6

		0

		6

		50

		Rec

		NS

		W 

		C

		D

		Curtis 2015



		0.22

		9

		2

		7

		50

		Rec

		NS

		W 

		C

		NV

		Curtis 2015



		0.21

		137

		29

		108

		30

		Rec

		NS

		W 

		C

		TV

		Campbell et al. 2010



		0.23

		137

		31

		106

		30

		Rec

		S

		W 

		C

		TV

		Campbell et al. 2010



		0.21

		282

		60

		222

		60

		Rec

		NS

		W 

		C

		TV

		Campbell et al. 2010



		0.26

		282

		73

		209

		60

		Rec

		S

		W 

		C

		TV

		Campbell et al. 2010



		0.28

		25

		7

		18

		10

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.28

		425

		120

		305

		15

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.27

		825

		225

		600

		20

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.41

		525

		215

		310

		25

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.47

		225

		106

		119

		30

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.15

		100

		15

		85

		35

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.40

		155

		62

		93

		40

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.63

		280

		176

		104

		45

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.61

		105

		64

		41

		50

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.58

		240

		139

		101

		55

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.38

		125

		48

		78

		60

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.37

		50

		19

		32

		65

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.33

		10

		3

		7

		70

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.23

		75

		17

		58

		75

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.47

		100

		47

		53

		80

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.56

		30

		17

		13

		95

		Rec

		S

		W 

		J

		NV

		Dorf 2003



		0.01

		140

		1

		139

		24

		Rec

		NS

		

		J

		TV

		Gitschlag and Renaud 1994



		0.10

		31

		3

		28

		30

		Rec

		NS

		

		J

		TV

		Gitschlag and Renaud 1994



		0.44

		61

		27

		34

		40

		Rec

		NS

		

		J

		TV

		Gitschlag and Renaud 1994



		0.70

		40

		28

		12

		10

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.25

		465

		117

		348

		20

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.68

		789

		537

		252

		30

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.74

		814

		602

		212

		40

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.74

		1638

		1219

		419

		50

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.69

		464

		322

		142

		60

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.78

		404

		316

		88

		70

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.89

		88

		78

		10

		80

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.91

		68

		62

		6

		90

		Com

		NS

		W 

		C

		NV

		Nieland et al. 2007



		0.09

		1064

		96

		968

		21

		Rec

		

		C 

		J

		TV

		Patterson et al. 2001



		0.14

		856

		120

		736

		27

		Rec

		

		C 

		J

		TV

		Patterson et al. 2001



		0.18

		1012

		182

		830

		32

		Rec

		

		C 

		J

		TV

		Patterson et al. 2001



		0.03

		138

		4

		134

		30

		Rec

		NS 

		

		J

		TV

		Patterson et al. 2001  



		0.06

		31

		2

		29

		30

		Rec

		NS 

		

		J

		TV

		Patterson et al. 2001    



		0.07

		52

		4

		48

		30

		Rec

		S

		

		J

		TV

		Patterson et al. 2001  



		0.12

		221

		27

		194

		30

		Rec

		NS

		

		J

		TV

		Patterson et al. 2001  



		0.04

		375

		15

		360

		35

		Rec

		NS

		

		J

		TV

		Patterson et al. 2001   



		0.10

		196

		20

		176

		35

		Rec

		NS

		

		J

		TV

		Patterson et al. 2001   



		0.13

		264

		34

		230

		35

		Rec

		S

		

		J

		TV

		Patterson et al. 2001   



		0.17

		563

		96

		467

		35

		Rec

		NS

		

		J

		TV

		Patterson et al. 2001    



		0.05

		65

		3

		62

		40

		Rec

		NS

		

		J

		TV

		Patterson et al. 2001   



		0.16

		107

		17

		90

		40

		Rec

		NS

		

		J

		TV

		Patterson et al. 2001    



		0.16

		44

		7

		37

		40

		Rec

		S

		

		J

		TV

		Patterson et al. 2001   



		0.20

		60

		12

		48

		40

		Rec

		NS

		

		J

		TV

		Patterson et al. 2001    



		0.24

		34465

		8272

		26193

		 

		Com

		 

		 

		 

		 

		Pulver 2017













Table S2. A reduced list of studies used in a meta-analysis to assess how release method effects discard mortality of red snapper (Lutjanus campechanus) in the Gulf of Mexico. This subsetted dataset includes only studies where release method was explicitly tested in the study and release method (RM) is clearly defined as no barotrauma mitigation (S – surface release), vented (V), or descended (D). An additional laboratory study addressing this question was included (Drumhiller et al. 2014). Estimates of mortality are categorized into depth in meters, season grouped as not summer (NS) and summer (S), region grouped as east (E), central (C), and west (W), and study type (ST) grouped as caged (C), acoustic tag (AT), and passive tag (PT). The number of fish included in each estimate (n) and the number of “dead” and “alive” fish used to calculate the mortality are also shown.

		Mortality 

		n

		dead

		alive

		Depth

		Season

		ST

		Region

		RM

		Study



		0.778

		9

		7

		2

		30

		NS

		AT

		C 

		S 

		Bohaboy et al. 2020



		0.376

		8

		3

		5

		30

		NS

		AT

		C 

		D

		Bohaboy et al. 2020



		0.335

		18

		6

		12

		30

		S 

		AT

		C 

		S

		Bohaboy et al. 2020



		0.227

		22

		5

		17

		30

		S

		AT

		C 

		D

		Bohaboy et al. 2020



		0.563

		16

		9

		7

		55

		NS

		AT

		C 

		S

		Bohaboy et al. 2020



		0.353

		17

		6

		11

		55

		NS

		AT

		C 

		D

		Bohaboy et al. 2020



		0.8

		10

		8

		2

		55

		S

		AT

		C 

		S

		Bohaboy et al. 2020



		0.571

		14

		8

		6

		55

		S

		AT

		C 

		D

		Bohaboy et al. 2020



		0

		7

		0

		7

		30

		NS

		AT

		W 

		D

		Curtis et al. 2015



		0.333

		6

		2

		4

		50

		NS

		AT

		W 

		D

		Curtis et al. 2015



		0.167

		6

		1

		5

		50

		S

		AT

		W 

		D

		Curtis et al. 2015



		0.333

		6

		2

		4

		50

		NS

		AT

		W 

		D

		Curtis et al. 2015



		0.14286

		7

		1

		6

		30

		NS

		AT

		W 

		V

		Curtis et al. 2015



		0.25

		4

		1

		3

		50

		S

		AT

		W 

		V

		Curtis et al. 2015



		0.4

		5

		2

		3

		50

		NS

		AT

		W 

		V

		Curtis et al. 2015



		0.25

		8

		2

		6

		30

		NS

		AT

		W 

		S

		Curtis et al. 2015



		0.222

		9

		2

		7

		50

		NS

		AT

		W 

		S

		Curtis et al. 2015



		0.875

		7

		6

		1

		50

		S

		AT

		W 

		S

		Curtis et al. 2015



		0.25

		8

		2

		6

		50

		NS

		AT

		W 

		S

		Curtis et al. 2015



		0

		6

		0

		6

		30

		

		C

		

		D

		Drumhiller et al. 2014



		0.1667

		6

		1

		5

		60

		

		C

		

		D

		Drumhiller et al. 2014



		0

		6

		0

		6

		30

		

		C

		

		V

		Drumhiller et al. 2014



		0

		6

		0

		6

		60

		

		C

		

		V

		Drumhiller et al. 2014



		0.333

		6

		2

		4

		30

		

		C

		

		S

		Drumhiller et al. 2014



		0.833

		6

		5

		1

		60

		

		C

		

		S

		Drumhiller et al. 2014



		0.125

		8

		1

		7

		40

		S

		AT

		W

		D

		Stunz et al. 2017



		0.3333

		6

		2

		4

		40

		S

		AT

		W

		S

		Stunz et al. 2017



		0.42857

		7

		3

		4

		40

		S

		AT

		W

		V

		Stunz et al. 2017



		0.6667

		9

		6

		3

		60

		S

		AT

		W

		D

		Stunz et al. 2017



		0.6

		5

		3

		2

		60

		S

		AT

		W

		S

		Stunz et al. 2017



		0.14286

		7

		1

		6

		60

		S

		AT

		W

		V

		Stunz et al. 2017



		0

		7

		0

		7

		40

		NS

		AT

		W

		D

		Stunz et al. 2017



		0

		10

		0

		10

		40

		NS

		AT

		W

		S

		Stunz et al. 2017



		0.1111

		9

		1

		8

		40

		NS

		AT

		W

		V

		Stunz et al. 2017



		0

		8

		0

		8

		60

		NS

		AT

		W

		D

		Stunz et al. 2017



		0.25

		8

		2

		6

		60

		NS

		AT

		W

		S

		Stunz et al. 2017



		0.2857

		7

		2

		5

		60

		NS

		AT

		W

		V

		Stunz et al. 2017



		0.5

		14

		7

		7

		50

		S

		AT

		W

		D

		Tompkins 2017



		0.14286

		14

		2

		12

		30

		S

		AT

		W

		D

		Tompkins 2017



		0.16667

		12

		2

		10

		40

		S

		AT

		W

		D

		Tompkins 2017



		0.64286

		14

		9

		5

		60

		S

		AT

		W

		D

		Tompkins 2017



		0.77

		9

		7

		2

		50

		S

		AT

		W

		D

		Diamond et al. 2011



		0.5

		4

		2

		2

		50

		S

		AT

		W

		V

		Diamond et al. 2011



		1

		12

		12

		0

		50

		S

		AT

		W

		S

		Diamond et al. 2011



		0.625

		8

		5

		3

		50

		NS

		AT

		W

		D

		Diamond et al. 2011



		0.25

		8

		2

		6

		50

		NS

		AT

		W

		S

		Diamond et al. 2011



		0.13

		71

		9

		62

		27.5

		

		AT

		C

		D

		Williams-Grove 2015



		0.291

		86

		25

		61

		27.5

		

		AT

		C

		D

		Williams-Grove 2015



		0.083

		36

		3

		33

		37

		NS

		AT

		 

		D

		Runde et al. 2021







Results

Table S3. Shown are the results of the analysis focused on generating discard mortality estimates of Red Snapper (Lutjanus campechanus) using only mortality estimates that have combined immediate and delayed morality. The best fit model included depth of capture (m), release method (descended, vented, or surface release), regions of the Gulf of Mexico (western, central, or eastern), season (summer or not summer) and an interaction between region and season. Study and study type (cage, passive tag, acoustic tag) were included as random effects.

		 

		estimate

		se

		z value

		p value

		lower CI

		upper CI



		Intercept

		-1.3519

		0.4426

		-3.0542

		0.0023

		-2.2194

		-0.4844



		Depth

		0.0123

		0.0016

		7.7005

		<.0001

		0.0092

		0.0154



		Descending

		-0.3878

		0.2456

		-1.5789

		0.1144

		-0.8692

		0.0936



		Some Venting

		-1.1951

		1.2988

		-0.9202

		0.3575

		-3.7408

		1.3505



		Total Venting

		-0.3812

		0.3447

		-1.1059

		0.2688

		-1.0568

		0.2944



		Central Region   

		0.8477

		0.4438

		0.8700

		0.3843

		-1.0620

		2.7575



		Eastern Region  

		1.1237

		0.4451

		1.1524

		0.2492

		-0.7875

		3.0349



		Summer

		0.7557

		0.1286

		3.2746

		0.0011

		0.3034

		1.2080



		Central Region * Summer

		-0.8014

		0.1367

		-3.4045

		0.0007

		-1.2628

		-0.3400



		Eastern Region * Summer

		-0.7426

		0.1521

		-3.0353

		0.0024

		-1.2222

		-0.2631













Table S4. Shown are the results of an analysis focused on estimating how discard mortality estimates of Red Snapper (Lutjanus campechanus) differ when mortality estimates include only immediate estimates of discard mortality or have a combination of immediate and delayed discard mortality (Delayed). The best fit model also included depth of capture (m), fleet type (recreational or commercial), release method (descended, vented, or surface release), hook type (circle or J hook), regions of the Gulf of Mexico (western, central, or eastern), season (summer or not summer), and an interaction between region and season. Study and study type (cage, passive tag, acoustic tag) were included as random effects.

		 

		estimate

		se

		z value

		p value

		lower CI

		upper CI



		Intercept

		-0.1965

		0.9003

		-0.2182

		0.8272

		-1.9610

		1.5680



		Delayed

		0.5061

		0.2460

		2.0571

		0.0397

		0.0239

		0.9882



		Depth

		0.0176

		0.0011

		16.7422

		<.0001

		0.0155

		0.0197



		Recreational Fleet

		-1.9406

		0.8654

		-2.2424

		0.0249

		-3.6367

		 -0.2444



		Descending

		-0.5366

		0.2115

		-2.5374

		0.0112

		-0.9511

		-0.1221



		Venting

		-0.2784

		0.2215

		-1.2569

		0.2088

		-0.7126

		0.1558



		Circle Hook

		-0.0634

		0.4411

		-0.1438

		0.8856

		-0.9279

		0.8010



		Central Region   

		0.3162

		0.6577

		0.4808

		0.6307

		-0.9729

		1.6054



		Eastern Region  

		0.5534

		0.6586

		0.8402

		0.4008

		-0.7375

		1.8442



		Summer

		0.4037

		0.1287

		3.1373

		0.0017

		0.1515

		0.6559



		Central Region * Summer

		-0.4432

		0.1368

		-3.2390

		0.0012

		-0.7114

		-0.1750



		Eastern Region * Summer

		-0.3828

		0.1522

		-2.5151

		0.0119

		-0.6811

		-0.0845















Table S5. Shown are the results of the analysis focused on estimating how barotrauma mitigation affects discard mortality estimates of Red Snapper (Lutjanus campechanus). The best fit model included depth of capture (m), release method (descended, vented, or surface release), season (summer or not summer), and an interaction between depth and season. Study was included as a random effect.

		 

		estimate

		se

		z value

		p value

		lower CI

		upper CI



		Intercept

		-2.8921

		0.6669

		-4.3366

		<.0001

		-4.1992

		-1.5850



		Depth

		0.0658

		0.0134

		4.9213

		<.0001

		0.0396

		0.0920



		Descending

		-0.6196

		0.2344

		-2.6431

		0.0082

		-1.0791

		-0.1601



		Venting

		-0.6437

		0.3232

		-1.9914

		0.0464

		-1.2771

		-0.0102



		Not Summer

		2.3009

		0.9783

		2.3521

		0.0187

		0.3836

		4.2183



		Depth * Not Summer

		-0.0602

		0.0203

		-2.9636

		0.0030

		-0.1001

		-0.0204









[image: Chart, box and whisker chart

AI-generated content may be incorrect.]

Figure S1: A) When assessing the effects of the inclusion of delayed mortality when estimating discard mortality of Red Snapper (Lutjanus campechanus), delayed mortality significantly increased the predicted discard mortality in the Gulf of Mexico (estimate=0.51, z15,139=2.06, p<0.05).  At the average fishing depth of the tested studies (45m) the estimated mortality is 35% for studies include delayed mortality (immediate & delayed) compared to 26% for studies that do not (immediate only). Points are the calculated mean effect sizes and error bars represent the 95% confidence interval. 
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