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Abstract 

In data-limited scenarios, indirect methods are often the best option for estimating natural 

mortality (M), with many utilizing maximum age-based approaches. The impact of sample size 

on maximum age estimates has been widely studied, yet its effects are not yet fully understood. 

Empirical studies establishing the relationship between M and maximum age rely on studies with 

sample sizes of only a few hundred to a thousand fish. The issue arises when applying these 

methods to fishery stock assessments which typically estimate maximum age using tens of 

thousands of fish. This difference in scale of sample size could lead to discrepancies in M 

estimates utilized in management. We investigated how sample size influences two methods for 

estimating maximum age: an oldest observed age (tmax) and a 99th percentile age (t99) in a 

simplified population. Random samples were taken from a modeled population with a known M 

to determine both maximum age and M. Our findings show that smaller samples produce higher 

M estimates based on tmax than larger samples. Conversely, although the t99 approach consistently 

overestimated M, it was robust against variation in sample size. Methods to correct for the biases 

in M due to sample size were developed for both tmax and t99. Therefore, we recommend using t99 

along with our correction methods to improve the reliability of M estimates. 

 

Keywords: natural mortality, sample size, maximum age, 99th percentile age, Hoenig, Then, 

Hamel and Cope 

 
Introduction 

 Natural mortality rate (M) is an important parameter within stock assessments that 

encompasses all deaths within a stock not associated with the fishery, including predation, 

disease, senescence, etc. (Cope & Hamel, 2022; O. Hamel & Cope, 2022; Pauly, 1980). Natural 



 

mortality can greatly affect the setting of harvest levels and biological reference points (BRPs), 

assessing stock status, understanding overall stock dynamics, and can be interpreted as a proxy 

for productivity (Lee et al., 2011; Maunder & Wong, 2011). Moreover, M is also utilized to 

determine fishing mortality (F) in conjunction with estimates of total mortality (Z; Kenchington, 

2014). The concern, however, is that any bias or inaccuracy in M directly affects F estimates and 

other parameters whose estimation is dependent on M.  

Inaccurate M estimates can yield erroneous scientific information, hindering managers’ 

ability to determine stock status (Clark, 1999) and set sustainable catch levels to achieve 

optimum yield and prevent overfishing (Lee et al., 2011; Punt et al., 2021; Topping & 

Szedlmayer, 2013). Underestimating M can result in harvest levels set below the maximum 

sustainable yield (MSY), leaving fish unharvested and limiting the (economic) potential of a 

fishery. An overestimation of M may incline fishery managers to recommend unsustainable 

exploitation rates, potentially depleting the stock or delaying recovery of an overfished stock 

(Clark, 1999; Dureuil & Froese, 2021). As a result, M is often conservatively estimated at a 

lower value under the precautionary approach (Pascual & Iribarne, 1993; Solinger et al., 2022; 

Zheng, 2003). 

Efforts to accurately estimate M have long presented a significant challenge, despite 

numerous different approaches (e.g. Alverson & Carney, 1975; Beverton & Holt, 1959; Charnov 

et al., 2013; Gislason et al., 2010; Hamel & Cope, 2022; Hoenig, 1983; Lorenzen, 1996; Pauly, 

1980; Then et al., 2015). Adding to the complexity is the fact that parameters, like M, within 

assessments are inherently estimates, and the true values are unknown (Hoenig, 2017). This 

further complicates the development of management recommendations and the implementation 

of effective management strategies.  



 

Natural mortality rate can be estimated internally within assessment models, externally 

through direct methods such as tagging or telemetry, or indirectly through empirical methods that 

utilize meta-analysis (Gislason et al., 2010; Hewitt et al., 2007; Kenchington, 2014; Lee et al., 

2011; Maunder et al., 2023; Then et al., 2015). Ideally, the estimate can be obtained directly 

from the stock of interest with high spatial and temporal resolution using direct methods. 

However, these approaches are data intensive and often impractical due to the fishery, fish 

behavior, and cost (Gislason et al., 2010; Hewitt & Hoenig, 2005; Kenchington, 2014; Pascual & 

Iribarne, 1993). Thus, reliable M estimators are essential in data-limited situations, where 

empirical methods are commonly used (Hoenig, 2017; Then et al., 2015).  

Indirect estimation techniques require minimal data and rely on the relationships between 

natural mortality and other life history and/or environmental parameter(s) (e.g. Alverson & 

Carney, 1975; Beverton & Holt, 1959; Charnov et al., 2013; Gislason et al., 2010; Hamel & 

Cope, 2022; Hoenig, 1983; Hoenig et al., 2016; Kenchington, 2014; Lorenzen, 1996; Pauly, 

1980; Then et al., 2015). These studies examined correlations between M and parameters such as 

maximum age (tmax), Brody growth coefficient, asymptotic length and weight (K, L∞, and W∞ 

respectively), and water temperature from a variety of different stocks. Then et al. (2015) found 

that maximum-age based estimators outperformed all other methods, suggesting they provide the 

most reliable empirical M estimates, a conclusion supported by Punt et al. (2005).  

 Expressions for estimating M based on maximum age were developed using previously 

published estimates of both maximum age and M across a wide range of species. However, the 

maximum age estimates were taken from studies that sampled only a few thousand individuals or 

fewer for a given species. Stock assessments, on the other hand, often have access to tens of 

thousands of fish collected over time to produce a maximum age estimate. For example, a 



 

southeastern United States (SEUSA) stock assessment of Centropristis striata (black sea bass) 

utilized over 120,000 age samples (SEDAR, 2023) – far exceeding the sample sizes in the 

literature underlying the published generalized maximum age estimators and deduced M. As 

sample sizes continue to grow, the likelihood of observing longer-lived individuals increases, 

resulting in lower M estimates for the same population – even if it has not changed. This creates 

sample size bias, where stocks with extensive samples may include a single, very old individual 

that does not accurately reflect population dynamics relative to M. The issue is not about 

“missing” older fish but rather overestimating the population’s average maximum age – a factor 

not accounted for in empirically derived longevity-based M estimators.  

 This study investigates the effects of sample size through a modeling exercise that 

samples from a simplified, simulated population with no other factors influencing M to explore 

how sample size influences maximum observed age and M estimates. We utilized two methods 

for obtaining maximum age estimates to assess their resilience to sample size effects. Based on 

the biases observed, we developed correction formulas to produce improved M estimates.

 

Methods 

Simulation Model 

Hoenig (2017) used a Monte Carlo simulation to model the distribution of maximum age 

in a population with constant M, comparing observed maximum ages – based on sample sizes of 

100 to 1,000 collected at the end of the simulation – with theoretical values from established 

longevity formulas. We used this model as a framework to develop a simulation that examines 

observed maximum ages from larger, more varied sample sizes spread across multiple years. Our 

simulation is a discrete-time, individual-based model that simulates a population of 40 million 



 

individuals. In contrast to Hoenig (2017), which sampled at a single point in time, this model 

incorporated sampling across multiple years to obtain maximum age estimates, which were then 

used to calculate M values, reflecting the multi-year datasets typically available to managers and 

stock assessments. These values are compared to the model input M experienced by the 

population. 

Each individual model run began with a model input instantaneous M (Mmodel input) 

ranging from 0.01 to 0.5, with Mmodel input fixed for a specific model run (i.e. Mmodel input did not 

vary). This range covers many of the federally managed species assessed in the SEUSA. The 

Mmodel input was converted to a discrete M (Mdiscrete) for each model run using the formula: − (1 −

e(Mmodel input)). The Mdiscrete experienced by individuals within the population remained constant 

throughout each model run and did not vary with time, size, sex, age, etc. – an approach also 

used in the model developed by Hoenig (2017). Although substantial evidence supports M 

varying across these factors (Gislason et al., 2010; Lorenzen, 1996), a single value of M remains 

highly informative for stock assessments (Deroba & Schueller, 2013). In many cases, M 

estimates derived from empirical methods are used to scale approaches that calculate age-varying 

M (Lorenzen, 2022).  

 In year one of the simulation, 40 million individuals were born (age 0). Each model year 

consisted of a survival event followed by a recruitment event. Survival or death was determined 

by assigning each individual a value from a randomized uniform distribution, with individuals 

experiencing death if their assigned value was less than Mdiscrete. This was done to vary the 

numbers of survivals (or deaths) each year, while maintaining a long-term M. The annual 

assignment to death or survival was termed a survival event, with those surviving advanced in 

age by one year for the next survival event. 



 

Each year, a recruitment event added new age-zero individuals to the population 

equivalent to the number of deaths to maintain a constant population size. The survival and 

recruitment events occurred once per model year and were independent of previous years. In 

other words, an individual’s age did not affect its probability of death or survival (i.e. constant 

M). The cycle of survival and recruitment events continued for 1,000 model years to establish a 

stable population before sampling began over the final 20 model years.   

Model years 1 – 980 served as the “burn-in” period to establish a stable population, with 

age sampling starting in year 981. Total sample sizes, ranging from 100 to 50,000, were taken 

without replacement and evenly distributed across 20 years. For example, a total sample size of 

100 corresponds to sampling five individuals per year over 20 years. Independent models were 

run for each Mmodel input and sample size combination (e.g. Mmodel input = 0.2 and a sample size of 

100, Mmodel input = 0.2 and a sample size of 200, etc.), with 100 replicates per combination. The 

population’s age structure during the sampling period was analyzed and compared to observed 

population age structures.  

 

Obtaining Maximum Age Estimates 

 We compared two methods for obtaining maximum age values from sampled individuals 

to generate M estimates. Traditionally, the oldest observed age (tmax) of a species is used to 

generate an M estimate in stock assessments (e.g. SEDAR, 2015). Accordingly, the first M 

estimation method analyzed used this approach by selecting the oldest observed individual 

among all sampled fish within a simulation run. 

 The second method used the 99th percentile age (t99) from all sampled fish within a 

simulation run as the maximum age estimate. This value was determined by sorting the sampled 



 

ages in ascending order, multiplying the total sample size by 0.99 to determine the index, and 

selecting the age corresponding to that index. It is important to note that the “maximum age” 

estimated using this method does not represent the true maximum observed age in a sample. 

Unless specified otherwise, references to maximum age will refer to the values derived from 

either methodology used to estimate M.  

The sampled maximum age estimates from both methods were applied to three longevity-

based formulas to estimate M (Mformula):  

 Mformula = 4.22 * (tmax)-0.982 [1] 

 (Denoted as Hoenig Combined; Hoenig, 1983) 

 Mformula = 4.899 * (tmax)-0.916 [2] 

 (Denoted as Then NLS; Then, 2015) 

 Mformula = 5.4 / tmax [3] 

 (Denoted as Hamel Cope; Hamel & Cope, 2022) 

 

Characterizing Sample Size Effects  

 For each model run, Mformula values from the three longevity formulas were compared to 

the corresponding Mmodel input value. Next, for each Mmodel input, we identified the sample size 

required to obtain the maximum age estimate that produced the most accurate Mformula value, 

which we referred to as the optimal sample size. This process was repeated for both tmax and t99 

methods using the three longevity formulas [1], [2], and [3] to evaluate differences between the 

maximum age approaches and formulas. 

 

 



 

Derivation of Correction Formulas 

 The Mformula values derived from tmax and t99 sampling approaches were plotted against 

their corresponding Mmodel input value for each sample size. If sample size was found to bias the 

Mformula values relative to the Mmodel input value, we investigated methods to address under- or 

overestimations. Regression models were developed to address biases in Mformula based on 

longevity formula, sample size, and maximum age method. Akaike Information Criterion (AIC) 

values were used to identify the best models.  

 After identifying the best-fitting model, correction equations for Mformula values were 

generated for each sample size across the three longevity formulas. To simplify the results into a 

single correction equation for each longevity formula, the regression model coefficients were 

analyzed to determine their relationship with sample size. Using this approach, the best-fit 

regression models, identified through AIC values, were used to create a single correction formula 

for each longevity-based equation for both maximum age methods. These six formulas (3 

longevity formulas x 2 maximum age methods) only require an input sample size and an initial 

M estimate (i.e. Mformula).  

 

Results 

Sample Size Effects 

 Results showed a population age structure characterized by a high abundance of young 

fish, with numbers decreasing exponentially as age increases. The tmax sampling method 

produced the oldest sampled individuals in model runs with the largest sample sizes, while 

smaller sample sizes yielded younger maximum ages (Fig. 1A). Larger sample sizes produced 

maximum ages exceeding those predicted by each longevity estimator (i.e. Hoenig Combined, 



 

Then NLS, and Hamel Cope) for accurate Mmodel input estimation. Calculating Mformula using tmax 

from the modeling effort showed that Mformula values were higher than the respective Mmodel input 

for smaller sample sizes, while the opposite was true for larger sample sizes (Fig. 2). This 

produced an exponential decrease in Mformula values as sample size increased for all three 

longevity formulas. 

 The t99 ages were consistently younger than the age needed for accurate Mformula estimates 

for equations [1], [2], and [3] (Fig. 1B), causing the Mformula values derived from t99 to 

consistently overestimate Mmodel input (Fig. 3). Although none of the longevity estimators 

accurately estimated Mmodel input at any sample size, the t99 approach demonstrated reduced 

sensitivity to sample size compared to tmax. The Mformula values based on t99 ages stabilized once 

the total sample size reached approximately 5,000.  

 

Optimal Sample Size 

 Using tmax to estimate Mformula, smaller sample sizes more accurately estimated low Mmodel 

input values, while larger sample sizes were required for high Mmodel input values across all three 

longevity formulas (Fig. 4). Sample sizes exceeding the optimal sample size (sample size 

required to produce the most accurate Mformula estimate) underestimated Mmodel input, while 

samples smaller than the optimal sample size overestimated Mmodel input. In some cases, the 

sampled tmax failed to produce an accurate Mformula estimate at any sample size. 

Since Mformula estimates calculated using t99 consistently overestimated Mmodel input values 

across all sample sizes, optimal sample sizes could not be determined for this approach. In other 

words, no sample sizes allowed for the accurate estimation of any Mmodel input values, as t99 

repeatedly produced ages younger than those needed for an accurate Mformula. 



 

 

Mformula Correction Formulas 

 Plotting Mformula estimates against Mmodel input values revealed that a second-order 

polynomial function provided the best fit to the data for the Hoenig Combined, Then NLS, and 

Hamel Cope formulas at each sample size. This applied for both tmax and t99 maximum age 

methods. The Mformula correction equations were generated by inputting the a, b, and c 

coefficients from the second-order polynomial equations [4] into the quadratic formula [5]: 

 Polynomial Equation: ax2 + bx + c = y [4] 

 Corrected Mformula (x) = −b ± �b2 – 4a(c)
2a

 [5] 

In equation [4], the quadratic term is represented by the “a” coefficient, the linear term by “b”, 

and the y-intercept by “c”. The “x” term corresponds to the “true” M, referred to as “Corrected 

Mformula” in equation [5], and “y” represents the Mformula estimate calculated by Hoenig 

Combined, Then NLS, or Hamel Cope using tmax or t99 prior to correction. Each coefficient from 

equation [4] was used as an input for equation [5]. These coefficients were determined for every 

combination of sample size and longevity formula for both tmax and t99 methods. This resulted in 

ten preliminary corrections equations for each longevity formula under both maximum age 

methods, yielding a total of 60 correction equations.  

 Modeling the polynomial coefficients (a, b, and c) for Hoenig Combined, Then NLS, and 

Hamel Cope correction formulas against sample size revealed a power or logarithmic regression 

fit for tmax and t99 methods. A power regression best fit all three coefficients for the tmax approach. 

For t99, a power regression best fit coefficients “a” and “c”, while a logarithmic regression was 

the best fit for “b”. Using these models, a reduction from 60 to six correction formulas was 

developed – one for each longevity estimator under each maximum age method (Table 1). 



 

 Applying the appropriate correction equations from Table 1 to the initial Mformula 

estimates from the model runs produced a linear trend in the corrected Mformula estimates, except 

for an Mmodel input value of 0.01 (Fig. 5 and 6). Regardless of the maximum age method or 

longevity formula, the correction formulas consistently underestimated Mmodel input when Mmodel 

input was set to the lowest level of 0.01. Larger sample sizes showed less variability in correction 

estimates compared to small sample sizes, while the t99 method produced smaller ranges in 

corrected Mformula estimates compared to the tmax approach. Corrected Mformula estimates were 

consistent across the three longevity formulas, despite substantial differences in Mformula 

estimates before correction (Fig. 7).  

 

Discussion 

Sample Size Effects 

In the past, small sample sizes were common, especially when aging and fishery 

sampling programs were limited. For example, in the Gulf of Mexico fewer than ten fishery 

monitoring programs existed in the 1960s and early 1970s. Since then, the number has increased 

to over 70 programs (Grüss et al., 2018), substantially expanding the available data for many 

species. Today, data from multiple surveys and monitoring programs, even those with limited 

sample sizes, can be integrated to develop more robust assessment models (e.g. Grüss et al., 

2018; Nephin et al., 2023). However, as long time series are compiled and the number of age 

samples increases, the likelihood of sample size influencing a stock’s maximum age estimate 

through an old, rare-aged individual also rises. Hoenig (1983) developed a formula that 

accounted for sample size, based on the rationale that increasing sample size could influence tmax 

estimates. Manooch III et al. (1998) applied both the Hoenig Combined and sample size-adjusted 



 

formula, finding that the latter produced an M estimate nearly double that of the Hoenig 

Combined method. These findings emphasize the need to account for sample size, as our results 

demonstrate its substantial influence on maximum age estimates. 

Among the three longevity-based expressions examined in this study, Hoenig (1983) was 

one of the first to develop a longevity-based formula for estimating M using maximum age and 

total mortality rate data. Then et al. (2015) updated the Hoenig (1983) dataset by conducting an 

extensive literature search for M and maximum age estimates, resulting in a revised expression. 

Hamel & Cope (2022) later identified flaws in the regression used by Then et al. (2015) to derive 

equation [2] and, drawing on methods from Hamel (2015), addressed these biases to develop an 

updated longevity-based formula. Despite subsequent reviews and updates to each dataset and 

estimator, all three expressions remain subject to the effects of sample size on maximum age, 

and therefore on M estimates.  

As expected, smaller sample sizes were less likely to capture the oldest age fish, resulting 

in higher Mformula estimates when using tmax, the age of the oldest sampled fish. Similarly, larger 

sample sizes more frequently captured older individuals, leading to lower Mformula estimates. In 

general, using tmax to estimate Mformula resulted in smaller sample sizes overestimating Mmodel input, 

while larger sample sizes led to underestimates. As a result, current Mformula estimates used in 

stock assessments derived using longevity-based methods may be biased depending on sample 

size and whether the species is short- or long-lived. Formulas developed for estimating the 

expected maximum age in a sample show that maximum age increases logarithmically with 

sample size (Hoenig, 1983, 2017; Holt, 1965; Kenchington, 2009, 2014; Sarhan, 1954; Then et 

al., 2015), a result corroborated by this study. The Then NLS, Hamel Cope, and Hoenig 

Combined longevity formulas all exhibited similar sample size-related biases, emphasizing the 



 

importance of accounting for sample size in data-limited situations where these formulas are 

commonly used to estimate Mformula.  

 Although an optimal sample size trend was expected, its direction was not. We initially 

assumed that long-lived, low M species with more age classes would require larger sample sizes 

to capture the oldest individuals needed for accurate Mformula estimates. Short-lived species were 

expected to require smaller sample sizes to identify the oldest individuals due to their narrower 

age ranges. However, the opposite effect was observed, indicating that in large samples, the 

oldest observed individual was too old to produce an accurate Mformula estimate for long-lived 

species. Large sample sizes may encounter an exceptionally old fish that is not representative of 

the population structure and M of species with a greater longevity and lower M. Instead, the t99 

approach, which uses a lower, more representative maximum age, is more appropriate. Relying 

on the traditional tmax approach to estimate Mformula has likely led to misestimating the true M for 

many assessed stocks. 

Results for short-lived species suggest that extensive sampling is necessary to find the 

rare, oldest individuals needed for an accurate Mformula estimate. This may be due to the high 

turnover observed in short-lived species (and potentially high recruitment), which results in 

younger individuals substantially outnumbering the oldest individuals. The maximum age 

estimate for short lived species is crucial, as a small change in the estimate can significantly 

affect M. For instance, increasing the maximum age estimate from four to six results in a 33% 

decrease in M using the Hamel Cope formula. Such a decrease in M could have significant 

consequences for assessments and management decisions. This counterintuitive result may stem 

from the established maximum age methods from literature (i.e. Hoenig, 1983; Then et al., 2015; 

Hamel & Cope, 2022) and the possibility that many species in the meta-analyses had sample 



 

sizes too small to accurately estimate maximum age. The results presented here call into question 

both the accuracy of currently reported Mformula estimates and the adequacy of age data available 

for short-lived species. Under-sampling is a concern for short-lived species, as current sample 

sizes may be insufficient to capture the oldest age. Over-sampling is a concern for long-lived 

species, as accumulating age data over time may lead to an underestimate of M. The effects of 

sample size will vary with a species’ life history, but our modeling suggests they may have 

caused over- or underestimation of true natural mortality rates.  

Currently, minimum sample size recommendations exist for obtaining a maximum age to 

accurately estimate M across species, regardless of life history. Hoenig (1983) proposed that the 

probability of observing an older maximum age decreases once at least 200 individuals are 

sampled. Later, Hoenig (2017) suggested that the influence of sample size becomes less 

significant once annual samples reach 500 to 2,000 individuals. Yet, our modeling results 

demonstrate that annual sample sizes both above and below 500 significantly affects both 

maximum age and subsequent Mformula estimates. Focusing on reaching a minimum sample size 

will likely still lead to biased estimates of maximum age and M, and we often lack the necessary 

knowledge to determine when a specific sample size is sufficient. Therefore, alternative methods 

must be employed to correct the biases caused by sample size.  

 

99th Percentile Age  

Selecting the oldest observed age (tmax) within a sample may introduce bias if it includes 

a rare individual of substantial age or size (Craig et al., 2017; Kenchington, 2014; Riginella et 

al., 2016). As more age data are collected and sample sizes increase, the likelihood of 

encountering such individuals also grows. To mitigate the sample size biases associated with 



 

tmax, a percentile-based approach was explored. Dureuil & Froese (2021) proposed estimating the 

average maximum age as the mean age of the longest-lived nth percentile of individuals. While 

some studies have suggested arbitrary proportions of individuals surviving to an average 

maximum age (e.g. 1% or 5%) (Hewitt & Hoenig, 2005), empirical data indicates this proportion 

is closer to 1 – 2% (Dureuil et al., 2021; See Appendix). Although not commonly used to 

determine maximum age, a percentile approach has been applied in some capacity for maximum 

age estimation in certain fish species, including Lutjanus campechanus (red snapper) (Buckmeier 

et al., 2016; Daugherty et al., 2019; Lowerre-Barbieri et al., 2015), as well as in cetaceans and 

marine mammals (Barlow & Boveng, 1991; Trites & Pauly, 1998). One such study modeling 

marine mammal populations used the 99th percentile age to define longevity, noting that this 

method was “less sensitive to sample size and less variable than the maximum age (100th 

percentile) [from a random sample]” (Barlow & Boveng, 1991). A 95th percentile age was also 

analyzed, but this proportion was more likely to be influenced by early-life mortality patterns 

(Barlow & Boveng, 1991). Consequently, a 99th percentile approach offered an opportunity to 

minimize the sample sizes biases observed when using tmax to calculate Mformula.  

 Sampling for t99 showed a significant reduction in sample size biases in our modeling 

efforts. After reaching a total sample size of approximately 5,000, the Mformula estimate remained 

constant and insensitive to further increases in sample size, aligning with Barlow & Boveng 

(1991). In effect, this approach mitigates concerns about increasing sample size over time, as 

Mformula estimates will remain unchanged. The 99th percentile method offers a promising 

alternative to the traditional tmax approach. However, this method resulted in a significant 

overestimation of Mmodel input in all scenarios, suggesting that correction methods are still 

necessary to produce an accurate Mformula. 



 

 

Mformula Correction Formulas 

 All correction formulas for both tmax and t99 methods accurately estimated Mmodel input 

across a range of sample sizes. The exception was a mortality rate of 0.01, where the correction 

formulas either underestimated Mmodel input or failed to generate a corrected Mformula estimate. This 

limitation is not necessarily concerning as the oldest individuals observed in simulations where 

Mmodel input = 0.01 approached 1,000 years old. None of the species assessed by SEDAR, nor 

those included in the datasets of Hoenig (1983), Then et al. (2015), or Hamel & Cope (2022) 

contained species near this age. The greatest maximum age in the Then et al. (2015) dataset was 

205 years with an M of 0.04. For every other Mmodel input rate assessed in our study, up to 0.5, the 

correction formulas produced accurate Mformula estimates.  

 While there were no significant differences in performance between the tmax and t99 

correction formulas, as both produced accurate Mformula estimates, the tmax-corrected Mformula 

values exhibited much greater variance than those of t99. The 99th percentile method, in contrast, 

showed considerably less variation in corrected Mformula estimates. 

 

Differences Among Published Estimators 

In the past, the choice of longevity-based M formula has been critical, as differences in 

their estimates can lead to varying conclusions about a stock’s sustainability and catch 

recommendations. Before applying the correction formulas derived in our study, we observed 

these differences and identified a pattern in the variation of Mformula estimates among the three 

formulas. All three were influenced by sample size, with smaller samples producing higher 

Mformula estimates and larger samples yielding lower Mformula estimates, but to varying degrees. 



 

However, after applying the correction formulas, the choice of longevity formula became 

irrelevant, as the corrected Mformula estimates were consistent across all three. Our study 

demonstrates that these correction formulas can be applied to any of the three published 

estimators, eliminating the need to debate which provides the most accurate Mformula estimates. 

 

Conclusions 

 We present an alternative method for estimating Mformula using t99, as the model results 

demonstrated the influence of sample size on Mformula estimates when using tmax. Determining an 

optimal sample size using tmax is not feasible, highlighting the potential limitation of studies 

relying on a relatively small number of fish to establish relationships between M and maximum 

age. Although t99 alone is not reliable predictor of M, the correction formulas developed in this 

study effectively adjust for initial biases. The t99 Mformula estimates stabilize once a total sample 

size threshold of 5,000 is reached, supporting a percentile-based approach with corrections as the 

preferred method for accurate Mformula estimation. This approach alleviates concerns about the 

number of available ages for a species while minimizing the influence of outliers or rare-aged 

individuals.  

 This simulation modeled a theoretical population to examine how sample size affects 

maximum age estimates. It was not intended to replicate a true population or assessment model 

that incorporates important stock parameters such as selectivity at size and age and fishing 

pressure, among many others. Currently, the effects of other variables in the assessment model 

remain unknown; we only know that sample size influences maximum age-based M estimates. 

While the exponential decrease in the number of fish with age aligned with observed population 

age structures (Allen & Hightower, 2010; Miranda & Bettoli, 2007), assuming a constant 



 

population size over time is unrealistic, as is a constant M that does not vary with size or age. 

Stock sizes fluctuate over time due to various factors, including fishing pressure. In addition, the 

model assumed all individuals were equally susceptible to sampling, which may not always 

reflect real-world conditions. In fisheries, truly random sampling is rarely possible, as older fish 

may inhabit inaccessible areas or remain unobserved due to gear selectivity and size (Hoenig, 

2017). This model also does not account for the truncation of age structure caused by fishery 

effects, such as size selectivity. While fisheries typically target the largest and oldest individuals, 

our model samples the entire population, including young-of-year fish. Since the population 

experienced no fishing (F = 0), mortality estimates calculated through these methods likely better 

reflect Z rather than M. Furthermore, historical exploitation can shape a stock’s age composition, 

influencing the presence of older fish (Hoenig, 2017). Incorporating these factors in future 

research/modeling efforts could further improve the accuracy of Mformula estimates. Additionally, 

recreating the work of Then et al. (2015) using t99 in replacement of tmax could mitigate biases 

introduced by sample size. 
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Figure 1. Mean maximum age values (Y-axis) observed for each sample size (X-axis) derived 
from model runs with an Mmodel input of 0.2 for (A) tmax and (B) t99 methods. The 95% confidence 
intervals are shown for each sample size analyzed. The predicted maximum age values needed 
for an accurate Mformula estimate of 0.2 are shown for each of the three longevity equations 
(Hoenig Combined – green, Then NLS – blue, and Hamel Cope – orange).  
  



 

 

Figure 2. Lineplots of calculated Mformula estimates (Y-axes) using the tmax approach across different 
sample sizes (X-axes). The color of the line indicates the Mmodel input value. All panels show similar 
trends with lower sample sizes producing higher Mformula estimates than larger sample sizes for 
Hoenig Combined (A), Then NLS (B), and Hamel Cope (C) longevity equations. 
  



 

 

Figure 3. Lineplots of calculated Mformula estimates (Y-axes) using the t99 approach across different 
sample sizes (X-axes). The color of the line indicates the Mmodel input value. All panels show similar 
trends with lower sample sizes producing slightly higher Mformula estimates, but estimates then level 
out once a sample size of approximately 5,000 is reached for Hoenig Combined (A), Then NLS (B), 
and Hamel Cope (C) longevity equations.  
  



 

 

Figure 4. Optimal sample sizes (Y-axis) required to accurately estimate the Mmodel input (X-axis) 
in the simulation using tmax. Results are shown for each of the three longevity formulas, with 
missing values at low and high motrality rates denoting instances in which the tested sample 
sizes could not accurately estimate Mmodel input. The t99 optimal sample sizes are omitted because 
the maximum age estimates from this method consistently resulted in Mformula estimates that 
overestimated Mmodel input, regardless of sample size. 
  



 

 

Figure 5. Resulting corrected estimates of initial Mformula values (Y-axis) using the tmax correction 
formulas (see Equation [5] in text and Table 1) for the Hoenig Combined (A), Then NLS (B), and 
Hamel Cope (C) longevity equations, against Mmodel input (X-axis). Black dots indicate means and the 
dotted black lines have a slope of one and intercept of zero depicting the accurate estimation of 
Mmodel input.  
  



 

 

Figure 6. Resulting corrected estimates of initial Mformula values (Y-axis) using the t99 correction 
formulas (see Equation [5] in text and Table 1) for the Hoenig Combined (A), Then NLS (B), and 
Hamel Cope (C) longevity equations, against Mmodel input (X-axis). Black dots represent means and 
the dotted black lines have a slope of one and intercept of zero depicting the accurate estimation of 
Mmodel input. 
  



 

 

Figure 7. An example comparison of the average initial t99 Mformula estimates (Y-axis) generated 
from a sample size of 500 by each longevity equation in comparison to the respective Mmodel input 
rates (X-axis) from the simulation before (A) and after applying the correction (B). The data in 
6A represent best fit polynomial trends in initial Mformula estimates before correction. 



 

Table 1. Polynomial coefficients a, b, and c for each maximum age method, under each 
longevity estimator for input into equation [5] (see text) to generate corrected Mformula estimates. 
“ss” represents the sample size from which the maximum age estimate was obtained, and Mint 
indicates the initial Mformula estimate generated using the respective longevity-based estimator 
before applying correction formulas. 
 

  

Maximum Age 

Approach 

Longevity 

Estimator 

a  b c  

Oldest 

Observed Age 

Hoenig 

Combined 
5.779 * ss(-0.143) 0.470 * ss(-0.097) (0.047 * ss(-0.144)) - Mint 

Then NLS 6.230 * ss(-0.135) 1.019 * ss(-0.103) (0.060 * ss(-0.132)) - Mint 

Hamel Cope 7.517 * ss(-0.145) 0.471 * ss(-0.091) (0.059 * ss(-0.147)) - Mint 

99th Percentile 

Age 

Hoenig 

Combined 
5.182 * ss(-0.046) 0.034 + 0.038 * ln(ss) (0.057 * ss(-0.091)) - Mint 

Then NLS 5.454* ss(-0.040) 0.391 + 0.041 * ln(ss) (0.070 * ss(-0.082)) - Mint 

Hamel Cope 6.681 * ss(-0.046) -0.049 + 0.050 * ln(ss) (0.072 * ss(-0.092)) - Mint 



 

Appendix: Investigating the mean age of the oldest 1% of individuals in a sample as a 

method for obtaining a maximum age to estimate M 

 While more resilient to sample size, the 99th percentile age approach still has a key 

limitation. Like the tmax method, it relies on a single individual to estimate maximum age. To 

address this, an alternative M estimation method was considered, based on the mean age of the 

oldest 1% of individuals in a sample (t1%). This method overcomes the reliance on a single age 

by utilizing multiple individuals from a sample for the maximum age estimate, while also 

allowing for the estimation of uncertainty around that mean age. 

Additional simulations were conducted using the t1% approach and analyzed in the same 

manner as the tmax and t99 methods to assess whether it, too, was biased or resilient to sample 

size. Results showed that, similar to the t99 method, using the oldest 1% of individuals in a 

sample was resilient to the effects of sample size once a threshold of approximately 5,000 

individuals was reached (Fig. A.1). However, the t1% approach, like t99, tended to underestimate 

the age needed for an accurate Mformula estimate. Although the t1% method occasionally produced 

ages that were too old for accurate Mformula estimation using the Hoenig Combined and Hamel 

Cope formulas, it generally resulted in an overestimation of the Mmodel input for all three longevity-

based formulas (Fig. A.2). 

Due to the over- and underestimation of the Mmodel input using t1%, we explored generating 

correction formulas for this method as well. The Mformula values derived from t1% were plotted 

against the corresponding Mmodel input for each sample size. A second-order polynomial (equation 

[4]) was identified as the model that best fit the data for the Hoenig Combined, Then NLS, and 

Hamel Cope formulas at each sample size. The polynomial coefficients (a, b, and c) for each of 

the three longevity-based formulas were then modeled against sample size. These models 



 

resulted in three separate correction formulas, one for each longevity formula, as inputs into 

equation [5] (Table A.1). Applying these formulas to the initial Mformula estimates from the 

simulation models led to a linear trend in corrected Mformula estimates, except for an Mmodel input of 

0.01 (Fig A.3). 

Calculating the mean age of the oldest 1% of individuals in a sample appears to mitigate 

concerns related to increasing sample size as additional age data are collected. However, small 

sample sizes may still pose a challenge for this method. For example, if a sample includes only 

100 or 200 individuals, the oldest 1% approach yields just one or two ages, respectively, for 

estimating M. As a result, the estimate becomes highly sensitive to the presence of a single, 

exceptionally old individual, which may not accurately represent the population’s age structure. 

Therefore, this approach is best applied when the sample size is at least 5,000. This is the point at 

which both the maximum age estimate and the resulting M estimate begin to stabilize with 

increasing sample size. 

  



 

 

Figure A.1. Mean maximum age values (Y-axis) observed for each sample size (X-axis) derived 
from model runs with an Mmodel input of 0.2 for the t1% approach. The 95% confidence intervals are 
shown for each sample size analyzed. The predicted maximum age values needed for an accurate 
Mformula estimate of 0.2 are shown for each of the three longevity equations (Hoenig Combined – 
green, Then NLS – blue, and Hamel Cope – orange).  
 

  



 

 

Figure A.2. Lineplots of calculated Mformula estimates (Y-axes) using the t1% approach across 
different sample sizes (X-axes). The color of the line indicates the Mmodel input value. All panels 
show similar trends with lower sample sizes producing slightly higher Mformula estimates, but 
estimates then level out once a sample size of approximately 5,000 is reached for Hoenig 
Combined (A), Then NLS (B), and Hamel Cope (C) longevity equations.  



 

 

 

Figure A.3. Resulting corrected estimates of initial Mformula values (Y-axis) using the t1% correction 
formulas (see Equation [5] in text and Table A.1) for the Hoenig Combined (A), Then NLS (B), and 
Hamel Cope (C) longevity equations, against Mmodel input (X-axis). Black dots represent means and 
the dotted black lines have a slope of one and intercept of zero depicting the accurate estimation of 
Mmodel input. 
 

 
  



 

Table A.1. Polynomial coefficients a, b, and c for the mean top 1% age from a sample, under 
each longevity estimator for input into equation [5] (see text) to generate corrected Mformula 
estimates. “ss” represents the sample size from which the maximum age estimate was obtained, 
and Mint indicates the initial Mformula estimate generated using the respective longevity-based 
estimator before applying correction formulas. 
 

Maximum Age 

Approach 

Longevity 

Estimator 

a  b c  

Mean Top 1% 

Hoenig 

Combined 
3.420 * ss(-0.0073) 0.207 + 9.214 * (1/ss) (0.030 - 0.00055 * ln(ss)) - Mint 

Then NLS 3.828 * ss(-0.0061) 0.510 + 13.075 * (1/ss) ( 0.040 * ss(-0.021)) - Mint 

Hamel Cope 4.400 - 0.032 * ln(ss) 0.195 + 11.089 * (1/ss) (0.037 - 0.00069 * ln(ss)) - Mint 
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