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Abstract 

The abundance dynamics of short-lived marine species often exhibit large-amplitude fluctuations, potentially driven by unknown but 
important species interactions and environmental effects. These complex dynamics pose challenges in forecasting and establishing 

robust reference points. Here, we introduce an empirical dynamic modeling (EDM) framework using time-delay embeddings to recover 
unspecified species interactions and environmental effects, and use walk-forward simulations with varying harvest rates to estimate 
maximum sustainable yield (MSY). Firstly, we apply our framework to simulated data under various dynamics scenarios and demon- 
strate the statistical robustness of EDM-based MSY. Secondly, we apply our framework to abundance and catch time series ( > 30 years) 
of federally managed brown shrimp stocks in the US Gulf of Mexico. We identify nonlinear signals and achieve high prediction accuracy 
in the empirical dynamics of brown shrimp. Lastly, based on the EDM of brown shrimp dynamics, we obtain MSY for timely and effec- 
tive management. Our results highlight the utility of EDM in deriving reference points for short-lived species, particularly in situations 
where stock abundance and catch dynamics are influenced by unobserved species interactions and environmental effects in a complex 
ecosystem. 

Keywords: short-lived species fishery; nonlinear dynamics; maximum sustainable yield; unobserved species interactions; empirical dynamic modelling 

 

 

 

f
a
c  

d
t
(

c  

M  

t
s  

s
t  

u
s
e  

e
a  

d  

s  

t  

2  

E  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/7/1209/7696789 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 07 N
ovem

ber 2024
Introduction 

Short-lived forage species play a crucial role within a ma- 
rine ecosystem, transferring energy up the food chain through 

trophic interactions (Engelhard et al. 2014 , Siple et al. 2021 ).
Their population dynamics often exhibit substantial fluc- 
tuations, spanning multiple orders of magnitude, rendering 
them hard to predict (Lindegren et al. 2013 , Arkhipkin et al.
2021 ). These dynamics are potentially nonlinear and chaotic 
(Deyle et al. 2013 , Munch et al. 2018 , Tsai et al. 2023 ), and 

highly responsive to environmental variability and/or fishing 
pressure (Hsieh et al. 2006 , Essington et al. 2015 , Pinsky 
and Byler 2015 ). These fundamental characteristics of short- 
lived species are often overlooked by conventional stock as- 
sessments models designed to model the dynamics of long- 
lived stocks and commonly used to establish fishery reference 
points. This approach ignores the potential influence of species 
interactions (Fujiwara et al. 2016 , Masi et al. 2018 , Munch et 
al. 2020 ), and environmental changes, possibly leading to un- 
derestimating of the impact of nonlinear feedbacks between 

competing ecosystem uses (Munch et al. 2018 , 2022 ). More- 
over, it may lead to inaccurate estimation of fishery reference 
points (Glaser et al. 2014 , Fogarty et al. 2016 ) and subopti- 
mal harvesting practices (Brias and Munch 2021 ). Crucially,
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
or short-lived stocks, the time required for data processing 
nd the development of traditional assessment models can ex- 
eed the species’ generation time (Arkhipkin et al. 2021 ). Such
elays hinder effective management advice, making it difficult 
o implement precautionary policy actions in a timely manner 
Peterson and Walter 2023 ). 

As an alternative approach, we propose utilizing empiri- 
al dynamic modeling (hereafter, EDM) (Chang et al. 2017 ,
unch et al. 2020 , 2023 ) to establish fishery reference points

ailored for short-lived species. EDM uses time-delayed ob- 
ervations to account for unobserved state variables (e.g.
pecies traits, interactions with other species, and environmen- 
al drivers). Given a sufficient collection of lags, EDM then
ses non-parametric function approximation to address the 
tate dependency of nonlinear dynamics prevalent in complex 

cosystems (Chang et al. 2017 , Munch et al. 2020 , 2023 ). Tak-
ns (1981) theorem and its generalizations shows that under 
 wide range of conditions, there is a one-to-one correspon-
ence between the dynamics inferred using delays of the ob-
ervables and the dynamics in the native state space. (For fur-
her details, readers may refer to the works of Chang et al.
017 , Munch et al . 2018 , Munch et al. 2023 .) By extending
DM to include the history of exploitation, we can predict
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 

https://orcid.org/0000-0003-0586-7853
mailto:tsaich@gs.ncku.edu.tw
mailto:smunch@ucsc.edu
https://creativecommons.org/licenses/by/4.0/


1210 Tsai et al. 

t  

i  

c  

N  

m  

fi  

fi  

s
 

o  

i  

c  

a  

a  

l  

M  

a  

i  

c  

(  

n  

p  

v  

c  

e  

t  

m  

i  

s  

e  

p  

2
 

t  

u  

o  

o  

o  

n  

w  

G  

i  

c  

i  

c  

r  

t  

o  

p  

a  

w  

t  

s  

i

M

G
(

W  

a  

i  

e  

l  

a  

r  

a  

b  

d  

C
 

a  

(  

t  

 

p  

A  

p  

m  

s  

t  

c  

t
 

e  

i  

B

 

 

o  

t  

φ  

o  

a  

t  

i  

c  

s  

p  

{  

n  

�

a  

o  

{  

b  

p  

w  

i  

T  

t  

t  

t  

t  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/7/1209/7696789 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 07 N
ovem

ber 2024
he impact of harvest control rates on fisheries dynamics while
mplicitly accounting for unobserved interactions with other
omponents of the ecosystem (Brias and Munch 2021 , Giron-
ava et al. 2021 , Munch et al. 2023 ). The EDM approach
ay prove particularly advantageous for modeling short-lived
sh species, as demonstrated in the cases of California sardine
sheries (Giron-Nava et al. 2021 ) and Gulf of Mexico penaeid
hrimp fisheries (Tsai et al. 2023 ). 

Application of EDM has proven successful across a range
f marine species. Notable examples of abundance forecast-
ng include North Pacific albacore (Glaser et al. 2011 ), Pa-
ific sardine (Deyle et al. 2013 ), Fraser River salmon (Ye et
l. 2015 ), Gulf of Mexico and Atlantic menhaden (Deyle et
l. 2018 ), Atlantic blue crab (Rogers and Munch 2020 ), At-
antic white shrimp (Garcia et al. 2007 ), as well as Gulf of

exico brown and white shrimp (Tsai et al. 2023 ). EDM has
lso been used for inferring causal relationships and dynam-
cal stability in marine systems, including Georges Bank fish
ommunities (Liu et al. 2012 ), Maizuru reef fish communities
Ushio et al. 2018 ), and Gulf of Mexico estuary fish commu-
ities (Li and Liu 2023 ). Despite these successes, there is a
aucity of cases applying EDM in fishery management. Har-
est control policies based on EDM have only been empiri-
ally established for California sardine fisheries (Giron-Nava
t al. 2021 ), whereas Brias and Munch ( 2021 , 2024 ) showed
hat it is possible to obtain robust harvest policies for several
ulti-species fishery models. Perhaps the limited use of EDM

n fisheries management is due to a misconception that EDM is
uitable only for forecasting rather than for establishing fish-
ry reference points, which is more typically the domain of
arametric, mechanistically motivated models (Munch et al.
020 , 2022 , 2023 ). 
In this study, we aim to provide a framework to showcase

he utility of EDM in deriving fishery reference points, partic-
larly for short-lived species (schematic Fig. 1 ). Importantly,
ur framework aims to integrate the existing simulation meth-
ds, data transformation methods and model selection meth-
ds into a single workflow, to improve the statistical robust-
ess of EDM-based reference points. As a proof of concept,
e apply the framework to the brown shrimp fishery in the US
ulf of Mexico (GOM). Our objectives are fourfold. First, we

nvestigate whether EDM exhibits out-of-sample prediction
apability by combining both fishery-dependent and fishery-
ndependent data. Second, we assess the effectiveness of in-
orporating data transformations and ecological assumptions
egarding density dependence and catchability in improving
he prediction skill of EDM. Third, we explore the feasibility
f using EDM to estimate steady-state policy and reference
oints, such as maximum sustainable yield (MSY). To evalu-
te the robustness of EDM-derived MSY, we compare them
ith theoretical MSY using simulated data and model selec-

ion methods. Fourth, we apply this framework to the brown
hrimp fishery in the GOM, thus providing practical insights
nto its real-world application. 

aterials and methods 

aussian process empirical dynamic modelling 

GP-EDM) 

e employ Gaussian process (GP) regression as a function
pproximation technique to capture the nonlinear dynam-
cs of the stock using EDM (hereafter GP-EDM) (Munch
 t  
t al. 2017 , Johnson and Munch 2022 ). Below, we out-
ine the GP-EDM framework used to predict the univari-
te fishery-independent catch-per-unit-effort (CPUE) time se-
ies, i.e. CPUE or abundance index from surveys. Addition-
lly, we introduce a method to estimate the relative catcha-
ility, which establishes the connection between the fishery-
ependent catch/landings series and the fishery-independent
PUE data (also refer to schematic Fig. 1 ). 
Let x t represent the CPUE at time t and consider it as

 random function dependent on lag embeddings of CPUE
i.e. x t-1 , …, x t -m 

) for up to m years, where m represents
he maximum number of time lags utilized. That is, x t =
f ( x t−1 , . . . , x t−m 

) + ε t , where f is a random function that ap-
roximates the dynamical process and ε t is the process error.
ccording to Takens theorem (Takens 1981 ), these lags are a
roxy for the true state space. Here, E = m + 1 serves as the
aximum embedding dimension, where E ≥ 2 D with D repre-

enting the dimension of the true dynamical system. As a prac-
ical guideline, empirical observations suggest that the statisti-
ally feasible E is less than or equal to 

√ 

N , where N represents
he length of the time series data (Munch et al. 2020 , 2023 ). 

We employ GP regression to approximate the delay-
mbedding map f (Munch et al. 2017 ). The inputs, gathered
n a vector X t -m 

= { x t-1 , …, x t -m 

}, are incorporated into a
ayesian GP model formulated as follows: 

P 
(
x t | f , X t−m 

, φ, τ, V e 
) ∼ Normal 

(
f ( X t−m 

) , V e 
)

P 
(

f | φ, τ, V e 
) ∼ GP ( 0 , �) 

P ( φ) ∼ Hal fnormal 
(

π√ 

12 

)

P ( τ ) ∼ Beta ( 1 . 1 , 1 . 1 ) 

P ( V e ) ∼ Beta ( 1 . 1 , 1 . 1 ) (1)

In ( 1 ), the first layer represents the probability density of
bserving the CPUE at time t given the function approxima-
ion f , the input data of time lags X t -m 

, and the parameters
, τ , and V e , where V e represents the process noise. The sec-
nd layer represents the probability density of the function
pproximation f given the parameters. The unknown func-
ion f is assigned a Gaussian process prior which general-
zes the multivariate normal distribution with mean zero and
ovariance function �. The covariance function � is a ten-
or product of squared exponential covariances for each in-
ut with pointwise variance τ 2 and inverse length scales φ =
 φ1 , . . . , φm 

} where the index i is from 1 to m (the maximum
umber of time lags). Specifically, the covariance function is
( X t , X s ) = τ 2 ∏ m 

i =1 exp[ −φi (x t−i − x s −i ) 
2 ] where X t and X s 

re delay coordinate vectors for years t and s . The final layer
f the Bayesian model specifies priors for the hyperparameters
 φ1 , . . . , φm 

, τ, V e } . We encourage sparsity in the fitted model
y assigning a half-normal prior with variance π√ 

12 
for φi . This

rior choice asserts that f has, on average, one local extremum
ithin the data range, and the mode at zero encourages un-

nformative lags drop out of the model (i.e. φ approaches 0).
his prior is widely used in GP regression under the name “au-

omatic relevance determination” (ARD, Neal 1996 ). To fur-
her encourage sparsity, φ is determined as “zero”by rounding
o the second decimal place. To improve the interpretability of
he inverse-length-scale parameter φ, time series data are cen-
ered and standardized to unit variance prior to analyses. Note
hat under this prior specification, the variance of a prediction
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Figure 1. A schematic representation of the GP-EDM frame w ork f or deriving the maximum sustainable yield (MSY). T his MSY is comparable to that 
derived from a conventional production model. Notably, when the dynamical system’s maximum embedding dimension is set to one, the GP-EDM 

frame w ork, giv en the right function appro ximation, simplifies to a traditional production model. R efer to the Materials and methods section f or detailed 
explanations of how Gaussian process regression is employed to identify the production function and parameters in the EDM framework, as well as for 
simulation methods used to estimate GP-EDM MSY. 
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at any input is V e + τ 2 . Since the data are standardized to unit 
variance, V e + τ 2 ≈ 1 should be sufficient. Nearly flat, inde- 
pendent beta distributions are therefore used as priors for V e 

and τ 2 allowing up to twice the variance in the data. (For fur- 
ther details on prior specification and data standardization,
refer to Munch et al., 2017 .) 

Fishery-centric GP-EDM 

We expand the delay embedding map to include 
catch/landings (schematic Fig. 1 ). One way to do so 

would be to include CPUE and catch as an inde- 
pendent coordinate, leading to models of the form 

x t = f ( x t−1 , c t−1 , . . . , x t−m 

, c t−m 

) for the delay embed- 
ding map. However, doing so doubles the dimension of the 
input space. Moreover, it ignores the fact that CPUE and 

catch both depend on the biomass of the stock. To address 
this issue, we incorporate a catchability parameter denoted 

by “q ” within the GP-EDM framework to establish a con- 
nection between CPUE and fishery landings. We assume that 
spawning occurs after the fishing season and that spawning 
biomass is proportional to escapement. Hence, if CPUE and 

landings are proportional to biomass, then x t−1 − qc t−1 is 
proportional to spawning biomass. With these assumptions,
we set x t = f ( x t−1 − qc t−1 , . . . , x t−m 

− qc t−m 

) which asserts 
that the stock abundance one year ahead is determined 

by the escapement following the previous year fishing (i.e.
x t−1 − qc t−1 ), amended with lags to account for missing state 
variables. To simplify the notation, we set C t-m 

= { c t-1 , …,
c t -m 

} and update the first layer of ( 1 ) as: 

P 
(
x t | f , X t−m 

− qC t−m 

, φ, τ, V e 
)

∼ Normal 
(

f ( X t−m 

− qC t−m 

) , V e 
)

(2) 
To complete our model specification, we used a nearly flat
eta prior on q with the additional constraint on q that es-
apement is always positive, i.e. q < min 

t 
( x t c t 

) . 

Note that, after some algebraic simplification, this is equiv- 
lent to the catchability assumption employed in traditional 
roduction models (schematic Fig. 1 ). Hence, GP-EDM with 

 = 1 can be thought of as a nonparametric production
odel (Thorson et al. 2014 ). Importantly, incorporating these 

tandard assumptions regarding the relationships among to- 
al catch, catchability, and stock abundance enables us to use
DM for the purposes of evaluating harvest controls (Thor- 
on et al. 2012 ). 

arameter estimation of GP-EDM 

e employ the maximum a posteriori (MAP) approach to 

btain parameter estimates. By collecting the next time steps 
i.e. year ahead fishery-independent CPUE) into a column vec- 
or y = { x t+ m 

, . . . , x T } T and let X = { X t−m 

− qC t−m 

} repre-
ents the matrix of embedding vectors (i.e. time lags of CPUE
educed by fishing), the logarithm of the marginal posterior 
robability can be expressed as follows: 

l nP ( φ, τ, V e | y , X ) = const − 1 

2 

ln 

| Σ + V e I | 

− 1 

2 

y T | Σ + V e I | −1 y 

− 1 

2 

l nP ( φ, τ, V e , q ) (3) 

In this equation ( 3 ), I represents the identity matrix and �

epresents the covariance matrix created by applying the co- 
ariance function �( X t , X s ) (i.e. the exponential decay kernel) 
o all lagged observations (i.e. X = { X t−m 

− qC t−m 

} ). The term
const” represents an arbitrary constant that does not affect 
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he optimization procedure. The last term on the right-hand
ide corresponds to the hyperparameter priors. 

rediction skill and model selection of GP-EDM 

e utilize the GP-EDM MAP estimates to make predictions
or the year-ahead brown shrimp stock abundance (CPUE)
ime series. The conditional posterior mean and posterior vari-
nce for these predictions, based on the GP-EDM estimates
nd available data, follow a multivariate normal distribution
ith the mean and the covariance defined as follows: 

M 

(
X 

′ ) = Σ
(
X 

′ , X 

)
[ Σ ( X , X ) + V e I ] −1 y 

V 

(
X 

′ ) = Σ
(
X 

′ , X 

′ ) − Σ
(
X 

′ , X 

)
[ Σ ( X , X ) + V e I ] −1 

× Σ
(
X 

′ , X 

)T (4) 

In this equation ( 4 ), the notations used are consistent with
hose in (1 –3 ). In ( 4 ), M and V represents the posterior mean
nd posterior variance, respectively. X and X 

′ represents the
n-sample and out-of-sample delay coordinate vectors, respec-
ively. 

Because both the number of time lags (the embedding di-
ension) and the number of inverse length scale parameters

re unknown, it is necessary to estimate variants with sev-
ral time lags and inverse length scale parameters, leading to
he need to establish model selection procedures. We propose
sing out-of-sample prediction skill and information-based
odel selection to determine the best EDM candidate. Many
etrics have been proposed to evaluate prediction accuracy,

ncluding correlation coefficient ( ρ), coefficient of determina-
ion ( R 

2 ), root mean square error (RMSE), and mean absolute
rror (MAE). In keeping with other applications of EDM, e.g.
olan et al. ( 2023 ) and Tsai et al. ( 2023 ), we assess the per-

ormance of GP-EDM using a leave-one-out (LOO) predic-
ion approach. LOO prediction skill was evaluated using the
earson correlation coefficient ( ρ) between the observed and
redicted year-ahead CPUE. LOO prediction accuracy is also
valuated with the predictive R 

2 computed as follows: 

R 

2 = 1 −
∑ 

(
y obs − y pred 

)2 ∑ 

( y obs − ȳ obs ) 
2 , (5) 

here y obs represents the observed stock abundance one year
head, y pred represents the predicted stock abundance one year
head, and ȳ obs represents the averaged observed stock abun-
ance. Additionally, using the same notation in ( 5 ), we define
OO RMSE and MAE as follows: 

RMSE = 

√ ∑ 

(
y obs − y pred 

)2 

n 

MAE = 

∑ 

∣∣(y obs − y pred 

∣∣
n 

(6) 

In addition to evaluating out-of-sample (LOO) prediction
kill, we introduce two additional model selection procedures
or GP-EDM that explicitly account for the effective degrees
f freedom of the nonparametric model in order to avoid over-
tting. The complexity of a GP model is determined by both
he number of inputs and the length scale parameters. A sin-
le input with a large ϕ would have many degrees of freedom,
hile a model with many inputs but all ϕ’s close to 0 would
ave relatively few. Hence, to approximate the effective de-
rees of freedom, df approx , we use the trace of the hat matrix
 H , Cleveland and Grosse 1991 ; Krämer and Sugiyama 2011 )
omputed as: 

H = Σ
(
X 

′ , X 

)
[ Σ ( X , X ) + V e I ] −1 

df approx = tr [ H ] (7)

In a linear model setting, df approx reduces to the number of
arameters. 
Using ( 7 ), we obtain an adjusted variance estimator ˜ σ 2 as: 

˜ σ 2 = 

∑ 

( y − M ( X 

′ ) ) 2 

n − df approx 
, (8)

here n represents the length of vector y , i.e. the year-ahead
PUE time series. Based on the calculations in ( 7 ) and ( 8 ), we
erive approximate versions of the Akaike information crite-
ia (AIC) [commonly known as conditional AIC (Vaida and
lanchard 2005 )] and Bayesian information criteria (BIC ) as
ollows: 

AIC = n · ln 

(
˜ σ 2 ) + 2 · df approx 

BIC = n · ln 

(
˜ σ 2 ) + ln ( n ) · df approx (9)

ata transformation of GP-EDM 

ecause the mechanistic relationship between the stock abun-
ance and escapement is left un-specified, we explore four
ata transformations for fishery-centric GP-EDM analyses:
ntr ansformed, Log-tr ansform, Type-I log-difference tr ans-

orm, and Type-II log-difference transform . Using the nota-
ion from (1 –8 ), the first type is the original untransformed
PUE at time t (i.e. x t ) as the response variable. The second

ype utilizes natural logarithm transformed CPUE at time t
i.e. ln (x t ) ] as response variable. The third type utilizes the
rst-order difference between the log-transformed CPUE at
ear-ahead time t and the log-transformed CPUE at time t-1
i.e. ln ( x t 

x t−1 
) ] as the response variable. Lastly, the fourth type

tilizes the first-order difference between the log-transformed
PUE at year-ahead time t and the log-transformed CPUE

ubtracted from the annual fishery landings at time t-1 [i.e.
n ( x t 

x t−1 −qC t−1 
) ]. Because these four data transformations pro-

uce different sets of model performance metrics at various
cales, including LOO predictions, AIC, and BIC, they are not
irectly comparable. To ensure a consistent basis for model
omparison, we transform the GP-EDM performance metrics
o the same (logarithmic) scale. This approach facilitates the
ssessment and comparison of model performance across the
ifferent data transformation types. 

eriving MSY from GP-EDM 

aving determined the transformation that yields the great-
st prediction accuracy, we use the resulting GP-EDM model
o estimate MSY (see schematic Fig. 1 ). To do so, we iterate
he GP-EDM predictions over the next 40 years to estimate
he long-run catch/landings given a particular constant har-
est rate. The projection length of 40 years depends on com-
utational power and convergence toward the steady state,
e recommend > 30 data points as a rule of thumb for com-
uting the “long-run” average. Specifically, at each time step,
e randomly simulate GP-EDM forecasts by sampling from
 normal distribution with the mean and variance functions
erived from ( 4 ) and use these forecasts as inputs for the
ext forecast. The harvest rate (represented by u t at time t ,
ounded between 0 and 1) for each time step is kept constant
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throughout the simulation. To account for uncertainty 
associated with the model, we repeat the procedure 1000 times 
to obtain the mean and standard error of the long-run yield 

estimate. We also repeat these steps for a range of harvest rates 
( u t from 0 to 1) to determine the rate that maximizes the av- 
erage long-run yield as our proxy for MSY. 

Simulation testing for the robustness of MSY 

derived from GP-EDM 

To assess the robustness of GP-EDM-based MSY to varia- 
tion in underlying dynamics and exploitation history, we sim- 
ulate different ecological scenarios under two different harvest 
histories. The ecological scenarios are a single-species system 

using a Pella–Tomlinson model and a predator–prey system 

(prey harvested) of Ricker type. Additionally, we use single- 
species Ricker models where dynamics are chaotic to assess 
the statistical robustness of EDM-based MSY under various 
assumptions about relationships between abundance index 

(CPUE) and true abundance. The harvest histories include in- 
creasing harvest rate (i.e. uni-directional one-way trip) and os- 
cillating harvest rate. More details of the ecological scenarios 
and harvest histories are provided below. 

Single-species dynamics 

As the first example, we utilize parameter values derived from 

an empirical cross-stock meta-analysis (Thorson et al. 2012 ) 
to establish the Pella–Tomlinson model as follows: 

B t+1 = ( B t + P t − s t B t ) e ε 

P t = 

( 

a 
a 

a −1 

a − 1 

) 

r 
[

B t 

K 

−
(

B t 

K 

)a ]
(10) 

In the above equation ( 10 ), B t represents the biomass of 
the species at time t , and P t corresponds to the production at 
time t . The scalar s t accounts for the impact of harvesting on 

species biomass, with s t B t indicating the catch/landings quan- 
tity at time t . The growth parameter of the production func- 
tion is denoted by r . The carrying capacity is represented by 
K . The parameter a , r , and K control the MSY. We assume 
that the process noise ε follows a normal distribution with a 
mean of zero and a standard deviation of 0.1. The parameters 
a and r are fixed at 1.478 and 0.404, respectively, which are 
the empirical average estimates derived from multiple stocks 
(refer to Table 1 and Table 2 in Thorson et al. 2012 ). Note that 
the ( 10 ) is valid when a > 1. For simplicity, we assume K = 1.
Assuming constant harvest, we can express the steady-state 
relative biomass ( B 

∗) and catch ( Y ield 

∗) as follows: 

B 

∗ = 

1 −a 

√ 

ra a/a −1 

−sa + s + ra a/a −1 

Yield 

∗ = sB 

∗ (11) 

Predator–prey dynamics 

As a more challenging example, we consider a Ricker- 
type prey–predator model that exhibits reasonable fluctua- 
tions in biomass and catch/landings. The dynamics of the 
prey −predator system and harvesting are given by: 

B 1 ,t+1 = B 1 ,t e [ r 1 ( 1 −B 1 ,t ) −dB 2 ,t −s t ] e ε 1 

B 2 ,t+1 = B 2 ,t e [ r 2 ( 1 −B 2 ,t ) + dB 1 ,t ] e ε 2 (12) 
In the above equation ( 12 ), B 1 ,t represents the biomass of
he prey species (or forage species) and B 2 ,t represents the
iomass of the predator species at time t . The parameters r 1 
nd r 2 correspond to the intrinsic growth rates of the prey
nd predator, respectively. The scalar d represents the biomass 
ransfer efficiency from prey to predator, and s t is a scalar re-
ecting the harvesting effect on the prey at time t . We assume
hat the process noise ε 1 and ε 2 follow normal distributions
ith mean zero and standard deviations of 0.1, respectively.
euristically, we set r 1 = 2.2 for the prey, which is higher than

 2 = 1.8 for the predator, and we set d = 0.1. Note that we
se only prey biomass and catch/landings as our observational 
ime series data for GP-EDM, meaning that we do not observe
he predator. Further assuming constant harvest, we can ex- 
ress the steady-state relative biomass ( B 

∗) and catch ( Y ield 

∗)
or the prey species as follows: 

B 

∗
1 = 

r 2 
(
r 1 − d − s 

)
d 

2 + r 1 r 2 

Yield 

∗ ≈ e s B 

∗
1 (13) 

Note that, in this model, the fixed point, B 

∗
1 , and long-run

verage, B 1 = lim 

t→∞ 

1 
t 

∑ 

t B 1 ,t , are equivalent under a constant 

arvest policy. 

haotic Ricker-type dynamics 

ecause short-lived stocks may have higher intrinsic growth 

ates leading to quasi-cyclic or chaotic dynamics, we consider 
haotic single-species Ricker models as simulation examples.
dditionally, we consider three types of the relationship be- 

ween abundance index (CPUE) and true abundance/biomass,
ncluding proportionality , hyper-stability , and hyper-depletion 

Harley et al. 2001 ). The dynamics of the chaotic Ricker sys-
em and harvesting are given by 

B t+1 = B t e 
[ 
r 
(
1 − B t 

K 

)
−s t 

] 
e ε 

CPUE t = qB 

β
t (14) 

In the above equation ( 14 ), B t represents the biomass of the
pecies at time t , and r and K are intrinsic growth rate and car-
ying capacity , respectively . We assume r = 4 and K = 1000
uch that higher growth rate produces chaotic dynamics. s t 
s a scalar reflecting the harvesting effect. CPUE t represents 
n abundance index as a function of true abundance/biomass,
uch that CPUE t is proportional to B t when q is a constant
nd β = 1. To simulate proportionality, we set q = 0.9 and
= 1. Additionally, we set β = 0.8 and β = 1.2 to represent

he hyper-stability and hyper-depletion relationships (Harley 
t al. 2001 ). We assume that the process noise ε follows a nor-
al distribution with a mean of zero and a standard deviation
f 0.05. Further assuming constant harvest, we can express 
he steady-state (or long-run average) biomass ( B 

∗) and catch
 Y ield 

∗) as follows: 

B 

∗ = K 

(
1 − s 

r 

)
Yield 

∗ ≈ e s B 

∗ (15) 

For all the single-species and predator–prey dynamics mod- 
ls, simulations are repeated 150 times for a duration of
00 years (time steps). For each 100-years simulated series,
 randomized subsample is conducted to extract a continued 

2-years window so that the simulated time series length is
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omparable with GOM brown shrimp data. For each sim-
lated series, we apply GP-EDM and MSY estimation. The
imulated biomass ( B t ) or abundance index ( CPUE t ) and
atch/landings time-series data are subjected to GP-EDM
nalysis, where model selection and data transformation pro-
edures are performed to determine the best fitted GP-EDM,
ith varying embedding dimensions ( E ). The initial value of E

anges from 2 to 5. This E is before the ARD regularization of
P-EDM reduces the posterior dimension to match the num-
er of effective time lags, as described by Munch et al. (2017) ,
n each simulation. The best fitted model is subsequently em-
loyed to determine the MSY. 
For comparison with the GP-EDM results, we use the

nown model parameters to compute the “true” analyti-
al MSY using ( 11 ) and ( 13 ). Specifically, the “true” ana-
ytical MSY, given the model parameters, can be obtained
y taking the first derivative of the steady-state yield func-
ion with respect to the harvest parameter “s ” [specifically,

SY = 0.404 using ( 11 ), MSY = 1.361 using ( 13 ), and
SY = 5020.83 using ( 15 )]. To test for the statistical ro-

ustness, the estimates of GP-EDM-based MSY is compared
ith the analytical MSY for both population dynamics mod-

ls under two harvesting scenarios (i.e. unidirectional one-
ay trip harvest rate and fluctuating harvest rate over time)

 Fig. S1 ). 

hrimp fishery management history and data in 

he US Gulf of Mexico 

he National Marine Fisheries Service is mandated to pro-
ide annual, stock determination criteria (SDC) to the Gulf of
exico Fishery Management Council (GMFMC) for Brown,
hite, and Pink Shrimp ( F arf antepenaeus aztecus , Litope-

aeus setiferus , and F arf antepenaeus duorarum ). Since 2012,
ntegrated stock synthesis models (i.e. age-structured assess-
ent models), have been used to provide the annual, SDC

or all three shrimp stocks. In 2019, a model review of
hese three, shrimp SS models revealed technical concerns
e.g. conflicting indices, convergence issues, residual patterns).
onsequently, the GMFMC moved all three shrimp stocks

nto a Southeast Data, Assessment, and Review (SEDAR)
esearch track process, which allows for the consideration
f new data inputs and modeling approaches. A primary
bjective of the SEDAR research track process is to iden-
ify all available data inputs, limitations, and assumptions
n order to select the most robust tool, for assessing these
hrimp stocks. Preliminary findings from this SEDAR re-
earch track process have indicated that existing Brown,

hite, and Pink shrimp data limitations, such as the lack
f recruitment and age-structured information, make ad-
anced catch-at-age models inappropriate for assessing these
tocks. Further, GOM shrimp stocks are considered annual
rops, and so data processing and age-structured, model de-
elopment timelines exceed their longevity—hindering the
bility to provide timely management advice. Thus, it is
ecessary to consider next generation assessment mod-
ls (such as index-based and reference point approaches)
or these short-lived, shrimp stocks (Peterson and Walter
023 ). 
As a proof of concept tailored for a short-lived species fish-

ry, our analyses focus on the Brown shrimp stock, which con-
ributes to roughly half of the total annual Penaeid shrimp
shery landings each year (since 1984). To inform our study,
 (  
e collated the most recent fishery landings and market size
i.e. pounds of shrimp, in 12 market size categories) data, as
ell as fishery-independent CPUE. The fishery-independent
onitoring CPUE data were collected by the Southeast Area
onitoring and Assessment Program (SEAMAP) (1987–

019) (hereafter, SEAMAP CPUE). Traditionally, this collec-
ion of data was also the input into the shrimp stock synthesis
odels, along with life history parameters. 
We use annual time series data of both Brown shrimp fish-

ry landings and fishery-independent SEAMAP CPUE to ex-
mine reference points derived from EDM. Our analysis fo-
uses on the GOM region, as it allows for comparisons to
istorical brown shrimp management practices. It is worth
oting that the fishery landings data is only available at the
OM scale due to federal trip reporting limitations (i.e. no
epth information is collected, only landings by statistical
rids). We use the annual Brown Shrimp landings data, re-
orted to National Marine Fisheries Service via state trip tick-
ts (i.e. dealer reported landings, collated by all 5 US Gulf
tates). Fishery landings data are collected with 1–21 statis-
ical zones that run approximately latitudinal along Florida
nd Texas and longitudinal throughout the rest of the GOM.
epth information was historically collected via the federal
ort agent surveys but is not reliably collected on state trip
icket forms, which are considered the more accurate source
f recent total landings. For consistency, and to ensure a rep-
esentative analysis—at the GOM-wide scale, we use the “av-
raged” SEAMAP CPUE time series as a proxy for annual
rown shrimp abundance dynamics. It is worth noting that
 design-based estimator, e.g. weighted by the standard errors
f data, might be used. However, in the present case the raw
verages we used were nearly perfectly correlated with the
esign-based estimate ( r > 0.9). Details of SEAMAP survey
ethodology and data description, including depth, season,

nd spatial zones, can be referred to (SEDAR87-RD-01, The
EAMAP Trawl Shrimp Data and Index Estimation Working
roup). Statistical zones 1–21 (Nance 1992 ) were considered

nd then reduced based on the realized spatial distribution of
rown shrimp from SEAMAP trawl survey data. The statisti-
al zones (8–21) used in this application are consistent with
sai et al . (2023) . Brown shrimp fishery-independent moni-
oring CPUE data are then averaged across all depths, sea-
ons, and statistical zones for each year, resulting in yearly
tock abundance dynamics for our analyses. Note that, it is the
ggregated, instead of size- or age-disaggregated, time-series
ata that are used in our analyses. 

P-EDM analysis and simulation platform 

ll analyses and simulations of dynamics were performed
sing R Statistical Software (v4.3.1). Algorithms of fishery-
entric GP-EDM framework were developed under R version
.3.1 using packages: TMB (v1.9.6), yardstick (v1.2.0), and
aDENCE (v1.2.5). R codes are available at https://github.

om/ TsaiCH/ Fishery-GPEDM . 

esults 

e found that, in general, the GP-EDM framework pro-
uced statistically robust and accurate estimates of MSY un-
er various scenarios of dynamics, although estimate were
uch more precise for scenarios with fluctuating harvest-

ng ( Fig. 2 ). Out-of-sample LOO prediction skill metrics
i.e. RMSE, MAE, predictive Pearson correlation ( ρ), and

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
https://github.com/TsaiCH/Fishery-GPEDM
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Figure 2. MSY estimates derived from the GP-EDM framework across various model selection methods and dynamics scenarios. (a) MSY estimates 
from the Pella–Tomlinson model with unidirectional harvesting. (b) MSY estimates from the Pella–Tomlinson model with fluctuating harvesting. (c) MSY 
estimates from the prey–predator dynamics with unidirectional harvesting. (d) MSY estimates from the prey–predator dynamics with fluctuating 
harv esting. T he solid circle indicates the a v erage MSY deriv ed from 150 simulations, with the er ror bar denoting + / − 1 standard er ror of these 
estimates. The red dashed line represents the analytical “true” MSY for each dynamic scenario: 0.404 for the Pella–Tomlinson model and 1.361 for the 
prey–predator model. For model selection, out-of-sample prediction skill metrics (leave-one-out, LOO) include root mean square error (RMSE), mean 
absolute error (MAE), predictive Pearson correlation ( ρ), and R 

2 . Information-related metrics include Akaike information criteria (AIC), Bayesian 
information criteria (BIC), and log-likelihood (LL). Notice the differences in the horizontal axis scale. 
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predictive R 

2 ), information criteria (i.e. AIC and BIC), and 

maximum log-likelihood function (LL) all performed simi- 
larly to select the best fitted GP-EDM for estimating MSY.
All model selection methods produced a robust averaged MSY 

with + / − 1 standard error intervals that covered the true MSY,
regardless of embedding dimension and data transformation 

( Fig. 2 ). 
Models chosen based on out-of-sample forecasting met- 

rics (RMSE, MAE, ρ, and R 

2 ) and information-based parsi- 
mony, on average, yielded similar accuracy for MSY ( Fig. 2 ).
However, GP-EDM tended to reduce the estimation error for 
MSY under fluctuating harvesting scenarios compared with 

unidirectional harvesting scenarios, i.e. the one-way trip har- 
vest rate (cf. Fig. 2 left panels versus right panels). Addi- 
tionally, EDM MSY estimates are robust to the assumptions 
about chaotic dynamics and assumptions about proportion- 
ality and hyper-stability ( Fig. S2a, b, d, e ), but potentially 
sensitive to hyper-depletion with mild conditions ( β = 1.2) 
( Fig. S2c and f). EDM MSY tended to have lower standard er- 
rors under fluctuating harvesting scenarios than those under 
unidirectional harvesting scenarios, regardless of assumptions 
bout chaotic dynamics or proportionality of abundance in- 
ex ( Fig. S2 ). 
In applying the GP-EDM framework to the Gulf of Mex-

co Brown shrimp landings and fishery-independent CPUE 

ata, we observed a consistency in model selection. Both 

rediction skill metrics and information criteria favored the 
ame model, characterized by an optimal embedding dimen- 
ion E = 4 and a Type-I log difference transformation (refer
o Table 1 ). This specific model, which we refer to as “Mod-
lE4T1,” yielded the most accurate out-of-sample CPUE fore- 
asts (LOO R 

2 = 0.71) and exhibited the smallest out-of-
ample prediction errors (LOO RMSE = 0.206 and LOO 

AE = 0.163) as depicted in Fig. 3 . Such metrics are crucial
or generating statistically robust MSY estimates, as shown 

n Figs 2 and 3 . Given the unanimous agreement across all
odel selection metrics, we designated ModelE4T1 as the pri- 
ary candidate for MSY estimation. 
The LOO prediction skill exhibited a noteworthy trend: 

t improved as the embedding dimension ( E ) increased. No-
ably, it achieved peak accuracy at E = 4 (LOO R 

2 = 0.71), a
tark contrast to its lowest at E = 1 (LOO R 

2 = 0.1), which

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
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Table 1. Model selection using GP-EDM for Brown Shrimp dynamics in the US Gulf of Mexico. The top-performing model, highlighted in bold, is designated 
as “ModelE4T1.” It features an embedding dimension of E = 4 and utilizes a Type-I log-difference transformation 

LL AIC BIC MAE RMSE ρ R 

2 MSY SE(MSY) 

E = 5 
Non-transform − 160 .19 322 .99 324 .7 0 .318 0 .391 0 .57 − 0 .06 n.a. n.a. 
Log-transform − 151 .52 309 .39 313 .6 0 .241 0 .281 0 .68 0 .44 n.a. n.a. 
Type-I log-difference 74 .62 − 95 .02 − 58 .89 0 .175 0 .212 0 .83 0 .68 1373.15 41.74 
Type-II log-difference 26 .45 − 1 .83 32 .18 0 .314 0 .381 0 .66 − 0 .01 79 895 17 152 
E = 4 
Non-transform − 165 .65 333 .95 335 .8 0 .309 0 .384 0 .56 − 0 .05 n.a. n.a. 
Log-transform − 157 .74 321 .01 324 .8 0 .241 0 .284 0 .66 0 .42 n.a. n.a. 
Type-I log-difference 77 .99 − 100 .21 − 62 .06 0 .163 0 .206 0 .84 0 .71 225.35 3.52 
Type-II log-difference 25 .41 − 6 .76 23 .34 0 .203 0 .241 0 .77 0 .58 54 233 26 734 
E = 3 
Non-transform − 174 .34 350 .62 352 0 .345 0 .418 0 .01 − 0 .29 n.a. n.a. 
Log-transform − 167 .99 339 .32 341 .7 0 .272 0 .348 0 .33 0 .11 n.a. n.a. 
Type-I log-difference 19 .95 2 .29 31 .86 0 .254 0 .322 0 .59 0 .23 789.04 22.18 
Type-II log-difference − 7 .93 28 .06 36 .61 0 .257 0 .339 0 .46 0 .15 251 993 15 364 

E is embedding dimension. LL is log marginal likelihood as defined in ( 2 ). Out-of-sample (leave-one-out, LOO) prediction skill metrics include MAE, RMSE, 
ρ, and R 

2 , which are mean absolute error, root mean square error, and Pearson correlation, and predictive R 

2 , respectively defined in ( 5 ) and ( 6 ). AIC and BIC 

are Akaike information criteria and Bayesian information criteria as defined in ( 9 ). MSY and SE(MSY) are maximum sustainable yield and the corresponding 
standard error. “n.a.” represents numerical instability w/o convergence. 

Figure 3. Analysis and predictions of Brown Shrimp stock abundance dynamics in the US Gulf of Mexico. (a) Prediction mean + / − 1 standard error (red 
triangle and error bar) versus observation (black circle) for Brown Shrimp. Predictions are derived from the same model favored by both out-of-sample 
(lea v e-one-out, LO O) prediction skill metrics and inf ormation criteria, characteriz ed b y an optimal embedding dimension E = 4 and a Type-I log difference 
transformation ( Table 1 ). (b) A log-scaled comparison of observed versus GP-EDM predicted catch per unit effort (CPUE) for Brown shrimp (LOO 

R 

2 = 0.71; Table 1 ). (c) Fishery landings for Brown Shrimp, represented in million pounds. This data, combined with CPUE, serves as input for the 
GP-EDM frame w ork tailored to fisheries. (d) A depiction of ho w GP-EDM’s out-of-sample predictiv e accuracy correlates with the number of time-dela y 
vectors [referenced in ( 1 ) and ( 2 )]. 
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is similar to traditional single-species production models (re- 
fer to Fig. 3 c and schematic Fig. 1 ). The catchability factor,
denoted as q , which bridges CPUE and fishery landings [as 
per ( 2 )], was estimated at 1.18, with a standard error ranging 
from 1.06 to 1.18. The parameter values estimated by Mod- 
elE4T1 for Brown shrimp can be found in Fig. S3 . 

Moreover, our analysis revealed marginal enhancements in 

the GP-EDM’s out-of-sample predictive accuracy for Brown 

shrimp when pivotal environmental variables were incorpo- 
rated ( Tables S1 and S2 ). These variables were previously 
thought to be important drivers of annual Brown shrimp 

abundance. The inclusion of time lags for both the recruit- 
ment and rainfall indices within the GP-EDM framework did 

not offer any substantial boost to the prediction skill, espe- 
cially when juxtaposed with ModelE4T1, which only consid- 
ered lags of landings and CPUE data. 

From the fits of ModelE4T1, we deduced the GP-EDM 

MSY for the Gulf of Mexico’s Brown shrimp ( Fig. 4 ).
The long-term average CPUE at MSY stood roughly at 
376.94 ± 5.64 tails per tow ( Fig. 4 a), with the MSY roughly 
at 225.35 ± 3.52 million pounds or 102.22 ± 1.60 million 

kilograms of tails ( Fig. 4 b). The harvest rate at MSY was ap- 
proximated to be 0.72, such that the biomass at MS Y (BMS Y) 
amounted to 312.98 million pounds or 141.97 million kilo- 
grams of tails. 

Discussion 

Our simulations demonstrate that GP-EDM can yield robust 
estimates of MSY that closely approximate the theoretical 
MSY values. This holds true not only for single-species fishery 
dynamics, where potential species interactions are treated as 
environmental (or process) noise, but also for multi-species 
systems, where species interactions are implicitly modeled 

with lags in GP-EDM ( Fig. 2 ). Furthermore, unlike traditional 
parametric production models, GP-EDM displays a notable 
resilience in scenarios with chaotic dynamics under unidirec- 
tional (one-way trip) dynamics ( Fig. S2 ). This observation 

aligns with prior findings (Brias and Munch 2021 , Giron- 
Nava et al. 2021 ), suggesting that non-parametric approaches 
may offer greater robustness in the face of dynamic history 
of harvesting, compared to traditional parametric methods 
where statistical identifiability issues often hinder the accurate 
estimation of parameter aggregates like MSY. 

Recently, Boettiger (2022) identified a “forecast trap”
where using prediction accuracy to choose among a small 
handful of parametric models led to significantly worse man- 
agement benchmarks. In contrast, our results indicate that us- 
ing out-of-sample (LOO) prediction skill for model selection 

is entirely satisfactory and better than other selection crite- 
ria ( Figs 2 , S2 ). Careful consideration of the issue of forecast 
trap suggests that it arises from choosing among several can- 
didate models, none of which can reconstruct the true mech- 
anistic dynamics (Paniw et al. 2023 ). On the other hand, the 
non-parametric approach of GP-EDM, provided with suffi- 
cient data, can reconstruct the underlying dynamics in a wide 
range of systems (Rogers and Munch 2020 , Brias and Munch 

2021 , Tsai et al. 2023 ). We hypothesize that this flexibility cir- 
cumvents the forecast trap, though more detailed analysis is 
warranted. 

While our findings hold promise, it is crucial to acknowl- 
edge several important caveats. First, the efficacy of EDM 

and any resulting management recommendations depends on 
he availability of data. Meta-analyses suggest that time se- 
ies should be several multiples of the generation time to pro-
ide reasonable prediction accuracy (Munch et al. 2018 ). Sec-
nd, if there is relatively little variation in historical dynam-
cs between fishing and stock abundance (i.e. variations in 

atch/landings subtracted from CPUE), estimates of MSY may 
e accompanied by increased uncertainty. In situations where 
he generation time is long or the historical variation in fish-
ng and stock abundance dynamics is limited, resorting to tra-
itional parametric approaches, such as stock synthesis and 

ata-limited methods, may help (Methot and Wetzel 2013 ,
hong et al. 2020 , Pons et al. 2020 , Legault et al. 2023 ).
owever, we caution that the accuracy of extrapolation from 

raditional parametric approaches depends heavily on struc- 
ural assumptions which may be difficult to justify (Thorson 

t al. 2014 ). Although beyond the scope of this work, addi-
ional simulations with a variety of models and time series
engths may help clarify conditions under which GP-EDM or 
raditional assessments are preferable. Finally, we note that 
he present analyses have focused solely on constant harvest 
ate policies. These are likely to be sub-optimal in cyclical
sheries—overharvesting when biomass is low and underhar- 
esting when it is high. In these situations, a state-dependent 
olicy constructed using EDM (Brias and Munch 2021 , 2024 )
ay be a significant improvement. 
Several extensions to the current framework may enhance 

tility of GP-EDM. Here, in keeping with the shrimp case
tudy (Tsai et al. 2023 ), we used landings and abundance in-
ices to estimate MSY. However, with appropriate algebraic 
djustments the GP-EDM framework can readily use land- 
ngs and some proxy for fishing effort to estimate MSY. In-
eed, in keeping with the traditional assumption that catch is a
unction of abundance and effort, GP-EDM only requires any 
wo measures among catch, effort, and CPUE to generate pre-
ictions. Given the greater availability of fishery-dependent 
PUE compared to fishery-independent survey data, we pro- 
ose that our framework can be readily expanded to encom-
ass numerous other fisheries practices. However, we cau- 
ion that our methodology has certain imprecisions, leading to 

ide uncertainty ranges in the MSY estimates ( Fig. 2 ). This ap-
roach may also fail in cases of strong hyperdepletion, where
ssumptions about the proportionality of the abundance in- 
ex can introduce bias in the MSY estimates ( Fig. S2 ). Fu-
ure research should take these limitations into account. One 
otential solution might be to relax the assumed relationship 

etween catch, effort, and biomass in a non-parametric way
r to expand the pool of candidate models. In addition, age-
tructured EDM (Dolan et al. 2023 ) and spatial EDM (John-
on et al. 2021 ) leverage multiple short series to improve pre-
iction accuracy. We expect that age-structured EDM could 

mprove MSY estimates for longer-lived species. Additionally,
ince spatial EDM can account for spatial heterogeneity, it 
ay be useful for setting spatial management targets. Given 

rown shrimp are more susceptible to environmental factors 
t early ages, while resident in semi-enclosed, estuarine waters
Schlenker et al. 2023 ), future work may consider the applica-
ility of spatial EDM in further improving Gulf shrimp fishery
anagement. 
Turning to the Gulf of Mexico Brown shrimp case study,

e find that the predictive capability of GP-EDM utilizing 
ime lags significantly outperforms that of the single time lag
odel ( Fig. 3 , Table 1 ). Particularly, we find that four lags of

scapement [i.e. catch/landings subtracted from CPUE as 

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
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Figure 4. GP-EDM MSY for Gulf of Mexico’s Brown Shrimp. The optimal GP-EDM prediction (with an LOO R 

2 = 0.71 as detailed in Table 1 ) provides the 
f oundation f or determining reference points. (a) T he relationship betw een CPUE and the harv est rate at steady state. T he GP-EDM’s projected long-term 

a v erage CPUE at MSY is approximately 376.94 + / − 5.64 tails per tow. (b) The relationship between catch (or landings) and harvest rate at steady state. 
The GP-EDM MSY is approximately 225.35 + / − 3.52 million pounds or 102.22 ± 1.60 million kilograms of tails. The solid circle indicates the average 
estimation, while the bar shows a range of two standard errors for these estimates. 

p  

B  

t  

t  

f  

c  

t  

w  

G  

c  

w  

S  

t  

p  

m  

b
 

p  

h  

t  

t  

o  

o  

a  

c  

P  

l  

o  

r  

B  

d  

w  

s  

e  

m  

s  

b  

p  

E

 

t  

i  

w  

t  

g  

d  

v  

t  

t  

a  

w  

w  

c  

w  

a  

d  

t  

2
 

r  

fi  

s  

h  

r  

o  

f  

l  

a  

r  

m  

d  

c  

a  

l  

b  

s  

(  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/7/1209/7696789 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 07 N
ovem

ber 2024
er ( 2 )] provides the best prediction accuracy for year-ahead
rown shrimp CPUE ( Table 1 ). This underscores the impor-

ance of incorporating historical data on both fishery opera-
ions and fishery-independent abundance proxies to account
or hidden state-variables beyond the current stock size (e.g.
onsidering unobserved species interactions and environmen-
al feedbacks; Fujiwara et al. 2016 , Schlenker et al. 2023 ),
hich is also a key characteristic of our new fishery-centric
P-EDM framework ( Fig. 1 ). Additionally, it enables a more

omplicated production function or yield curve compared
ith the typically considered parametric family ( Fig. S4 ).

pecifically, the expected Brown shrimp CPUE is not a mono-
onic function of the first lag of escapement, and seems to de-
end on the longer time lags (e.g. the second time lags) that
ight account for unobserved species and environmental feed-
acks ( Fig. S4 ). 
The GP-EDM MSY for brown shrimp (circa 225 million

ounds or 102 million kilograms of tails; Fig. 4 ), appears to
ave a higher value, but within the same order of magni-
ude, compared to previous estimates obtained from produc-
ion models (circa 88 million pounds or 40 million kilograms
f tails) and stock synthesis models (circa 147 million pounds
r 67 million kilograms of tails). Note that, GP-EDM MSY
nd other previous MSY estimates are all above the current
atch level for Brown shrimp, which is reasonable given that
enaeid shrimp catch in the Gulf of Mexico has only been
imited by total fishing effort due to the bycatch mortality on
ther species with longer life span. Based on our simulation
esults, we expect that the derived GP-EDM MSY value for
rown shrimp is at least as robust as that derived from tra-
itional assessments (Peterson and Walter 2023 ). However,
e caution that EDM MSY derived from real data may be

ensitive to data transformation and model complexity (e.g.
ffective embedding dimension), where numerical instability
ay arise from model candidates lacking sufficient prediction

kills ( Table 1 ). We suggest that a representative model chosen
ased on both prediction skill and parsimony, as well as ex-
ert knowledge, are important considerations for a consensus

DM MSY. 2
Interestingly, we found that augmenting our analysis with
ime series for recruitment and rainfall did not significantly
mprove prediction accuracy ( Tables S1 and S2 ). This aligns
ith our earlier study (Tsai et al. 2023 ) where we observed

hat environmental factors, including salinity, dissolved oxy-
en, and temperature, have limited impact on GP-EDM pre-
iction accuracy. As these drivers have clear ecological rele-
ance (Schlenker et al. 2023 ), it is important to consider why
hey do not improve forecast accuracy (Peterson and Wal-
er 2023 ). One potential explanation is that these variables
re not measured in the optimal location or time of year or
ith enough precision to be most informative. Alternatively,
e note that Granger-style causality arguments, in which in-

luding causal drivers improves time series prediction, do not
ork with time delay embedding (Sugihara et al. 2012 ). Thus,
 second, non-exclusive, possibility is that these drivers are in-
eed important but that their influence is already captured in
he lagged patterns of CPUE and catch/landings (Munch et al.
023 , Tsai et al. 2023 ). 
In summary, we advocate for adopting MSY estimates de-

ived from GP-EDM as a robust framework for establishing
shery reference points that can effectively account for unob-
erved species and environmental feedbacks and underlying
istorical exploitation dynamics. This positions GP-EDM as a
eliable scientific foundation to re-evaluate current methodol-
gy for estimating stock status (i.e. SDC), particularly crucial
or addressing the inadequacies observed in managing short-
ived Penaeid shrimp species in the Gulf of Mexico (Peterson
nd Walter 2023 ). Furthermore, while GP-EDM does require
easonably extensive time series, the data demands are notably
ore manageable when compared with those of conventional
ata-rich assessment methods. This suggests that GP-EDM
ould serve as a practical alternative for other data-moderate
ssessments, especially in cases where species exhibit short
ifespans and their true population dynamics are influenced
y substantial abundance fluctuations stemming from unob-
erved species interactions and complex ecosystem feedbacks
Glaser et al. 2014 , Fogarty et al. 2016 , Munch et al. 2018 ,
020 ). 

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data


Empirical modelling for benchmarks of short-lived species 1219 

 

 

 

E  

E  

 

F  

 

F  

 

 

G  

 

 

G  

 

G  

 

G  

 

H  

 

H  

J  

J  

 

K  

 

L  

 

L  

 

 

L  

 

 

L  

 

M  

 

M  

M  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/7/1209/7696789 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 07 N
ovem

ber 2024
A c kno wledg ements 

We thank Lewis Coggins and Bethany Johnson for help- 
ing with preliminary analyses. We would like to thank the 
anonymous reviewers and NOAA’s internal reviewers for their 
valuable comments and suggestions, which greatly improved 

the quality of this manuscript. This study and the development 
of fishery-centric GP-EDM framework were supported by the 
Lenfest Oceans Program. 

Author contributions 

C.-H.T., S.B.M., M.D.M., and M.H.S. devised the research 

program; C.-H.T. and S.B.M. performed analysis with help 

from M.D.M. and M.H.S; C.-H.T. and S.B.M. wrote the first 
draft of manuscript; and all authors were involved in in- 
terpreting the results and contributed to the final draft of 
manuscript. 

Supplementary data 

Supplementary data is available at ICES Journal of Marine 
Science online. 

Conflict of interest : The authors declare no competing inter- 
ests. 

Data availability 

R code and data required for reproducing analyses are avail- 
able at https:// github.com/TsaiCH/ Fishery-GPEDM . Data 
generated or analyzed in this study can be obtained from the 
authors, MM and MS, upon a reasonable request and with 

SEAMAP’s permission. 

References 

Arkhipkin AI , Hendrickson LC, Payá I et al. Stock assessment 
and management of cephalopods: advances and challenges for 
short-lived fishery resources. ICES J Mar Sci 2021 ; 78 :714–30. https: 
// doi.org/ 10.1093/ icesjms/ fsaa038 (27 September 2023, date last ac- 
cessed).

Boettiger C . The forecast trap. Ecol Lett 2022 ; 25 :1655–64. https://doi. 
org/ 10.1111/ ele.14024 

Brias A , Munch SB. Ecosystem based multi-species management using 
Empirical Dynamic Programming. Ecol Model 2021 ; 441 :109423.
https:// doi.org/ 10.1016/ j.ecolmodel.2020.109423 

Chang C , Ushio M, Hsieh C. Empirical dynamic modeling for begin- 
ners. Ecol Res 2017; 32 :785–96. https:// doi.org/ 10.1007/ s11284-0 
17- 1469- 9 

Chong L , Mildenberger TK, Rudd MB et al. Performance evaluation 
of data-limited, length-based stock assessment methods. ICES J Mar 
Sci 2020 ; 77 :97–108. https:// doi.org/ 10.1093/ icesjms/ fsz212 

Cleveland WS , Grosse E. Computational methods for local regression.
Stat Comput 1991 ; 1 :47–62. https:// doi.org/ 10.1007/ BF01890836 

Deyle ER , Fogarty M, Hsieh C et al. Predicting climate effects on Pacific 
sardine. Proc Natl Acad Sci 2013 ; 110 :6430–5. https:// doi.org/ 10.1 
073/pnas.1215506110 

Deyle ER , Schueller AM, Ye H et al. Ecosystem-based forecasts of 
recruitment in two menhaden species. Fish Fish 2018 ; 19 :769–81.
https:// doi.org/ 10.1111/ faf.12287 

Dolan TE , Palkovacs EP, Rogers TL et al. Age structure augments the 
predictive power of time series for fisheries and conservation. Can 
J Fish Aquat Sci 2023 ; 80 :795–807. https:// doi.org/ 10.1139/ cjfas-20 
22-0219 
ngelhard GH , Peck MA, Rindorf A et al. Forage fish, their fisheries,
and their predators: who drives whom? ICES J Mar Sci 2014 ; 71 :90–
104. https:// doi.org/ 10.1093/ icesjms/ fst087 

ssington TE , Moriarty PE, Froehlich HE et al. Fishing amplifies forage
fish population collapses. Proc Natl Acad Sci 2015 ; 112 :6648–52.
https:// doi.org/ 10.1073/ pnas.1422020112 

ogarty MJ , Gamble R, Perretti CT. Dynamic complexity in exploited
marine ecosystems. Front Ecol Evol 2016 ; 4 . http://journal.fronti
ersin.org/ Article/ 10.3389/ fevo.2016.00068/ abstract (27 September 
2023, date last accessed).

ujiwara M , Zhou C, Acres C et al. Interaction between penaeid shrimp
and fish populations in the Gulf of Mexico: importance of shrimp
as forage species. PLoS One 2016 ; 11 :e0166479. https:// doi.org/ 10
.1371/journal.pone.0166479 

arcia SP , DeLancey LB, Almeida JS et al. Ecoforecasting in real
time for commercial fisheries: the Atlantic white shrimp as a case
study. Mar Biol 2007 ; 152 :15–24. https:// doi.org/ 10.1007/ s00227-0
07- 0622- 3 

iron-Nava A , Ezcurra E, Brias A et al. Environmental variability and
fishing effects on the Pacific sardine fisheries in the Gulf of Califor-
nia. Can J Fish Aquat Sci 2021 ; 78 :623–30. https:// doi.org/ 10.1139/ 
cjfas- 2020- 0010 

laser SM , Fogarty MJ, Liu H et al. Complex dynamics may limit
prediction in marine fisheries. Fish Fish 2014 ; 15 :616–33. https://do
i.org/ 10.1111/ faf.12037 

laser SM , Ye H, Maunder M et al. Detecting and forecasting com-
plex nonlinear dynamics in spatially structured catch-per-unit-effort 
time series for North Pacific albacore (Thunnus alalunga). Can J Fish
Aquat Sci 2011 ; 68 :400–12. https:// doi.org/ 10.1139/ F10-160 

arley SJ , Myers RA, Dunn A. Is catch-per-unit-effort proportional to
abundance? Can J Fish Aquat Sci 2001 ; 58 :1760–72. https://doi.or
g/ 10.1139/ f01-112 

sieh C , Reiss CS, Hunter JR et al. Fishing elevates variability in the
abundance of exploited species. Nature 2006 ; 443 :859–62. https:// 
doi.org/ 10.1038/ nature05232 

ohnson B , Gomez M, Munch SB. Leveraging spatial informa-
tion to forecast nonlinear ecological dynamics. Methods Ecol Evol 
2021 ; 12 :266–79. https:// doi.org/ 10.1111/ 2041-210X.13511 

ohnson B , Munch SB. An empirical dynamic modeling framework for
missing or irregular samples. Ecol Model 2022 ; 468 :109948. https:
// doi.org/ 10.1016/ j.ecolmodel.2022.109948 

rämer N , Sugiyama M. The degrees of freedom of partial least squares
regression. J Am Statist Assoc 2011 ; 106 :697–705. https:// doi.org/ 10
.1198/jasa.2011.tm10107 

egault CM , Wiedenmann J, Deroba JJ et al. Data-rich but model-
resistant: an evaluation of data-limited methods to manage fish- 
eries with failed age-based stock assessments. Can J Fish Aquat Sci
2023 ; 80 :27–42. https:// doi.org/ 10.1139/ cjfas- 2022- 0045 

i C , Liu H. Comparative ecosystem modelling of dynamics and stabil-
ity of subtropical estuaries under external perturbations in the Gulf
of Mexico. ICES J Mar Sci 2023 ; 80 :1303–18. https:// doi.org/ 10.1
093/ icesjms/ fsad056 

indegren M , Checkley DM, Rouyer T et al. Climate, fishing, and
fluctuations of sardine and anchovy in the California Current. Proc
Natl Acad Sci 2013 ; 110 :13672–7. https:// doi.org/ 10.1073/ pnas.1
305733110 

iu H , Fogarty M, Glaser S et al. Nonlinear dynamic features and co-
predictability of the Georges Bank fish community. Mar Ecol Prog
Ser 2012 ; 464 :195–207. https:// doi.org/ 10.3354/ meps09868 

asi MD , Ainsworth CH, Kaplan IC et al. Interspecific interac-
tions may influence reef fish management strategies in the Gulf of
Mexico. Mar Coast Fish 2018 ; 10 :24–39. https:// doi.org/ 10.1002/ 
mcf2.10001 

ethot RD , Wetzel CR. Stock synthesis: a biological and statistical
framework for fish stock assessment and fishery management. Fish 
Res 2013 ; 142 :86–99. https:// doi.org/ 10.1016/ j.fishres.2012.10.012 

unch SB , Brias A, Sugihara G et al. Frequently asked questions about
nonlinear dynamics and empirical dynamic modelling. ICES J Mar 
Sci 2020 ; 77 :1463–79. https:// doi.org/ 10.1093/ icesjms/ fsz209 

http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
https://github.com/TsaiCH/Fishery-GPEDM
https://doi.org/10.1093/icesjms/fsaa038
https://doi.org/10.1111/ele.14024
https://doi.org/10.1016/j.ecolmodel.2020.109423
https://doi.org/10.1007/s11284-017-1469-9
https://doi.org/10.1093/icesjms/fsz212
https://doi.org/10.1007/BF01890836
https://doi.org/10.1073/pnas.1215506110
https://doi.org/10.1111/faf.12287
https://doi.org/10.1139/cjfas-2022-0219
https://doi.org/10.1093/icesjms/fst087
https://doi.org/10.1073/pnas.1422020112
http://journal.frontiersin.org/Article/10.3389/fevo.2016.00068/abstract
https://doi.org/10.1371/journal.pone.0166479
https://doi.org/10.1007/s00227-007-0622-3
https://doi.org/10.1139/cjfas-2020-0010
https://doi.org/10.1111/faf.12037
https://doi.org/10.1139/F10-160
https://doi.org/10.1139/f01-112
https://doi.org/10.1038/nature05232
https://doi.org/10.1111/2041-210X.13511
https://doi.org/10.1016/j.ecolmodel.2022.109948
https://doi.org/10.1198/jasa.2011.tm10107
https://doi.org/10.1139/cjfas-2022-0045
https://doi.org/10.1093/icesjms/fsad056
https://doi.org/10.1073/pnas.1305733110
https://doi.org/10.3354/meps09868
https://doi.org/10.1002/mcf2.10001
https://doi.org/10.1016/j.fishres.2012.10.012
https://doi.org/10.1093/icesjms/fsz209


1220 Tsai et al. 

M  

 

M  

 

M  

 

 

M  

 

 

M  

 

N  

N  

P  

 

 

P  

 

P  

 

P  

 

 

R  

 

S  

 

 

S  

 

S  

 

T  

 

T  

 

 

T  

 

T  

 

 

U  

 

V  

Y  

 

 

©

C

i

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/7/1209/7696789 by N
ati
unch SB , Brias A. Empirical dynamic programming for model-free
ecosystem-based management. Methods Ecol Evol 2024 ; 15 :769–78.
https:// doi.org/ 10.1111/ 2041-210X.14302 

unch SB , Giron-Nava A, Sugihara G. Nonlinear dynamics and
noise in fisheries recruitment: a global meta-analysis. Fish Fish
2018 ; 19 :964–73. https:// doi.org/ 10.1111/ faf.12304 

unch SB , Poynor V, Arriaza JL. Circumventing structural uncer-
tainty: a Bayesian perspective on nonlinear forecasting for ecology.
Ecol Complex 2017 ; 32 :134–43. https:// doi.org/ 10.1016/ j.ecocom.2
016.08.006 

unch SB , Rogers TL, Johnson BJ et al. Rethinking the preva-
lence and relevance of chaos in ecology. Annu Rev Ecol Evol Syst
2022 ; 53 :227–49. https:// doi.org/ 10.1146/ annurev- ecolsys- 111320
-052920 

unch SB , Rogers TL, Sugihara G. Recent developments in empirical
dynamic modelling. Methods Ecol Evol 2023 ; 14 :732–45. https://do
i.org/ 10.1111/ 2041-210X.13983 

ance JM . Estimation of effort for the Gulf of Mexico shrimp fishery.
NOAA Technical Memorandum, NMFS-SEFSC-300, 12 pp, 1992.

eal RM . Priors for infinite networks. In: Bayesian Learning for Neural
Netw or ks . New York, NY: Springer, 1996.

aniw M , García-Callejas D, Lloret F et al. Pathways to global-change
effects on biodiversity: new opportunities for dynamically forecast-
ing demography and species interactions. Proc R Soc B Biol Sci
2023 ; 290 :20221494. https:// doi.org/ 10.1098/ rspb.2022.1494 

eterson CD , Walter JF. Southeast fisheries science center manage-
ment strategy evaluation strategic plan . NOAA Tech. Memo. NMFS-
SEFSC-TM-766, 27pp, 2023.

insky ML , Byler D. Fishing, fast growth and climate vari-
ability increase the risk of collapse. Proc R Soc B Biol Sci
2015 ; 282 :20151053. https:// doi.org/ 10.1098/ rspb.2015.1053 

ons M , Cope JM, Kell LT. Comparing performance of catch-based
and length-based stock assessment methods in data-limited fisheries.
Can J Fish Aquat Sci 2020 ; 77 :1026–37. https:// doi.org/ 10.1139/ cj
fas- 2019- 0276 
The Author(s) 2024. Published by Oxford University Press on behalf of International Council for t

reative Commons Attribution License ( https:// creativecommons.org/ licenses/by/ 4.0/ ), which permits

s properly cited. 
ogers TL , Munch SB. Hidden similarities in the dynamics of a
weakly synchronous marine metapopulation. Proc Natl Acad Sci
2020 ; 117 :479–85. https:// doi.org/ 10.1073/ pnas.1910964117 

chlenker LS , Stewart C, Rock J et al. Environmental and climate vari-
ability drive population size of annual penaeid shrimp in a large
lagoonal estuary. PLoS One 2023 ; 18 :e0285498. https:// doi.org/ 10
.1371/journal.pone.0285498 

iple MC , Koehn LE, Johnson KF et al. Considerations for man-
agement strategy evaluation for small pelagic fishes. Fish Fish
2021 ; 22 :1167–86. https:// doi.org/ 10.1111/ faf.12579 

ugihara G , May R, Ye H et al. Detecting causality in complex ecosys-
tems. Science 2012 ; 338 :496–500. https:// doi.org/ 10.1126/ science.
1227079 

akens F . Detecting strange attractors in turbulence. In: Dynamical Sys-
tems and Turbulence, Warwick 1980 . Berlin, Heidelberg: Springer,
1981, 366–81.

horson JT , Cope JM, Branch TA et al. Spawning biomass refer-
ence points for exploited marine fishes, incorporating taxonomic
and body size information. Can J Fish Aquat Sci 2012 ; 69 :1556–68.
https:// doi.org/ 10.1139/ f2012-077 

horson JT , Ono K, Munch SB. A Bayesian approach to identifying
and compensating for model misspecification in population models.
Ecology 2014 ; 95 :329–41. https:// doi.org/ 10.1890/ 13-0187.1 

sai C-H , Munch SB, Masi MD et al. Predicting nonlinear dynamics of
short-lived penaeid shrimp species in the Gulf of Mexico. Can J Fish
Aquat Sci 2023 ; 80 :57–68. https:// doi.org/ 10.1139/ cjfas- 2022- 0029

shio M , Hsieh C, Masuda R et al. Fluctuating interaction net-
work and time-varying stability of a natural fish community. Nature
2018 ; 554 :360–3. https:// doi.org/ 10.1038/ nature25504 

aida F , Blanchard S. Conditional Akaike information for mixed effects
models. Biometrika 2005 ; 92 :351–70.

e H , Beamish RJ, Glaser SM et al. Equation-free mechanistic
ecosystem forecasting using empirical dynamic modeling. Proc Natl
Acad Sci 2015 ; 112 :E1569–76. https:// pnas.org/doi/full/ 10.1073/ pn
as.1417063112 (27 September 2023, date last accessed).
Handling Editor: Ruben Roa-Ureta 

he Exploration of the Sea. This is an Open Access article distributed under the terms of the 

 unrestricted reuse, distribution, and reproduction in any medium, provided the original work 

onal O
ceanic & Atm

ospheric Adm
inistration user on 07 N

ovem
ber 2024

https://doi.org/10.1111/2041-210X.14302
https://doi.org/10.1111/faf.12304
https://doi.org/10.1016/j.ecocom.2016.08.006
https://doi.org/10.1146/annurev-ecolsys-111320-052920
https://doi.org/10.1111/2041-210X.13983
https://doi.org/10.1098/rspb.2022.1494
https://doi.org/10.1098/rspb.2015.1053
https://doi.org/10.1139/cjfas-2019-0276
https://doi.org/10.1073/pnas.1910964117
https://doi.org/10.1371/journal.pone.0285498
https://doi.org/10.1111/faf.12579
https://doi.org/10.1126/science.1227079
https://doi.org/10.1139/f2012-077
https://doi.org/10.1890/13-0187.1
https://doi.org/10.1139/cjfas-2022-0029
https://doi.org/10.1038/nature25504
https://pnas.org/doi/full/10.1073/pnas.1417063112
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Author contributions
	Supplementary data
	Data availability
	References



