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Abstract

The abundance dynamics of short-lived marine species often exhibit large-amplitude fluctuations, potentially driven by unknown but
important species interactions and environmental effects. These complex dynamics pose challenges in forecasting and establishing
robust reference points. Here, we introduce an empirical dynamic modeling (EDM) framework using time-delay embeddings to recover
unspecified species interactions and environmental effects, and use walk-forward simulations with varying harvest rates to estimate
maximum sustainable yield (MSY). Firstly, we apply our framework to simulated data under various dynamics scenarios and demon-
strate the statistical robustness of EDM-based MSY. Secondly, we apply our framework to abundance and catch time series (>30 years)
of federally managed brown shrimp stocks in the US Gulf of Mexico. We identify nonlinear signals and achieve high prediction accuracy
in the empirical dynamics of brown shrimp. Lastly, based on the EDM of brown shrimp dynamics, we obtain MSY for timely and effec-
tive management. Our results highlight the utility of EDM in deriving reference points for short-lived species, particularly in situations
where stock abundance and catch dynamics are influenced by unobserved species interactions and environmental effects in a complex

ecosystem.
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Introduction

Short-lived forage species play a crucial role within a ma-
rine ecosystem, transferring energy up the food chain through
trophic interactions (Engelhard et al. 2014, Siple et al. 2021).
Their population dynamics often exhibit substantial fluc-
tuations, spanning multiple orders of magnitude, rendering
them hard to predict (Lindegren et al. 2013, Arkhipkin et al.
2021). These dynamics are potentially nonlinear and chaotic
(Deyle et al. 2013, Munch et al. 2018, Tsai et al. 2023), and
highly responsive to environmental variability and/or fishing
pressure (Hsieh et al. 2006, Essington et al. 2015, Pinsky
and Byler 2015). These fundamental characteristics of short-
lived species are often overlooked by conventional stock as-
sessments models designed to model the dynamics of long-
lived stocks and commonly used to establish fishery reference
points. This approach ignores the potential influence of species
interactions (Fujiwara et al. 2016, Masi et al. 2018, Munch et
al. 2020), and environmental changes, possibly leading to un-
derestimating of the impact of nonlinear feedbacks between
competing ecosystem uses (Munch et al. 2018, 2022). More-
over, it may lead to inaccurate estimation of fishery reference
points (Glaser et al. 2014, Fogarty et al. 2016) and subopti-
mal harvesting practices (Brias and Munch 2021). Crucially,

for short-lived stocks, the time required for data processing
and the development of traditional assessment models can ex-
ceed the species’ generation time (Arkhipkin et al. 2021). Such
delays hinder effective management advice, making it difficult
to implement precautionary policy actions in a timely manner
(Peterson and Walter 2023).

As an alternative approach, we propose utilizing empiri-
cal dynamic modeling (hereafter, EDM) (Chang et al. 2017,
Munch et al. 2020, 2023) to establish fishery reference points
tailored for short-lived species. EDM uses time-delayed ob-
servations to account for unobserved state variables (e.g.
species traits, interactions with other species, and environmen-
tal drivers). Given a sufficient collection of lags, EDM then
uses non-parametric function approximation to address the
state dependency of nonlinear dynamics prevalent in complex
ecosystems (Chang et al. 2017, Munch et al. 2020, 2023). Tak-
ens (1981) theorem and its generalizations shows that under
a wide range of conditions, there is a one-to-one correspon-
dence between the dynamics inferred using delays of the ob-
servables and the dynamics in the native state space. (For fur-
ther details, readers may refer to the works of Chang et al.
2017, Munch et al. 2018, Munch et al. 2023.) By extending
EDM to include the history of exploitation, we can predict
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the impact of harvest control rates on fisheries dynamics while
implicitly accounting for unobserved interactions with other
components of the ecosystem (Brias and Munch 2021, Giron-
Nava et al. 2021, Munch et al. 2023). The EDM approach
may prove particularly advantageous for modeling short-lived
fish species, as demonstrated in the cases of California sardine
fisheries (Giron-Nava et al. 2021) and Gulf of Mexico penaeid
shrimp fisheries (Tsai et al. 2023).

Application of EDM has proven successful across a range
of marine species. Notable examples of abundance forecast-
ing include North Pacific albacore (Glaser et al. 2011), Pa-
cific sardine (Deyle et al. 2013), Fraser River salmon (Ye et
al. 2015), Gulf of Mexico and Atlantic menhaden (Deyle et
al. 2018), Atlantic blue crab (Rogers and Munch 2020), At-
lantic white shrimp (Garcia et al. 2007), as well as Gulf of
Mexico brown and white shrimp (Tsai et al. 2023). EDM has
also been used for inferring causal relationships and dynam-
ical stability in marine systems, including Georges Bank fish
communities (Liu et al. 2012), Maizuru reef fish communities
(Ushio et al. 2018), and Gulf of Mexico estuary fish commu-
nities (Li and Liu 2023). Despite these successes, there is a
paucity of cases applying EDM in fishery management. Har-
vest control policies based on EDM have only been empiri-
cally established for California sardine fisheries (Giron-Nava
et al. 2021), whereas Brias and Munch (2021, 2024) showed
that it is possible to obtain robust harvest policies for several
multi-species fishery models. Perhaps the limited use of EDM
in fisheries management is due to a misconception that EDM is
suitable only for forecasting rather than for establishing fish-
ery reference points, which is more typically the domain of
parametric, mechanistically motivated models (Munch et al.
2020, 2022, 2023).

In this study, we aim to provide a framework to showcase
the utility of EDM in deriving fishery reference points, partic-
ularly for short-lived species (schematic Fig. 1). Importantly,
our framework aims to integrate the existing simulation meth-
ods, data transformation methods and model selection meth-
ods into a single workflow, to improve the statistical robust-
ness of EDM-based reference points. As a proof of concept,
we apply the framework to the brown shrimp fishery in the US
Gulf of Mexico (GOM). Our objectives are fourfold. First, we
investigate whether EDM exhibits out-of-sample prediction
capability by combining both fishery-dependent and fishery-
independent data. Second, we assess the effectiveness of in-
corporating data transformations and ecological assumptions
regarding density dependence and catchability in improving
the prediction skill of EDM. Third, we explore the feasibility
of using EDM to estimate steady-state policy and reference
points, such as maximum sustainable yield (MSY). To evalu-
ate the robustness of EDM-derived MSY, we compare them
with theoretical MSY using simulated data and model selec-
tion methods. Fourth, we apply this framework to the brown
shrimp fishery in the GOM, thus providing practical insights
into its real-world application.

Materials and methods

Gaussian process empirical dynamic modelling
(GP-EDM)
We employ Gaussian process (GP) regression as a function

approximation technique to capture the nonlinear dynam-
ics of the stock using EDM (hereafter GP-EDM) (Munch

Tsai et al.

et al. 2017, Johnson and Munch 2022). Below, we out-
line the GP-EDM framework used to predict the univari-
ate fishery-independent catch-per-unit-effort (CPUE) time se-
ries, i.e. CPUE or abundance index from surveys. Addition-
ally, we introduce a method to estimate the relative catcha-
bility, which establishes the connection between the fishery-
dependent catch/landings series and the fishery-independent
CPUE data (also refer to schematic Fig. 1).

Let x; represent the CPUE at time ¢ and consider it as
a random function dependent on lag embeddings of CPUE
(i.e. Xp1,.., Xpm) for up to m years, where m represents
the maximum number of time lags utilized. That is, x, =
fxs—1, ..., %_m) + &, where [ is a random function that ap-
proximates the dynamical process and ¢, is the process error.
According to Takens theorem (Takens 1981), these lags are a
proxy for the true state space. Here, E = m + 1 serves as the
maximum embedding dimension, where E > 2D with D repre-
senting the dimension of the true dynamical system. As a prac-
tical guideline, empirical observations suggest that the statisti-
cally feasible E is less than or equal to ./N, where N represents
the length of the time series data (Munch et al. 2020, 2023).

We employ GP regression to approximate the delay-
embedding map f (Munch et al. 2017). The inputs, gathered
in a vector Xy, = {X¢1, ..., Xrm}, are incorporated into a
Bayesian GP model formulated as follows:

P (x| f. Xeem, ¢, 7. Ve) ~ Normal (f (Xi—m), Ve)
P(fl¢.z.V.) ~ GP(0, %)

P (¢) ~ Hal fnormal (%)

P () ~ Beta(1.1,1.1)
P(V,) ~ Beta(1.1,1.1) (1)

In (1), the first layer represents the probability density of
observing the CPUE at time # given the function approxima-
tion f, the input data of time lags X;.,,, and the parameters
¢, t, and V,, where V, represents the process noise. The sec-
ond layer represents the probability density of the function
approximation f given the parameters. The unknown func-
tion f is assigned a Gaussian process prior which general-
izes the multivariate normal distribution with mean zero and
covariance function T. The covariance function ¥ is a ten-
sor product of squared exponential covariances for each in-
put with pointwise variance > and inverse length scales ¢ =
{P1, ..., ) where the index 7 is from 1 to 7 (the maximum
number of time lags). Specifically, the covariance function is
2(Xp, Xs) = T [, expl—pilxi—i — xsi)*] where X, and X,
are delay coordinate vectors for years ¢ and s. The final layer
of the Bayesian model specifies priors for the hyperparameters
{1, -, &m, T, Vo}. We encourage sparsity in the fitted model
by assigning a half-normal prior with variance \/% for ¢;. This

prior choice asserts that f has, on average, one local extremum
within the data range, and the mode at zero encourages un-
informative lags drop out of the model (i.e. ¢ approaches 0).
This prior is widely used in GP regression under the name “au-
tomatic relevance determination” (ARD, Neal 1996). To fur-
ther encourage sparsity, ¢ is determined as “zero” by rounding
to the second decimal place. To improve the interpretability of
the inverse-length-scale parameter ¢, time series data are cen-
tered and standardized to unit variance prior to analyses. Note
that under this prior specification, the variance of a prediction

$20Z J8qWIBAON /(0 UO Jasn uonessiuiwpy ouaydsowly g o1uesdQ jeuoneN Agq 682969//60Z 1/.2/18/a1o11e/swlseol/woo dno-olwapeose//:sdiy Woil papeojumoc]



Empirical modelling for benchmarks of short-lived species

Fishery production model
Biy1 =B —C, + P(B,—Cp)
e.g., P() = rx(1 - ) for production function

B: biomass (Ibs)

=

C: catch (Ibs) Iy = qB¢
P: production (Ibs) c
|: abundance index (#/tow) — iy

q: #/lbs/tow t B,
u: exploitation rate (Ibs/Ibs)

Fishery EDM model
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Re-write production model in terms of observables

qBr+1 = qB; — qC, + qP(B; — C,)

(I — qCe)
Iy =1 —qCe + qP[%}

Now we have model linking index and catch
Note that (I, — qC,) is proportional to
surviving biomass (B, — C;)

¥

Ieyr = fU — qCrty1 — qCeny - fe—g — qCe—p)

EDM uses I, — qC, as proxy for surviving biomass as per fishery production model, but does not
assume a known production function, such that the function f of time lags allows for unobserved

state variables and species interactions

EDM-based MSY

\ 4

1. Let exploitation rate U, a controlled variable ranged from zero to one

2. Initialize the history of index I; and catch C; and predict the next time step index I, using the
best-fitted parameters and function fiteratively

3. Find the long-run averaged index and catch at MSY given a particular range of exploitation rate

Figure 1. A schematic representation of the GP-EDM framework for deriving the maximum sustainable yield (MSY). This MSY is comparable to that
derived from a conventional production model. Notably, when the dynamical system’s maximum embedding dimension is set to one, the GP-EDM
framework, given the right function approximation, simplifies to a traditional production model. Refer to the Materials and methods section for detailed
explanations of how Gaussian process regression is employed to identify the production function and parameters in the EDM framework, as well as for

simulation methods used to estimate GP-EDM MSY.

at any input is V, + 2. Since the data are standardized to unit
variance, V, + 2 ~ 1 should be sufficient. Nearly flat, inde-
pendent beta distributions are therefore used as priors for V,
and 72 allowing up to twice the variance in the data. (For fur-
ther details on prior specification and data standardization,
refer to Munch et al., 2017.)

Fishery-centric GP-EDM

We expand the delay embedding map to include
catch/landings (schematic Fig. 1). One way to do so

would be to include CPUE and catch as an inde-
pendent coordinate, leading to models of the form
Xt = [(Xt—1, Ct—1s -+ Xt—m> Ct—m) for the delay embed-

ding map. However, doing so doubles the dimension of the
input space. Moreover, it ignores the fact that CPUE and
catch both depend on the biomass of the stock. To address
this issue, we incorporate a catchability parameter denoted
by “g” within the GP-EDM framework to establish a con-
nection between CPUE and fishery landings. We assume that
spawning occurs after the fishing season and that spawning
biomass is proportional to escapement. Hence, if CPUE and
landings are proportional to biomass, then x;,_1 — gc;—1 is
proportional to spawning biomass. With these assumptions,
we set x; = [(X,-1 — qci—1, ..., Xt—m — Ci—m) Which asserts
that the stock abundance one year ahead is determined
by the escapement following the previous year fishing (i.e.
X:—1 — qci—1), amended with lags to account for missing state
variables. To simplify the notation, we set Crp, = {¢r15 -.-s
¢r-m} and update the first layer of (1) as:

P (xtl fﬂ Xt—m - th—ma ¢7 T, VE)
~ Normal (f (Xe—m — gCn) s Ve) (2)

To complete our model specification, we used a nearly flat
beta prior on g with the additional constraint on g that es-
capement is always positive, i.e. ¢ < min(’c‘—: ).

t

Note that, after some algebraic simplification, this is equiv-
alent to the catchability assumption employed in traditional
production models (schematic Fig. 1). Hence, GP-EDM with
m = 1 can be thought of as a nonparametric production
model (Thorson et al. 2014). Importantly, incorporating these
standard assumptions regarding the relationships among to-
tal catch, catchability, and stock abundance enables us to use
EDM for the purposes of evaluating harvest controls (Thor-
son et al. 2012).

Parameter estimation of GP-EDM

We employ the maximum a posteriori (MAP) approach to
obtain parameter estimates. By collecting the next time steps
(i.e. year ahead fishery-independent CPUE) into a column vec-
tor ¥y = (X1, ..., x7}" and let X = {X,_,, — qC,_,.} repre-
sents the matrix of embedding vectors (i.e. time lags of CPUE
reduced by fishing), the logarithm of the marginal posterior
probability can be expressed as follows:

1
InP (¢, T, Ve|y, X) = const — Eln | X + VI
T r .
-5y [ X+ VIl y

- %lﬂp (¢7 T, VE? CI) (3)

In this equation (3), I represents the identity matrix and X
represents the covariance matrix created by applying the co-
variance function (X, X;) (i.e. the exponential decay kernel)
to all lagged observations (i.e. X = {X;_,, — gC;_.»}). The term
“const” represents an arbitrary constant that does not affect
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the optimization procedure. The last term on the right-hand
side corresponds to the hyperparameter priors.

Prediction skill and model selection of GP-EDM

We utilize the GP-EDM MAP estimates to make predictions
for the year-ahead brown shrimp stock abundance (CPUE)
time series. The conditional posterior mean and posterior vari-
ance for these predictions, based on the GP-EDM estimates
and available data, follow a multivariate normal distribution
with the mean and the covariance defined as follows:

M(X') = 2 (X', X)[Z (X, X) + VI "y

V(X) =2 (X.X) -2 (X, X)[Z(X,X)+ VD!

x T(X', X)" (4)

In this equation (4), the notations used are consistent with
those in (1-3). In (4), M and V represents the posterior mean
and posterior variance, respectively. X and X’ represents the
in-sample and out-of-sample delay coordinate vectors, respec-
tively.

Because both the number of time lags (the embedding di-
mension) and the number of inverse length scale parameters
are unknown, it is necessary to estimate variants with sev-
eral time lags and inverse length scale parameters, leading to
the need to establish model selection procedures. We propose
using out-of-sample prediction skill and information-based
model selection to determine the best EDM candidate. Many
metrics have been proposed to evaluate prediction accuracy,
including correlation coefficient (p), coefficient of determina-
tion (R?), root mean square error (RMSE), and mean absolute
error (MAE). In keeping with other applications of EDM, e.g.
Dolan et al. (2023) and Tsai et al. (2023), we assess the per-
formance of GP-EDM using a leave-one-out (LOO) predic-
tion approach. LOO prediction skill was evaluated using the
Pearson correlation coefficient (p) between the observed and
predicted year-ahead CPUE. LOO prediction accuracy is also
evaluated with the predictive R? computed as follows:

2
Rzzl_M (5)

— 2
Z (yobs - yobs)
where y,,s represents the observed stock abundance one year
ahead, y,,. represents the predicted stock abundance one year
ahead, and y,,,, represents the averaged observed stock abun-

dance. Additionally, using the same notation in (5), we define
LOO RMSE and MAE as follows:

Z (yubs - ypred)2
n

RMSE =

MAE — Z |(yobs _ypred|
n

(6)

In addition to evaluating out-of-sample (LOO) prediction
skill, we introduce two additional model selection procedures
for GP-EDM that explicitly account for the effective degrees
of freedom of the nonparametric model in order to avoid over-
fitting. The complexity of a GP model is determined by both
the number of inputs and the length scale parameters. A sin-
gle input with a large ¢ would have many degrees of freedom,
while a model with many inputs but all ¢’s close to 0 would
have relatively few. Hence, to approximate the effective de-
grees of freedom, df,pprox, We use the trace of the hat matrix

Tsai et al.

(H, Cleveland and Grosse 1991; Kramer and Sugiyama 2011)
computed as:

H=23(X,X)[Z(X,X)+ VI
dfappros = tr[H] @

In a linear model setting, df,pprox reduces to the number of
parameters.
Using (7), we obtain an adjusted variance estimator &2 as:
2
s Tl -MX) "
n— dfappmx
where 7 represents the length of vector vy, i.e. the year-ahead
CPUE time series. Based on the calculations in (7) and (8), we
derive approximate versions of the Akaike information crite-
ria (AIC) [commonly known as conditional AIC (Vaida and
Blanchard 2005)] and Bayesian information criteria (BIC) as
follows:

AIC=n-In (52) +2- dfapprox
BIC=n-In (52) +ln(n)'dfapprox (9)

Data transformation of GP-EDM

Because the mechanistic relationship between the stock abun-
dance and escapement is left un-specified, we explore four
data transformations for fishery-centric GP-EDM analyses:
Untransformed, Log-transform, Type-1 log-difference trans-
form, and Type-II log-difference transform. Using the nota-
tion from (1-8), the first type is the original untransformed
CPUE at time ¢ (i.e. x;) as the response variable. The second
type utilizes natural logarithm transformed CPUE at time ¢
[i.e. In(x;)] as response variable. The third type utilizes the
first-order difference between the log-transformed CPUE at
year-ahead time ¢ and the log-transformed CPUE at time #-1
[i.e. ln(%)] as the response variable. Lastly, the fourth type
utilizes the first-order difference between the log-transformed
CPUE at year-ahead time ¢ and the log-transformed CPUE
subtracted from the annual fishery landings at time #-1 [i.e.
ln(m)]. Because these four data transformations pro-
duce different sets of model performance metrics at various
scales, including LOO predictions, AIC, and BIC, they are not
directly comparable. To ensure a consistent basis for model
comparison, we transform the GP-EDM performance metrics
to the same (logarithmic) scale. This approach facilitates the
assessment and comparison of model performance across the
different data transformation types.

Deriving MSY from GP-EDM

Having determined the transformation that yields the great-
est prediction accuracy, we use the resulting GP-EDM model
to estimate MSY (see schematic Fig. 1). To do so, we iterate
the GP-EDM predictions over the next 40 years to estimate
the long-run catch/landings given a particular constant har-
vest rate. The projection length of 40 years depends on com-
putational power and convergence toward the steady state,
we recommend >30 data points as a rule of thumb for com-
puting the “long-run” average. Specifically, at each time step,
we randomly simulate GP-EDM forecasts by sampling from
a normal distribution with the mean and variance functions
derived from (4) and use these forecasts as inputs for the
next forecast. The harvest rate (represented by u, at time ¢,
bounded between 0 and 1) for each time step is kept constant
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throughout the simulation. To account for uncertainty
associated with the model, we repeat the procedure 1000 times
to obtain the mean and standard error of the long-run yield
estimate. We also repeat these steps for a range of harvest rates
(u; from O to 1) to determine the rate that maximizes the av-
erage long-run yield as our proxy for MSY.

Simulation testing for the robustness of MSY
derived from GP-EDM

To assess the robustness of GP-EDM-based MSY to varia-
tion in underlying dynamics and exploitation history, we sim-
ulate different ecological scenarios under two different harvest
histories. The ecological scenarios are a single-species system
using a Pella—~Tomlinson model and a predator—prey system
(prey harvested) of Ricker type. Additionally, we use single-
species Ricker models where dynamics are chaotic to assess
the statistical robustness of EDM-based MSY under various
assumptions about relationships between abundance index
(CPUE) and true abundance. The harvest histories include in-
creasing harvest rate (i.e. uni-directional one-way trip) and os-
cillating harvest rate. More details of the ecological scenarios
and harvest histories are provided below.

Single-species dynamics

As the first example, we utilize parameter values derived from
an empirical cross-stock meta-analysis (Thorson et al. 2012)
to establish the Pella~Tomlinson model as follows:

Biy1 = (B + P —s,By) e

art B, [(B,\*
Pf:<a_1)’[1<‘<1<)] 1o

In the above equation (10), B; represents the biomass of
the species at time ¢, and P, corresponds to the production at
time #. The scalar s; accounts for the impact of harvesting on
species biomass, with s, B; indicating the catch/landings quan-
tity at time ¢. The growth parameter of the production func-
tion is denoted by 7. The carrying capacity is represented by
K. The parameter a4, r, and K control the MSY. We assume
that the process noise ¢ follows a normal distribution with a
mean of zero and a standard deviation of 0.1. The parameters
a and r are fixed at 1.478 and 0.404, respectively, which are
the empirical average estimates derived from multiple stocks
(refer to Table 1 and Table 2 in Thorson et al. 2012). Note that
the (10) is valid when a > 1. For simplicity, we assume K = 1.
Assuming constant harvest, we can express the steady-state
relative biomass (B*) and catch (Yield*) as follows:

raa/a—1

—sa + s + ra?/a-1

Yield" = sB* (11)

B = '

Predator—prey dynamics

As a more challenging example, we consider a Ricker-
type prey—predator model that exhibits reasonable fluctua-
tions in biomass and catch/landings. The dynamics of the
prey—predator system and harvesting are given by:

Bis41 = By te[f’l (1_3“)_(1]32“_5’]681

Byt = By el (1P +dbu pez (12)
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In the above equation (12), By, represents the biomass of
the prey species (or forage species) and B, represents the
biomass of the predator species at time . The parameters 7
and 7, correspond to the intrinsic growth rates of the prey
and predator, respectively. The scalar d represents the biomass
transfer efficiency from prey to predator, and s, is a scalar re-
flecting the harvesting effect on the prey at time #. We assume
that the process noise &1 and ¢; follow normal distributions
with mean zero and standard deviations of 0.1, respectively.
Heuristically, we set #; = 2.2 for the prey, which is higher than
r, = 1.8 for the predator, and we set d = 0.1. Note that we
use only prey biomass and catch/landings as our observational
time series data for GP-EDM, meaning that we do not observe
the predator. Further assuming constant harvest, we can ex-
press the steady-state relative biomass (B*) and catch (Yield*)
for the prey species as follows:

B — r(rn—d—s)
L d? + 112
Yield" ~ ¢°B (13)

Note that, in this model, the fixed point, B}, and long-run
average, By = lim % > . B1,, are equivalent under a constant
=00

harvest policy.

Chaotic Ricker-type dynamics

Because short-lived stocks may have higher intrinsic growth
rates leading to quasi-cyclic or chaotic dynamics, we consider
chaotic single-species Ricker models as simulation examples.
Additionally, we consider three types of the relationship be-
tween abundance index (CPUE) and true abundance/biomass,
including proportionality, hyper-stability, and hyper-depletion
(Harley et al. 2001). The dynamics of the chaotic Ricker sys-
tem and harvesting are given by

By

B.i = Bte[f(l‘ﬂ‘sf]ef
CPUE, = gB? (14)

In the above equation (14), B, represents the biomass of the
species at time ¢, and r and K are intrinsic growth rate and car-
rying capacity, respectively. We assume » = 4 and K = 1000
such that higher growth rate produces chaotic dynamics. s;
is a scalar reflecting the harvesting effect. CPUE, represents
an abundance index as a function of true abundance/biomass,
such that CPUE,; is proportional to B; when ¢ is a constant
and B = 1. To simulate proportionality, we set ¢ = 0.9 and
B = 1. Additionally, we set 8 = 0.8 and B = 1.2 to represent
the hyper-stability and hyper-depletion relationships (Harley
et al. 2001). We assume that the process noise ¢ follows a nor-
mal distribution with a mean of zero and a standard deviation
of 0.05. Further assuming constant harvest, we can express
the steady-state (or long-run average) biomass (B*) and catch
(Yield*) as follows:

vek(i-)

Yield" ~ eB* (15)

For all the single-species and predator—prey dynamics mod-
els, simulations are repeated 150 times for a duration of
100 years (time steps). For each 100-years simulated series,
a randomized subsample is conducted to extract a continued
32-years window so that the simulated time series length is
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comparable with GOM brown shrimp data. For each sim-
ulated series, we apply GP-EDM and MSY estimation. The
simulated biomass (B;) or abundance index (CPUE;) and
catch/landings time-series data are subjected to GP-EDM
analysis, where model selection and data transformation pro-
cedures are performed to determine the best fitted GP-EDM,
with varying embedding dimensions (E). The initial value of E
ranges from 2 to 5. This E is before the ARD regularization of
GP-EDM reduces the posterior dimension to match the num-
ber of effective time lags, as described by Munch et al. (2017),
in each simulation. The best fitted model is subsequently em-
ployed to determine the MSY.

For comparison with the GP-EDM results, we use the
known model parameters to compute the “true” analyti-
cal MSY using (11) and (13). Specifically, the “true” ana-
lytical MSY, given the model parameters, can be obtained
by taking the first derivative of the steady-state yield func-
tion with respect to the harvest parameter “s” [specifically,
MSY = 0.404 using (11), MSY = 1.361 using (13), and
MSY = 5020.83 using (15)]. To test for the statistical ro-
bustness, the estimates of GP-EDM-based MSY is compared
with the analytical MSY for both population dynamics mod-
els under two harvesting scenarios (i.e. unidirectional one-
way trip harvest rate and fluctuating harvest rate over time)
(Fig. S1).

Shrimp fishery management history and data in
the US Gulf of Mexico

The National Marine Fisheries Service is mandated to pro-
vide annual, stock determination criteria (SDC) to the Gulf of
Mexico Fishery Management Council (GMFMC) for Brown,
White, and Pink Shrimp (Farfantepenaeus aztecus, Litope-
naeus setiferus, and Farfantepenaeus duorarum). Since 2012,
integrated stock synthesis models (i.e. age-structured assess-
ment models), have been used to provide the annual, SDC
for all three shrimp stocks. In 2019, a model review of
these three, shrimp SS models revealed technical concerns
(e.g. conflicting indices, convergence issues, residual patterns).
Consequently, the GMFMC moved all three shrimp stocks
into a Southeast Data, Assessment, and Review (SEDAR)
research track process, which allows for the consideration
of new data inputs and modeling approaches. A primary
objective of the SEDAR research track process is to iden-
tify all available data inputs, limitations, and assumptions
in order to select the most robust tool, for assessing these
shrimp stocks. Preliminary findings from this SEDAR re-
search track process have indicated that existing Brown,
White, and Pink shrimp data limitations, such as the lack
of recruitment and age-structured information, make ad-
vanced catch-at-age models inappropriate for assessing these
stocks. Further, GOM shrimp stocks are considered annual
crops, and so data processing and age-structured, model de-
velopment timelines exceed their longevity—hindering the
ability to provide timely management advice. Thus, it is
necessary to consider next generation assessment mod-
els (such as index-based and reference point approaches)
for these short-lived, shrimp stocks (Peterson and Walter
2023).

As a proof of concept tailored for a short-lived species fish-
ery, our analyses focus on the Brown shrimp stock, which con-
tributes to roughly half of the total annual Penaeid shrimp
fishery landings each year (since 1984). To inform our study,
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we collated the most recent fishery landings and market size
(i.e. pounds of shrimp, in 12 market size categories) data, as
well as fishery-independent CPUE. The fishery-independent
monitoring CPUE data were collected by the Southeast Area
Monitoring and Assessment Program (SEAMAP) (1987-
2019) (hereafter, SEAMAP CPUE). Traditionally, this collec-
tion of data was also the input into the shrimp stock synthesis
models, along with life history parameters.

We use annual time series data of both Brown shrimp fish-
ery landings and fishery-independent SEAMAP CPUE to ex-
amine reference points derived from EDM. Our analysis fo-
cuses on the GOM region, as it allows for comparisons to
historical brown shrimp management practices. It is worth
noting that the fishery landings data is only available at the
GOM scale due to federal trip reporting limitations (i.e. no
depth information is collected, only landings by statistical
grids). We use the annual Brown Shrimp landings data, re-
ported to National Marine Fisheries Service via state trip tick-
ets (i.e. dealer reported landings, collated by all 5 US Gulf
states). Fishery landings data are collected with 1-21 statis-
tical zones that run approximately latitudinal along Florida
and Texas and longitudinal throughout the rest of the GOM.
Depth information was historically collected via the federal
port agent surveys but is not reliably collected on state trip
ticket forms, which are considered the more accurate source
of recent total landings. For consistency, and to ensure a rep-
resentative analysis—at the GOM-wide scale, we use the “av-
eraged” SEAMAP CPUE time series as a proxy for annual
Brown shrimp abundance dynamics. It is worth noting that
a design-based estimator, e.g. weighted by the standard errors
of data, might be used. However, in the present case the raw
averages we used were nearly perfectly correlated with the
design-based estimate (r > 0.9). Details of SEAMAP survey
methodology and data description, including depth, season,
and spatial zones, can be referred to (SEDAR87-RD-01, The
SEAMAP Trawl Shrimp Data and Index Estimation Working
Group). Statistical zones 1-21 (Nance 1992) were considered
and then reduced based on the realized spatial distribution of
Brown shrimp from SEAMARP trawl survey data. The statisti-
cal zones (8-21) used in this application are consistent with
Tsai et al. (2023). Brown shrimp fishery-independent moni-
toring CPUE data are then averaged across all depths, sea-
sons, and statistical zones for each year, resulting in yearly
stock abundance dynamics for our analyses. Note that, it is the
aggregated, instead of size- or age-disaggregated, time-series
data that are used in our analyses.

GP-EDM analysis and simulation platform

All analyses and simulations of dynamics were performed
using R Statistical Software (v4.3.1). Algorithms of fishery-
centric GP-EDM framework were developed under R version
4.3.1 using packages: TMB (v1.9.6), yardstick (v1.2.0), and
CaDENCE (v1.2.5). R codes are available at https://github.
com/TsaiCH/Fishery-GPEDM.

Results

We found that, in general, the GP-EDM framework pro-
duced statistically robust and accurate estimates of MSY un-
der various scenarios of dynamics, although estimate were
much more precise for scenarios with fluctuating harvest-
ing (Fig. 2). Out-of-sample LOO prediction skill metrics
(i.e. RMSE, MAE, predictive Pearson correlation (p), and
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Figure 2. MSY estimates derived from the GP-EDM framework across various model selection methods and dynamics scenarios. (a) MSY estimates
from the Pella-Tomlinson model with unidirectional harvesting. (b) MSY estimates from the Pella-Tomlinson model with fluctuating harvesting. (c) MSY
estimates from the prey—predator dynamics with unidirectional harvesting. (d) MSY estimates from the prey—predator dynamics with fluctuating
harvesting. The solid circle indicates the average MSY derived from 150 simulations, with the error bar denoting +/— 1 standard error of these
estimates. The red dashed line represents the analytical “true” MSY for each dynamic scenario: 0.404 for the Pella—Tomlinson model and 1.361 for the
prey—predator model. For model selection, out-of-sample prediction skill metrics (leave-one-out, LOO) include root mean square error (RMSE), mean
absolute error (MAE), predictive Pearson correlation (p), and R?. Information-related metrics include Akaike information criteria (AIC), Bayesian
information criteria (BIC), and log-likelihood (LL). Notice the differences in the horizontal axis scale.

predictive R?), information criteria (i.e. AIC and BIC), and
maximum log-likelihood function (LL) all performed simi-
larly to select the best fitted GP-EDM for estimating MSY.
All model selection methods produced a robust averaged MSY
with +/— 1 standard error intervals that covered the true MSY,
regardless of embedding dimension and data transformation
(Fig. 2).

Models chosen based on out-of-sample forecasting met-
rics (RMSE, MAE, p, and R?) and information-based parsi-
mony, on average, yielded similar accuracy for MSY (Fig. 2).
However, GP-EDM tended to reduce the estimation error for
MSY under fluctuating harvesting scenarios compared with
unidirectional harvesting scenarios, i.e. the one-way trip har-
vest rate (cf. Fig. 2 left panels versus right panels). Addi-
tionally, EDM MSY estimates are robust to the assumptions
about chaotic dynamics and assumptions about proportion-
ality and hyper-stability (Fig. S2a, b, d, e), but potentially
sensitive to hyper-depletion with mild conditions (8 = 1.2)
(Fig. S2¢ and f). EDM MSY tended to have lower standard er-
rors under fluctuating harvesting scenarios than those under
unidirectional harvesting scenarios, regardless of assumptions

about chaotic dynamics or proportionality of abundance in-
dex (Fig. S2).

In applying the GP-EDM framework to the Gulf of Mex-
ico Brown shrimp landings and fishery-independent CPUE
data, we observed a consistency in model selection. Both
prediction skill metrics and information criteria favored the
same model, characterized by an optimal embedding dimen-
sion E = 4 and a Type-I log difference transformation (refer
to Table 1). This specific model, which we refer to as “Mod-
elE4T1,” yielded the most accurate out-of-sample CPUE fore-
casts (LOO R? = 0.71) and exhibited the smallest out-of-
sample prediction errors (LOO RMSE = 0.206 and LOO
MAE = 0.163) as depicted in Fig. 3. Such metrics are crucial
for generating statistically robust MSY estimates, as shown
in Figs 2 and 3. Given the unanimous agreement across all
model selection metrics, we designated ModelE4T1 as the pri-
mary candidate for MSY estimation.

The LOO prediction skill exhibited a noteworthy trend:
it improved as the embedding dimension (E) increased. No-
tably, it achieved peak accuracy at E =4 (LOO R? = 0.71), a
stark contrast to its lowest at E = 1 (LOO R? = 0.1), which
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Table 1. Model selection using GP-EDM for Brown Shrimp dynamics in the US Gulf of Mexico. The top-performing model, highlighted in bold, is designated
as "ModelE4T1." It features an embedding dimension of £ = 4 and utilizes a Type-| log-difference transformation

LL AIC BIC MAE RMSE P R? MSY SE(MSY)

E=5

Non-transform —160.19 322.99 324.7 0.318 0.391 0.57 —0.06 n.a. n.a.
Log-transform —151.52 309.39 313.6 0.241 0.281 0.68 0.44 n.a. n.a.
Type-I log-difference 74.62 —-95.02 —58.89 0.175 0.212 0.83 0.68 1373.15 41.74
Type-1I log-difference 26.45 —1.83 32.18 0.314 0.381 0.66 —0.01 79895 17152
E=4

Non-transform —165.65 333.95 335.8 0.309 0.384 0.56 —0.05 n.a. n.a.
Log-transform —157.74 321.01 324.8 0.241 0.284 0.66 0.42 n.a. n.a.
Type-I log-difference 77.99 —100.21 —62.06 0.163 0.206 0.84 0.71 225.35 3.52
Type-II log-difference 25.41 —6.76 23.34 0.203 0.241 0.77 0.58 54233 26734
E=3

Non-transform —174.34 350.62 352 0.345 0.418 0.01 —0.29 n.a. n.a.
Log-transform —-167.99 339.32 341.7 0.272 0.348 0.33 0.11 n.a. n.a.
Type-I log-difference 19.95 2.29 31.86 0.254 0.322 0.59 0.23 789.04 22.18
Type-II log-difference —-7.93 28.06 36.61 0.257 0.339 0.46 0.15 251993 15364

E is embedding dimension. LL is log marginal likelihood as defined in (2). Out-of-sample (leave-one-out, LOO) prediction skill metrics include MAE, RMSE,
p,and R?, which are mean absolute error, root mean square error, and Pearson correlation, and predictive R?, respectively defined in (5) and (6). AIC and BIC
are Akaike information criteria and Bayesian information criteria as defined in (9). MSY and SE(MSY) are maximum sustainable yield and the corresponding
standard error. “n.a.” represents numerical instability w/o convergence.
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Figure 3. Analysis and predictions of Brown Shrimp stock abundance dynamics in the US Gulf of Mexico. (a) Prediction mean +/— 1 standard error (red
triangle and error bar) versus observation (black circle) for Brown Shrimp. Predictions are derived from the same model favored by both out-of-sample
(leave-one-out, LOO) prediction skill metrics and information criteria, characterized by an optimal embedding dimension £ = 4 and a Type-l log difference
transformation (Table 1). (b) A log-scaled comparison of observed versus GP-EDM predicted catch per unit effort (CPUE) for Brown shrimp (LOO

R? =0.71; Table 1). (c) Fishery landings for Brown Shrimp, represented in million pounds. This data, combined with CPUE, serves as input for the
GP-EDM framework tailored to fisheries. (d) A depiction of how GP-EDM'’s out-of-sample predictive accuracy correlates with the number of time-delay
vectors [referenced in (1) and (2)].
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is similar to traditional single-species production models (re-
fer to Fig. 3¢ and schematic Fig. 1). The catchability factor,
denoted as g, which bridges CPUE and fishery landings [as
per (2)], was estimated at 1.18, with a standard error ranging
from 1.06 to 1.18. The parameter values estimated by Mod-
elE4T1 for Brown shrimp can be found in Fig. S3.

Moreover, our analysis revealed marginal enhancements in
the GP-EDM’s out-of-sample predictive accuracy for Brown
shrimp when pivotal environmental variables were incorpo-
rated (Tables S1 and S2). These variables were previously
thought to be important drivers of annual Brown shrimp
abundance. The inclusion of time lags for both the recruit-
ment and rainfall indices within the GP-EDM framework did
not offer any substantial boost to the prediction skill, espe-
cially when juxtaposed with ModelE4T1, which only consid-
ered lags of landings and CPUE data.

From the fits of ModelE4T1, we deduced the GP-EDM
MSY for the Gulf of Mexico’s Brown shrimp (Fig. 4).
The long-term average CPUE at MSY stood roughly at
376.94 + 5.64 tails per tow (Fig. 4a), with the MSY roughly
at 225.35 + 3.52 million pounds or 102.22 £ 1.60 million
kilograms of tails (Fig. 4b). The harvest rate at MSY was ap-
proximated to be 0.72, such that the biomass at MSY (BMSY)
amounted to 312.98 million pounds or 141.97 million kilo-
grams of tails.

Discussion

Our simulations demonstrate that GP-EDM can yield robust
estimates of MSY that closely approximate the theoretical
MSY values. This holds true not only for single-species fishery
dynamics, where potential species interactions are treated as
environmental (or process) noise, but also for multi-species
systems, where species interactions are implicitly modeled
with lags in GP-EDM (Fig. 2). Furthermore, unlike traditional
parametric production models, GP-EDM displays a notable
resilience in scenarios with chaotic dynamics under unidirec-
tional (one-way trip) dynamics (Fig. S2). This observation
aligns with prior findings (Brias and Munch 2021, Giron-
Nava et al. 2021), suggesting that non-parametric approaches
may offer greater robustness in the face of dynamic history
of harvesting, compared to traditional parametric methods
where statistical identifiability issues often hinder the accurate
estimation of parameter aggregates like MSY.

Recently, Boettiger (2022) identified a “forecast trap”
where using prediction accuracy to choose among a small
handful of parametric models led to significantly worse man-
agement benchmarks. In contrast, our results indicate that us-
ing out-of-sample (LOO) prediction skill for model selection
is entirely satisfactory and better than other selection crite-
ria (Figs 2, S2). Careful consideration of the issue of forecast
trap suggests that it arises from choosing among several can-
didate models, none of which can reconstruct the true mech-
anistic dynamics (Paniw et al. 2023). On the other hand, the
non-parametric approach of GP-EDM, provided with suffi-
cient data, can reconstruct the underlying dynamics in a wide
range of systems (Rogers and Munch 2020, Brias and Munch
2021, Tsai et al. 2023). We hypothesize that this flexibility cir-
cumvents the forecast trap, though more detailed analysis is
warranted.

While our findings hold promise, it is crucial to acknowl-
edge several important caveats. First, the efficacy of EDM
and any resulting management recommendations depends on
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the availability of data. Meta-analyses suggest that time se-
ries should be several multiples of the generation time to pro-
vide reasonable prediction accuracy (Munch et al. 2018). Sec-
ond, if there is relatively little variation in historical dynam-
ics between fishing and stock abundance (i.e. variations in
catch/landings subtracted from CPUE), estimates of MSY may
be accompanied by increased uncertainty. In situations where
the generation time is long or the historical variation in fish-
ing and stock abundance dynamics is limited, resorting to tra-
ditional parametric approaches, such as stock synthesis and
data-limited methods, may help (Methot and Wetzel 2013,
Chong et al. 2020, Pons et al. 2020, Legault et al. 2023).
However, we caution that the accuracy of extrapolation from
traditional parametric approaches depends heavily on struc-
tural assumptions which may be difficult to justify (Thorson
et al. 2014). Although beyond the scope of this work, addi-
tional simulations with a variety of models and time series
lengths may help clarify conditions under which GP-EDM or
traditional assessments are preferable. Finally, we note that
the present analyses have focused solely on constant harvest
rate policies. These are likely to be sub-optimal in cyclical
fisheries—overharvesting when biomass is low and underhar-
vesting when it is high. In these situations, a state-dependent
policy constructed using EDM (Brias and Munch 2021, 2024)
may be a significant improvement.

Several extensions to the current framework may enhance
utility of GP-EDM. Here, in keeping with the shrimp case
study (Tsai et al. 2023), we used landings and abundance in-
dices to estimate MSY. However, with appropriate algebraic
adjustments the GP-EDM framework can readily use land-
ings and some proxy for fishing effort to estimate MSY. In-
deed, in keeping with the traditional assumption that catch is a
function of abundance and effort, GP-EDM only requires any
two measures among catch, effort, and CPUE to generate pre-
dictions. Given the greater availability of fishery-dependent
CPUE compared to fishery-independent survey data, we pro-
pose that our framework can be readily expanded to encom-
pass numerous other fisheries practices. However, we cau-
tion that our methodology has certain imprecisions, leading to
wide uncertainty ranges in the MSY estimates (Fig. 2). This ap-
proach may also fail in cases of strong hyperdepletion, where
assumptions about the proportionality of the abundance in-
dex can introduce bias in the MSY estimates (Fig. S2). Fu-
ture research should take these limitations into account. One
potential solution might be to relax the assumed relationship
between catch, effort, and biomass in a non-parametric way
or to expand the pool of candidate models. In addition, age-
structured EDM (Dolan et al. 2023) and spatial EDM (John-
son et al. 2021) leverage multiple short series to improve pre-
diction accuracy. We expect that age-structured EDM could
improve MSY estimates for longer-lived species. Additionally,
since spatial EDM can account for spatial heterogeneity, it
may be useful for setting spatial management targets. Given
Brown shrimp are more susceptible to environmental factors
at early ages, while resident in semi-enclosed, estuarine waters
(Schlenker et al. 2023), future work may consider the applica-
bility of spatial EDM in further improving Gulf shrimp fishery
management.

Turning to the Gulf of Mexico Brown shrimp case study,
we find that the predictive capability of GP-EDM utilizing
time lags significantly outperforms that of the single time lag
model (Fig. 3, Table 1). Particularly, we find that four lags of
escapement [i.e. catch/landings subtracted from CPUE as

$20Z J8qWIBAON /(0 UO Jasn uonessiuiwpy ouaydsowly g o1uesdQ jeuoneN Agq 682969//60Z 1/.2/18/a1o11e/swlseol/woo dno-olwapeose//:sdiy Woil papeojumoc]


http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data
http://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae080#supplementary-data

1218

(a)390

3701

350 1

330 1

CPUE at steady state

3101

2901

05 06 07 08
Harvest rate u

Tsai et al.

—_
(=2
~

210 4

180 1

150 1

Catch at steady state (million Ibs)

120 1

05 0.6 07 08
Harvest rate u

Figure 4. GP-EDM MSY for Gulf of Mexico's Brown Shrimp. The optimal GP-EDM prediction (with an LOO R? = 0.71 as detailed in Table 1) provides the
foundation for determining reference points. (a) The relationship between CPUE and the harvest rate at steady state. The GP-EDM'’s projected long-term
average CPUE at MSY is approximately 376.94 +/— 5.64 tails per tow. (b) The relationship between catch (or landings) and harvest rate at steady state.
The GP-EDM MSY is approximately 225.35 +/— 3.52 million pounds or 102.22 + 1.60 million kilograms of tails. The solid circle indicates the average
estimation, while the bar shows a range of two standard errors for these estimates.

per (2)] provides the best prediction accuracy for year-ahead
Brown shrimp CPUE (Table 1). This underscores the impor-
tance of incorporating historical data on both fishery opera-
tions and fishery-independent abundance proxies to account
for hidden state-variables beyond the current stock size (e.g.
considering unobserved species interactions and environmen-
tal feedbacks; Fujiwara et al. 2016, Schlenker et al. 2023),
which is also a key characteristic of our new fishery-centric
GP-EDM framework (Fig. 1). Additionally, it enables a more
complicated production function or yield curve compared
with the typically considered parametric family (Fig. S4).
Specifically, the expected Brown shrimp CPUE is not a mono-
tonic function of the first lag of escapement, and seems to de-
pend on the longer time lags (e.g. the second time lags) that
might account for unobserved species and environmental feed-
backs (Fig. S4).

The GP-EDM MSY for brown shrimp (circa 225 million
pounds or 102 million kilograms of tails; Fig. 4), appears to
have a higher value, but within the same order of magni-
tude, compared to previous estimates obtained from produc-
tion models (circa 88 million pounds or 40 million kilograms
of tails) and stock synthesis models (circa 147 million pounds
or 67 million kilograms of tails). Note that, GP-EDM MSY
and other previous MSY estimates are all above the current
catch level for Brown shrimp, which is reasonable given that
Penaeid shrimp catch in the Gulf of Mexico has only been
limited by total fishing effort due to the bycatch mortality on
other species with longer life span. Based on our simulation
results, we expect that the derived GP-EDM MSY value for
Brown shrimp is at least as robust as that derived from tra-
ditional assessments (Peterson and Walter 2023). However,
we caution that EDM MSY derived from real data may be
sensitive to data transformation and model complexity (e.g.
effective embedding dimension), where numerical instability
may arise from model candidates lacking sufficient prediction
skills (Table 1). We suggest that a representative model chosen
based on both prediction skill and parsimony, as well as ex-
pert knowledge, are important considerations for a consensus
EDM MSY.

Interestingly, we found that augmenting our analysis with
time series for recruitment and rainfall did not significantly
improve prediction accuracy (Tables S1 and S2). This aligns
with our earlier study (Tsai et al. 2023) where we observed
that environmental factors, including salinity, dissolved oxy-
gen, and temperature, have limited impact on GP-EDM pre-
diction accuracy. As these drivers have clear ecological rele-
vance (Schlenker et al. 2023), it is important to consider why
they do not improve forecast accuracy (Peterson and Wal-
ter 2023). One potential explanation is that these variables
are not measured in the optimal location or time of year or
with enough precision to be most informative. Alternatively,
we note that Granger-style causality arguments, in which in-
cluding causal drivers improves time series prediction, do not
work with time delay embedding (Sugihara et al. 2012). Thus,
a second, non-exclusive, possibility is that these drivers are in-
deed important but that their influence is already captured in
the lagged patterns of CPUE and catch/landings (Munch et al.
2023, Tsai et al. 2023).

In summary, we advocate for adopting MSY estimates de-
rived from GP-EDM as a robust framework for establishing
fishery reference points that can effectively account for unob-
served species and environmental feedbacks and underlying
historical exploitation dynamics. This positions GP-EDM as a
reliable scientific foundation to re-evaluate current methodol-
ogy for estimating stock status (i.e. SDC), particularly crucial
for addressing the inadequacies observed in managing short-
lived Penaeid shrimp species in the Gulf of Mexico (Peterson
and Walter 2023). Furthermore, while GP-EDM does require
reasonably extensive time series, the data demands are notably
more manageable when compared with those of conventional
data-rich assessment methods. This suggests that GP-EDM
could serve as a practical alternative for other data-moderate
assessments, especially in cases where species exhibit short
lifespans and their true population dynamics are influenced
by substantial abundance fluctuations stemming from unob-
served species interactions and complex ecosystem feedbacks
(Glaser et al. 2014, Fogarty et al. 2016, Munch et al. 2018,
2020).
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