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Several approaches have been developed over the last decade to simultaneously estimate distribution or density for multiple species (e.g.
“joint species distribution” or “multispecies occupancy” models). However, there has been little research comparing estimates of abundance
trends or distribution shifts from these multispecies models with similar single-species estimates. We seek to determine whether a model in-
cluding correlations among species (and particularly species that may affect habitat quality, termed “biogenic habitat”) improves predictive
performance or decreases standard errors for estimates of total biomass and distribution shift relative to similar single-species models. To ac-
complish this objective, we apply a vector-autoregressive spatio-temporal (VAST) model that simultaneously estimates spatio-temporal varia-
tion in density for multiple species, and present an application of this model using data for eight US Pacific Coast rockfishes (Sebastes spp.),
thornyheads (Sebastolobus spp.), and structure-forming invertebrates (SFIs). We identified three fish groups having similar spatial distribution
(northern Sebastes, coastwide Sebastes, and Sebastolobus species), and estimated differences among groups in their association with SFI. The
multispecies model was more parsimonious and had better predictive performance than fitting a single-species model to each taxon individu-
ally, and estimated fine-scale variation in density even for species with relatively few encounters (which the single-species model was unable
to do). However, the single-species models showed similar abundance trends and distribution shifts to those of the multispecies model, with
slightly smaller standard errors. Therefore, we conclude that spatial variation in density (and annual variation in these patterns) is correlated
among fishes and SFI, with congeneric fishes more correlated than species from different genera. However, explicitly modelling correlations
among fishes and biogenic habitat does not seem to improve precision for estimates of abundance trends or distribution shifts for these
fishes.

Keywords: fish distribution shift, index standardization, joint dynamic species distribution model (JDSDM), Pacific rockfish, spatio-temporal
model, structure-forming invertebrates.

Introduction
There are several benefits to simultaneously analysing the distri-

bution and density of multiple species within a natural commu-

nity. Multispecies models of spatial distribution can estimate

associations among species (Latimer et al., 2009; Ovaskainen

et al., 2016; Thorson et al., 2015a, 2016a), such that the presence

or absence of a given species can be used as an indicator of habitat

for other species when reliable habitat variables are otherwise

lacking (Ovaskainen et al., 2010). Multispecies models fitted to

presence/absence data (termed “multispecies occupancy models”)

can also be used in some cases to identify the impact of manage-

ment actions more efficiently than using single-species occupancy
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models (Zipkin et al., 2010). Furthermore, research shows that es-

timating the distribution for each species individually and then

summarizing community-level properties by stacking results

from single-species analyses can result in improper inference

about ecological communities (Clark et al., 2014).

The predictive performance of species distribution models is

often improved when available covariates are included that are in-

formative about habitat quality. Unfortunately, environmental

variables associated with habitat quality are difficult to measure

for many species, including demersal marine fishes. To overcome

this difficulty, new species distribution modelling (SDM) tech-

niques may allow differences in habitat to be inferred from spatial

variation in the density of species with similar habitat require-

ments (Latimer et al., 2009; Ovaskainen et al., 2010). For exam-

ple, joint species distribution models have previously been used

to show strong covariation in population density among US

Pacific Coast rockfishes and thornyheads (Sebastes and

Sebastolobus spp.), and these correlations imply that the popula-

tion density of one species is informative about the density of cor-

related species (Thorson et al., 2015a). Similarly, joint dynamic

species distribution models (JDSDMs) can estimate abundance

trends for infrequently encountered species and have revealed

similarities in spatio-temporal dynamics among related butterfly

species (Thorson et al., 2016a,b). However, JDSDMs have not

previously been used to explore associations between fishes and

species that are associated with specific habitat features (e.g.

structure-forming invertebrates, SFI).

Marine fishes are intensively managed in many parts of the de-

veloped world, and the management of marine fisheries is

strongly linked to estimates of population status and productivity

from population models (termed “stock assessment models”)

throughout North America and Europe (Methot, 2009; Maunder

and Punt, 2013). Although these stock assessment models often

integrate many different types of information, time-series that are

proportional to population abundance (“abundance indices”) are

often among the most critical (Francis, 2011). For this reason,

there is considerable research regarding best practices for mini-

mizing error when estimating abundance indices for fishes from

survey data (Walters, 2003; Maunder and Punt, 2004; Shelton

et al., 2014). Similarly, survey data are increasingly used to esti-

mate shifts in fish distribution over time (e.g. due to climate

change), and distribution shifts are often measured by estimating

the centroid of the population’s distribution and shifts in this

centroid over time (Perry et al., 2005; Pinsky et al., 2013).

Research suggests that spatio-temporal models are statistically ef-

ficient and can improve precision for estimates of abundance in-

dices or distribution shifts relative to nonspatial models, given

limited available data (Thorson et al., 2015b, 2016b). Recently,

novel methods have been proposed for estimating abundance in-

dices by simultaneously fitting a JDSDM to data for multiple spe-

cies (Thorson et al., 2016). However, there is little research

comparing the single- and multispecies approaches to estimating

abundance indices for marine fishes.

For three reasons, Pacific rockfishes and their close relatives

provide an interesting example when studying associations be-

tween fishes and species that affect habitat suitability (“biogenic

habitat”) or the potential benefit of these associations when esti-

mating abundance indices or distribution shifts. Most impor-

tantly, Pacific rockfishes manifest an astounding diversity of

species, with more than 65 species co-occurring in the Northeast

Pacific (Hyde and Vetter, 2007) and exhibit a wide range of life

history strategies (Love et al., 2002; Mangel et al., 2007). Given

this life history diversity, rockfishes likely include species whose

spatial distributions are both strongly correlated and relatively

uncorrelated with SFI. Second, Pacific rockfishes differ in func-

tional traits related to the feeding type and efficiency [eye and gill

raker size, Ingram and Shurin, 2009], so species with similar spa-

tial distribution and feeding types might exhibit correlated

changes in productivity over time in response to variable food

supply. Therefore, bottom-up drivers of abundance or distribu-

tion changes would result in correlated abundance or distribution

changes over time for species with similar feeding types. Third,

many Pacific rockfishes have low and extremely variable popula-

tion densities (Thorson et al., 2011), such that single-species esti-

mates of trends in population abundance or population

distribution are frequently imprecise (Thorson et al., 2015b,

2016b). Given these characteristics of the rockfish assemblage, the

inclusion of information about species associations and biogenic

habitat when estimating population abundance may increase pre-

cision and thereby improve stock assessments.

Given the potential benefit of estimating habitat quality from

the density of co-occurring marine species when estimating abun-

dance indices, we seek to simultaneously estimate the density of

Pacific rockfishes and structure-forming invertebrates at a coast-

wide scale. Specifically, we seek to answer three questions: (i) do

Pacific rockfishes have an association with structure-forming in-

vertebrates on the US West Coast? (ii) Is this association similar

or variable among rockfish species? and (iii) Does the inclusion

of information regarding co-occurrence (either among rockfishes

or between rockfish and SFI) improve predictions of local rock-

fish density or increase precision when estimating rockfish abun-

dance trends or population distribution? To address these

questions, we develop a vector-autoregressive spatio-temporal

(VAST) model for jointly analysing catch-rate data for fish and

structure-forming invertebrates and apply the model to data for

eight rockfish species and SFI during 2003–2014.

Methods
Pacific rockfishes
Pacific rockfishes (genus Sebastes) and thornyheads (genus

Sebastolobus), hereafter collectively called “rockfishes”, are one of

the dominant species groups within the assemblage of bottom-

associated fishes off the US West Coast. Pacific rockfishes in this

region are monitored by the West Coast groundfish bottom trawl

survey (WCGBTS) conducted annually by the Northwest Fisheries

Science Center since 2003 (Bradburn et al., 2011). The WCGBTS

covers areas between the Canada and Mexico borders in 55–1280

m depth, and survey stations for each year are chosen at random

within strata defined by depth and latitude (two regions divided at

Point Conception, CA). Four commercial vessels (20–28 m length)

are chartered each year to sample from mid-May to late October,

conducting ca. 15-min tows at a speed of 2 knots using a standard

Aberdeen-type trawl with a 3.8-cm mesh codend liner, 25.9-m

headrope, and 31.7-m footrope. All fishes and invertebrates are

sorted at sea to the lowest possible taxon, and their wet weight is

measured. For the purposes of our analysis, we take the midpoint

of each haul to represent the location of each biological sample.

We analyse these survey data between the years 2003 and 2014,

focusing on structure-forming invertebrates and eight species of

Pacific rockfish (Table 1) that are frequently captured within the

survey and for which there was previous documentation of
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association with structure-forming invertebrates at fine spatial

scales (Love et al., 2002). We aggregate the structure-forming in-

vertebrate taxa into a single grouping to obtain adequate encoun-

ter rates for estimating the distribution for structure-forming

invertebrates. This SFI group primarily consists of sponges (phy-

lum Porifera), anemones (order Actiniaria), and sea pens (order

Pennatulacea), along with fewer observations of true corals (sub-

class Hexacorallia) and other soft corals (subclass Octocorallia).

Although the survey is primarily designed to capture demersal

fishes and is not as effective as visual methods for assessing

structure-forming invertebrates, it is the primary source of data

for estimating spatio-temporal associations between demersal

fishes and biogenic habitat at large spatial and temporal scales off

the US West Coast. Bottom-trawl samples have been shown to be

a good predictor of biogenic habitat distribution in areas such as

the eastern Bering Sea based on validation using camera surveys

(Rooper et al., 2016).

Vector-autoregressive spatio-temporal (VAST) model
We seek to estimate the association among fishes and structure-

forming invertebrates and, therefore, model correlations among

density dðs; c; tÞ for each taxon c (indicating fish species or the

SFI group) at location s and time t (all symbols are summarized

in Table 2). To do so, we build upon recent research regarding

JDSDMs. In particular, we propose a VAST model, where the

probability distribution for catch data bi is decomposed

into two components representing (i) the probability of encoun-

ter p si; ci ; tið Þ for the location si , taxon ci , and year ti of the ith

sample, and (ii) the expected catch rate r si; ci; tið Þ, given that

taxon ci is encountered. Decomposing catch rates into

encounter-probability p and positive catch rates r is commonly

conducted using delta models (Maunder and Punt, 2004;

Martin et al., 2005), although delta models have not previously

been used within JDSDMs. Using a delta model allows us to

separately identify species with similar distribution (similarities

in occupied habitat) vs. similar density (similarities in hotspots

within their distribution). Therefore, we specify:

Prðbi ¼ BÞ ¼
1� pðsi; ci; tiÞ if B ¼ 0

pðsi; ci; tiÞ � LognormalfBjlog½wi � rðsi; ci; tiÞ�;r2
cg if B > 0

(

(1)

where Lognormalðxjl;r2Þ is a lognormal probability distribution

function for value x, given a log-mean of l and a variance of r2,

and wi is the area swept for the ith sample.

Using this delta model, we separately develop a spatio-

temporal model for encounter probabilities p and positive catch

rates r . We approximate spatio-temporal variation in encounter

probability p si ; ci; tið Þ using a logit-linked linear predictor:

logit½p si; ci ; tið Þ� ¼ cp ci ; tið Þ þ ep si; ci; tið Þ þ dpðci; viÞ (2)

where cp ci; tið Þ is an intercept for encounter probability for each

taxon c and time t , ep si; ci; tið Þ approximates spatio-temporal var-

iation in encounter probability (in logit-space), and dpðci; viÞ is a

“vessel effect” for the vessel vi conducting the ith sample when

catching taxon ci . Vessel effects are included because the

WCGBTS is obtained using 3–4 different vessels per year, and

previous research indicates that vessels in each year have small,

but important, variation in fishing behaviour and resulting catch

rates (Helser et al., 2004; Thorson and Ward, 2014). Expected

catch rates when a species is encountered r si; ci ; tið Þ are similarly

approximated using a log-linked linear predictor:

log½r si; ci; tið Þ� ¼ cr ci ; tið Þ þ er si; ci; tið Þ þ drðci; viÞ (3)

where cr ti ; cið Þ is an intercept, er si; ci; tið Þ is the spatio-temporal var-

iation, and drðci ; viÞ is a vessel effect for expected catch rates.

er si; ci ; tið Þ, ep si; ci; tið Þ, dpðci; viÞ, and drðci; viÞ approximate pro-

cesses that affect density and catchability, respectively, but are not

otherwise modelled explicitly (Thorson et al., 2016). Including these

effects in the VAST model allows catch data bi for nearby locations

to be correlated (via correlations in encounter probability p or posi-

tive catch rate r) and also improves density predictions at locations

that otherwise have little data (Shelton et al., 2014).

The VAST model involves specifying a probability distribution for

spatio-temporal variation (ep s; c; tð Þ and erðs; c; tÞ) and vessel effects

(dpðc; vÞ and drðc; vÞ). For each modelled year, we therefore specify

a three-dimensional Gaussian process for spatio-temporal variation:

vec½EpðtÞ� � MVNð0;Rp � VepÞ (4)

where EpðtÞ is a matrix composed of ep s; c; tð Þ at every modelled

location s and taxon c in a given year t , vec½Ep tð Þ� is a vector

composed of stacking every column of EpðtÞ, Rp is the correlation

matrix approximating similar encounter probability among loca-

tions, Vep is the covariance matrix approximating similar encoun-

ter probability among species, and � is the Kronecker product

such that Rp � Vep is a covariance matrix between any taxon c

and location s in year t [ErðtÞ follows an identical distribution,

but with Rr and Ver in place of Rp and Vep].

Table 1. List of taxa (common and scientific name), the abbreviations used to indicate taxa in plots, and the total number of encounters
during 2003–2014.

Common name Scientific name Plotting code Encounters

Structure-forming invertebrates (SFIs) — SFI 6383
Longspine thornyhead Sebastolobus altivelis L. spine 2758
Shortspine thornyhead Sebastolobus alascanus S. spine 3891
Darkblotched rockfish Sebastes crameri Dark 1338
Pacific Ocean perch Sebastes alutus POP 547
Sharpchin rockfish Sebastes zacentrus Sharp 490
Splitnose rockfish Sebastes diploproa Split 1619
Stripetail rockfish Sebastes saxicola Stripe 1630
Greenspotted rockfish Sebastes chlorostictus Green 434

Comparing estimates of abundance trends 1313
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Spatial correlation Rp between location s and location s þ h

generally declines with an increased distance jhj between the two

locations [sometimes termed Tobler’s law of geography; Tobler,

1970]. We specify a Matérn function for this correlation, which

includes a parameter jp governing the distance at which locations

are essentially uncorrelated (increased jp leads to a decreased

decorrelation distance) as well as a transformation matrix H rep-

resenting geometric anisotropy (the tendency for correlations to

decline faster in one direction than another):

Rp s; s þ hð Þ ¼ 1

2m�1CðnÞ � jpjhHj
� �n � Km jnjhHjð Þ (5)

where n is a smoothness parameter [fixed at 1.0; Simpson et al.,

2012] and Kn is the Bessel function (Rr is defined identically but

with jr in place of jp). Including geometric anisotropy is gener-

ally important for fishes along a narrow continental shelf like the

US West Coast, where correlations decline faster moving onshore–

offshore rather than moving alongshore (Thorson et al., 2015b).

We do not know a priori which taxa are likely to be more or

less correlated. Therefore, we model covariance Vep among spe-

cies using a factor-analysis decomposition:

Vep ¼ LepLT
ep (6)

where Lep is a nc by nf matrix defining the first nf columns of the

Cholesky decomposition of covariance matrix Vep, LT
ep is the

matrix-transpose of Lep, and Ver is defined identically but with

Ler in place of Lep [see Thorson et al., 2016a,b and Warton et al.,

2015 for details regarding this factor-analysis decomposition].

Similarly, we specify a factor-analysis decomposition for the co-

variance Vdp ¼ LdpLdpT among vessel effects:

dpðvÞ � MVNð0;VdpÞ (7)

where dpðvÞ is the vector of vessel effects affecting encounter

probability dp c; vð Þ for all taxa c and a given vessel v (and where

Table 2. List of symbols representing indices, data, fixed effects, random effects, and derived quantities defined in the main text.

Name Symbol Dimension Type

Sample i — Index
Taxon c — Index
Location s — Index
Year t — Index
Taxon (species or species-group) c — Index
Vessel v — Index
Probability distribution for catches B — Random variable
Catch data bi ni Data
Area-swept for each sample wi ni Data
Area associated with each location aðsÞ ns Data
Statistic associated with each location xðsÞ ns Data
Variance in positive catch rates r2 — Fixed effect
Intercept for p cp c; tð Þ nc � nt Fixed effect
Intercept for r cr c; tð Þ nc � nt Fixed effect
Decorrelation distance in ep s; c; tð Þ jp — Fixed effect
Decorrelation distance in er s; c; tð Þ jr — Fixed effect
Geometric anisotropy H 2� 2 Fixed effect
Factor approximation to Vep Lep nc � nf Fixed effect
Factor approximation to Ver Ler nc � nf Fixed effect
Factor approximation to Vdp Ldp nc � nf Fixed effect
Factor approximation to Vdr Ldr nc � nf Fixed effect
Spatio-temporal variation in p ep s; c; tð Þ ns � nc � nt Random effect
Spatio-temporal variation in r er s; c; tð Þ ns � nc � nt Random effect
Vessel effect for p dpðc; vÞ nc � nv Random effect
Vessel effect for r drðc; vÞ nc � nv Random effect
Encounter probability pðs; c; tÞ ns � nc � nt Derived quantity
Positive catch rates rðs; c; tÞ ns � nc � nt Derived quantity
Local density dðs; c; tÞ ns � nc � nt Derived quantity
Spatio-temporal variation in p in year t EpðtÞ ns � nc Derived quantity
Spatio-temporal variation in r in year t ErðtÞ ns � nc Derived quantity
Spatial correlation in ep s; c; tð Þ Rp ns � ns Derived quantity
Spatial correlation in er s; c; tð Þ Rr ns � ns Derived quantity
Correlation among species in ep s; c; tð Þ Vep nc � nc Derived quantity
Correlation among species in er s; c; tð Þ Ver nc � nc Derived quantity
Correlation among species in dpðc; vÞ Vdp nc � nc Derived quantity
Correlation among species in drðc; vÞ Vdr nc � nc Derived quantity
Index of abundance Iðc; tÞ nc � nt Derived quantity
Center of spatial distribution Xðc; tÞ nc � nt Derived quantity

Throughout, we use subscripts to indicate either properties of the ith sample (e.g. area-swept wi , location si), or parameters associated with encounter probabil-
ity or positive catch rates (e.g. jp vs. jr). Indices or scalars have dimension of zero, indicated using a “—” symbol.
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Vdr is defined identically, but with Ldr in place of Ldp). This

factor-analysis decomposition allows the analyst to select an ap-

propriate number of factors nf for approximating spatio-

temporal covariation or covariation among vessels, where

0 < nf � nc . Specifying a reduced number of factors (nf < nc )

decreases the number of estimated parameters and, therefore,

may result in smaller standard errors for other parameters or

more precise predictions of local density (Thorson et al., 2015a).

However, reducing the number of factors could also result in bi-

ased estimates of abundance trends (e.g. by shrinking dynamics

for all species onto a small number of dimensions). We leave ex-

ploration of this bias-variance trade-off as a topic for future re-

search and instead specify full rank for each covariance (nf ¼ nc )

to eliminate this source of potential bias.

Parameters are estimated for the VAST model by maximizing

the marginal likelihood of fixed effects given available data. We

treat the intercept parameters for each species (cpðc; tÞ and

cr c; tð Þ), the spatial scale of spatio-temporal variation (jk and

jr ), the shape of geometric anisotropy (two parameters in H), the

covariation among species (Lep and Ler ), the covariation among

vessels (Ldp and Ldr ), and the magnitude of residual variation in

positive catch rates for each species (r2
c ) as fixed effects. We treat

spatio-temporal variation [ep s; c; tð Þ and er s; c; tð Þ] and catch-

ability variation [dpðc; vÞ and drðc; vÞ�as random effects (Thorson

and Minto, 2015). We define the joint likelihood as the product

of the probability of random effects (given fixed effects) and the

probability of the data (given random and fixed effects). We then

calculate the marginal likelihood of fixed effects while integrating

the joint likelihood with respect to random effects. We

specifically use the Laplace approximation to approximate the

multidimensional integral required to calculate the marginal like-

lihood (Skaug and Fournier, 2006). The Laplace approximation is

implemented using Template Model Builder (Kristensen et al.,

2016), and Template Model Builder also provides the gradient of

the approximated marginal likelihood with respect to all fixed ef-

fects. We use a gradient-based nonlinear minimizer within the R

statistical environment (R Core Team, 2015) to identify

maximum-likelihood estimate (MLE) of fixed effects. To improve

computational efficiency, we use Revolution Open R for low-level

parallelization of matrix computations (http://www.revolutiona

nalytics.com/revolution-r-open), a stochastic partial differential

equation (SPDE) approximation for all spatial processes

(Lindgren et al., 2011), and the R-INLA software (Lindgren,

2012) to compute the triangulated mesh used in the SPDE ap-

proximation. We distribute code for applying the VAST model to

other datasets as an R package on the author’s website (www.

github.com/james-thorson/VAST) and have confirmed that the

VAST model provides identical parameter estimates to a

Figure 1. Comparison of estimated density functions (averaged across all years for each taxon) for structure-forming invertebrates, six
Sebastes, and two Sebastolobus species using the VAST multispecies model (bottom row) compared with a single-species estimate for each
taxon (top row; see Table 1 for plotting code for taxa; inset colour bar shows average log-density in kg km�2, and colours are defined
identically for single- and multispecies models for each taxon).
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previous spatio-temporal index standardization model

(SpatialDeltaGLMM, Thorson et al., 2015b) when applied to data

for a single species. However, the VAST model also incorporates

most capabilities of spatial dynamic factor analysis for monitor-

ing trends in community abundance or conducting species ordi-

nation (Thorson et al., 2016a,b).

After parameters are estimated, we predict the value of random

effects by identifying their values that maximize the joint likeli-

hood, given the data and maximum likelihood estimates of fixed

effects. We then use the predicted values for random effects to es-

timate total biomass Iðc; tÞ for each taxon in each year [an “index

of abundance”; Thorson et al., 2015b]:

Iðc; tÞ ¼
Xns

s¼1

aðsÞ � logit �1½cpðc; tÞ þ epðs; c; tÞ�

� exp ½crðc; tÞ þ erðs; c; tÞ� (8)

where aðsÞ is the area associated with location s [Iðc; tÞ does not

include vessel effects dp or dr , because these are interpreted as

representing variation in catchability]. We also estimate the cen-

troid of the distribution Xðc; tÞ for each species in each year

[termed “center of gravity”; Thorson et al., 2016b]:

Xðc; tÞ ¼
Xns

s¼1

xðsÞ

aðsÞ logit �1½cpðc; tÞ þ epðs; c; tÞ�
� exp ½crðc; tÞ þ erðs; c; tÞ�

Iðc; tÞ

8>>><
>>>:

9>>>=
>>>;

(9)

where xðsÞ can be any statistic used to summarize distribution.

We are particularly interested in estimating shifts in fish distribu-

tion northward or southward along the US West Coast, so we de-

fine xðsÞ as the distance north of the equator (in kilometres) for

location s. Standard errors for Iðc; tÞ and Xðc; tÞ are then calcu-

lated by Template Model Builder using a generalization of the

delta method.

We compare model performance when fitting all species simul-

taneously (the “multi-species analysis”) to a conventional “single-

species analysis”, where each species is fitted individually using

the VAST model. To compare performance between single- and

multispecies models, we compute the Akaike information crite-

rion (AIC) (Akaike, 1974). The AIC is a measure of model “parsi-

mony” (see Figure 1.3 from Burnham and Anderson, 2002),

which we use to identify the level of complexity that likely mini-

mizes the combination of bias (from an overly simple model) and

imprecision (from an overly complex model). We compute the

“single-species” AIC as the sum of the AIC for the VAST model

fitted to each individual species; this comparison is justified be-

cause the aggregate of single-species models is fitted to the same

dataset as the multispecies model. We also conduct a tenfold

cross-validation analysis to determine whether multi- or single-

species analyses have greater predictive ability. To do so, we

divide the data into 10 similarly sized partitions. For the first

cross-validation, we estimate model parameters only using data

in partitions 2–10, and calculate the probability of data in parti-

tion 1 using the predictive distribution, given estimated parame-

ters. This process is repeated for all 10 partitions for the

multispecies model. For the single-species model, we conduct this

tenfold cross-validation for each species individually, and then

sum the resulting log-predictive probabilities for each species.

Results
Inspection of density estimates for eight fishes and structure-

forming invertebrates using the multispecies VAST model shows

that species are unevenly distributed throughout the California

Current (Figure 1, bottom row). By distribution, the fishes can be

broadly classified into three groups: coastwide Sebastes spp. (split-

nose, stripetail, and greenspotted), northern Sebastes spp. (POP,

sharpchin, and darkblotched), and Sebastolobus spp. (longspine

and shortspine thornyheads). The thornyheads are distinguished

by having increased densities in the deepest waters farthest from

the US coast. Structure-forming invertebrates are found at high-

est densities offshore near northern Oregon, close to the Oregon–

California border and offshore from the south of Monterey Bay

through the Southern California Bight.

Our species classifications are supported by the estimated co-

variance matrices (Figure 2), where longspine and shortspine

thornyheads have high pairwise correlations in both encounter

probability and positive catch rates (0.5–0.7). Encounter proba-

bility of longspine is negatively associated with encounter

Figure 2. Analytic estimate of correlation among fishes and SFI
using the VAST model (see Table 1 for taxa abbreviations) for
encounter probabilities (Rer , top panel) or positive catch rates (Rep ,
bottom panel). Numbered columns correspond to the species
groups indicated by the row labels, ordered from top to bottom.
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probability of Sebastes spp., while encounter probability of short-

spine has both positive and negative associations with different

Sebastes spp. This difference between thornyhead species is also

apparent in distribution maps (Figure 1), where longspine has the

deepest distribution of any fish in our analysis, whereas short-

spine occupies a more shoreward distribution that overlaps with

the spatial distribution for several Sebastes (e.g. darkblotched,

POP, and splitnose). The Sebastes spp. all generally have high cor-

relations (0.5–0.9) with one another for encounter probability

(Ep ; Figure 2 top panel), but the northern vs. coastwide groups

are strongly distinguished by correlations in positive catch rates

(Er ; Figure 2 bottom panel), where darkblotched, POP, and

sharpchin have higher correlations with one another (0.9) than

with splitnose, stripetail, and greenspotted (0.2–0.7). At this

coastwide spatial scale, Sebastolobus spp. generally have increased

encounter probability when structure-forming invertebrates are

found, whereas coastwide and northern rockfish groups have

somewhat decreased encounter probability in these cases. When

fishes and SFI are encountered, however, an increased catch of

SFI is associated with increased catch for all fishes except stripetail

and sharpchin rockfish.

We next compare estimates of biomass trends using multispe-

cies and single-species estimates (Figure 3). Biomass trends are

broadly similar between models, and particularly for SFI, which

shows a trend of increased biomass since 2008. Biomass trend es-

timates are most different between multi- and single-species

models for the group of northern Sebastes spp. (darkblotched,

sharpchin, and POP; Figure 3 middle row). For example, the

multispecies model estimates lower abundance for POP in 2008

than the single-species model. This lower estimate for POP in

2008 using the multispecies model reflects a similar decrease in

abundance for darkblotched rockfish in 2008 using either model

– the estimate for POP in this year for the multispecies model is

“shrunk” towards the estimate for darkblotched rockfish.

Estimates of variation and trends in center-of-gravity (COG)

are also generally similar between multi- and single-species model

outputs (Figure 4). The notable exceptions are again the northern

Sebastes spp., specifically POP and sharpchin rockfish, which

both have relatively few encounters relative to other species (ca.

500 each, see Table 1). For POP and sharpchin, the single-species

estimates of COG are nearly 100 km farther south than COG esti-

mates from the multispecies model (Figure 4 middle row). By

Figure 3. Relative log-biomass Iðc; tÞ in units of log-metric tons (Equation 8) for each species using single-species (grey) or multispecies (red)
modelling (note different y-axis ranges for each species and see Table 1 for taxa abbreviations; top row: SFI and Sebastolobus group; middle
row: northern Sebastes group; bottom row: coastwide Sebastes group).

Comparing estimates of abundance trends 1317

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/74/5/1311/2907795 by guest on 14 N
ovem

ber 2024

Deleted Text: s
Deleted Text: ve
Deleted Text: &quot;
Deleted Text: &quot;


sharing information about positive catch rates (as shown in the

lower panel of Figure 2), the multispecies model estimates greater

variation in density for these species between different locations

off Oregon and Washington and, therefore, estimates a more

northward distribution than the single-species model for POP

and sharpchin (Figure 1 top row). We again interpret this as a

consequence of statistical “shrinkage” for these species, where the

multispecies model is sharing information among northern

Sebastes spp. to infer density hotspots.

Finally, a comparison of standard errors (Figure 5) shows that

the multispecies model generally has slightly larger standard error

for estimating log-biomass (median 0.01 increase relative to

single-species model) and center-of-gravity (median 2.4 km in-

crease). This increased standard error presumably occurs because

the multispecies model estimates greater spatial variation in den-

sity (Figure 5). For POP, for example, the single-species model es-

timates little spatial pattern except an increase in density moving

northward along the coast, while the multispecies model esti-

mates density hotspots in the same mid-depth areas off the

Washington coast as it estimates as good habitat for splitnose and

darkblotched rockfishes (Figure 1).

Despite estimating wider standard errors for abundance indi-

ces and distribution shifts, the multispecies model provides a

more fit to available data. The multispecies model has an AIC

score that is 5692.0 better than the combined AIC for single-

species models, despite the multispecies model estimating an ad-

ditional 112 parameters (409 fixed effects for the multispecies vs.

297 total among all single-species models). The improvement in

fit for the multispecies model is also supported by the tenfold

cross-validation analysis, where the multispecies model has a 4–

5% greater predictive probability than when analysing each spe-

cies individually (Table 3). This improvement in predictive score

presumably arises because the multispecies model identifies fine-

scale differences in species density for all taxa (e.g. comparing Fig.

1 top and bottom rows for splitnose), and these fine-scale density

estimates are on average a useful prediction of variation in catch

rates.

Discussion
We have used a JDSDM to illustrate strong associations (both

positive and negative) between deep-water demersal fishes and

structure-forming invertebrates at broad spatial scales along the

Figure 4. Northward center-of-gravity (COG), Xðc; tÞ, in units of kilometres north of the equator (Equation 9) for each species using single-
species (grey) or multispecies (red) modelling (see Table 1 for taxa abbreviations, and Figure 3 caption for details).
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US portion of the California Current. These associations vary

substantially between two genera Sebastolobus (thornyheads) and

Sebastes, where Sebastes can be further divided into northern and

coastwide species. Previous work has shown phylogenetic signals

in covariation among fishes (Thorson et al., 2015a, 2016a,b) or

other species (Ovaskainen et al., 2010), but ours is the first study

to (i) use a spatio-temporal statistical model to estimate

covariance between fishes and structure-forming invertebrates,

and (ii) decompose this covariation into components represent-

ing encounter probabilities vs. positive catch rates [i.e. using the

delta models that are conventional in fisheries science; Maunder

and Punt, 2004]. Although the JDSDM was more parsimonious

and had better predictive performance than single-species models

(as shown by AIC and cross-validation analysis), the multispecies

Figure 5. Comparison of standard error estimates for log-index of abundance, ln½I c; tð Þ� in units of log-metric tonnes (Equation 8, top row)
and centre-of-gravity (COG) Xðc; tÞ in units of kilometres north of the equator (Equation 9, bottom row) from single-species and multispecies
VAST models, where the scatterplots compare standard error estimates for each year t and taxon c (first column; x-axis shows single-species
and y-axis shows multispecies standard errors) and the histograms show the difference between these standard error estimates (second
column; where a positive value indicates that the multispecies model had a wider confidence interval than the single-species model for that
taxon and year). The dotted line in each histogram indicates the median increase in log-standard error (top row) or standard error (bottom
row) for the multispecies relative to the single-species model, and the number in the top-right corner indicates the median increase.

Table 3. Predictive negative log-likelihood for left-out samples (where a low number indicates better fit for the multispecies model) from a
tenfold cross-validation experiment comparing single-species models to a multispecies VAST model that was estimated for all species
simultaneously, as well as the ratio of predictive probability for the multispecies model relative to the single-species model (a value>1.0
indicates better predictive performance for the multispecies model than the single-species model).

Partition Number of cross-validation samples

Predictive negative log-likelihood

Ratio of predictive probabilitySingle-species VAST model Multispecies VAST model

1 6889 8459.71 8078.84 1.057
2 6832 8560.26 8209.90 1.053
3 6835 8768.53 8377.45 1.059
4 6890 8203.66 7815.19 1.058
5 6799 8335.34 8009.96 1.049
6 6828 8548.48 8154.91 1.059
7 6800 8426.61 8133.02 1.044
8 6997 8688.89 8335.62 1.052
9 6743 8439.27 8077.01 1.055
10 6859 8594.30 8271.42 1.048
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analysis resulted in slightly wider confidence interval estimates

than analysing data for each species individually.

At a coastwide spatial scale, we estimate an increased encoun-

ter probability for Sebastolobus and a decreased encounter proba-

bility for Sebastes species where SFIs are present. In contrast,

alternative visual sampling at fine spatial scales often shows a

large increase in Sebastes density, given the presence of SFIs, and

Sebastolobus densities are less often reported to be associated with

biogenic habitat (Brodeur, 2001; Tissot et al., 2008; Yoklavich

and O’Connell, 2008; du Preez and Tunnicliffe, 2011). Recent re-

search suggests that correlations in distribution among species

will often differ when looking at small and large scales

(Ovaskainen et al., 2016), and this may explain why our results

differ from those from fine-scale visual sampling. Alternatively,

differences in results may arise because visual sampling often oc-

curs in rocky habitats, whereas our analysis relies on bottom trawl

data that are primarily available in soft-sediment habitats. We

recommend future research combining data from small and

coastwide scales (and both hard- and soft-bottom habitat) within

a single spatio-temporal statistical model, where density-variation

at fine scales could be obtained by either fishery-dependent catch-

rate data or direct observations (Jagielo et al., 2003; Shelton et al.,

2014; Rooper et al., 2016; Thorson et al., 2016). We also recom-

mend future research to include habitat variables and associations

within size-structured spatio-temporal models (e.g. Kristensen

et al., 2014; Nielsen et al., 2014). These models could then esti-

mate separate habitat associations for juvenile and adult fishes

and be used to target spatial management towards the more vul-

nerable or sensitive life stage for protected species.

Based on our results, we find that simultaneously modelling

fishes and SFI yields more parsimonious predictions of density

and also facilitates estimating variation in density at finer spatial

scales than single-species models, even for species with few en-

counters (e.g. POP and sharpchin rockfishes). However, incorpo-

rating these associations when estimating trends in abundance or

distribution does not shrink confidence intervals. For an ecologist

conducting a stock assessment, incorporating multispecies data

may complicate their description of estimated abundance indices,

thereby decreasing stakeholder trust in the stock assessment pro-

cess. Therefore, we imagine that our results will encourage many

assessment scientists to continue using single-species models for

estimating abundance indices. From a broader perspective, how-

ever, the increased parsimony and out-of-sample predictive abil-

ity of the multispecies model indicate that estimates of local

density are generally improved by jointly modelling multiple spe-

cies (including both fishes and biogenic habitat). Precise predic-

tions of local density for rare species might be particularly useful

for ecosystem modellers, who often initialize spatial ecosystem

models using sparse sampling data for rare species or ecosystem

components. These estimates of local density could also be used

to prioritize areas for spatial management that have a high den-

sity of structure-forming invertebrates and fishes. Therefore, we

suggest further research regarding the association of fished species

and biogenic habitat, including the likely impact of spatial man-

agement on fishery productivity in the West Coast groundfish

fishery.
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