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1. Assessment Process Proceedings 
On January 20, 2025, President Trump issued Executive Order 14172 to rename the Gulf of 
Mexico as the Gulf of America. Any reference to Gulf of America Brown Shrimp in SEDAR 
reports and other documents refers to the same species and fishery listed in 50 CFR part 622, 
Subpart C (Shrimp Fishery of the Gulf of Mexico). As of the publication of this report, all efforts 
were made to use “Gulf of America” per Executive Order 14172. However, previous NOAA 
reports (cited herein) may have referred to this water body as the “Gulf of Mexico”. 

1.1 Introduction 
1.1.1 Workshop Time and Place 

The SEDAR 87 Assessment Process (AP) for Gulf Brown Shrimp was conducted via a series of 
webinars held between October 2024 and February 2025. 

1.1.2 Terms of Reference 

1. Review any changes in data or analyses following the Data Workshop. Summarize data 
as used in each assessment model. Provide justification for any deviations from Data 
Workshop recommendations. 

2. Develop a management advice framework. Consider data availability (e.g., landings and 
catch-per-unit-effort [CPUE]) and management needs (e.g., harvest controls, stock 
status), and particular needs of the fishery and the biology of the resource. 

3. Examine the impacts of social science factors on biological reference points as informed 
by stakeholders through industry input. 

4. Recommend biological reference points for use in management. 

o Consider how reference points could be affected by management, ecosystem, 
climate, species interactions, habitat considerations, social or economic drivers, 
and/or episodic events. 

5. Provide estimates of stock population parameters, including: Fishing mortality, biomass, 
selectivity, and/or other parameters as necessary to describe the population. 

6. Characterize uncertainty in the assessment and estimated values. 
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o Consider uncertainty in input data, modeling approach, and model configuration. 
o Provide appropriate measures of model performance, reliability, and ‘goodness of 

fit’. 
o Provide measures of uncertainty for estimated parameters and derived quantities 

such as biological reference points and stock status if feasible. 
7. Provide recommendations for future research and data collection. Emphasize items that 

will improve future assessment capabilities and reliability. Consider data, monitoring, 
and assessment needs. 

8. Complete an Assessment Workshop Report in accordance with project schedule 
deadlines. 

1.1.3 List of Participants 

Assessment Process Participants 
Lisa Ailloud, Co-Lead Analyst ....................................................................... NMFS Miami 
Molly Stevens, Co-Lead Analyst .................................................................... NMFS Miami 
 
Don Behringer ................................................................................................ NMFS SEFSC 
Jie Cao ................................................................................................. NCSU/GMFMC SSC 
Steve Munch .................................................................................................. NOAA NMFS 
Jim Nance ....................................................................................................... GMFMC SSC 
Jason Saucier .......................................................................................................... MS DMR 
Katie Siegfried ............................................................................................... NMFS SEFSC 
Brendan Turley ........................................................................................................... NMFS 
 
Appointed Observers 
Leann Bosarge .................................................................................................. Industry Rep 
Glenn Delany ......................................................................................................................... 
 
Staff 
Julie Neer ................................................................................................................. SEDAR 
Emily Ott .................................................................................................................. SEDAR 
Matt Freeman ................................................................................................. GMFMC Staff 
Dominique Lazarre ..................................................................................................... SERO 
Michelle Masi ............................................................................................................. SERO 
Ryan Rindone ................................................................................................. GMFMC Staff 
Carrie Simmons ............................................................................................. GMFMC Staff 
 
Assessment Process Webinar Observers 
Sarina Atkinson ............................................................................................... NMFS Miami 
Peyton Cagle .............................................................................................................. LWFD 
Judd Curtis ...................................................................................................... SAFMC Staff 
Kyle Detloff ................................................................................................... NMFS SEFSC 
Traci Floyd ............................................................................................................. MS DMR 
Carissa Gervasi .......................................................................................................... NOAA 
Bob Gill ................................................................................................................... GMFMC 
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David Hanisko ............................................................................................... NMFS SEFSC 
Kimberly Johnson .......................................................................................... NMFS SEFSC 
Tricia Kimball ........................................................................................................................ 
Christopher Liese ........................................................................................... NMFS SEFSC 
Alan Lowther ................................................................................................. NMFS SEFSC 
Richard Malinowski ....................................................................................... NOAA NMFS 
Jessica Marchant .................................................................................................. AL DCNR 
Fernando Martinez-Andrade ...................................................................................... TPWD 
Akbar Marvasti .......................................................................................................... NOAA 
Cassidy Peterson ............................................................................................ NMFS SEFSC 
Cheston Peterson ........................................................................................................ NOAA 
Adam Pollack ................................................................................................. NMFS SEFSC 
David Records ............................................................................................................ NOAA 
Sarah Roberts ............................................................................................................. NOAA 
Skyler Sagarese .............................................................................................. NMFS SEFSC 
Andrew Scalisi ........................................................................................................... LDWF 
Chris Schieble ............................................................................................................ LDWF 
Rebecca Smith ........................................................................................................... NOAA 
Jim Tolan ............................................................................................................................... 
Michael Travis ........................................................................................................... NOAA 
Jo Williams .................................................................................................... NMFS SEFSC 

 

1.1.4 List of Assessment Process Working Papers and Reference Documents 

Document # Title Authors Date Submitted 

Documents Prepared for the Assessment Process  

SEDAR87-AP-01 Development of estuarine 
environmental indices for SEDAR 87 
Gulf of Mexico White, Pink, and 
brown shrimp stock assessment 

Brendan Turley, 
Lisa Ailloud, and 
Molly Stevens 

25 July 2024 

SEDAR87-AP-02 Price Indices for Shrimp Imports and 
Gulf of Mexico Shrimp Landings by 
Size and Season 

Christopher Liese 18 December 
2024 

SEDAR87-AP-03 Developing a fishery-independent 
index of relative abundance for Gulf of 
Mexico Brown Shrimp using VAST 

Lisa Ailloud, 
Molly Stevens, 
Brendan Turley, 
Adam Pollack, 
and David 
Hanisko 

31 January 2025 
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SEDAR87-AP-04 Developing a fishery-independent 
index of relative abundance for Gulf of 
Mexico Pink Shrimp using VAST 

Lisa Ailloud, 
Molly Stevens, 
Brendan Turley, 
Adam Pollack, 
and David 
Hanisko 

31 January 2025 

SEDAR87-AP-05 Developing a fishery-independent 
index of relative abundance for Gulf of 
Mexico White Shrimp using VAST 

Lisa Ailloud, 
Molly Stevens, 
Brendan Turley, 
Adam Pollack, 
and David 
Hanisko 

31 January 2025 

 

Reference Documents 

SEDAR87-RD12 JABBA: Just Another Bayesian 
Biomass Assessment 

Henning Winker, Felipe Carvalho, Maia 
Kapur 

SEDAR87-RD13 Empirical dynamic modeling for 
sustainable benchmarks of short-lived 
species 

Cheng-Han Tsai, Stephan B. Munch, 
Michelle D. Masi, and Molly H. Stevens 

SEDAR87-RD14 Recent developments in empirical 
dynamic modelling 

Stephan B. Munch, Tanya L. Rogers, 
George Sugihara 

SEDAR87-RD15 Comparing estimates of abundance 
trends and distribution shifts using 
single- and multispecies models of 
fishes and biogenic habitat 

James T. Thorson and Lewis A. K. 
Barnett 

 

2. Data Review and Update 
The following list summarizes the data inputs (and units) used in the assessment modeling 
process along with their corresponding available temporal scale based upon recommendations 
from the Data Workshop process. Two assessment modeling platforms were considered: a 
Bayesian surplus production model, JABBA (Just Another Bayesian Biomass Assessment), and 
an Empirical Dynamic Modeling (EDM) platform (see Section 3). Data for JABBA were on an 
annual time scale and included commercial landings (in million pounds of tails) and an index of 
abundance built with SEAMAP and Texas Park and Wildlife (TPWD) survey data using Vector 
Auto-Regressive Spatio-Temporal (VAST) modeling (Ailloud et al. 2025). EDM explored all the 
datasets listed below using various levels of stratification. JABBA allowed for different start 
years of data inputs, while EDM was limited by the start year of the survey data. For EDM, data 
were stratified by fishing area [A (Figure 1) : 1-10, 11-17, 18-21], size [S: >67 (Small), 67-31 
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(Medium), <=30 (Large) tails per pound], and quadrimester of the year [Q: January-April 
(Winter), May-August (Summer), September-December (Fall)] where possible, and are indicated 
as such in the data list. Stratifications were defined based on existing definitions of the ecological 
distribution of shrimp and the shrimping industry. 

1. Commercial landings (million pounds of tails): 1960-2022 [A, S, Q] 
2. SEAMAP survey data (number of shrimp per trawl hour): 1987-2022 [A, S, Q] 
3. Ex-Vessel price indices (2022 dollars): 1960-2023 [S, Q] 
4. Imports (product volume in 100 million pounds): 1972-2022 [Q] 
5. Salinity (practical salinity unit): 1987-2022 [A] 
6. Bottom temperature (degrees Celsius): 1987-2022 [A] 

 

Brown Shrimp are distributed primarily in the western Gulf (Figure 1 : 11-21). Possible data 
stratifications for Brown Shrimp EDM were defined as: 

A) Aggregated: ANNUAL ; SIZE BINS AGG ; AREA AGG (11:21) 
B) Area: ANNUAL ; SIZE BINS AGG ; AREA (11:17, 18:21) 
C) Size: ANNUAL ; SIZE BINS (>67, 67-31, <=30) ; AREA AGG (11:21) 
D) Size_Area: ANNUAL ; SIZE BINS (>67, 67-31, <=30) ; AREA (11:17, 18:21) 
E) Season: SEASONAL (SUMMER, FALL+WINTER) ; SIZE BINS AGG ; AREA AGG 

(11:21) 
F) Area_Season: SEASONAL (SUMMER, FALL+WINTER) ; SIZE BINS AGG ; AREA 

(11:17, 18:21) 
G) Size_Season: SEASONAL (SUMMER, FALL+WINTER) ; SIZE BINS (>67, 67-31, 

<=30) ; AREA AGG (11:21) 
H) Size_Area_Season: SEASONAL (SUMMER, FALL+WINTER) ; SIZE BINS (>67, 67-

31, <=30) ; AREA (11:17, 18:21) 
 

For Brown Shrimp, additional strata were included that aggregated the Small and Medium size 
classes into a Smedium size class containing all shrimp smaller than >31 tails per pound. 

      Csm) Size: ANNUAL ; SIZE BINS (>30, <=30) ; AREA AGG (11:21) 
      Gsm) Size_Season: SEASONAL (SUMMER, FALL+WINTER) ; SIZE BINS (>30, <=30) ; 
AREA AGG (11:21) 
      Hsm) Size_Area_Season: SEASONAL (SUMMER, FALL+WINTER) ; SIZE BINS (>30, 
<=30) ; AREA (11:17, 18:21) 

2.1 Stock Structure and Management Unit 
The SEDAR 87 Gulf Brown Shrimp Benchmark Assessment stock boundary extends from the 
United States–Mexico border in the west through the northern Gulf of America waters (hereafter 
referred to as the Gulf) to the Dry Tortugas and Florida Keys. This includes all waters within the 
Gulf of Mexico Fishery Management Council (hereafter referred to as the Gulf Council) 
boundaries and extends to include fishing areas split by the eastern boundary off the Florida 
Keys (Figure 1: Areas 002, 001) in their entirety due to complications with reporting over time 
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(Atkinson et al. 2024). This stock boundary distinction is most important for Pink Shrimp due to 
its distribution being centered in the eastern Gulf, but it was applied to all Gulf shrimp species. 

2.2 Fishery-Independent Survey Data 
2.2.1 Southeast Area Monitoring and Assessment Program (SEAMAP) 

The Southeast Area Monitoring and Assessment Program (SEAMAP) survey is a collaborative 
effort between federal, state, and university programs, designed to collect, manage, and distribute 
fishery-independent data throughout the region. The SEAMAP survey design was improved and 
expanded in 2008 and was deemed representative for Brown Shrimp since 1987 for all provided 
size classes (Pollack and Hanisko 2024). The SEAMAP survey operates in the Fall and Summer, 
and seasonality was explored categorically (Figure 2) and continuously (Figure 3). The Summer 
survey tracks Brown Shrimp populations after they have recruited to the population, and the Fall 
generally surveys what is left after most of the fishery has taken place. Raw annual indices for 
Brown Shrimp are shown by size class and season in Table 1. 

Due to the global COVID-19 pandemic, the 2020 Summer SEAMAP survey did not operate. 
There are variable time step methods available for dealing with missing data in EDM, but these 
approaches considerably increase model complexity and are typically only used when variable-
sized gaps in data are present throughout a long time series. Using a variable time step method 
was determined to be inappropriate for addressing a single missing time step of data; however, it 
was also not desired to stop the model in 2019 when data were available through 2022. 
Therefore, the 2020 missing data point was replaced by an average of 2019 and 2021 on the 
finest resolution possible (i.e., annual aggregations averaged 2019/21, but seasonal models only 
averaged Summer 2019/21 and directly included Fall 2020). 

2.2.2 Vector Autoregressive Spatio-Temporal (VAST) Index 

VAST is a spatio-temporal modeling platform that can be used for standardizing indices of 
relative abundance. Data from one or more surveys are combined to predict population density 
based on both habitat covariates (that impact abundance) and spatial and spatio-temporal random 
effects, while controlling for catchability covariates (that impact sampling efficacy). A VAST 
index was developed for Brown Shrimp based on data from SEAMAP and the TPWD surveys 
for input into JABBA. Details of the VAST index are documented in Ailloud et al. (2025). 

2.3 Fishery-Dependent Data 
2.3.1 Commercial Landings 

Commercial landings of Brown Shrimp were constructed using data from the Gulf Shrimp 
System (GSS) and state trip ticket programs. Species-specific Gulf shrimp landings have been 
collected since the late 1950s, and their complex history within the federal and state databases, 
including justifications for the relative coefficients of variance (CVs) through time, is 
documented in great detail in Atkinson et al. (2024). Landings were converted to tail weight for 
input to the assessment model. 

Landings from the Winter months (JFMA) were minimal. For EDM, they were aggregated with 
the previous years’ Fall (SOND) landings to account for removals during this time period and 
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match the seasonal timestep of the SEAMAP survey (Figure 4). Shrimp landings have been sold 
and recorded by eight market categories, which were aggregated into three general size classes. 
These are shown broken out seasonally in Figure 5 and with the real-time seasonal fluctuations 
by size class in Figure 6. The Small size category displays the largest fluctuations, where new 
recruits enter the population in the Summer and are either caught or have grown out to larger size 
classes by the Fall (Table 2). 

Brown Shrimp landings peaked in 1990 with landings totaling 105.91 million pounds of tails. 
Landings have been declining since the mid-2000s due to economic conditions described in the 
following section, Griffith et al. (2023), and Atkinson et al. (2024). 

2.4 Economics and Social Sciences 
2.4.1 Imports and Ex-vessel Price Indices 

Imported shrimp have exceeded the volume of domestically caught shrimp since the 1980’s 
(Lowther 2023; Atkinson et al. 2024). In the mid-2000s, the volume of imported shrimp 
increased dramatically, particularly for Large shrimp which has a higher market value, causing 
domestic ex-vessel prices to plummet (Figure 7). Time series of imports and ex-vessel prices 
were both considered during EDM development (Liese 2024). 

2.4.2 Industry Impacts 

The globalization of the shrimp market with a focus on cheap aquaculture has resulted in dire 
economic operating conditions for the domestic fleet (Griffith et al. 2023). Increasing fuel costs 
and plummeting ex-vessel prices have created a situation in which most vessels struggle to 
remain profitable. Further, many vessels have exited the fleet, and those that remain may 
oscillate between narrowing profit margins and losses (SEDAR87 data workshop report 2023 pp. 
84–94). With fewer vessels operating, the shrimping effort and associated landings have 
decreased overall, and the shrimp population size has increased. 

Industry impacts were documented during a stakeholder listening session at the Data Workshop, 
with the intention of holding additional listening sessions throughout coastal Gulf shrimping 
communities. During this session, resource users stated that the troubles of the Shrimp Fishery 
cannot be improved by domestic fishery management solutions. The bulk of the problems are 
globally influenced, and this fishery was recommended to the National Seafood Strategy to 
address these problems if possible, informed by additional information gathered through the 
newly formed Shrimp Futures Project. 

2.5 Environmental Indices 
Annual shrimp recruitment has been tied to environmental drivers (Browder et al. 2002; Zink et 
al. 2018; Schlenker et al. 2023). Within an assessment modeling framework, it is important to 
include drivers of abundance at the most meaningful spatio-temporal scale. At the SEDAR 87 
Data Workshop, the Environment and Industry Working Group recommended that salinity and 
temperature in the nursery grounds during the months that the shrimp were inhabiting the area 
were likely the primary environmental drivers for shrimp abundance. These two variables were 
hypothesized to best explain the magnitude of recruits into the population each year. The 
methodology used to derive Brown Shrimp temperature and salinity indices was outlined in 
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Turley et al. (2023). These indices were considered in the construction of the VAST index and 
development of EDM. 

Brown Shrimp is in its inshore nursery grounds February through May each year throughout its 
coastal range. It was hypothesized that the environment would affect the overall population 
abundance more directly through its impact on the young of the year in this volatile habitat. 
While there may be some impacts of seasonal differences in rainfall and temperature fluctuations 
affecting local abundance, the trends of data from both Texas (TX; north of Laguna Madre) and 
Louisiana (LA) appeared to follow strikingly similar trends, indicating consistency throughout 
the range (Figure 8). 

2.5.1 Temperature 

Temperature in the western Gulf follows nearly identical trends of state temperature averages 
from TX (north of Laguna Madre) to LA, with TX experiencing more extreme lows in some 
years. The standardized temperature index represents the nursery conditions well, which were 
remarkably similar on average, throughout these variable estuarine habitats. 

2.5.2 Salinity 

While salinity in TX was much higher compared to salinity in LA, they generally experienced 
co-occurring peaks and troughs, resulting in a standardized index that tracks changes in salinity 
well throughout the region. 

3. Stock Assessment Model Configurations and Methods 
Two modeling frameworks were evaluated for the Gulf Brown Shrimp SEDAR 87 Benchmark 
Assessment: Just Another Bayesian Biomass Assessment (JABBA) Model and Empirical 
Dynamic Modelling (EDM). These are described below. 

3.1 Just Another Bayesian Biomass Assessment (JABBA) Model 
JABBA is a Bayesian state-space surplus production model (SPM) framework that is 
documented in Winker et al. (2018) and is available as an R package on GitHub. SPMs pool the 
overall effects of recruitment, somatic growth, natural mortality, and associated density-
dependent processes into a single production function dealing with undifferentiated biomass 
(Haddon 2021). The state-space formulation allows for the estimation of observation and process 
error, and the Bayesian formulation allows the user to define prior distributions for each 
parameter in the model to represent the initial beliefs about the parameter before observing any 
data. Primary data inputs into JABBA are indices of abundance proportional to the exploitable 
part of the stock biomass and a time series of fishery removals. The time series of removals can 
begin prior to the indices of abundance, and contrast in the data is required to appropriately map 
the stock dynamics. 

The generalized surplus production function (Pella and Tomlinson 1969) used by JABBA is 
defined as 

𝑆𝑃𝑀! =
𝑟

𝑚 − 1)1 −
𝐵!
𝐾

"#$
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where 𝑟 is the intrinsic rate of population increase at time 𝑡, 𝐾 is the carrying capacity, 𝐵 is the 
stock biomass at time 𝑡, and 𝑚 is the shape parameter that determines at which 𝐵/𝐾 ratio 
maximum surplus production is attained. The Pella-Tomlinson function above is a generalized 
production function with Schaefer (𝑚 = 2) and Fox (𝑚 = 1) as special cases. The Schaefer may 
be the most well-known, with a symmetrical production curve and Maximum Sustainable Yield 
(MSY) attained at half the carrying capacity, 𝐵 = 𝐾/2. 

JABBA has several features including the ability to a) fit multiple CPUE time series and 
associated standard errors, b) estimate or fix the process variance, c) estimate additional 
observation variance on individual or grouped CPUE series, and d) specify either a Fox, Schaefer 
or Pella-Tomlinson production function. A full JABBA model description, including formulation 
and state-space implementation, prior specification options, and diagnostic tools is available in 
Winker et al. (2018). 

3.1.1 Estimated Parameters 

JABBA model parameters are defined in greater detail below. 

𝐾: Carrying capacity (million lb tail weight) 

𝑚: Shape parameter of the Pella-Tomlinson that determines at which 𝐵/𝐾 ratio maximum 
surplus production is attained. If 𝑚 = 2, the model reduces to the Schaefer form, with the 
surplus production (SP) attaining MSY at exactly 𝐾/2. If 0 < 𝑚 < 2, SP attains MSY at 
biomass levels smaller than 𝐾/2; the converse applies for values of 𝑚 greater than 2. 

𝜓: Ratio of the spawning biomass in the first year to K. 

𝑞: Catchability coefficient. 

𝑟: Intrinsic rate of population increase. 

𝜎%: Process variance. 

𝜏% : Additional observation variance for the survey index. 

3.1.2 Model Configurations and Prior Assumptions 

The final VAST index built on SEAMAP and Texas Park and Wildlife (TPWD) survey data 
presented in Ailloud et al. (2025) was used as input to JABBA alongside an annual time series of 
commercial catches spanning 1960-2022 (Section 2.3.1). The following CVs were recommended 
by the WG and input into JABBA to reflect uncertainty in landings based on changes in the 
sampling programs through time. 1960-1983: CV = 0.2, 1984-2015: CV = 0.1, 2016-2022: CV = 
0.05. The time series and associated confidence intervals are shown in Figure 9 and 10. Model 
configurations and prior distributions were defined as follows: 

Carrying capacity (𝐾): uninformative prior. Lognormal distribution specified using the “range” 
option in JABBA with lower and upper values ranging from maximum catch to 10x maximum 
catch (Figure 11) 

Production function: Pella-Tomlinson (𝑀𝑆𝑌 at 𝐵&'(/𝐾 = 0.4; 𝐶𝑉 = 0.3) where 𝐵&'( is the 
biomass at 𝑀𝑆𝑌 (Figure 12) 
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Process error variance (𝜎%): Default 	1/𝛾(4,0.01) (Figure 13). This matches the level of process 
error where state-space SPMs are most likely to adequately perform. 

Observation error variance (if estimated) (𝜏%): Default ∼ 1/𝛾(0.001,0.001) (Figure 14) 

r prior: informative priors were developed based on the Medium (0.2-0.8) and High (0.6-1.5) 
resilience categories in FishBase (Froese et al. 2019). Given that FishBase does not include any 
crustaceans and that shrimp are likely on the higher range of r compared to most fishes, an 
additional Very High (1.2-3) prior was tested (Figure 15) 

Initial biomass depletion ratio (𝜓): two alternative priors were tested to reflect Low initial 
depletion 	𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0.9,0.25) and and High initial depletion 	𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0.25,0.5) at the 
beginning of the catch time series (𝜓 = 𝐵$)*+ ⁄ 𝐾) (Figure 16) 

A factorial design was used to test a suite of models with alternative prior assumptions about 𝑟, 
𝜓 and 𝜏%. The naming convention for candidate model is as follows: 

SpeciesCode_ModelRun_ProductionCurve_rPrior (H:High,M:Medium,V:Very 
High)_PsiPrior(High:0.2,Low:0.9)_ObservationError(T=TRUE,F=False)_StartYearCatches 

For example, 

BSH_1_P_rH_psil0.9_sigT_60 : Brown Shrimp (BSH_) run number 1 (_1) using a Pella-
Tomlinson surplus production curve (_P), high r prior (_rH), low initial depletion (_psil0.9) with 
additional observation error being estimated (_sigT) and a catch time series starting in 1960 
(_60) 

3.1.3 Model Diagnostics 

Candidate models were assessed based on the following four criteria (Carvalho et al. 2021): 

3.1.3.1 Model Convergence 

The Geweke convergence diagnostic (CONV_gw) compares the mean of the first and last part of 
Markov chain to see if they are significantly different. Z scores near 0 (between -1.96 and 1.96) 
are considered acceptable (Geweke 1992). 

Heidelberger and Welch stationarity diagnostic (CONV_hs) shows the iteration number from 
which the chain is considered to have converged and an associated p value, where the null 
hypothesis is that the sampled values come from a stationary distribution (Heidelberger and 
Welch 1983). ‘Failure’ of the stationarity test indicates that a longer MCMC run is needed. The 
Heidelberger and Welch half-width test (CONV_hw) checks whether the Markov chain sample 
size is adequate to estimate the mean values accurately (Heidelberger and Welch 1983). 

3.1.3.2 Model Fit 

Catch-per-unit-effort (CPUE) residuals runs test: CPUE indices pass the runs test 
(CPUE_rt_rand) if there is no evidence of a non-random residual pattern (p > 0.05). Any year 
where the residuals are larger than the threshold limit [3 standard deviations (sd) away from the 
mean (Anhøj and Olesen 2014)] fail the outlier test (CPUE_rt_outl). 
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3.1.3.3 Model Consistency 

Retrospective analysis: This test checks for systematic bias in the stock status estimates. The 
procedure involves sequentially removing all data from the most recent period (i.e. peeling), 
refitting the model, and then comparing terminal year estimates of stock status [e.g. spawning 
stock biomass (SSB), fishing mortality (F)] to the full model. A guiding practice proposed by 
Hurtado-Ferro et al. (2015), suggests values of Mohn’s rho (RETRO_) that fall outside a set 
range (-0.22 to 0.30) for shorter-lived species indicates an undesirable retrospective pattern. In 
addition, the direction of the retrospective bias has implications for characterizing risk associated 
with management advice. 

Process error: The annual process error deviations should exhibit a stochastic pattern with a 
constant average centered around the zero (ProcB_mu) and 95% credibility intervals covering 
the zero value (ProcB_CI). 

3.1.3.4 Prediction Skill 

Hindcast cross-validation (Kell et al. 2016, 2021): this test is to check that the model has 
prediction skill of future states under alternative management scenarios. The procedure involves 
sequentially removing CPUE data from the most recent period, refitting the model with the 
remaining data, and then comparing known CPUE values (observations) to model estimates. 

Mean Absolute Scaled Error (HX_MASE): The MASE score scales the mean absolute error of 
the prediction residuals to the mean absolute error of a naive in-sample prediction (i.e. equal to 
the last observed value). A score of 0.5 indicates that the model forecasts of CPUE values are 
twice as accurate as a naive in-sample prediction, indicating that the model has prediction skill. 
A score higher than 1 indicated that the model forecasts are no better than a random walk. If 
MASE < 1, the model has some level of prediction skill and passes the test. 

3.1.4 Goodness of Fit 

Deviance Information Criteria (DIC) was used for model selection purposes, where a lower value 
generally indicates a better model fit. Root-Mean-Squared-Error (RMSE) was used to 
quantitatively evaluate the randomness of model residuals. These criteria were used to determine 
the best model of those that passed the model diagnostic tests described in the previous section. 

3.2 Empirical Dynamic Modelling (EDM) 
Empirical Dynamic Modelling (EDM) uses lags of time series data to reconstruct the state-space 
of a system (Sugihara 1994; Sugihara et al. 2012; Munch et al. 2017, 2022). This form of 
modeling is particularly useful for short-lived species with chaotic population dynamics where 
drivers are often not observed directly, yet the information is embedded within the time series of 
abundance. Lags of abundance indices are used to reconstruct the full dynamics of the system 
without needing data on variables impacting abundance or specifying model form. Gaussian-
Process EDM (GP-EDM) version 0.0.0.9010 on GitHub was used to fit the SEAMAP survey 
data aggregated at levels defined in Section 2. We also tested the inclusion of economic and 
environmental variables as covariates since they are hypothesized drivers of shrimp abundance 
where measurements do exist. 
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3.2.1 Model Configurations 

3.2.1.1 Formulation with Fishery Removals 

Gaussian Process regression was used to approximate the Brown Shrimp population delay-
embedding map 𝑓 

𝑃K𝑦!│𝑓, (𝑋!#" − 𝑞 ∗ 𝐶!#"), 𝑧, 𝑉,Q ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑓(𝑋!#" − 𝑞 ∗ 𝐶!#", 𝑧), 𝑉,) 

where the probability of observing abundance 𝑦 at time 𝑡 is dependent on the function 
approximation 𝑓, vector of abundance indices 𝑋 with 𝑚 lags (𝑋!#" = 𝑥!#$, … , 𝑥!#"), optional 
covariates 𝑧, and process variance 𝑉,. The delay embedding map defined above was expanded to 
include removals (𝐶, catch or landings) scaled by a catchability parameter 𝑞 which can be fit 
within or among populations. Here, catchability is a scalar used to translate units of landings into 
survey units. Covariates (𝑧) can be included as direct drivers of abundance where measurements 
exist. Fitting to ‘escapement’, the composite variable 𝑋!#" − 𝑞 ∗ 𝐶!#" is the number of 
individuals remaining after harvesting. GP-EDM with a single lag 𝑚 = 1 can be thought of as a 
nonparametric production model (Thorson et al. 2014). 𝑓 is dependent on the inverse length 
scales 𝛷 = 𝜙$, . . . , 𝜙-."/0 and pointwise prior variance 𝜏 and follows a Gaussian Process prior 
with mean zero and covariance function 𝛴, which assumes no relationship on the shape function. 

𝑃K𝑓│𝛷, 𝜏Q ∼ 𝐺𝑃(0, 𝛴) 

The covariance function 𝛴 is defined for abundance 𝑦 

𝛴(𝑦! , 𝑦1) = 𝜏 ∗ 𝑒𝑥𝑝[−𝛴-.$"/0𝜙-(𝑋-! − 𝑋-1)%] 

at times 𝑡 and 𝑠 ∈ 𝑇 where 𝑇 is the time series length (Munch et al. 2022). The inverse length 
scale parameters 𝜙 and abundance observations 𝑋 are provided for each 𝑖 = 𝑚 + 𝑧 where 𝑚 is 
the lags of abundance and 𝑧 is the covariates. This function is scaled by 𝜏, and a prior is applied 
here that constrains the total variance of the predicted population size (𝑦2/$) to be less than 
twice the observed variance in 𝑦$, . . . , 𝑦2. This prior specification for process and observed 
variances and length scale parameters are represented by 

𝑃[𝑉, , 𝜏, 𝛷] 

The covariance function and inverse length scales jointly control the degree of nonlinearity of the 
shape function 𝑓, where 𝜙 = 0 indicates a flat relationship and a large estimate for 𝜙 indicates a 
higher degree of nonlinearity. The covariance function 𝛴 can either tighten the relationship 
around the observed data, favoring a smaller length scale (i.e. a larger inverse length scale 
parameter) or relax the relationship, facilitating a smoother function with a larger length scale 
(smaller 𝜙). Detailed GP prior specification for EDM variance and length scale parameters can 
be found in Munch et al. (2017). 

An optional feature of GP-EDM is to assign a linear prior on 𝑓 which can aid in grounding the 
population to 0 as the harvest rate, 𝑈, approaches 1 (i.e. the entire population is harvested). The 
linear prior option assumes that the mean function for the GP is linear with respect to the first 
input and fits the model on the residuals of 
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𝑦! = 𝛽+ + 𝛽$[𝑥!#$ − 𝑞 ∗ 𝑐!#$] + 𝑓(𝑋!#" − 𝑞 ∗ 𝐶!#", 𝑧) 

where [𝑥!#$ − 𝑞 ∗ 𝑐!#$] is first lag of escapement and 𝑓 is the GP function approximation. If 
𝑦! = 𝑙𝑜𝑔(𝑥!/$/𝑥!) and is backtransformed, this is equivalent to a Ricker model excluding 𝑓 
(Ricker 1954). In this case, we’re working on deviations from growth under the assumed Ricker 
model. The model fits similarly to the previous configuration, but the primary difference can be 
observed outside of the range of observed data. This configuration helps linearly ground the 
fishery model abundance to zero as simulated removals approach the total population size. 
Without this prior, it’s possible that outside of the observed range of the data, the abundance 
levels out to the flat prior where the population may never reach zero (and can result in 
extraordinarily high landings under simulated high harvest rates). 

3.2.1.2 Embedding Dimension 

EDM embedding dimension 𝐸 is limited by the length 𝑇 of the time series. An approximate 
maximum embedding dimension is 𝐸 ≤ √𝑇. In the case of continuous seasonal data, the 
maximum embedding dimension is larger since the time series 𝑇 is longer. Models were 
configured using Summer and Fall seasons as continuous time steps throughout a year and as a 
population-specific level within a hierarchical EDM, which will be explained in further detail 
below. The embedding dimension is defined as the number of population lags 𝑚 (and covariates 
𝑧 if included) plus one, 𝐸 = 𝑚 + 𝑧 + 1. For Brown Shrimp, the first year of the SEAMAP 
survey was 1987, resulting in 36 years of data, and a maximum embedding dimension of 
approximately 6 on an annual scale. 

3.2.1.3 Hierarchical Model Scaling 

Prior to fitting EDM models, all input data are standardized to a mean of 0 and standard 
deviation of 1. In the context of EDM, the term ‘populations’ is used to define data aggregations 
where information is expected to be informative. For Brown Shrimp, data aggregations and 
resulting populations that could be used to delineate levels of EDM are defined at the start of 
Section 2. For systems with multiple populations, these could be fit within a hierarchical EDM or 
independently. 

In hierarchical models, the data must be scaled globally or locally across populations. For global 
scaling, the data across populations are expected to have the same mean. For Brown Shrimp, 
global scaling is likely inappropriate for most strata defined here. For example, we never expect 
the abundance of Large shrimp to equal the abundance of Small shrimp as would be implied by 
global scaling. Local scaling allows us to scale the data within the defined population time series 
of available data for each respective lag of population abundance or covariate. Both global and 
local scaling are applied within each predictor, not across all data. For example, each predictor is 
scaled to a mean of 0 and standard deviation of 1 for each lag and covariate. For global scaling, 
all data from all populations are used to scale the data; for local scaling, this is done within 
populations. 

In independent models, definition of global or local scaling is obsolete because all data are scaled 
to a mean of 0 and standard deviation of 1. Independent models were tested for all data 
aggregations to ensure information was gained through the increased complexity and shared 
information from hierarchical models and with dynamic correlation. 
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3.2.1.4 Dynamic Correlation 

Dynamic correlation 𝜌 is defined as the degree to which the EDM population dynamics are 
correlated. This quantifies the similarity of population responses across predictor space and 
ranges from 0 to 1. Populations in hierarchical models will share the same embedding parameters 
and inverse length scale parameters (this includes models with 𝜌 = 0, or independent dynamics). 
A dynamic correlation 𝜌 = 1 means the dynamics of each population are identical. In other 
words, we assume that all delay vectors come from the same attractor. If fitting a single 
population or independent model, 𝜌 reverts back to the mode of the prior, 0.5. 

In hierarchical models, the dynamic correlation can be fixed or estimated. In cases where 
dynamic correlation is set to 0 within a hierarchical model, this will still yield different results 
when compared to independently fit models. This is because the hierarchical model shares 
information among the estimated length scale parameters 𝜙 for each embedding parameter. 

3.2.1.5 Length Scale 

Length scale parameters 𝜙 and the number of model inputs (𝑖 = 𝑚 + 𝑧) define the complexity of 
the function represented by the GP. Each model input 𝑖 incorporates an additional dimension of 
space, and their associated length scale parameter 𝜙- defines the wiggliness in that dimension. 
Low values of 𝜙 indicate stiff and mostly linear relationships, and large values of 𝜙 indicate 
more nonlinear relationships. A model with a single input and large 𝜙$ would have many 
degrees of freedom, while a model with many inputs but all 𝜙- close to 0 would have relatively 
few degrees of freedom (Tsai et al. 2024). 

3.2.1.6 Data Transformations 

Possible data transformations on the population are defined below. This is referred to as ‘ytrans’ 
in the GP-EDM R Package, but was defined as 𝑋! above. This is the transformation that is 
applied before fitting the model. 

• none: no transformation 
• log: log transformation (𝑙𝑜𝑔(𝑋!)) 
• gr1: log difference transformation (𝑙𝑜𝑔(𝑋!/𝑋!#$)) 
• gr2: log difference transformation on escapement (𝑙𝑜𝑔i𝑋!/(𝑋!#$ − 𝑞 ∗ 𝐶!#$)j) 

3.2.1.7 Covariates 

The underlying theory of EDM is that lags of the population have information on population 
drivers embedded within them (Munch et al. 2020). It is possible to include some covariates 
directly in EDM that are believed to influence population abundance. In the case of Gulf penaeid 
shrimp, economic conditions have had a massive impact on the domestic fishery, which in turn 
directly influences the amount of shrimp left in the water. Additionally, it has been hypothesized 
that environmental drivers such as salinity and temperature in the shrimp nursery grounds may 
have a direct impact on recruitment to the population the following year (Turley et al. 2023). 

While covariates have the potential to improve model fits and short-term predictive accuracy, 
relying on lags of the population alone for estimating the biological MSY is simpler from an 
operational standpoint. Including covariates in the model requires making some assumption 
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about the future states of that covariate in projections, which cannot be done with high 
confidence in this context. In addition, some of the variables considered may contain some level 
of covariation which the model is not set up to account for in its present form. 

3.2.1.8 Cross Validation 

Two different cross validation approaches were explored to evaluate prediction accuracy: “leave 
time out” and “sequential”. Prediction method “leave time out” leaves out all data points (i.e., 
survey data, catch, covariates) taken at the same time across all populations where population is 
specified within hierarchical models. The “sequential” prediction method leaves out all future 
time points across all populations where population is specified. In both of these methods, 
training data are iteratively omitted for the predictions, but the inverse length scales and 
variances used are those obtained using all of the training data under the originally fit model. We 
anticipate that “sequential” would perform worse when compared to “leave time out”. Both cross 
validation approaches were applied to all model configurations, but ultimately the “sequential” 
method was preferred for model selection because our ultimate objective is to project landings 
and harvest rates into the future in order to accurately estimate the system’s maximum 
sustainable yield for fishery management. 

3.2.2 Goodness of Fit 

Goodness of fit was measured through the estimation of 𝑅%. 

In sample fit statistics for each prediction method: 

• 𝑅% - proportion of variance explained by model (independent or hierarchical) 
• 𝑅343%  - proportion of variance explained for each population within a hierarchical model 
• 𝑅1567,8%  - proportion of variance explained by a hierarchical model, centered and scaled 

by population means 
• 𝑟𝑚𝑠𝑒 - root mean square error 
• 𝑑𝑓 - degrees of freedom, trace of the smoother matrix 

 

Out-of-sample fit statistics for each prediction method: 

• 𝑅49!%  - out-of-sample 𝑅% 
• 𝑅49!343%  - out-of-sample 𝑅343%  
• 𝑅49!1567,8%  - out-of-sample 𝑅1567,8%  
• 𝑟𝑚𝑠𝑒49! - out-of-sample 𝑟𝑚𝑠𝑒 

 

These fit statistics measure the models’ overall performance and ability to perform outside of the 
training data. Within hierarchical models, population-specific 𝑅343%  metrics measure the model’s 
ability to track the individual populations. For example, a model may be able to track one 
population well, but may fit another poorly. These population-specific 𝑅343%  metrics were 
centered and scaled around their respective model means in the 𝑅1567,8%  fit statistics to more 
appropriately measure the overall model performance. Population-specific 𝑅343%  and 𝑅1567,8%  
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statistics were compared to 𝑅% statistics obtained from independent model fits of each population 
to ensure that the complexity of the hierarchical model was warranted (i.e. improved overall 
prediction skill). 

3.2.3 Estimated Parameters 

Parameters estimated and priors specified in GP-EDM are defined below. 

• 𝜙$: 𝜙- - length scale parameters for 1: 𝑖 where 𝑖 is the total 𝑚 lags and 𝑧 covariates (𝑖 =
𝑚 + 𝑧); priors are set such that the expected number of local extrema for each 𝜙- is 1 
(Munch et al. 2017) 

• 𝑉, - process variance 
• 𝜏 - pointwise prior variance in 𝑓 
• 𝜌 - dynamic correlation between populations where values range from 0 to 1, with 0- 

independent no correlation and 1- identical dynamics 
• 𝑞- catchability scalar that translates the units of landings into units of survey CPUE 

 

The relative magnitude of the pointwise prior variance 𝜏 and process noise 𝑉, gives information 
on how important the function is relative to the noise. Process variance is represented as a 
percentage of the total variance, whereas the pointwise prior variance cannot be directly 
translated to variance percentage because it interacts with the length scale parameters. If the 
model is purely deterministic, 𝑉, = 0 and 𝜏 ≈ 1. If the model is not fitting the data well, 𝜏 is 
small and the process variance is close to 1. 

Catchability could be estimated jointly (𝑞=shared) or separately for each population in each 
model configuration. In some instances, the model obtained very good fits, but estimated 
catchability 𝑞 = 0 and ignored the landings altogether. For the purposes of our work here, the 
link to landings is critical. To select a representative model for estimating MSY, the models were 
filtered to exclude any model where catchability < 0.001 (where the observed catchability in the 
data were typically above 0.01). 

3.2.4 Estimating Maximum Sustainable Yield (MSY) with EDM 

Maximum Sustainble Yield (MSY) estimates were generated following the methodology 
outlined in Tsai et al. (2024). Harvest rates ranging from 0:1 were projected into the future and 
an average of the long-term dynamics were taken for each population, then added up to obtain 
estimates of long-term landings. These averages were used to identify the harvest rate that 
maximizes landings. Models that were configured seasonally required landings and associated 
harvest rates to be translated to annual scales. Translating catch from a seasonal to an annual 
time scale was fairly simple 

𝐶! = 2 ∗ 𝐶!/% 

where 𝑡 is defined as one year here, and 𝑡/2 represents 2 seasonal steps per year. Annual harvest 
rate 𝑈! was estimated from a seasonal harvest rate 𝑈!/% as 

𝑈! = 1 − i1 − 𝑈!/%j
% 
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where the new estimated harvest rate 𝑈! captures the portion of the population (0:1) removed via 
landings over the course of a year. Here, the estimated long-term biomass associated with the 
rate of removals does not need to be changed. The annual harvest rate 𝑈! was further translated 
to an annual fishing mortality rate 𝐹! = −𝑙𝑛(1 − 𝑈!). This allows for the calculation of the more 
familiar benchmark 𝐹!/𝐹&'(, which is a measure of overfishing (estimated to be occurring if 
𝐹!/𝐹&'( > 1). 

3.2.5 Model Diagnostics 

Models were diagnosed and deemed reliable based on a set of criteria defined below. This 
methodology worked well for all Gulf shrimp species assessed within SEDAR 87. These 
decisions were applied to ‘no covariate’ models, since assumptions on the cyclical nature of 
environmental variables and the relationship between harvest rate and economic variables would 
be required for projections. It was determined that these assumptions should be avoided for the 
purposes of defining biological maxima if possible. The projection period was initially set to 50 
timesteps then extended to 80 to ensure the reference points had stabilized before taking an 
average. The duration over which to average was determined by the length of a cycle, which was 
typically driven by the seasonal time steps in the model if present. The estimate of MSY is 
sensitive to setting an appropriate projection period that ensures the population has stabilized and 
an appropriate save interval that ensures only complete cycles are clipped, the latter ensures the 
estimate is not biased high or low (as would be observed if the time step just outside of a 
completed cycle is increasing or decreasing, respectively). 

3.2.5.1 Model Fitting Performance 

Model performance was determined by considering the suite of Goodness of Fit parameters 
defined above. The top 30 models from the hierarchical overall 𝑅49!%  and top 30 models from the 
𝑅49!1567,8%  were pulled, and any overlapping models were considered. The top 5 from each of 
these criteria and the top 5 aggregated Gulf-wide models were considered to evaluate what was 
gained from added complexity. 

3.2.5.2 Model Projection Performance 

Projection performance was evaluated to ensure models extrapolate to MSY in a reasonable way. 
Model selection was already performed with this goal in mind when relying on 
predictmethod=sequential to obtain fit statistics. Additional diagnostics were developed to cull 
out unreasonable models. This included removing models that maximized catch at 𝑈 = 1, which 
generally happened when models would predict that the population returns to the flat prior 
outside of the observed range of the data. These models were often paired with unrealistically 
high catch estimates due to the coupling of extreme harvest rates with populations that did not 
always ground to zero. It is intuitively not sustainable to remove the entire population, so these 
models were removed. Unrealistically high estimates of MSY were defined as greater than ten 
times the highest historic landings. 

3.2.5.3 Model Robustness 

From the remaining set of models that (1) had good fits, (2) did not solve on a bound (𝑈 = 1), 
and (3) did not estimate MSY at greater than 10x historical landings records, a retrospective 
pattern analysis was carried out where 1 to 5 time steps were peeled back and MSY was re-
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estimated. The Model Projection Performance selection criteria defined above were applied to 
each of these iterations. If any iteration failed, it was dropped from further consideration. This 
resulted in a final selection that balances model complexity and relative stability. 

4. Stock Assessment Model Results 

4.1 JABBA Results 
4.1.1 Model Fit and Diagnostics 

Diagnostic results for the top performing JABBA model runs are presented in Figure 17. Run 1 
(BSH_1_P_rH_psil0.9_sigT_60) was the best performing model; it had the lowest DIC among 
the runs that passed the most diagnostic tests (i.e. all runs with ‘high’ or ‘very high’ priors on 𝑟). 
All candidate runs failed the CPUE outlier test, but that was due to a single data point (1988) 
falling outside the ‘three-sigma limit’ (Figure 18). Run 1 assumed a high 𝑟 prior, low initial 
depletion and allowed for additional observation error to be estimated. Prior and posterior 
distributions resulting from that run are shown in Figure 19. All models had a MASE at or below 
1, indicating that the average model forecasts are better than a naïve baseline prediction 
(Figure 17). The hindcasting cross-validation results for Run 1 show predictions within limits of 
the 95% credible intervals suggesting a good prediction skill (Figure 20). The model had 
difficulty fitting to recent years, as the catch size composition has likely shifted to target larger 
shrimp in recent years due to economic demand. This was introduced in Section 2.4 and will be 
elaborated further in the Discussion. A retrospective analysis of derived benchmarks also showed 
notable consistency as years of the model were peeled back (Figure 21). 

4.1.2 Estimated Parameters and Derived Quantities 

Parameter estimates and associated uncertainty for all top performing JABBA models are shown 
in Figure 22, Figure 19 and Table 3. The candidate models appeared relatively unaffected by the 
assumption placed on initial depletion (𝜓). The highest levels of uncertainty were observed for 
runs that did not allow for additional observation error to be estimated (runs 16, 79, 82). These 
runs also showed a consistent pattern of retrospective bias in the absolute metrics of biomass and 
fishing mortality (though no retrospective bias in the relative management quantities 𝐵/𝐵&'( 
and 𝐹/𝐹&'(). These runs also failed the process error test with large variances being estimated. 
Most model posteriors did not deviate significantly from the priors as there was not much 
contrast in the data to inform the underlying surplus production model. Posterior distributions for 
the top model run (run 1) are shown in Figure 19. For that run, 𝐾 and 𝑟 appear well informed. 

Overall, biomass trajectories were fairly similar across runs and uncertainty was highest at the 
start of the time series before the index enters the model and when CVs on landings are relatively 
high. Uncertainty was lowest in the first year when the index enters the model (Figure 23). 
Although estimates of 𝐾 (Table 4) and the resulting surplus production function (Figure 24) 
were highly variable, estimates of MSY were remarkably consistent, around 90 million pounds 
of tails across all runs (Table 4). The estimated time series of 𝐵/𝐵&'( are also relatively similar 
across runs (Figure 25) with most models dipping below 𝐵/𝐵&'( = 1 in the late 1980’s / early 
1990’s. Two clusters of models are visible. Runs 16, 79, and 82, which do not allow for 
additional observation error, estimate a higher but more uncertain 𝐵/𝐵&'( in the terminal year 
than the remainder of the models that allow for additional observation error to be estimated. 
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4.2 EDM Results 
Over 7,500 model configurations were evaluated for Brown Shrimp to explore assumptions and 
ensure that results from the various iterations made sense. Up to the maximum embedding 
dimension was considered, with preference given to simpler models where possible. Estimated 
parameters, model fits, and projection capabilities are discussed below, resulting in the 
recommendation of a single model by the end of this section. 

4.2.1 Model Configurations 

Model configurations were examined to test assumptions and ensure results were as expected. 
The impact of using the ‘sequential’ method when defining the training dataset for prediction 
accuracy is shown in Figure 26, where ‘leave-time-out’ almost always yielded a higher out-of-
sample 𝑅49!%  fit. In hierarchical models, large differences in population means could artificially 
inflate the 𝑅49!%  metric. Therefore, metrics were calculated to estimate goodness-of-fit that were 
centered and scaled around the population mean, 𝑅1567,849!% . Hierarchical out-of-sample 𝑅49!%  
generally yielded a higher value than the out-of-sample scaled by population-specific fits, 
𝑅1567,849!% . With these models, the goal is to fit and project each population within the model 
well, and 𝑅1567,849!%  was the primary metric used to gauge model fits going forward. 

Assumptions of global and local scaling were shown across all model configurations (embedding 
dimension, population, y transformation) using out-of-sample scaled 𝑅1567,849!%  fit statistic. 
Local scaling generally yielded better fits compared to global scaling, which agrees with what 
we understand about these populations and their relative biomass (Figure 27). At this stage, only 
models with local scaling were considered for all configurations (except for models with one 
“population” where global scaling is inherent). 

Some of the reported 𝑅% metrics were associated with models that ignored landings (i.e. 𝑞 ≈ 0). 
Figure 28 shows the distribution of 𝑅% after these models were removed. From the set of models 
that account for landings, additional models were excluded due to the fact that they included 
covariates. In Figure 29, information can be inferred about the relative scales of population sizes 
and landings, where model configurations fit better to shared catchabilities (e.g. similar scales 
between population and landings) compared with models that assumed distinct catchabilities 
(e.g., different scales between populations and landings). This figure shows the model 
configurations that were analyzed for fit and eventual MSY estimation. 

4.2.2 Model Fit and Residual Analysis 

From the set of models described in the previous section, the procedures outlined in 
Section 3.2.5.1 were applied, i.e. ranking the models by out-of-sample prediction accuracy for 
the model as a whole (𝑅49!% ), scaled by population (𝑅49!1567,8% ), or both (Section 3.2.2). This 
resulted in 54 models going through MSY estimation and further model diagnostics (Table 5). 
These models had out-of-sample prediction accuracies ranging from 0.287 up to 0.828. Scaled 
population 𝑅1567,8%  metrics ranged from 0 up to 0.511, where a zero here would indicate that one 
population prediction was no better than a random forecast. These were overall very good fits to 
the data, and in-sample fit statistics were even greater. NOT P
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4.2.3 Model Diagnostics 

The subset of 54 models with the best fits was further reduced down to 5 models after testing for 
projection ability and model robustness as outlined in Section 3.2.5 (Table 6). Some of these 
models were characterized by instability, with a few retrospective peels spiking up over 10x 
historical record landings. One model run that exceeded 5x historical landings was characterized 
with retrospective bias and was removed from consideration, where the results were trending 
upwards as years of data were peeled back (Table 6, Run BSH_G21023). The remaining 2 top 
performing models were size class models with a seasonal time step (strata=G, time=YEAR2). 
They were locally scaled, had a shared catchability parameter, and had the gradient 
transformation on escapement (ytrans=gr2) for the predictor variable (𝑦!). One of the models 
aggregated the Small and Medium size classes (embedding dimension of 4), and the model with 
Small, Medium, and Large separated had an embedding dimension of 5. These observations line 
up with how we understand EDM, in that an additional driver (distinction between Small and 
Medium shrimp), may require an additional lag to explain the variation in these data and to 
capture the dynamics of the more complex system with an additional dimension. Top performing 
model parameterizations are summarized below. 

Run Catchability Population Time Step Lags Scaling Transformation 
G10323 Shared Size (Sm,L) Seasonal 4 Local gr2 
G20023 Shared Size (S,M,L) Seasonal 5 Local gr2 

 

Variable harvest rate projections of CPUE by size class for the recommended model are shown 
in Figure 30 - 32 and associated landings are shown in Figure 33 - 35. These data series were 
used to generate average biomass and landings under all harvest rates 0:1 in Figure 36 and 
Figure 37. An additional consideration when interpreting these results, is there is no feedback 
loop here for fishing out a size class. The model with finer resolution of size classes (model 
BSH_G20023) and a more consistent harvest rate that achieves peak landings by size class 
(Figure 36) was recommended for providing estimates of MSY. This can be contrasted with 
Figure 38 and Figure 39, where the harvest rate that maximizes ‘Smedium’ shrimp landings is 
realized at a harvest rate with no ‘Large’ shrimp landings remaining. The recommended model 
(BSH_G20023) has stable landings and a similar harvest rate for all size classes, which is 
expected to be more robust than a model that may have unaccounted negative feedback loops 
between size classes and future recruitment or growth across seasons. The total metrics for 𝐵&'( 
and 𝑀𝑆𝑌 are shown in Figure 40 and Figure 41. 𝐵&'( estimates were left in the seasonal 
(summer vs. fall+winter) scale, while 𝑀𝑆𝑌 was translated to annual values and rates (vertical 
dashed lines in these two figures represent equivalent harvest rates on the seasonal and annual 
scales). The horizontal dotted line on the MSY figure shows the maximum landings ever caught 
by the fishery, 105.91 million pounds of tails in 1990, which is less than half the projected MSY 
here, 215.07 million pounds of tails. 

4.2.4 Estimated Parameters and Derived Quantities 

Estimated parameters from the top-performing model are shown in Table 7. The function-space 
complexity is defined jointly by the length scales, which define the degree of nonlinearity, and 
the covariance matrix, which can open up the ability of the model to vary within a smoother 
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space. The estimated length scale parameters 𝜙- are all less than 1, and are linear and smooth for 
all populations in the model (Figure 42 - 46). The pointwise prior variance was estimated to be 
0.689 and exceeded the function process variance of 0.103, indicating an informative model. The 
dynamic correlation of the model was 0.957, indicating a high correlation between these data, 
which we can observe visually most easily in Figure 2 and Figure 5. These populations had a 
shared catchability, 𝑞 = 0.402, that translates fishery removals to the units of the SEAMAP 
survey (number of shrimp per trawl hour divided by million pounds of tails). 

The 𝑅% statistics were similar for the overall and population-scaled metrics, both approximately 
0.7 (Table 8). Out-of-sample 𝑅49!% = 0.485 performed slightly better than the 𝑅49!1567,8% = 0.364 
scaled by population means, which was expected since the magnitude of the differences in means 
can inflate the estimated model fit (this effect is removed in the 𝑅49!1567,8%  statistic). Derived 
population benchmarks and associated rates are shown in Table 8 alongside model fit statistics. 
Annual MSY was estimated as 215.07 million pounds of tails, occurring at 𝐹&'( = 0.617 where 
the population biomass at this rate is 𝐵&'( = 405.39 million pounds of tails. 

4.2.5 Fishing Mortality 

Estimated fishing mortality rates through time are shown in Table 9. In 2022, the stock 
experienced <2% 𝐹&'( and the stock size was >4x 𝐵&'(. The highest rates of fishing mortality 
were observed in the 1980’s prior to the economic collapse of the fleet due to aquaculture 
imports. Even at that time, the Brown Shrimp stock was not undergoing overfishing. 

4.2.6 Biomass and Abundance Trajectories 

Table 9 provides the time series of estimated biomass over time and associated reference points. 
The stock is not estimated to have undergone overfishing over the duration of the assessment 
timeframe (1987-2022) and is only estimated to have been overfished in 1988. This could be 
explained by the oscillating nature of this stock, where landings in 1988 were high, particularly 
for Large shrimp, but the population was in a trough, resulting in 𝐵/𝐵&'( = 0.90. During this 
year, under multiple model parameterizations, the stock was estimated as overfished. Given the 
oscillating nature of EDM, it is possible that when using averaged MSY projections, the true 
sustainable fishing levels in any given year could be above or below the average MSY, but it is 
not expected to be an issue unless the system begins chronically dipping below sustainable 
levels. Fits of the preferred model are shown in Figure 47 and Figure 48. 

5. Discussion 
EDM is particularly suitable for studying populations that exhibit non-equilibrium dynamics and 
nonlinear state-dependent behavior (i.e. where interactions change over time and as a function of 
the system state). JABBA relies on very rigid SPM assumptions about stock and fishery 
dynamics that likely do not hold true for shrimp. EDM models performed very well and had high 
levels of prediction accuracy, therefore we recommend that EDM be used for providing 
management advice. 

The JABBA models were generally well behaved but the results are limited by the general 
constraints of surplus production models which aggregate dynamics, not accounting for size- or 
spatial- differences. For Gulf Brown Shrimp, it is well documented that the fishery size 
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composition has changed through time (Figure 49). Global market conditions and increasing 
demand and prices for Large shrimp have shifted the composition of landings away from Small 
shrimp towards larger, more valuable shrimp. This apparent change in selectivity may bias 
results if unaccounted for. Additionally, as the domestic fleet consolidated, larger and more 
efficient vessels remained and could be trawling in a different habitat compared to the historic 
distribution of the fleet. These factors are justifications against using surplus production models 
that assume catch levels reflect only changes in stock abundance and that patterns of exploitation 
are primarily driven by shrimp availability rather than environmental or economic 
considerations. 

EDM models showed very good diagnostics and prediction accuracy. The biomass of the Brown 
Shrimp population and removals were modeled and predicted well. Size-structure was included 
through the use of populations within a hierarchical GP-EDM, which further improved the model 
fits. One caveat of the current EDM configurations explored here is there is no feedback loop 
from smaller size classes to larger size classes. For example, there is no penalty on Medium and 
Large shrimp for removing too many Small too early under a high harvest rate. In reality, a 
harvest rate that maximizes Small shrimp may cause a negative feedback loop on Large shrimp 
that is not accounted for here. In some simulations, the peak landings for Large shrimp was at a 
much lower harvest rate than the Small, and when aggregating these size classes to approximate 
a total MSY, it is feasible that the realized Large shrimp landings would be lower due to the lack 
of Small shrimp growing out to Medium and Large size classes. Accounting for this negative 
feedback loop through mixed-age configurations is possible (Dolan et al. 2023), but it is 
complicated by mixing landings across calendar years to fit to population escapement, which 
would markedly increase management complexity, perhaps unnecessarily. The recommended 
EDM configuration here maximized landings of all size classes at approximately the same 
harvest rate, removing the need to explore this caveat further. 

EDM was able to capture the cyclical nature of shrimp population abundance, resulting in a more 
accurate population model. Lags of the population retain information on sometimes 
immeasurable drivers, including abundance of predators and some environmental influences. 
Direct inclusion of environmental and economic covariates improved model fits further, but they 
were not used in the final model because additional assumptions would be required on the future 
state of the industry and environment. Furthermore, relationships between the simulated harvest 
rates and these covariates would need to be addressed, and may respond in unexpected ways. 
Given the goal of providing a biological MSY estimate for this fishery, biological models only 
were used for this purpose. The models with covariates may serve other purposes and could be 
used to predict year-ahead abundance and landings more accurately than the model with lags 
alone, particularly for those tied to economic drivers. 

Finally, providing management advice for this fishery using static estimates of MSY may not be 
appropriate due to the highly cyclical nature of this stock which is not fully captured in a long-
term average. The model itself captures the dynamics, but the methods to obtain MSY through a 
long-run average do not. In high productivity years, the fishery may be able to harvest more than 
the average MSY, in low productivity years, it may push the stock into an ‘overfished’ status 
(see: 1988). To provide management advice for a population with such large estimates of 
sustainable landings, the long run average should be used to ensure that the stock does not 
undergo overfishing. In the event of improved economic conditions where the fleet expands and 
prevailing environmental conditions change, this assumption could be revisited and management 
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advice could be provided on a finer scale. Updating the model with seasonal inputs as they 
become available could account for the peaks and dips in productivity, allowing the fleet to take 
advantage of high productivity years or potentially sit out low productivity years. Because the 
fleet is mainly limited by the economics of the fishery, these kinds of model explorations are 
recommended as a future research recommendation. 

6. Research Recommendations 
The models provided in this report are sufficient to provide management advice for the stock. 
However, should future research funding become available, we have provided suggestions 
below. 

Potential improvements to the modeling framework include accounting for removal of shrimp as 
it pertains to harvest rates that are optimized at varying size classes. Creating a feedback loop 
that appropriately represents the removal of larger shrimp that may not contribute to future 
generations as well as the removal of smaller shrimp that may not grow into Large shrimp should 
be accounted for. Sensitivities of these potential feedback loops and their impact on estimating 
optimal harvest rates should be investigated in both directions (i.e. Large to Small and Small to 
Large impacts). 

Additional research into covariates may also be investigated. Direct inclusion of covariates 
generally resulted in improved model fits and could likely improve forecasting efficiency for 
trends of abundance. To forecast MSY, covariates would need to be projected into the future. For 
environmental covariates, the cyclical nature of these trends would need to be captured. For 
economic covariates, the relationship with projected harvest rates would need to be explicitly 
defined. 

As funding for scientific surveys is becoming increasingly sparse, implications of using an 
average of 2019/21 for missing summer 2020 SEAMAP data and resulting effects on model 
diagnostics should be investigated. EDM performs best on continuous, long time series of data, 
and quantifying implications of future gaps in survey data would be valuable. 
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9. Tables 

Table 1: SEAMAP CPUE in number of shrimp per trawl hour for Brown Shrimp by size and 
season. 

Year Season Large Medium Small 
1987 Summer 7.15 61.59 135.94 
1987 Fall 8.58 23.54 17.23 
1988 Summer 3.45 40.02 65.94 
1988 Fall 10.53 15.68 10.28 
1989 Summer 19.72 187.27 104.88 
1989 Fall 16.65 38.18 15.59 
1990 Summer 12.72 133.25 133.50 
1990 Fall 13.02 35.72 26.83 
1991 Summer 28.17 163.16 188.50 
1991 Fall 18.28 45.74 29.15 
1992 Summer 9.45 54.91 60.34 
1992 Fall 14.91 37.30 16.65 
1993 Summer 6.64 38.55 59.20 
1993 Fall 9.67 33.92 31.06 
1994 Summer 11.21 88.46 133.71 
1994 Fall 14.92 35.79 20.05 
1995 Summer 14.16 136.05 152.24 
1995 Fall 17.31 55.82 25.61 
1996 Summer 6.80 37.48 94.90 
1996 Fall 10.82 32.86 20.78 
1997 Summer 6.18 30.94 92.48 
1997 Fall 12.02 38.70 26.24 
1998 Summer 7.57 82.02 176.89 
1998 Fall 14.31 33.21 17.84 
1999 Summer 12.62 110.40 161.81 
1999 Fall 13.28 35.08 43.64 
2000 Summer 18.35 137.73 199.81 
2000 Fall 17.96 45.84 30.49 
2001 Summer 14.85 122.23 81.89 
2001 Fall 13.40 43.12 25.44 
2002 Summer 13.35 112.17 130.22 
2002 Fall 14.00 38.32 34.50 
2003 Summer 15.78 114.21 292.44 
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Table 1 Continued: SEAMAP CPUE in number of shrimp per trawl hour for Brown Shrimp by 
size and season. 

Year Season Large Medium Small 
2003 Fall 22.54 34.33 15.83 
2004 Summer 35.23 140.01 112.72 
2004 Fall 24.32 36.10 23.29 
2005 Summer 14.62 87.57 89.84 
2005 Fall 25.88 41.47 48.23 
2006 Summer 48.20 310.37 243.29 
2006 Fall 48.07 47.53 45.61 
2007 Summer 27.79 130.60 151.33 
2007 Fall 33.02 42.89 20.79 
2008 Summer 23.24 126.62 203.78 
2008 Fall 53.63 73.34 58.25 
2009 Summer 43.73 200.94 166.50 
2009 Fall 79.16 72.96 24.84 
2010 Summer 88.75 264.00 129.60 
2010 Fall 103.36 78.78 10.23 
2011 Summer 85.28 309.20 152.37 
2011 Fall 84.88 49.64 15.36 
2012 Summer 62.16 206.58 166.56 
2012 Fall 63.44 88.52 13.61 
2013 Summer 41.63 92.55 157.58 
2013 Fall 47.18 53.40 20.97 
2014 Summer 18.19 59.18 116.18 
2014 Fall 60.34 79.91 31.62 
2015 Summer 34.83 179.27 200.21 
2015 Fall 69.01 82.80 32.28 
2016 Summer 47.72 123.54 100.24 
2016 Fall 45.61 51.88 18.89 
2017 Summer 34.20 142.58 122.11 
2017 Fall 44.38 81.76 38.13 
2018 Summer 34.43 152.43 86.72 
2018 Fall 51.09 60.85 32.05 
2019 Summer 24.48 86.84 187.10 
2019 Fall 36.54 55.57 30.76 
2020 Summer 36.70 195.85 276.67 
2020 Fall 58.16 98.59 39.78 
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Table 1 Continued: SEAMAP CPUE in number of shrimp per trawl hour for Brown Shrimp by 
size and season. 

Year Season Large Medium Small 
2021 Summer 48.92 304.86 366.23 
2021 Fall 43.31 107.40 30.71 
2022 Summer 67.08 314.12 137.17 
2022 Fall 37.78 100.90 32.62 
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Table 2: Landings of Brown Shrimp in millions of pounds of tails by size and season, where 
Fall landings include the following year’s Winter landings due to the associated timing of the 
SEAMAP survey. 

Year Season Large Medium Small 
1987 Summer 6.72 32.72 33.17 
1987 Fall 10.62 7.65 1.56 
1988 Summer 8.57 32.82 23.84 
1988 Fall 10.81 5.52 0.72 
1989 Summer 8.32 36.57 28.78 
1989 Fall 13.01 9.13 1.16 
1990 Summer 10.47 35.65 40.41 
1990 Fall 12.32 8.41 0.72 
1991 Summer 10.61 27.34 29.70 
1991 Fall 12.49 6.60 1.45 
1992 Summer 4.37 22.28 22.20 
1992 Fall 12.14 8.05 1.91 
1993 Summer 3.71 16.92 31.25 
1993 Fall 9.66 6.56 0.65 
1994 Summer 5.51 22.21 21.99 
1994 Fall 11.81 6.25 1.36 
1995 Summer 6.21 20.03 34.10 
1995 Fall 11.19 6.05 0.74 
1996 Summer 4.69 20.84 33.18 
1996 Fall 10.95 6.17 0.72 
1997 Summer 3.44 16.33 29.48 
1997 Fall 9.05 7.95 1.69 
1998 Summer 4.24 24.01 34.41 
1998 Fall 12.03 7.22 2.05 
1999 Summer 6.27 20.11 38.47 
1999 Fall 9.95 6.43 2.24 
2000 Summer 9.60 28.18 37.08 
2000 Fall 12.33 8.71 1.13 
2001 Summer 7.91 28.32 38.96 
2001 Fall 9.54 5.48 0.95 
2002 Summer 5.90 20.82 32.84 
2002 Fall 8.21 6.90 1.87 NOT P
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Table 2 Continued: Landings of Brown Shrimp in millions of pounds of tails by size and 
season, where Fall landings include the following year’s Winter landings due to the associated 
timing of the SEAMAP survey. 

Year Season Large Medium Small 
2003 Summer 5.89 22.77 39.91 
2003 Fall 9.75 6.96 1.08 
2004 Summer 6.97 16.49 37.75 
2004 Fall 10.03 5.41 0.54 
2005 Summer 5.58 12.51 25.56 
2005 Fall 10.08 5.38 1.92 
2006 Summer 9.33 21.84 29.38 
2006 Fall 19.37 8.64 0.30 
2007 Summer 8.93 17.86 27.62 
2007 Fall 11.97 5.52 0.47 
2008 Summer 6.86 11.36 17.77 
2008 Fall 12.99 5.08 0.82 
2009 Summer 11.40 17.97 18.89 
2009 Fall 20.18 7.58 0.41 
2010 Summer 4.94 8.05 10.39 
2010 Fall 11.89 8.57 1.58 
2011 Summer 7.43 17.83 24.25 
2011 Fall 15.21 8.37 1.02 
2012 Summer 8.21 18.65 14.96 
2012 Fall 12.75 8.81 1.06 
2013 Summer 8.13 14.52 23.12 
2013 Fall 12.13 7.82 1.12 
2014 Summer 4.84 14.59 25.83 
2014 Fall 13.20 9.24 1.43 
2015 Summer 11.92 13.21 17.72 
2015 Fall 12.50 7.51 0.89 
2016 Summer 9.64 10.18 13.78 
2016 Fall 9.76 5.39 2.08 
2017 Summer 9.03 12.13 16.11 
2017 Fall 9.09 7.54 2.89 
2018 Summer 10.23 13.78 24.66 
2018 Fall 12.02 8.67 0.77 NOT P
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Table 2 Continued: Landings of Brown Shrimp in millions of pounds of tails by size and 
season, where Fall landings include the following year’s Winter landings due to the associated 
timing of the SEAMAP survey. 

Year Season Large Medium Small 
2019 Summer 6.50 7.95 12.20 
2019 Fall 8.13 5.45 0.49 
2020 Summer 6.99 11.81 8.45 
2020 Fall 8.33 5.05 0.37 
2021 Summer 4.16 12.14 10.97 
2021 Fall 5.87 8.25 0.63 
2022 Summer 4.34 7.92 7.03 
2022 Fall 5.27 5.89 0.43 
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Table 3: Brown Shrimp parameter estimates from JABBA where Runs are described using 
unique identifiers (1:90), P indicates a Pella-Tomlinson surplus production curve with 
estimated shape parameter m, r is the relative level of the intrinsic rate of growth prior (M- 
Medium, H- High, V- Very High), psi is the initial depletion prior (0.9 low, 0.2 high), sig 
indicates whether additional observation error tau2 is estimated (T/F), and the last two 
numbers are the start year of the landings (1960). Median parameter estimates are provided 
with lower and upper credible intervals. K is reported in million lb tail weight. 

Run Parameter Estimate LCI.95 UCI.95 
BSH_1_P_rH_psil0.9_sigT_60 K 266.48 207.41 335.41 
BSH_1_P_rH_psil0.9_sigT_60 r 0.88 0.67 1.10 
BSH_1_P_rH_psil0.9_sigT_60 q 0.01 0.00 0.01 
BSH_1_P_rH_psil0.9_sigT_60 psi 0.89 0.54 1.28 
BSH_1_P_rH_psil0.9_sigT_60 sigma2 0.00 0.00 0.02 
BSH_1_P_rH_psil0.9_sigT_60 tau2 0.10 0.05 0.20 
BSH_1_P_rH_psil0.9_sigT_60 m 0.88 0.60 1.33 
BSH_4_P_rM_psil0.9_sigT_60 K 372.24 237.03 656.62 
BSH_4_P_rM_psil0.9_sigT_60 r 0.55 0.35 0.87 
BSH_4_P_rM_psil0.9_sigT_60 q 0.01 0.00 0.01 
BSH_4_P_rM_psil0.9_sigT_60 psi 0.89 0.55 1.31 
BSH_4_P_rM_psil0.9_sigT_60 sigma2 0.00 0.00 0.02 
BSH_4_P_rM_psil0.9_sigT_60 tau2 0.11 0.05 0.23 
BSH_4_P_rM_psil0.9_sigT_60 m 0.73 0.45 1.16 
BSH_16_P_rM_psil0.9_sigF_60 K 303.87 170.86 1,120.18 
BSH_16_P_rM_psil0.9_sigF_60 r 0.56 0.26 0.96 
BSH_16_P_rM_psil0.9_sigF_60 q 0.01 0.00 0.01 
BSH_16_P_rM_psil0.9_sigF_60 psi 0.88 0.55 1.31 
BSH_16_P_rM_psil0.9_sigF_60 sigma2 0.04 0.01 0.05 
BSH_16_P_rM_psil0.9_sigF_60 tau2 0.00 0.00 0.01 
BSH_16_P_rM_psil0.9_sigF_60 m 0.45 0.26 0.98 
BSH_49_P_rV_psil0.9_sigT_60 K 172.43 125.88 272.69 
BSH_49_P_rV_psil0.9_sigT_60 r 1.36 1.02 1.88 
BSH_49_P_rV_psil0.9_sigT_60 q 0.01 0.01 0.02 
BSH_49_P_rV_psil0.9_sigT_60 psi 0.89 0.55 1.29 
BSH_49_P_rV_psil0.9_sigT_60 sigma2 0.00 0.00 0.01 
BSH_49_P_rV_psil0.9_sigT_60 tau2 0.09 0.04 0.21 
BSH_49_P_rV_psil0.9_sigT_60 m 0.89 0.59 1.62 
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Table 3 Continued: Brown Shrimp parameter estimates from JABBA where Runs are 
described using unique identifiers (1:90), P indicates a Pella-Tomlinson surplus production 
curve with estimated shape parameter m, r is the relative level of the intrinsic rate of growth 
prior (M- Medium, H- High, V- Very High), psi is the initial depletion prior (0.9 low, 0.2 
high), sig indicates whether additional observation error tau2 is estimated (T/F), and the last 
two numbers are the start year of the landings (1960). Median parameter estimates are 
provided with lower and upper credible intervals. K is reported in million lb tail weight. 

Run Parameter Estimate LCI.95 UCI.95 
BSH_73_P_rH_psil0.2_sigT_60 K 229.60 172.69 425.35 
BSH_73_P_rH_psil0.2_sigT_60 r 0.92 0.66 1.18 
BSH_73_P_rH_psil0.2_sigT_60 q 0.01 0.00 0.01 
BSH_73_P_rH_psil0.2_sigT_60 psi 0.27 0.08 0.60 
BSH_73_P_rH_psil0.2_sigT_60 sigma2 0.00 0.00 0.02 
BSH_73_P_rH_psil0.2_sigT_60 tau2 0.10 0.04 0.21 
BSH_73_P_rH_psil0.2_sigT_60 m 0.78 0.47 1.35 
BSH_79_P_rH_psil0.2_sigF_60 K 229.04 150.85 639.26 
BSH_79_P_rH_psil0.2_sigF_60 r 0.79 0.49 1.16 
BSH_79_P_rH_psil0.2_sigF_60 q 0.01 0.00 0.02 
BSH_79_P_rH_psil0.2_sigF_60 psi 0.24 0.10 0.60 
BSH_79_P_rH_psil0.2_sigF_60 sigma2 0.04 0.01 0.05 
BSH_79_P_rH_psil0.2_sigF_60 tau2 0.00 0.00 0.01 
BSH_79_P_rH_psil0.2_sigF_60 m 0.48 0.29 1.20 
BSH_82_P_rM_psil0.2_sigF_60 K 386.91 210.91 800.41 
BSH_82_P_rM_psil0.2_sigF_60 r 0.46 0.28 0.80 
BSH_82_P_rM_psil0.2_sigF_60 q 0.01 0.00 0.01 
BSH_82_P_rM_psil0.2_sigF_60 psi 0.24 0.10 0.57 
BSH_82_P_rM_psil0.2_sigF_60 sigma2 0.04 0.03 0.05 
BSH_82_P_rM_psil0.2_sigF_60 tau2 0.00 0.00 0.01 
BSH_82_P_rM_psil0.2_sigF_60 m 0.49 0.31 0.86 
BSH_85_P_rV_psil0.2_sigT_60 K 166.55 129.90 235.01 
BSH_85_P_rV_psil0.2_sigT_60 r 1.47 0.91 1.97 
BSH_85_P_rV_psil0.2_sigT_60 q 0.01 0.01 0.02 
BSH_85_P_rV_psil0.2_sigT_60 psi 0.23 0.09 0.56 
BSH_85_P_rV_psil0.2_sigT_60 sigma2 0.00 0.00 0.01 
BSH_85_P_rV_psil0.2_sigT_60 tau2 0.10 0.04 0.20 
BSH_85_P_rV_psil0.2_sigT_60 m 0.97 0.62 1.39 
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Table 4: Brown Shrimp reference points from selected JABBA models in Table 3. K, Bmsy and 
MSY are reported in million lb tail weight. 

Run K Bmsy Fmsy MSY 
BSH_1_P_rH_psil0.9_sigT_60 266.48 91.46 0.98 89.96 
BSH_4_P_rM_psil0.9_sigT_60 372.24 115.54 0.77 88.66 
BSH_16_P_rM_psil0.9_sigF_60 303.87 69.12 1.33 90.95 
BSH_49_P_rV_psil0.9_sigT_60 172.43 61.20 1.48 90.60 
BSH_73_P_rH_psil0.2_sigT_60 229.60 75.75 1.18 89.29 
BSH_79_P_rH_psil0.2_sigF_60 229.04 55.38 1.65 91.17 
BSH_82_P_rM_psil0.2_sigF_60 386.91 92.94 1.00 93.16 
BSH_85_P_rV_psil0.2_sigT_60 166.55 59.94 1.51 90.69 
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Table 5: Brown Shrimp fit statistics for top performing models where run names are described 
by strata A:H, species, start year, landings units, shared catchability b (T/F), population, time 
step (YEAR2 is seasonal), embedding dimension E, scaling (global vs. local), and y 
transformations (log, gr1, gr2, none). 

Run R2_out R2_outscaled 
A211_BSH1987_CPUEtailmp_bshareF_GULFYEAR_E3_global_ytransnone 0.340  
A218_BSH1987_CPUEtailmp_bshareF_GULFYEAR_E4_global_ytransnone 0.323  
A20016_BSH1987_CPUEtailmp_bshareF_GULFYEAR_E5_global_ytransnone 0.322  
A127_BSH1987_CPUEtailmp_bshareF_GULFYEAR_E3_global_ytranslog 0.307  
A134_BSH1987_CPUEtailmp_bshareF_GULFYEAR_E4_global_ytranslog 0.287  
C21032_BSH1987_CPUEtailmp_bshareF_SIZEYEAR_E5_local_ytransnone 0.828 0.388 
C21016_BSH1987_CPUEtailmp_bshareT_SIZEYEAR_E5_local_ytransnone 0.826 0.384 
C10435_BSH1987_CPUEtailmp_bshareF_SIZEYEAR_E3_local_ytransnone 0.820 0.371 
C10218_BSH1987_CPUEtailmp_bshareT_SIZEYEAR_E4_local_ytransnone 0.814 0.339 
G10890_BSH1987_CPUEtailmp_bshareF_SEAS_SIZEYEAR_E4_local_ytransnone 0.808 0.389 
C10211_BSH1987_CPUEtailmp_bshareT_SIZEYEAR_E3_local_ytransnone 0.803 0.340 
G10442_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E4_local_ytransnone 0.800 0.359 
G21040_BSH1987_CPUEtailmp_bshareF_SEAS_SIZEYEAR_E5_local_ytranslog 0.786 0.347 
C10267_BSH1987_CPUEtailmp_bshareF_SIZEYEAR_E3_local_ytranslog 0.785 0.333 
G10876_BSH1987_CPUEtailmp_bshareF_SEAS_SIZEYEAR_E3_local_ytransnone 0.783 0.342 
G21016_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E5_local_ytransgr1 0.729 0.336 
G10554_BSH1987_CPUEtailmp_bshareF_SEAS_SIZEYEAR_E4_local_ytranslog 0.791 0.332 
G10106_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E4_local_ytranslog 0.785 0.300 
G21008_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E5_local_ytranslog 0.782 0.318 
C10274_BSH1987_CPUEtailmp_bshareF_SIZEYEAR_E4_local_ytranslog 0.781 0.238 
C21004_BSH1987_CPUEtailmp_bshareT_SIZEYEAR_E5_local_ytranslog 0.776 0.245 
G21032_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E5_local_ytransnone 0.775 0.194 
G21064_BSH1987_CPUEtailmp_bshareF_SEAS_SIZEYEAR_E5_local_ytransnone 0.771 0.290 
G10428_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E3_local_ytransnone 0.768 0.302 
D10442_BSH1987_CPUEtailmp_bshareF_SIZE_AREAYEAR_E4_local_ytransnone 0.758 0.286 
C10043_BSH1987_CPUEtailmp_bshareT_SIZEYEAR_E3_local_ytranslog 0.758 0.204 
G10540_BSH1987_CPUEtailmp_bshareF_SEAS_SIZEYEAR_E3_local_ytranslog 0.752 0.278 
D10435_BSH1987_CPUEtailmp_bshareF_SIZE_AREAYEAR_E3_local_ytransnone 0.748 0.297 
D10211_BSH1987_CPUEtailmp_bshareT_SIZE_AREAYEAR_E3_local_ytransnone 0.744 0.282 
C21020_BSH1987_CPUEtailmp_bshareF_SIZEYEAR_E5_local_ytranslog 0.743 0.301 
D10218_BSH1987_CPUEtailmp_bshareT_SIZE_AREAYEAR_E4_local_ytransnone 0.740 0.282 
G21024_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E5_local_ytransgr2 0.740 0.270 
C10050_BSH1987_CPUEtailmp_bshareT_SIZEYEAR_E4_local_ytranslog 0.738 0.270 
C21012_BSH1987_CPUEtailmp_bshareT_SIZEYEAR_E5_local_ytransgr2 0.736 0.000 NOT P
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Table 5 Continued: Brown Shrimp fit statistics for top performing models where run names 
are described by strata A:H, species, start year, landings units, shared catchability b (T/F), 
population, time step (YEAR2 is seasonal), embedding dimension E, scaling (global vs. local), 
and y transformations (log, gr1, gr2, none). 

Run R2_out R2_outscaled 
G10092_BSH1987_CPUEtailmp_bshareT_SEAS_SIZEYEAR_E3_local_ytranslog 0.732 0.123 
G21023_BSH1987_CPUEtailmp_bshareT_SIZEYEAR2_E5_local_ytransgr2 0.628 0.511 
G10435_BSH1987_CPUEtailmp_bshareT_SIZEYEAR2_E4_local_ytransnone 0.714 0.503 
G21031_BSH1987_CPUEtailmp_bshareT_SIZEYEAR2_E5_local_ytransnone 0.706 0.497 
F421_BSH1987_CPUEtailmp_bshareT_AREA_ASSESSYEAR2_E3_local_ytransnone 0.599 0.481 
E20064_BSH1987_CPUEtailmp_bshareF_SEASONYEAR_E5_local_ytransnone 0.657 0.479 
E890_BSH1987_CPUEtailmp_bshareF_SEASONYEAR_E4_local_ytransnone 0.660 0.477 
E20032_BSH1987_CPUEtailmp_bshareT_SEASONYEAR_E5_local_ytransnone 0.651 0.464 
E442_BSH1987_CPUEtailmp_bshareT_SEASONYEAR_E4_local_ytransnone 0.654 0.462 
E20040_BSH1987_CPUEtailmp_bshareF_SEASONYEAR_E5_local_ytranslog 0.645 0.455 
E554_BSH1987_CPUEtailmp_bshareF_SEASONYEAR_E4_local_ytranslog 0.647 0.452 
E20008_BSH1987_CPUEtailmp_bshareT_SEASONYEAR_E5_local_ytranslog 0.638 0.440 
E106_BSH1987_CPUEtailmp_bshareT_SEASONYEAR_E4_local_ytranslog 0.641 0.437 
G20047_BSH1987_CPUEtailmp_bshareF_SIZEYEAR2_E5_local_ytransgr1 0.427 0.416 
G10323_BSH1987_CPUEtailmp_bshareT_SIZEYEAR2_E4_local_ytransgr2 0.550 0.409 
F20015_BSH1987_CPUEtailmp_bshareT_AREA_ASSESSYEAR2_E5_local_ytransgr1 0.443 0.370 
E428_BSH1987_CPUEtailmp_bshareT_SEASONYEAR_E3_local_ytransnone 0.606 0.367 
E876_BSH1987_CPUEtailmp_bshareF_SEASONYEAR_E3_local_ytransnone 0.606 0.367 
G20023_BSH1987_CPUEtailmp_bshareT_SIZEYEAR2_E5_local_ytransgr2 0.485 0.364 
C21024_BSH1987_CPUEtailmp_bshareF_SIZEYEAR_E5_local_ytransgr1 0.729 0.356 
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Table 6: Retrospective analysis of the Brown Shrimp MSY estimates for top tier performing 
models with increasing peels. _0 indicates the base model, and _1:5 indicates 1 through 5 time 
steps of data peeled back. The maximum landings throughout the history of the fishery is 
105.91 million pound of tails, and MSY_factor is the amount of times MSY is over this value. 
MSY_drop indicates whether the average MSY estimate was greater than 5 or 10 times the 
historical high, and F_drop indicates that the model solved at harvest rate U=1 and was 
excluded from further consideration. MSY, and Bmsy are in millions of pounds of tails. Run 
details are included in the previous table. 

Run MSY BMSY_mp MSY_factor MSY_drop5 MSY_drop10 F_drop 
BSH_G21023_0 560.61 403.97 5.29 1 0 0 
BSH_G21023_1 567.79 409.14 5.36 1 0 0 
BSH_G21023_2 636.95 445.87 6.01 1 0 0 
BSH_G21023_3 682.58 464.53 6.44 1 0 0 
BSH_G21023_4 718.63 475.85 6.79 1 0 0 
BSH_G21023_5 727.73 481.88 6.87 1 0 0 
BSH_G10435_0 797.10 813.70 7.53 1 0 0 
BSH_G10435_1 919.45 866.40 8.68 1 0 0 
BSH_G10435_2 1,379.09 1,299.53 13.02 1 1 0 
BSH_G10435_3 597.27 584.64 5.64 1 0 0 
BSH_G10435_4 985.47 754.50 9.30 1 0 0 
BSH_G10435_5 804.44 679.57 7.60 1 0 0 
BSH_G21031_0 726.11 741.24 6.86 1 0 0 
BSH_G21031_1 755.01 711.45 7.13 1 0 0 
BSH_G21031_2 1,219.94 1,149.56 11.52 1 1 0 
BSH_G21031_3 607.46 620.53 5.74 1 0 0 
BSH_G21031_4 971.04 743.45 9.17 1 0 0 
BSH_G21031_5 813.86 687.57 7.68 1 0 0 
BSH_G10323_0 371.83 337.40 3.51 0 0 0 
BSH_G10323_1 398.06 325.08 3.76 0 0 0 
BSH_G10323_2 410.61 324.51 3.88 0 0 0 
BSH_G10323_3 440.11 336.96 4.16 0 0 0 
BSH_G10323_4 439.59 336.56 4.15 0 0 0 
BSH_G10323_5 436.77 334.40 4.12 0 0 0 
BSH_G20023_0 215.07 405.39 2.03 0 0 0 
BSH_G20023_1 217.66 410.20 2.06 0 0 0 
BSH_G20023_2 219.29 383.76 2.07 0 0 0 
BSH_G20023_3 233.54 357.61 2.21 0 0 0 
BSH_G20023_4 228.08 349.24 2.15 0 0 0 
BSH_G20023_5 232.40 379.59 2.19 0 0 0 
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Table 7: Brown Shrimp parameter estimates for the top performing model. 

Parameter BSH_G20023 
Catchability 0.402 
DynamicCorrelation 0.957 
LengthScale1 0.204 
LengthScale2 0.251 
LengthScale3 0.017 
LengthScale4 0.026 
LengthScale5 0.001 
PointwisePriorVariance 0.689 
ProcessVariance 0.103 

 

Table 8: Brown Shrimp MSY estimates for the top performing model. 

Statistic BSH_G20023 
MSY_mptails 215.069 
Fmsy 0.617 
Umsy_annual 0.460 
Umsy_seasonal 0.265 
Bmsy_mp 405.394 
df 28.529 
R2 0.729 
R2Scaled 0.700 
R2_outsample 0.485 
R2Scaled_outsample 0.364 
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Table 9: Brown Shrimp status through time based on benchmarks from the recommended 
model. Landmp- landings in millions of pound of tails, Frate- fishing mortality rate, Best_mp- 
estimate of population size in millions of pound of tails, FFmsy- Frate relative to Fmsy, 
BBmsy- Best relative to Bmsy. 

Year landmp Frate Best_mp FFmsy BBmsy 
1987 92.43 0.16 632.28 0.26 1.56 
1988 82.28 0.26 363.13 0.42 0.90 
1989 96.96 0.11 951.47 0.17 2.35 
1990 107.97 0.13 883.70 0.21 2.18 
1991 88.20 0.08 1,177.30 0.13 2.90 
1992 70.95 0.16 481.78 0.26 1.19 
1993 68.76 0.17 445.59 0.27 1.10 
1994 69.15 0.10 757.00 0.16 1.87 
1995 78.33 0.08 998.54 0.13 2.46 
1996 76.54 0.16 506.87 0.27 1.25 
1997 67.93 0.14 514.11 0.23 1.27 
1998 83.96 0.11 825.92 0.17 2.04 
1999 83.46 0.09 937.90 0.15 2.31 
2000 97.04 0.09 1,120.45 0.15 2.76 
2001 91.15 0.13 749.01 0.21 1.85 
2002 76.56 0.09 852.61 0.15 2.10 
2003 86.36 0.07 1,232.36 0.12 3.04 
2004 77.20 0.09 925.07 0.14 2.28 
2005 61.03 0.08 765.65 0.13 1.89 
2006 88.86 0.05 1,849.48 0.08 4.56 
2007 72.37 0.07 1,011.53 0.12 2.50 
2008 54.87 0.04 1,341.21 0.07 3.31 
2009 76.43 0.05 1,463.83 0.09 3.61 
2010 45.43 0.03 1,679.33 0.04 4.14 
2011 74.12 0.04 1,734.12 0.07 4.28 
2012 64.44 0.04 1,495.54 0.07 3.69 
2013 66.83 0.07 1,028.70 0.11 2.54 
2014 69.13 0.08 909.52 0.13 2.24 
2015 63.75 0.04 1,489.38 0.07 3.67 
2016 50.84 0.05 965.41 0.09 2.38 
2017 56.79 0.05 1,152.78 0.08 2.84 
2018 70.12 0.07 1,039.32 0.11 2.56 
2019 40.71 0.04 1,048.57 0.06 2.59 
2020 41.00 0.02 1,756.58 0.04 4.33 
2021 42.02 0.02 2,243.64 0.03 5.53 
2022 30.87 0.02 1,716.53 0.03 4.23 
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10. Figures 

 

Figure 1: Map of the Gulf of America, where dark green is the Gulf defined by Gulf of Mexico 
Fishery Management Council boundaries, light green is Gulf international waters, and red is 
typically managed by the South Atlantic Fishery Management Council. Fishing areas 001 and 
002 in their entirety were included in the analyses here per the recommendation of WP-06. 
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Figure 2: Brown Shrimp CPUE separated by size and season. 
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Figure 3: Size-stratified Brown Shrimp CPUE with continuous seasonal oscillations. 
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Figure 4: Seasonal distribution of landings, where the minimal landings from Winter (JFMA) 
of the previous year were aggregated with Fall (SOND) to approximately match the timing of 
removals lined up with the SEAMAP survey. Brown Shrimp receive a fresh pulse of recruits 
annually in the Summer. 
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Figure 5: Brown Shrimp landings in millions of pounds of tails separated by size and season. 
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Figure 6: Size-stratified Brown Shrimp landings with continuous seasonal oscillations. 
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Figure 7: Domestic Gulf shrimp landings compared to global imports into the US by size 
category (top panel). This increase in supply has resulted in a crash of the ex-vessel price and 
domestic price index by size category, with all sizes decreasing, but Large yielding the highest 
amount (bottom panel). 
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Figure 8: Brown Shrimp combined TX and LA environmental indices, truncated when TX data 
become available in 1987. 

  

 

Figure 9: Final VAST index (red dashed line) and associated 95% confidence interval (red 
shading) incorporated into the JABBA model. 
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Figure 10: Final landings (blue line) and associated error (blue shading) input into JABBA. 
The dashed line indicates the start year of the index of relative abundance. 
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Figure 11: JABBA prior for carrying capacity, K, for all model configurations. 

  

 

Figure 12: JABBA prior for Pella Tomlinson production function shape parameter, m, for all 
model configurations. 
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Figure 13: JABBA prior for process error variance for all model configurations. 
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Figure 14: JABBA prior for observation error variance for all model configurations where 
estimated. 
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Figure 15: JABBA alternative prior assumptions for the intrinsic growth rate r. 
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Figure 16: JABBA alternative prior assumptions for the initial biomass depletion ratio psi. 
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Figure 17: Diagnostic tests for top performing JABBA models, where Run 1 was the best 
model that passed most of the diagnostic tests. 

  

 

Figure 18: Residual runs test for top performing JABBA model. Green shading indicates no 
evidence (p = 0.05) and red shading evidence (p < 0.05) to reject the hypothesis of a randomly 
distributed time-series of residuals, respectively. The shaded (green/red) area spans three 
residual standard deviations to either side from zero, and the red points outside of the shading 
violate the ‘three-sigma limit’ for that series. 
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Figure 19: Prior and posterior distributions of key model parameters for top JABBA model 
run. 
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Figure 20: Hindcasting cross-validation (HCxval) results from CPUE fits, showing observed 
(large points), fitted (solid lines) and one-year ahead forecast values (small terminal points). 
HCxval was performed using one reference model (black line) and five hindcast model runs 
(colored lines with terminal years 2018 to 2022) relative to the expected CPUE. The mean 
absolute scaled error (MASE) score scales the mean absolute error (MAE) of forecasts (i.e., 
prediction residuals) to MAE of a naïve in-sample prediction (CPUE value this year = CPUE 
value from last year). 
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Figure 21: Retrospective analysis of key parameters and management quantities for top 
performing JABBA model run, with the line color corresponding to terminal years of data 
ranging from 2017:2022. Mohn’s rho statistic (ρ) are denoted on top of the panels. Grey 
shaded areas are the 95% credible intervals from the reference model. Biomass and surplus 
production are reported in million lb tail weight. 
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Figure 22: Parameter estimates and error for top performing JABBA models. 
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Figure 23: Biomass trajectories for top performing JABBA models (in million lb tail weight), 
where Run 1 was the best model that passed most of the diagnostic tests. 
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Figure 24: Surplus production and associated biomass estimated for all top performing 
models (in million lb tail weight). Despite the range of carrying capacities estimated from 
JABBA, the MSY (peak of the surplus production curve) hovered around 90 million pounds of 
tails. 
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Figure 25: B/Bmsy trajectories for top performing JABBA models, where Run 1 was the best 
model that passed most of the diagnostic tests. 
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Figure 26: Out-of-sample R2 statistics for each model configuration using the ‘leave time out’ 
vs. the ‘sequential’ cross validation approach. While ‘leave-time-out’ obtains better model fits, 
the purpose here is to be able to project well into the future, which is better captured by the 
‘sequential’ approach. Models are filtered based on the R2 statistics from the ‘sequential’ 
prediction method going forward. 
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Figure 27: “Sequential” out-of-sample R2 fit statistic resulting from each model run. Facet 
columns show results based on different data transformations. Facet rows show results based 
on the embedding dimension. Within each facet, the x axis groups the models by the type of 
aggregation (spatial, size, season, or a combination). Models that locally scaled the data 
performed better than models that scaled globally for most transformations, which aligns with 
how we understand the data (e.g. populations are not directly comparable as defined here). 
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Figure 28: “Sequential” out-of-sample R2 fit statistic resulting from each model run with 
“local” scaling. Facet columns show results based on different data transformations. Facet 
rows show results based on the embedding dimension. Within each facet, the x axis groups the 
models by the type of aggregation (spatial, size, season, or a combination). Models that fit to 
the survey data and ignored landings (e.g. q=0) were removed from further consideration. 
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Figure 29: “Sequential” out-of-sample R2 fit statistic resulting from each model run with 
“local” scaling, q>0.001, and no covariates. Facet columns show results based on different 
data transformations. Facet rows show results based on the embedding dimension. Within 
each facet, the x axis groups the models by the type of aggregation (spatial, size, season, or a 
combination). In this figure, the shape fill was determined by whether or not the catchability 
parameter was shared among populations in the model (bshared = True / False, respectively). 
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Figure 30: Variable harvest rate projections of CPUE from the best performing run for the 
Large shrimp population. 
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Figure 31: Variable harvest rate projections of CPUE from the best performing run for the 
Medium shrimp population. 
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Figure 32: Variable harvest rate projections of CPUE from the best performing run for the 
Small shrimp population. 
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Figure 33: Variable harvest rate projections of landings from the best performing run for the 
Large shrimp population. 
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Figure 34: Variable harvest rate projections of landings from the best performing run for the 
Medium shrimp population. 
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Figure 35: Variable harvest rate projections of landings from the best performing run for the 
Small shrimp population. 
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Figure 36: Average CPUE by harvest rate for individual populations for the best performing 
run. The dashed line indicates the seasonal harvest rate where MSY occurs, indicating 
population-wide Bmsy in units of CPUE for each population. 
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Figure 37: Average landings estimated under a range of annual harvest rates for the best 
performing run. The optimal annual harvest rate for all populations combined is shown in the 
dashed line. Individual populations see their landings maximized at slightly different harvest 
rates. 
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Figure 38: Average CPUE by harvest rate for individual populations for a top performing run. 
The dashed line indicates the seasonal harvest rate where MSY occurs, indicating population-
wide Bmsy in units of CPUE for each population. For this model, the Large shrimp population 
is approaching zero under the harvest rate that maximizes total landings. 

  

NOT P
EER R

EVIE
W

ED



June 2025  Gulf Brown Shrimp 

77 
SEDAR 87 SAR Section III  Assessment Process Report 

 

Figure 39: Average CPUE by harvest rate for individual populations for a top performing run. 
The dashed line indicates the seasonal harvest rate where MSY occurs, indicating population-
wide Bmsy in units of CPUE for each population. For this model, the Large shrimp population 
is nearly zero under the harvest rate that maximizes total landings. 
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Figure 40: Average CPUE for all populations combined for the best performing run. The 
dashed line indicates the seasonal harvest rate where MSY occurs, indicating population-wide 
Bmsy in units of CPUE. 
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Figure 41: Average landings estimated under a range of annual harvest rates for the best 
performing run. The optimal annual harvest rate for all populations combined (MSY) is 
marked with a vertical dashed line. The maximum historical landings are marked with a 
horizontal dotted line, which is less than half the estimated MSY. 
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Figure 42: Length scale parameters for the 1st lag of abundance from the best performing 
model. 
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Figure 43: Length scale parameters for the 2nd lag of abundance from the best performing 
model. 
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Figure 44: Length scale parameters for the 3rd lag of abundance from the best performing 
model. 
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Figure 45: Length scale parameters for the 4th lag of abundance from the best performing 
model. 
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Figure 46: Length scale parameters for the 5th lag of abundance from the best performing 
model. 
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Figure 47: EDM model fits for the best performing run, transformed with error bars. 
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Figure 48: EDM model fits for the best performing run in raw units of SEAMAP CPUE. 
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Figure 49: Proportion of landings by size class. The dashed line indicates the first year of the 
VAST index. 
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