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1. Introduction 
White shrimp (Litopenaeus setiferus) indices of relative abundance were developed for 
consideration in the SEDAR 87 Gulf of Mexico (GOM) white, pink, and brown shrimp stock 
assessment process for input into JABBA, a Bayesian state-space surplus production modelling 
tool (Winker, Carvalho, and Kapur 2018). 

We used the Vector Autoregressive Spatio-Temporal (VAST) modeling platform to develop a 
single, continuous standardized index of abundance for white shrimp. VAST is an R package for 
implementing a spatial delta-generalized linear mixed model (delta-GLMM) when standardizing 
survey data. It allows for predicting population density based on both habitat covariates (i.e., 
covariates that affect population density) and spatial and spatiotemporal random effects. This 
flexible framework capable of accounting for changes in the spatiotemporal footprint of surveys 
through time. For white shrimp, the Louisiana Department of Wildlife and Fisheries (LDWF) 
trawl survey (SEDAR 2023) was used for developing a single, joint index of relative abundance 
for the stock. While the general design of the survey has not changed through time, the number 
of stations sampled has increased throughout the years (Figure 1) and relative monthly sampling 
intensity shifted through time (Figure 2). There was therefore an interest in using VAST to help 
correct for any bias that might arise from changes in the spatial footprint of the survey. In 
addition, since many studies point to the fact that environmental conditions (e.g., salinity and 
temperature) in the nursery grounds play an important role in driving the abundance and 
distribution of shrimp each year. We were interested in exploring whether the inclusion of 
environmental covariates could help explain the variability observed in the index through the 
used of habitat covariates in VAST. 

This paper details the data, workflow, and results of applying the VAST modeling approach to 
Gulf of Mexico white shrimp data to produce an index of relative abundance for the stock. 

2. Methods 

2.1 Stock description 
White shrimp in the GOM range from the Ochlochonee River, Florida, to Campeche, Mexico 
(SEDAR 2024a). They are commonly found in estuaries and coastal areas out to about 100 feet 
offshore. Adults spawn offshore in the spring through fall, and their larvae settle into nearshore 
estuarine or marsh nursery habitat in the spring. They then migrate back offshore in the fall as 
subadults when water temperature declines. White shrimp have a short life span of less than 2 



SEDAR87-AP-02 

2 
 

years (SEDAR 2024a). The bulk of the US Gulf of Mexico white shrimp catches occur in the 
inshore and offshore waters of Louisiana (Williams et al. 2024). 

2.2 Data 

2.2.1 Fishery Independent Surveys 
A number of fishery-independent survey data time series were made available for SEDAR 87, 
and vetted during the Data Workshop (see Data Workshop Report (SEDAR 2024b) for more 
detail). A single data source was retained for developing the index of relative abundance for the 
stock : the Louisiana Department of Wildlife and Fisheries (LDWF) survey (ldwf2023?). White 
shrimp are present in inshore waters throughout the year as overwintering adults in spring 
months and as new recruits in summer months, giving the best option for an abundance index 
that includes all size classes. The SEAMAP survey was deemed to operate too far offshore to 
accurately track the bulk of the stock (SEDAR 2024b). Other state surveys operating with similar 
survey designs as the LDWF (MS, AL) were considered during the Data Workshop but the 
analytical team ultimately decided not to use these datasets due to the shorter time scales 
available and changes in gear, protocol, and sampling timing that were not well documented. 

The LDWF survey is a fishery-independent 16-foot inshore marine otter trawl survey that is 
conducted monthly at fixed sampling stations in coastal LA. The dataset consists of 10 minute 
tows and spans 1980-2023 (SEDAR 2023). In October 2010, additional fixed stations were 
added to this survey allowing more spatial coverage within each coastal area (Figure 1). 

2.2.2 Time Series of Environmental Data 
Indices of mean annual temperature and salinity in the nursery grounds were developed by 
Turley, Ailloud, and Stevens (2023), and used to test the impact of environmental conditions on 
stock abundance. These indices were constructed based on the timing and regions that are 
thought to supply the bulk of the commercial catches for white shrimp to capture the variability 
and trends of the environmental drivers (salinity and temperature) that are most likely to 
influence recruitment success and, as a result, exploitable biomass. These indices were input into 
VAST as habitat covariates to test whether their inclusion helped explain a portion of the year-
to-year variability observed in the index of relative abundance. A set of lagged indices (one and 
two years) were also tested. The median of the time series was used as substitutes for the initial 
years that preceded lagged data availability (i.e. 1980 for the 1-year lag time series and 1980-
1981 for the 2-year lag time series). 

2.3 Modeling Approach 

2.3.1 Model Description 
We used the Vector Autoregressive Spatiotemporal (VAST) model v3.11.0 (Thorson and Barnett 
2017) implemented in R v.4.4.0 (R Core Team, 2020) to develop indices of relative abundance 
for each stock. This spatial-delta generalized linear mixed effects model is defined by two linear 
predictors : 𝑝! to calculate encounter probabilities (or zero-inflation probabilities in a count-data 
model) and 𝑝" for positive catch rates in numbers of shrimp per tow (or the count-data intensity 
function in a count-data model) for each observation i at location 𝑠% and time 𝑡%. 

𝑝!(𝑖) = 𝛽!(𝑡%) + 𝜔!∗(𝑠%) + 𝜖!∗(𝑠% , 𝑡%) + 𝛾!(𝑡%) + 𝜆!(𝑖) 

𝑝"(𝑖) = 𝛽"(𝑡%) + 𝜔"∗(𝑠%) + 𝜖"∗(𝑠% , 𝑡%) + 𝛾"(𝑡%) + 𝜆"(𝑖) 
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Where β are the year intercepts for each linear predictor (temporal variation, fixed effect), 𝜔∗ are 
the spatial factors (random effects), 𝜖∗ are the spatio-temporal factors (random effects), 𝛾 
represent the impacts of habitat covariates on each linear predictor and 𝜆 represent the impacts of 
catchability covariates on each linear predictor. Linear predictors are then transformed to predict 
encounter probabilities and positive catch rates. In the case of a conventional delta-model : 

𝑟! = 𝑙𝑜𝑔𝑖𝑡'!3𝑝!(𝑖)4 

𝑟" = 𝑎% ∗ 𝑒𝑥𝑝3𝑝"(𝑖)4 

where 𝑎% is the effort offset (in minutes fished). For white shrimp, no effort offset was included 
since all tows were of equal duration. Then, VAST predicts population density 𝑑(𝑠, 𝑡) at 
extrapolation grids across a continuous spatial domain (pre-defined to cover the extent of the 
surveys) and discrete time intervals (years) from both transformed linear predictors as (in the 
case of a conventional delta-model): 

𝑑(𝑠, 𝑡)
= 𝑙𝑜𝑔𝑖𝑡'!3𝛽!(𝑡%) + 𝜔!∗(𝑠%) + 𝜖!∗(𝑠% , 𝑡%) + 𝛾!(𝑡%)4 ∗ 𝑒𝑥𝑝3𝛽"(𝑡%) + 𝜔"∗(𝑠%) + 𝜖"∗(𝑠% , 𝑡%) + 𝛾"(𝑡%)4 

and calculates the abundance index 𝐼(𝑡) in time 𝑡 as : 

𝐼(𝑡) =;3𝑎(𝑠) ∗ 𝑑(𝑠, 𝑡)4
(!

)*!

 

where 𝑎(𝑠) is the area associated with knot 𝑠. Habitat covariates are processes that affect true 
underlying densities, they are used in both the fitting process and the prediction process. 
Catchability covariates are processes that affect sampling but do not reflect underlying densities, 
their estimated effect is removed when calculating the index. Estimates of “density” for white 
shrimp are not directly interpretable on an absolute scale as no meaningful estimate of area swept 
could be produced for these surveys. 

Spatial and spatiotemporal variation are estimated using Gaussian Markov random fields 
(Thorson 2019a). The spatial correlation matrix is modeled using a Matérn covariance function 
(Lindgren, Rue, and Lindström 2011). The user can specify a Matérn covariance function that is 
either isotropic (where correlations decline at the same rate in any direction) or anisotropic 
(where the rate at which correlations decline depends upon the direction of movement – common 
in marine ecosystems, where correlations decline slowly when moving along a depth contour but 
rapidly when moving perpendicular to the depth contour (J. T. Thorson 2019a)). The number of 
prediction locations (i.e. knots) must be predefined. VAST then distributes the knots spatially 
using a k-means algorithm that minimizes the average distance between samples and knots. A 
detailed description of the model can be found in (Thorson 2019b) and in the VAST User 
Manual (Thorson 2024). 

2.3.2 Prediction grid 
Before fitting VAST models, we constructed prediction grids for the study species. A 3km x 3km 
extrapolation grid was constructed to encompass the total area covered by the survey, excluding 
land and rivers (Figure 3). 
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2.3.3 Modeling Workflow 
Model development involved the following steps: 

1. Selecting the optimal number of knots : a delta-lognormal model with both spatial and 
spatiotemporal random effects and no habitat or catchability covariates was run using a 
series of knots from 250 to 1500 knots to determine the optimal number of knots to use 
while balancing computational speed and spatial resolution. The root mean square error 
(RMSE) between raw observations and fitted values of the index was used to measure 
differences between runs and find the number of knots beyond which results appeared to 
stabilize. 

2. Identifying the optimal distribution model : Candidate models included : 

– a Poisson-link delta-model (ObsModel=c(2,1)) : log-linked linear predictor for 
encounter probability (i.e., Poisson), and a gamma error distribution for positive 
catch rates; 

– a Zero-inflated negative binomial model (ObsModel=c(5,0)) : 1st linear predictor 
for logit-linked zero-inflation, 2nd linear predictor for log-linked conditional 
mean of negative binomial; 

– a Conventional lognormal delta-model (ObsModel=c(4,0)) : logit-link for 
encounter probability and log-link for positive catch rates. 

Standard model selection tools (i.e., AIC, qq plots) were used to identify the best fitting 
model. 

3. Testing the inclusion of spatial and spatiotemporal random effects : Using the optimal 
number of knots and distribution function determined in steps 1. and 2., a series of 
models were built with increasing complexity with respect to including spatial and 
spatiotemporal random effects. If the estimated variances of the spatial and 
spatiotemporal terms were greater than zero, the random effects were retained. Random 
effects, when present, were included in both linear predictors. AIC was used to select the 
Matérn covariance functions (anisotropic vs. isotropic). 

4. Selecting catchability covariates : Using the optimal model determined in step 3., we 
explored the impact of including the following catchability covariates: month. 
Catchability covariates were included in both linear predictors. AIC was used to assess 
model fit. 

5. Selecting habitat covariates : Using the optimal model determined in step 4., we explored 
the impact of including the following habitat covariates: indices of mean annual 
temperature and salinity in the nursery grounds and these same indices lagged by 1 and 2 
years. Indices were normalized to a mean of zero and standard deviation of 1 prior to 
input into the model and set up as spatially explicit annual zero-centered covariates to 
predict changes in density across space and time (i.e., single value across space within a 
year but varied from year to year). Habitat covariates were included in both linear 
predictors. AIC was used to assess model (𝑚) fit. Following (Cao et al. 2017), a pseudo-
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𝑅" metric was calculated to determine the proportion of variance (𝜎") from the null 
model (𝑛𝑢𝑙𝑙; i.e., habitat covariates) that was explained by including habitat variables : 

𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑅" = 1 −
𝜎+,-" + 𝜎.,-"

𝜎+,(/00" + 𝜎.,(/00"  

3. Results 
1. Selecting the optimal number of knots : The RMSE reached an asymptote around 500 

knots (Figure 4) and there was very little difference in the estimated index using 500 
(runtime : 0.4hrs) vs. 1500 knots (run time : 1.6hrs) (Figure 5). A model with 700 knots 
was therefore retained for subsequent model building steps. 

2. Identifying the optimal distribution model : The zero-inflated negative binomial model 
did not converge. Comparing the poisson-link delta-model (VAST default option) with 
the conventional lognormal delta-model, AIC and qqplots indicated that the delta-
lognormal model was preferred (Figure 6). 

3. Testing the inclusion of spatial and spatiotemporal random effects : The marginal 
standard deviation of both spatial (𝜔) and spatiotemporal (𝜖) random effects were 
significantly greater than zero and thus included in the final model (𝜔! = 1.44; 𝜔" = 
0.97; 𝜖! = 0.53; 𝜖" = 0.33). The model that assumed anisotropic covariance was favored 
in terms of AIC (Table 1, Figure 7). Including spatial and spatio-temporal random effects 
brought significant improvements to the model fit. 

4. Selecting catchability covariates : The model with the lowest AIC was the model that 
included time of day, survey and month as catchability covariates (Table 2). Month had 
the largest effect, followed by time of day (Figure 8). The fixed effect for survey (Q) had 
only a minor impact on the overall fit. Effects plots for month are shown in Figure 9. 

5. Selecting habitat covariates : The model with the lowest AIC was the model that 
included the average nursery temperature index with a 1 year lag as habitat covariate 
(Table 3). However, it resulted in a nearly identical fit as the null model with no habitat 
covariates (𝛥𝐴𝐼𝐶 = 21 ; Figure 10) and only explained a trivial fraction (<4%) of the 
spatial and spatiotemporal variation observed. None of the habitat covariates explained 
any considerable amount of spatial or spatiotemporal variation in the model. 

The final model included spatial and spatiotemporal random effects using the anisotropic 
estimation of correlation (Figure 11), and a catchability covariate for month, in both the 1st and 
2nd linear predictors. The use of spatial REs had the largest effect in the standardization process. 
None of the habitat covariates had an appreciable impact on the index trend and each explained 
only a very small portion of the variance from the null model with no habitat covariates. Because 
of that and the fact that this index is meant for assessment purposes and benefits from being 
simple to update, the final model did not include any habitat covariates. Figure 12 shows the 
final standardized index plotted against the non-standardized index. The distribution of quantile 
residuals did not show any substantial spatial pattern (Figure 13). The model fit the data 
reasonably well (Figure 14). 
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4. Discussion 
The standardization process resulted in an index with an, overall, steeper increase across the time 
series (Figure 12). Index values prior to the survey expansion (pre 2020) generally fell below the 
nominal values and index values post expansion generally fell above. 

While many studies point to the relationship between shrimp production and temperature and 
salinity on the nursery grounds (see SEDAR (2024c)), these variables were not found to have an 
appreciable impact on spatial variation in shrimp density. It is also likely that the relationship 
between CPUE and environmental conditions is not linear and would be better described using a 
spline where shrimp production is maximized under certain conditions but hampered under 
extremes. At the time that this work was conducted, it was not possible in VAST to specify a 
more complex relationship for the environmental index so that option was not explored. 

The final model including spatial and spatiotemporal random effects and a catchability covariate 
for month for both the 1st and 2nd linear predictors but no habitat covariate is recommended as 
the index for input into JABBA. 
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Tables 
 

Run Description σω1 σω2 σε1 σε2 AIC ΔAIC 

No RE     381,862 18,446 

Spatial RE (iso) 1.43 0.88   365,112 1,695 

Spatial (iso) & spatiotemporal REs 1.43 0.97 0.52 0.33 363,423 6 

Spatial (aniso) & spatiotemporal REs 1.44 0.97 0.53 0.33 363,416 0 

 

Table 1. Marginal standard deviation of spatial (𝜔) and spatiotemporal (𝜖) terms and AIC across 
runs with different specifications for the spatial and spatiotemporal random effects and 
associated Matérn covariance function. The run with the lowest AIC is bolded. RE: random 
effects; iso : isotropic Matérn covariance function; aniso: anisotropic Matérn covariance 
function. 

 

Run Description σω1 σω2 σε1 σε2 AIC ΔAIC 

Null model 1.44 0.97 0.53 0.33 363,416 7,809 

Null model + month 1.56 1.01 0.58 0.36 355,607 0 

 

Table 2. Marginal standard deviation of spatial (𝜔) and spatiotemporal (𝜖) terms and AIC across 
runs with different specifications for the catchability covariates. The run with the lowest AIC is 
bolded. 
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Run Description σω1 σω2 σε1 σε2 pseudoR21 pseudoR22 AIC ΔAIC 

Null model 1.56 1.01 0.58 0.36 0.000 0.000 355,607 21 

Null model + temperature 1.56 1.00 0.58 0.35 0.003 0.008 355,603 17 

Null model + temperature 
(lag=1) 1.55 0.99 0.57 0.35 0.013 0.038 355,586 0 

Null model + salinity (lag=1) 1.56 1.01 0.57 0.35 0.002 0.006 355,596 10 

Null model + temperature 
(lag=2) 1.56 1.01 0.57 0.36 0.008 0.003 355,605 18 

Null model + salinity (lag=2) 1.57 1.01 0.57 0.36 -0.005 0.002 355,598 12 

 

Table 3. Marginal standard deviation of spatial (𝜔) and spatiotemporal (𝜖) terms and pseudo-R2 
showing the proportion of variance from the null model (i.e., the model with no habitat 
covariates included) that is explained by including habitat covariate(s) in the model. The run 
with the lowest AIC is bolded. 
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Figures 

 

Figure 1: Change in the spatial footprint of the LDWF survey through time. 
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Figure 2: Sampling intensity of the LDWF survey through time. 
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Figure 3: WSH index extrapolation region. Survey stations are shown in blue. 
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Figure 4: Index RMSE associated with each model run for the different numbers of knots 
attempted. Run time in hours is printed above each data point. Increasing knot size leads to an 
asymptote in the RMSE using starting at around 500 knots. 
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Figure 5: Index estimates for the model run with the highest number of knots (1500) compared 
with those for the selected model (500). 
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Figure 6: Dharma residual diagnostic plots for the delta-lognormal (top; AIC=363,416) and 
poisson-link (bottom; AIC=372,169) model. 
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Figure 7: Comparing index estimates and associated confidence intervals across runs with 
different spatial and spatiotemporal random effects (RE) specifications. iso: isotropic Matérn 
covariance function; aniso: anisotropic Matérn covariance function. 
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Figure 8: Comparing index estimates and associated confidence intervals across runs with 
different catchability covariates. The Null model is a model with both spatial and 
spatiotemporal random effects included in both the 1st and 2nd linear predictors and assuming 
geometric anisotropy but with no catchability covariates included. 
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Figure 9: Effect plots for the month catchability covariate. Top panel shows the impact on the 
first linear predictor, bottom panel shows the impact on the second linear predictor. 
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Figure 10: Comparing index estimates and associated confidence intervals across runs with 
different habitat covariates included. The Null model includes both spatial and spatiotemporal 
random effects (assuming geometric anisotropy) and a month catchability covariate. 
temperature = mean annual temperature on the nursery grounds, salinity = mean annual 
salinity on the nursery grounds, environmental indices are lagged by 0, 1 or 2 years compared 
with the cpue observations. 
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Figure 11: Distance needed to achieve a correlation of approximately 10% from a location 
centered at coordinates (0,0). Correlations decline slower along the southwest-northeast axis 
than along the northwest-southeast axis. 
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Figure 12: Comparing index estimates and associated confidence intervals for the final model 
(red) with the preliminary unstandardized index (black). The final index includes both spatial 
and spatiotemporal random effects assuming geometric anisotropy and a month catchability 
covariate. 
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Figure 13: Spatial distribution of quantile residuals for the final model, red color indicating 
overestimation and blue indicating underestimation. 
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Figure 14: Dharma residual diagnostic plots for the final model. 

  

 

Figure 15: Predicted densities in each year for the final model. The absolute scale is not 
directly interpretable since no meaningful area swept estimates were available for the 
development of the index. 
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