U.S. Caribbean Stoplight Parrotfish St. Croix, USVI

1

Outline

- I. Introduction & Background
- II. Data & Methods
- **III. Assessment Results**
- IV. Discussion & Uncertainties
- V. Conclusions & Recommendations

I. Introduction & Background

- Maps
- Current Management
- Management History
- Stock Complexes
- Assessment History

Reef Fish Closures - Mutton Snapper & Red Hind Spawning Aggregation Areas

Current Management

- Island-based fishery management plans effective as of October 2022
 - <u>St. Croix Fishery Management Plan</u>
 - Annual Catch Limits for Stocks and Stock Complexes
- 2022 ACL for St. Croix Parrotfish 2-72,365 lbs
 - 2000-2010 reference; 2012-2016 ratio
 - Based on commercial landings but applies to all harvest
 - Landings of indicator stocks are combined to monitor compliance
 - Accountability measures apply to all stocks in the complex if ACL is exceeded

Management History

- Federal Waters
 - 2005 <u>FMP comprehensive amendment</u> and ban of gillnets and trammel nets
 - 2012 Prohibited Blue, Midnight, and Rainbow parrotfish
 - 2012 ACL for St. Croix Parrotfish 240,000 lb (1999-2005 reference)
 - 2013 9-inch size limit for parrotfishes, except redband
- Territorial Waters
 - 2008 <u>Buy-back/ban</u> of gillnets and trammel nets

Stock Complexes

- Parrotfish 1— Blue, Midnight, and Rainbow parrotfish
 Prohibited 2012
- Parrotfish 2— Princess, Queen, Redband, Redfin, Redtail,
 Stoplight, Striped parrotfish

PROTECT THE PARROTFISH!

Remember that <u>none</u> of the following parrotfish species may be caught in the <u>United States</u> <u>Caribbean Economic Exclusive Zone</u>:

Parrotfish serve an important ecological role in US Caribbean reefs. These fish eat algae, which compete for space on several coral species, including Acropora palmata and Acropora cervicornis, both of which are listed in the Endangered Species Act. These coral species' habitat has been designated as a critical habitat, and the essential characteristics of a critical habitat include the availability of substrate free of macroalgae at certain depths.

Blue parrotfish Scarus coeruleus

Midnight parrotfish Scarus coelestinus

Rainbow parratfish Scarus guacamaia

Parrotfishes are also considered a cultural dietary component in the US Caribbean, particularly in St. Croix. These three parrotfish species tend to grow slowly and have relatively long timeframes in which to repopulate in comparison to other parrotfish species, which makes them susceptible to overfishing.

Assessment History

 A 2016 assessment (SEDAR 46) used data-limited methods but was not used for management advice

DLMtool modeling framework.

RE

SEDAR 46 SAR Section II

Data & Assessment Workshop Report

II. Data & Methods

- Data Sources Overview
- Data Workshop Outcomes
- Post-Data Workshop Outcomes
- Modeling Approach
- Assessment Methodology
- Assessment Overview
- Data Sources

Data Sources Overview

- **1. Landings** from self-reported commercial fisher logbooks
- 2. Length compositions from shore-based port sampling
- 3. Length compositions from a fishery-independent survey of reef fish
- 4. Index of abundance from a fishery-independent survey of reef fish
- 5. Life history information from otolith analysis and gonad histology

Data Workshop Outcomes

- Use life history data made available in SEDAR working papers.
- Only use commercial landings data starting in 2012.
- Identify and flag outliers.
- Utilize the various diving gears to establish a SCUBA gear group.
- Assume commercial discards are negligible.
- Utilize TIP lengths from 2012 to 2022 to inform selectivity.
- Use the NCRMP Stoplight Parrotfish data for STX from 2012 to 2022.
- Do not consider the fishery-dependent information for an abundance indices.

Post-Data Workshop Outcomes

- Life history working paper finalized (<u>SEDAR84-AP-01</u>)
- Assessment panel accepted landings outliers retained as valid trips

Modeling Approach

- <u>Stock Synthesis</u> V3.30.22 was the modeling approach applied in the current SEDAR 84 assessment because of compatibility with the available data and consistency with standard practices.
- 40% SPR used as a proxy for MSY.
- Tools for working with Stock Synthesis
 - <u>r4ss</u>: Create plots and tables of Stock Synthesis output and functions to work with Stock Synthesis in R.
 - <u>ss3diags</u>: Run advanced diagnostics for Stock Synthesis models.
 - <u>Stock Assessment Continuum Tool</u> (previously the SS-DL-tool) a shiny app that includes Extended Simple Stock Synthesis and Simple Stock Synthesis in its functionality.

Assessment Method

- Began with data-limited models using super-period length compositions
 - Steepness fixed at 0.99
 - Sigma R fixed at 0.7
- Model progression tracked biological/data complexities:
 - m1: Hermaphroditism
 - m2: Continuous recruitment
 - m3: Increased catch uncertainty
- Progressed to data-moderate models incorporating:
 - Abundance indices
 - Annual fishery-independent length compositions
 - Recruitment deviations

Model Development

- Labels (e.g., v1_m3_s4) reflect version, complexity, and sensitivity runs
- Model v7_m3 proposed to inform catch advice (*index* + *annual fishery-independent length data* + *rec deviations*)

Stage	Code	Sequential modeling steps
Initial	\mathbf{ct}	model initialized with continuum tool (ct)
Initial	m1	ct + hermaphroditism and adjusted length at age zero
Initial	m^2	m1 + continuous recruitment
Initial	m3	m2 + catch uncertainty
Scenario	null	catch and super-year length data
Scenario	a	index
Scenario	\mathbf{b}	annual fishery-independent length data
Scenario	v1	index + annual fishery-independent length data
Scenario	v3	index + recruitment deviations
Scenario	v7	index + annual fishery-independent length data + recruitment
		deviations
Sensitivity	$\mathbf{s1}$	higher CV on growth young
Sensitivity	s2	higher age and lower m
Sensitivity	s3	one sex (age-based fecundity = maturity $*$ weight $*$ sex ratio)
Sensitivity	$\mathbf{s4}$	higher catch uncertainty
Sensitivity	s5	s2 + s4
Sensitivity	$\mathbf{s6}$	s2 + s3 + s4

Assessment Overview

- Stock Assessment Continuum Tool used to build initial models
- Models configured with 1 area, 1 fleet, and 1 survey; 2012—2022
- Sensitivities tested using:
 - Longevity-based natural mortality
 - Growth variability (CV on growth)
 - Hermaphroditism parameterization
 - Uncertainty in initial equilibrium catch
- Diagnostics included:
 - Gradients, residuals, likelihood profiles
 - Retrospectives and jitter analyses

1. Landings from self-reported commercial logbooks

Caribbean Commercial Logbook Program

ITIS_COMMONNAME PARROTFISH, BLUE PARROTFISH, PRINCESS PARROTFISH, QUEEN PARROTFISH, REDBAND PARROTFISH, STOPLIGHT PARROTFISH, REDFIN PARROTFISH, REDTAIL PARROTFISH, REDTAIL PARROTFISHES

2. Length compositions from shore-based port sampling

Trip Interview Program

- 98% of TIP length data (2012–2022) came from diving gear.
 - 1,033 length measurements from 66 trips.
- Used to inform length-based selectivity for the commercial fleet.
- Multiple lengths per trip; non-independent observations.
- Model weighting based on number of sampled trips.

3. Length compositions from a fishery-independent survey of reef fish

National Coral Reef Monitoring Program

- Regionally restricted transect data from 2001 to 2011.
- Belt transect (2001–2015);
 Stationary point count (2017–2021).
- Multiple lengths per dive; nonindependent observations.
- The relative model weighting based on the number of paired

		() - 12 me	eters			1	2 - 30 m	eters			
Year	Aggregate	Bedrock	Patch	Pavement	Coral/Rock	Aggregate	Bedrock	Patch	Pavement	Coral/Rock	Site Total	Length Total
2001	12		14	35	12			9	2	2	86	376
2002	7		15	21	10			8	14	1	76	318
2003	38	6	13	72	7	3		3	21	2	165	455
2004	23	4	14	46	9	2		4	7	5	114	413
2005	43	4	17	46	11	9	1	7	25	7	170	485
2006	34	2	18	48	20	6		13	38	6	185	400
2007	13	1	14	23	5	1		7	24	2	90	230
2008	16		27	62	3	5		12	35	7	167	344
2009	15		23	61	9	4		8	32	5	157	277
2010	17		15	38	5	3		2	33	5	118	344
2011	3			19					17	2	41	86
2012	15	5	13	64	6	35		19	79	26	262	492
2015	15	4	14	47	17	33		19	75	15	239	444
2017	11	1	14	33	5	46		19	47	5	181	810
2019	29	8	32	46	10	74		35	72	8	314	1116
2021	14		19	19	2	43		12	35	4	148	694

dives.

	0 - 12 meters						12 - 30 meters					
Year	Aggregate	Bedrock	Patch	Pavement	Coral/Rock	Aggregate	Bedrock	Patch	Pavement	Coral/Rock	Site Total	Length Total
2001	12		14	35	12	6		9	2	2	86	376
2002	7		15	21	10			8	14	1	76	318
2003	38	6	13	72	7	3		3	21	2	165	455
2004	23	4	14	46	9	2		4	7	5	114	413
2005	43	4	17	46	11	9	1	7	25	7	170	485
2006	34	2	18	48	20	6		13	38	6	185	400
2007	13	1	14	23	5	1		7	24	2	90	230
2008	16		27	62	3	5		12	35	7	167	344
2009	15		23	61	9	4		8	32	5	157	277
2010	17		15	38	5	3		2	33	5	118	344
2011	3			19					17	2	41	86
2012	15	5	13	64	6	35		19	79	26	262	492
2015	15	4	14	47	17	33		19	75	15	239	444
2017	11	1	14	33	5	46		19	47	5	181	810
2019	29	8	32	46	10	74		35	72	8	314	1116
2021	14		19	19	2	43		12	35	4	148	694

NOA

4. Index of abundance from a fishery-independent survey of reef fish

5. Life history information

- Lengths
 - 1,801 samples from 2013-2023 and across the U.S. Caribbean
 - Males (304 mm FL) were significantly larger than females (259 mm FL) and transitioning (258 mm FL)
 - Very few females greater than 351 mm FL
 - Maximum length 433 mm FL
- Ages
 - 1,649 aged fish
 - Oldest fish (20 y) female

5. Life history information

- Sexual maturity and reproductive phase
 - 1,765 stoplight parrotfish gonads
 - Females and males spawning capable year-round
 - Not all females appear to transition to males
 - Females are more dominant through age-3
 - Similar proportions of females and males ages 4-15

Growth

NOAA

NOAA FISHERIES

Growth

-	Model	Ν	L_{∞} (mm)	к	t ₀	
	$FL mm t_0$ -fixed	1649	332 (328 - 335)	0.39 (0.35 - 0.41)	-0.06*	
	FL mm	1649	338 (328 - 335)	0.33 (0.31 - 0.36)	-0.52 (-0.720.35)	
	SL mm t ₀ -fixed	1649	287 (282-290)	0.38 (282-290)	-0.06*	
NOLINI VICE	SL mm	1649	297 (286-300)	0.33 (0.31-0.36)	-0.40 (-0.590.23)	
NOAA FISHERIES						

Growth

Maturity and Hermaprhoditism

Parameter	n	Estimate
Sexual Maturity		
LM50	768	153 (140 - 165)
AM50	731	1.6 (1.4 - 1.9)
Transition		
LT50	1637	279 (275 - 282)
AT ₅₀	1558	4.5 (3.4 - 5.3)

Maturity and Hermaprhoditism

Natural Mortality

Input Source	Input Type	Input	Μ	Method
Survival curve	Maximum age	30	0.180	Hamel_Amax
SEDAR84-AP-01	Maximum age	20	0.270	Hamel_Amax
Meta-analysis	Scientific name	Sparisoma viride	0.397	FishLife
Choat et al. (2003)	Maximum age	12	0.450	Hamel_Amax
Choat et al. (2003)	Maximum age	9	0.600	Hamel_Amax
SEDAR84-AP-01	Growth (k)	0.39	0.604	Hamel_k
SEDAR84-AP-01	Growth (k)	0.39	0.585	Jensen_k 1
SEDAR84-AP-01	Growth (k)	0.39	0.624	Jensen_k 2
SEDAR84-AP-01	Growth (L_{∞}, k)	33.2, 0.39	0.576	Then_VBGF
SEDAR84-AP-01	Growth (k)	0.33	0.512	Hamel_k
SEDAR84-AP-01	Growth (k)	0.33	0.495	Jensen_k 1
SEDAR84-AP-01	Growth (k)	0.33	0.528	Jensen_k 2
SEDAR84-AP-01	Growth (L_{∞}, k)	33.8, 0.33	0.573	Then_VBGF
SEDAR84-AP-01	Age at 50% maturity	1.6	1.030	Jensen_Amat
SEDAR84-AP-01	Age at 50% maturity	1.6	0.924	Ri Ef Amat

III. Assessment Results

Model Scenario m3_v7

- 1. Convergence OKAY
- 2. Correlation Analysis OKAY
- 3. Variance OKAY
- 4. Jitter Analysis OKAY
- 5. Residual Analysis
- 6. Retrospective Analysis
- 7. Likelihood Profiles (3)
- 8. Sensitivities (6)

5. Residual Analysis

- Catch
- Indices
- Length Compositions

Catch

Year

Index

Year

43

```
Length Compositions
```


44

Length Compositions

Year

Length Compositions

Recruitment Deviations

Year

6. Retrospective Analysis

48

7. Likelihood Profiles

- Unfished Recruitment
- Initial Equilibrium Catch
- Steepness

Unfished Recruitment

Initial Equilibrium Catch

Spawner-recruit steepness (h)

52

8. Sensitivities

- s1 Growth CV increased from 0.15 to 0.25.
- s2 Natural Mortality
- s3 Single Sex Model
- s4 Standard Error on Catch
- s5 Standard Error on Catch and Natural Mortality
- s6 Single Sex Model, Standard Error on Catch, and Natural Mortality

8. Sensitivities

NOAA FISHERIES

NOAA FISHERIES

Density

8. Sensitivities

55

IV. Discussion & Uncertainties

- Assessment uses a stepwise, scenario-based framework to explore uncertainty
- Natural mortality and initial catch are highly influential in model outcomes
- Short time series (2012-2022) and coarse length bins (2012 & 2015)
- Recruitment deviations are uncertain but improved by fisheryindependent data

V. Conclusions & Recommendations

Key Findings

- Model indicates no overfishing and not overfished
- Only one sensitivity (m3_s6) showed potential overfishing status
- Initial catch conditions are a major source of uncertainty
- Results are robust across models but limited by low-contrast data

Assessment Research Recommendations

- Reevaluate use of combined indicator species for setting ACLs
- Consider larger-scale stock definitions due to high larval connectivity
- Expand modeling to reflect regional metapopulation dynamics
- Continue long-term monitoring with 1-cm length resolution
- Decouple initial condition from long-term sustainable yields
- Support development of ensembles to capture uncertainty
- Promote scenario testing for other Caribbean species

Data Workshop Research Recommendations

Life History

- Optimize sample sizes
- Ensure adequate coverage of small and large fish Length Composition
- Increase TIP sample size and improve trip coverage (e.g., night fishing)
- Link TIP and CCL via integrated data system
- Investigate weight-at-length trends and trip-level representativeness
- Develop a more holistic sampling strategy

Data Workshop Recommendations (cont.)

- Commercial Landings
- Investigate trends in effort, gear, and environmental drivers
- Explore hindcasting and develop gear grouping and outlier flagging tools
- Discards & Mortality
- Quantify shark depredation and discard mortality
- Promote discard reporting through outreach and education

Data Workshop Recommendations (cont.)

- Fishery-Independent (NCRMP)
 - Investigate changes across consistent sites (e.g., Buck Island);
 - Investigate habitat change and expand to seagrass/mangrove areas
 - Explore unsurveyed turbid regions
- Fishery-Dependent Indices
 - Apply ecosystem lens to fisher targeting behavior
 - Filter out lobster/conch-only trips
 - Examine effort vs. catch disconnect in dive data

The End

1. Convergence

- Positive definite Hessian, indicating local optimal fit
- No parameters were bounded, suggesting unconstrained optimization
- Parameter gradients were small (all < 0.001), supporting convergence

2. Correlation Analysis

- No correlations greater than 0.95 or less than -0.95
- Moderately high correlations (> 0.90) commercial fleet logistic selectivity
 - length at peak selectivity
 - width of the ascending limb

3. Variance

4. Jitter Analysis

