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Carvalho et al. (2021) provided a “cookbook” for implementing contemporary model diagnostics, which
included convergence checks, examinations of fits to data, retrospective and hindcasting analyses, likelihood
profiling, and model-free validation. However, it remains unclear whether these widely-used diagnostics exhibit
consistent behavior in the presence of model misspecification, and whether there are trade-offs in diagnostic
performance that the assessment community should consider. This illustrative study uses a statistical catch-at-age
simulation framework to compare diagnostic performance across a spectrum of correctly specified and mis-
specified assessment models that incorporate compositional, survey, and catch data. Results are used to
contextualize how reliably common diagnostic tests perform given the degree and nature of known model issues,
including parameter and model process misspecification, and combinations thereof, and trade-offs among model
fits, prediction skill, and retrospective bias that analysts must consider as they evaluate diagnostic performance.
A surprising number of mis-specified models were able to pass certain diagnostic tests, although there was a
trend of more frequent failure with increased mis-specification for most diagnostic tests. Nearly all models that
failed multiple tests were mis-specified, indicating the value of examining multiple diagnostics during model
evaluation. Diagnostic performance was best (most sensitive) when recruitment variability was low and his-
torical exploitation rates were high, likely due to the induction of better contrast in the data, particularly indices
of abundance, under this scenario. These results suggest caution when using standalone diagnostic results as the
basis for selecting a “best” assessment model, a set of models to include within an ensemble, or to inform model
weighting. The discussion advises stock assessors to consider the interplay across multiple dynamics. Future work
should evaluate how the resolution of the production function, quality and quantity of data time series, and
exploitation history can influence diagnostic performance.

1. Introduction integrated stock assessment modeling (Maunder et al., 2009), the

complexity of modern stock assessment modeling for fisheries man-

Sustainable exploitation of renewable natural resources requires
quantitative scientific guidance. Integrated population dynamics models
(e.g., Fournier and Archibald 1982) have flourished as the tool of choice
to evaluate the status and possible future outcomes for exploited,
threatened or managed populations (Maunder and Punt, 2014; Tempel
et al.,, 2014). Integrated population models use mathematical relation-
ships (processes) to specify how changes in population abundance occur
and to link model predictions to data (observations). The processes are
themselves governed by parameters that can either be estimated during
the model fitting process or pre-specified based on independent studies.
With the increase of computing power and the popularization of
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agement has increased. Analysts have multiple ways to model the
observed data and underlying population processes when conducting a
stock assessment, yet the tradeoffs among modeling choices are not al-
ways obvious. Developing and presenting multiple candidate models has
become commonplace for many national and international fishery
management agencies (Karp et al., 2022). Sometimes, analysts and/or
review bodies must choose among candidate models, or systematically
filter and combine models in an ensemble (Jardim et al., 2021).

The complexity of data types and model structures available to
fishery stock assessment, and the desire for objective means of evalu-
ating multiple candidate models, have led to a growing interest in
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diagnostic tests. Diagnostic tests can serve an important role in model
validation (Kell et. al. 2021), a crucial step in the assessment process that
establishes the credibility and robustness of the advice that proceeds
from an assessment model. Model validation communicates confidence
in model outputs to stakeholders not directly involved in model con-
struction, though validation of key derived quantities (current biomass
and fishing mortality, for example) is not possible, as these values
cannot be directly observed. Therefore, diagnostic tests used for model
validation typically focus on evaluating how well the model fits to the
observed data, whether the model meets its statistical assumptions and
seems ecologically plausible, and the robustness of the model to new or
removed data. These tests remain an integral component to the evalu-
ation and provision of management advice, and are often required in
assessment reports.

A large number of studies over the last decade have specifically
investigated the reliability of such tests, particularly in the context of
model mis-specification. Previous work in model diagnostics has eval-
uated only a single source of mis-specification in relatively simple
models (e.g., Carvalho et al. 2017; Piner et al. 2011). Model specification
decisions are related to the functional form of the process, the variables
they depend on (e.g., age or length, Lee et al. 2019) and potential
temporal variability in those processes. Inappropriate specification of a
population dynamics model can occur in the observation (data) and/or
population processes (Maunder and Piner, 2017). These can include
spatial variability, local depletion, movement dynamics, and the preci-
sion and accuracy of data inputs, among others. In contrast to popula-
tion processes, the parameters of the observation model are nearly
always estimated because they address sampling uncertainties that are
largely unknowable without an estimate of the population dynamics.
Mis-specification occurs when a process is assumed to be governed by
the wrong functional form, a parameter is set to the wrong value, or a
process is modelled such that temporal variability is not correctly
accounted for (or even ignored). Mis-specification of the population
processes can lead to biased estimates of the parameters and hence
quantities of management interest while mis-specification of observa-
tion processes can lead to the data not providing the correct information
about the estimated parameters (e.g., Langseth et al., 2016; Maunder
et al., 2023). Moreover, mis-specification in one process can lead to poor
fits to data directly linked to that process and to data indirectly linked
via the population dynamics because all data and model processes are
linked through the population dynamics equations (Lee et al., 2019;
Taylor et al., 2013). The linkage of all data via the population dynamics
equations is the strength of integrated modelling, but this strength also
makes locating mis-specifications challenging. Almost certainly, diag-
nosing and correcting model mis-specification becomes more difficult
when multiple processes are simultaneously mis-specified.

Carvalho et al. (2017) presented a simulation-based exploration into
how popular diagnostic tests respond to standalone misspecifications for
a singular stock. The chief finding of that study was that the examined
diagnostic tests are not equally reliable at detecting model
mis-specification (Carvalho et al., 2017). Residual analyses appeared
best at detecting mis-specification of the observation model, while only
the age-structured production model (ASPM, Maunder and Piner, 2015)
could detect a mis-specification of the system dynamics (Carvalho et al.,
2017). No single diagnostic could realiably identify the process of a
given misspecification for complex models (such as those with many
fisheries and/or data types). The key limitations of that work were that
the simulations 1) did not consider varied life history strategies,
particularly those that result in highly stochastic population trajectories,
2) did not consider varied levels of fishing mortality, which can impact
the degree of contrast in simulated or real datasets and therefore affect
parameter estimability (Magnusson et al., 2007), and 3) model mis-
specifications were explored individually, so synergistic effects of mis-
specifying multiple parameters and/or processes on diagnostic
performance remain unexplored. Finally, the results were not contex-
tualized alongside the relative error in management quantities, so it was
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impossible to compare the presence and degree of bias in the models that
failed diagnostic tests, versus those that did not. These caveats are
especially important given that diagnostic tests are employed across a
diverse range of stocks, particularly those managed by international
organizations (Karp et al., 2022), whose life and exploitation histories
may vary considerably from the initial study, and the fact that most
stock assessors manipulate several model components at once (Maunder
and Punt, 2014), presenting many opportunities for misspecification to
be introduced or eliminated. All of these limitations are revisited in the
present study.

Carvalho et al. (2021) provided a "cookbook" for implementing
modern model diagnostics and model performance evaluation. That
work suggested that a model would be considered adequate for man-
agement advice if the model a) optimizes successfully, b) fits to the data
(e.g., passes a residual analysis), ¢) provides reliable estimates of pop-
ulation trends and scale, d) produces consistent results when provided
new data, or if data are removed (e.g., retrospective analysis), and e) can
make adequate future predictions (e.g., hindcasting). An ideal situation
would allow for the suite of diagnostic tests presented in Carvalho et al.
(2021) to be used to select among candidate models, or to evaluate or
weight a set of candidate models for inclusion in an ensemble (aka
Jardim et al., 2021). Such a one-size-fits-all approach is not yet realized,
particularly since real-world applications of the cookbook have
encountered tradeoffs between passing all or most diagnostics. Imple-
menting the cookbook has also become complicated because some di-
agnostics do not have clear thresholds for passing, or if they do, the
applicability of such thresholds to a diversity of stocks has not been
rigorously tested. For example, since the publication of threshold-like
values for rho (Hurtado-Ferro et al.,, 2012), many management
agencies have made a practice of selecting among management models
based on whether they fall among the cutoffs presented in that paper
(Carvalho et al., 2021; Merino et al., 2022). Recent work has shown that
these cutoffs should not be considered universal (e.g., Breivik et al.,
2023), and proposed alternative approaches to model selection (e.g., the
“Rose” approach, Legault, 2020). Much uncertainty remains about the
appropriateness of strict thresholds for many diagnostic criteria, the
order in which they should be applied, and how to consider models that
perform well on some, but not all diagnostics.

This paper synthesizes the lessons learned from previous simulation
work on diagnostic performance (Carvalho et al., 2017, 2021) and a
series of workshops held with stock assessors (Karp et. al., 2022,
Maunder et al., 2022) to explore and propose “good practices” for the
application of diagnostics to integrated stock assessment models used for
fisheries management. To contribute to the simulation-based literature
on this topic, this paper presents an illustrative (but not exhaustive)
study using a statistical catch-at-age simulation framework to compare
diagnostic performance across a spectrum of correctly specified and
mis-specified assessment models. The results are used to contextualize
how reliably various diagnostic tests perform given the degree and na-
ture of known mis-specifications in parameters and processes and
trade-offs, among model fits, prediction skill, and retrospective bias that
analysts must consider as they evaluate diagnostic performance.

The field of model diagnostics for fisheries assessment is emerging;
the development of state-space modeling applications also warrant new
diagnostic approaches as they become more commonly used in assess-
ments (Li et al., 2024). The discussion includes good practices and an
evaluation of the tradeoffs in diagnostic performance that analysts must
consider when developing and selecting models used for fisheries
management.

2. Methods
2.1. Overview

We use a combinatory simulation approach (Figure S3) to introduce
a variety of misspecifications into the estimation method, and to
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evaluate the estimation performance diagnostic tests. The simulation
procedure first involves the specification of a model of true population
dynamics, the operating model (OM), using the R package ss3sim
(Johnson et al., 2019). The OM is used to generate typical data for a fish
population (time-series of catches in weights from a fishery fleet, an
index of abundance from a survey, and the proportions-at-length and
-age for both the fishery and surveys). All three types of data are
generated from the OM for one hundred years, with a period of early
recruitment deviations extending for 26 years prior to the start of the
model. These generated data are used in a set of estimation methods
(EMs). The EMs fit to the data and estimate the quantities of manage-
ment interest. These estimates are then compared to the true values from
the OM.

2.2. Operating model (OM)

The OM is an age-structured population dynamics model imple-
mented in the Stock Synthesis software (SS version 3.30.16, Methot and
Wetzel, 2013). Key systems and observation processes and their
parameter values are listed in Table 1, and some biological assumptions
(e.g., stock-recruitment steepness, natural mortality, and growth) were
originally estimated for Pacific cod (Gadus macrocephalus, Anderson
et al.,, (2014). A general description of the OM is as follows: it is a
one-area, single-sex model, with time-invariant length-weight,
length-at-age, and maturity-at-age relationships, and natural mortality
(M). Recruitment is assumed to follow a time-invariant Beverton and
Holt (1957) relationship with steepness (expected recruitment at 20 %
of the expected pre-fishery biomass, h) set to 0.65 and
randomly-generated stock-recruitment deviation. The observation pro-
cess involves a single fishing fleet and survey.

The relative probability of capture at length (selectivity) for the
fishery fleet and survey is time-invariant; the length at 50 % selectivity is
52 cm and 51 cm for the fishery and survey, respectively. All ages are
available to the survey and fishery fleets. The initial conditions were
specified so that there was no impact of fishing prior to the first year.

2.3. OM scenarios

Six OM scenarios were designed using combinations of fishing
mortality (F) vectors and various levels of recruitment variability: 0.1,
0.4 or 1.0 Simulations were designed to produce unbiased estimates of
spawning biomass in the absence of misspecification (Fig. 1a). For each
of the six OM scenarios, 16 OM replicates were generated by resampling
the data given a) process error, sampling a vector of recruitment de-
viates (Fig. 1b and S1) from a normal distribution with mean zero and

Table 1

Key systems and observation processes and parameter values.
Parameter Value
Natural mortality, M (yr™) 0.2
Reference age, Apin (Y1) 0
Maximum age, Amqx (y1) 25
Length at Apmin, Lamin ~ (cm) 20.5
Length at Amax, Lamax  (cm) 135.3
Growth rate, k (yr’l) 0.19
CV of length < Lamin 0.10
CV of length < Lgmax 0.08
Length-weight coefficient 6.8e—6
Length-weight exponent 3.101
Length at 50 % maturity, Lpyqse (cm) 38.18
Slope of maturity ogive -0.276
Unfished recruitment (Log Ro) 19.0
Spawner-recruitment steepness (h) 0.65
Catchability (Log q) 0.045

Length selectivity for fishery*
Length selectivity for survey*

50.8, -3, 5.08, 6.99, —999, 999
41.8, —4, 4.97, 6.49, —99, 99

" Values for parameterization of double-normal selectivity curve; see
Figure S2. For details, see Methot and Wetzel (2013).
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the applicable variance for that scenario, and b) observation error for the
catch, survey, and compositional datasets (Fig. 1c, d, and e), described
below. This number of replicates was chosen to compromise between
simulation run times and balance among the randomized experimental
design. Two vectors of annual fishing mortality rates were generated: 1)
a “high” fishing mortality scenario increases to a maximum of twice the
true Fysy and then decreases to 0.9Fysy, and 2) a “low” fishing mortality
scenario is defined by the overall maximum fishing mortality rate equal
to one-fourth of natural mortality (Figure S1). Process error in each OM
replicate arises from variability in annual recruitment deviations
(Fig. 1c) see Reproduction section below) and fishing mortality time
series. Sixteen replicates of the OM were generated for each of the six
possible fishing mortality and recruitment variation combinations (e.g.,
low fishing mortality and recruitment variance of 0.4, Figure S1), for a
total of 96 unique OMs.

2.4. Data generation

Data used in the EMs are the time-series of catches in weight from the
fishing fleet, a time series of relative abundance from the survey, and
length- and age-composition data that provide a measure of the size and
age structure of the survey and the fishery (Figure S2). The catch ob-
servations were assumed to be known without error (coefficient of
variation = 0.01). Each abundance observation was assumed to be
proportional to the available absolute abundance, called “catchability”
in fisheries applications, and was generated from a log-normal distri-
bution with a coefficient of variation of 0.2 (Fig. 1b). Each length- and
age-composition observation was generated from a multinomial distri-
bution with variability described by an effective sample size of 50
(Fig. 1d,e). No additional data weighting was applied to any component.
Below, we describe the model components that were manipulated in our
simulation experiments and how the misspecifications were imple-
mented. The order of the corrections varied with each simulation, such
that all possible unique combinations of corrections were explored.

2.5. Mis-specified processes

2.5.1. Growth

The growth curve in the OM is modeled using the Von Bertalanffy
(1957) growth function, a common relationship used in fisheries
assessment to model the length (cm) of an average fish with respect to its
age (years). The model is parameterized using asymptotic length (the
inferred length at infinite age) and the growth rate (the rate at which the
average fish reaches asymptotic length). Researchers may obtain inac-
curate input values of this parameter via unrepresentative or imprecise
sampling, which fails to capture or correctly measure individuals at
large lengths and/or older ages (Shelton and Mangel, 2012). In the
correctly-specified estimation method all main growth parameters (L1,
L, K, and CVs of length at ages) were freely estimated. For estimation
methods exploring a mis-specification in growth, L1 and K were set to
correct values and L, was set to the mis-specified value, while CVs of
length at ages remained estimable. Estimation methods with L,
mis-specified are denoted by the letter L.

2.5.2. Natural mortality

Generally, it is difficult to obtain empirical estimates of natural
mortality for any fish species (e.g., Hamel, 2014; Punt et al., 2021;
Maunder et al., 2023). In fisheries, several methods infer this value from
the maximum age or length (Then et al., 2015 and Hamel and Cope,
2022) or via a meta-analysis of similar species within a genus (Thorson
et al., 2017). In the OM, natural mortality, M, is time- and age-invariant
and set at 0.2 yr~! (Table 1). Estimation methods with natural mortality
mis-specified at incorrect values are denoted by the letter M.

2.5.3. Reproduction
Steepness of the stock-recruitment relationship, the common mea-
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Fig. 1. A) Relative error (%) in depletion for estimation models with no misspecifications. B) Survey observations from the operating model (points and lines) with
95 % simulation intervals (values are summarized across all OM replicates). C) Annual recruitment in 1000 s of individuals. D) Observed length compositions,
aggregated across time, for the fishery and survey fleets. E) Observed age compositions, aggregated across time, for the fishery and survey fleets. In all plots, colors
correspond to the recruitment variability scenarios. The shaded ribbons in A) and C) correspond to the 95 % simulation interval.

sure of stock resilience, is a highly uncertain yet critical quantity in
fishery stock assessment and management. Estimating steepness inside a
stock assessment model is difficult and estimates have lower precision
and higher bias (Lee et al., 2012). Because of the difficulty of estimating
steepness, this parameter is typically not estimated within assessment
models. Annual reproduction R in the OM is calculated based on a
Beverton-Holt function (Eq. 1) of the system-wide reproductive biomass
in a given year (SB), expected unfished recruitment Ry and biomass SBy
and h, i.e.:

R — 4hR,SB,
7 7 SBo(1 —h) +SB,(5h — 1)

8—0.55§+I.§y;}~2y ~ N(O, o_]Z{) @

Annual recruitment deviates, governed by a recruitment variability
error term (¢%), measure the log-distance from the deterministic curve
given in Eq. 1 and is a source of process error in the OM. The variance in
recruitment deviates was set to either 0.1, 0.4 or 1.0. Recruitment de-
viates are randomly generated once for each OM replicate; steepness and
Ry are not estimated. In the estimation methods, the recruitment de-
viates and Ry are estimated with steepness set to either the correct or a
mis-specified value (Table S1); 62 is set to the correct value from the
applicable OM. Estimation methods with steepness mis-specified are
denoted by the letter H.

2.5.4. Fishery selectivity

In the OM, the fishery and survey have a length-based double normal
selectivity pattern with the initial selectivity at first bin and final
selectivity at last bin parameters set to low numbers to avoid numerical
estimation. This creates an asymptotic selectivity curve, meaning that all
individuals above a certain size have a close to equal probability of being
captured. When the selectivity is correct, estimation methods estimate
the selectivity parameters under the assumption that selectivity is an
asymptotic function of length for the fishery. Estimation methods with

selectivity mis-specified are denoted by the letter X, indicating that the
model sets the ascending limb (e.g., the length at 50 % selectivity) to a
mis-specified value (Table S1).

2.5.5. Determining misspecification thresholds

Instead of arbitrarily choosing mis-specified parameter values, the
two values nearest to those used in the OM that led to a 10 % change in
the final-year depletion (the ratio between final-year biomass and ex-
pected unfished biomass) were solved for. The threshold detection was
performed by fitting a series of estimation methods to the same dataset
generated by the OM across a broad range of fixed values for each
parameter in turn: for example, 19 estimation methods with steepness h
set to 0.05, 0.10, 0.15,...,0.95 and other parameter values estimated.
This was done for each unique combination of recruitment deviation
variance and fishing mortality. The relative error in final-year depletion
was calculated between the estimates from each estimation method and
the values in the OM and used to find the parameter values nearest to the
OM values that corresponded to relative errors of —10 % and 10 %
(Table S1). Preliminary investigations included OM values that resulted
in relative errors of as much as 20 %, but these often involved most
parameters hitting their bounds; +10 % was selected to keep most pa-
rameters within their plausible ranges (and to avoid having to discard
models where estimates were on bounds). This step ensured that the mis-
specifications implemented in the experimental design are known to
impact estimated outputs to the same extent. This led to two mis-
specified parameter values, one above and one below the values used
in the OM, for all parameters except for steepness. In cases where no
values above the OM value met the mis-specification threshold criteria
(e.g. steepness), the value above the OM value that corresponded to the
greatest relative error was selected.
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2.6. Estimation methods and experimental design 2.

The EMs were implemented in Stock Synthesis version 3.30 (Methot
and Wetzel, 2013). The experimental design followed a systematic
procedure (Fig. 2), which enabled the determination of how well model
diagnostics could detect the nature and extent of model mis-
specification. Calculation of model diagnostics across 1536 EMs was
facilitated by using the OpenScienceGrid HTCondor high-throughput
computing network (Pordes et al., 2007; Sfiligoi et al., 2009) and the
ssgrid package in R (Ducharme-Barth, 2022). The experimental work-
flow was as follows:

1. Generate an operating model “replicate” with process errors
(recruitment deviations and fishing mortalities) and observation
errors (generation of survey abundance indices and compositional
data).

Fisheries Research 281 (2025) 107206

Sample a vector of four values for each replicate, each with an even
probability of being either a 0 or 1. This vector determines how each
mis-specification, H, M, X, or L, is implemented. A value of O in-
dicates the mis-specification is below the true value whereas a value
of 1 indicates the mis-specification is above the true value. For
example, the first OM replicate may have the draw [0, 0, 0, 0] in
which all four parameters would be specified below the true value for
all EMs fit to those OM data. The next OM replicate may have a
different vector draw, ensuring that variation caused by differences
in process and observation errors are balanced against the direc-
tionality of mis-specifications.

. Fit EMs for each of the 16 functionally unique combinations corre-

sponding to the mis-specified categories (Table S1) to each replicate.
All unique combinations of mis-specifications were evaluated. For
example the combination “HMXL” denotes a model with all four mis-
specifications, while “MX” denotes a model with only natural
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Fig. 2. Boxplots of RMSE of A) survey indices of abundance, length and age composition data and B) fishery length and age composition data (bottom) for two levels
of fishing mortality (rows). The x-axis represents the number of misspecifications present in the estimation method (0 mis-specifications corresponds to the correct
estimator). Colors correspond to the value of recruitment variability used in the OM.
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mortality (M) and selectivity (X) mis-specified. Note that “MX” is
functionally equivalent to “XM” so only the former is investigated.
EMs using all components correctly specified and using the correctly-
stratified data from the corresponding OM replicate are labeled as
“correct”.

4. Repeat steps for each of sixteen resampled OM replicates. This pro-
tocol ensures the effect of the mis-specifications was not influenced
by the high/low nature of the random vector assigned to each
combination. In total, the study design fit 1536 EMs (16 unique
estimation methods fitted to 96 OM replicates).

2.7. Performance metrics

2.7.1. Relative error

The results were summarized by the deviation between the estimates
of the management quantities and the corresponding OM values. In lieu
of fisheries-specific management quantities (e.g., the ratio of current
biomass to the biomass that corresponds to maximum sustainable yield),
we examined values common across the EMs, namely the time series in
reproductive biomass (here, spawning stock biomass, SSB) and repro-
ductive output (here, recruitment). In addition to the general trend in
these estimated values, we also evaluated results based on the mean SSB
over the last ten years. Together, these statistics aim to capture temporal
variation in estimation performance as well as model performance
during the recent period, which is typically of more interest to managers.
The deviations between EM and OM values by year y, replicate i, com-
bination j and scenario k were summarized using relative (Eq. 2) or
absolute (Eq. 3) relative errors and then averaged across replicates.

5 EM;;; A
SSB," " — SSBM:
MRE(SSB):E — /i (@)
g SSBO™:
I~ EM;;) A
SSB,"* — SSBOM:
MREsp) =Y —————> /i )]
Y Z SSB;?MI

Both measures indicate the magnitude of difference between esti-
mated quantities and the OM values. Relative error (positive or nega-
tive) enables us to investigate whether there are systematic and/or
directional biases induced by the various mis-specifications. Using ab-
solute relative error disregards the direction of the difference, and is
useful for highlighting the scale of the effects of various mis-
specifications. The mean absolute relative (MARE) errors for the ter-
minal ten years of SSB are calculated via:

/ i 3

2.8. Model diagnostics: review and application to simulations

—~EM; ;i )
100 SSB, 100 ssBYM
Zy:Ql 0 Zy:Ql 10

MAREgss, = )

100 SSByOM‘
2 y=01716

We applied model diagnostics following the recommendations of the
cookbook using the associated R package ss3diags (Carvalho et al.,
2021). The following section provides a brief summary of the logic and
method behind each diagnostic, and how it was applied to our
simulations.

2.8.1. Convergence

Models were assumed to have converged if no parameters were
estimated at a bound, the gradient was relatively small (less than 1e-4)
and the Hessian matrix was invertible, as recommended in Carvalho
etal. (2021). The results shown here are comprised of converged models
only.
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2.8.2. Residual analysis

We explored non-random variation in residual patterns using a non-
parametric runs test, wherein the 2-sided p-value is calculated for the
distribution of residuals about a model estimate (typically estimated
indices of survey abundance). If this p value is greater than or equal to
0.05, there is no evidence to reject the hypothesis that the residuals are
randomly residuals and the model is determined to pass the runs test. We
also calculated the root mean square error (RMSE) for the survey and
compositional time series data as a measure of the standard deviation of
the residuals from the model estimates. A small RMSE (< 0.3) indicates a
reasonably precise model fit to relative abundance indices (Winker
et al., 2018).

2.8.3. Ry likelihood profile

We constructed likelihood profiles on unfished recruitment (R)
using the profile() function from R package r4ss (Taylor et al., 2021).
This approach sequentially fixes unfished recruitment at a pre-specified
value and re-runs the estimation method with whatever other parameter
settings were specified in the original experiment. This was repeated for
all of the unique OM replicate-estimation method combinations
described previously. The range of R values used were chosen for each
OM replicate, to encompass one unit of Ry (in log space) both above and
below the MLE for the correct estimation method associated with that
replicate, in increments of 0.2.

This profile enables evaluation of the stability of the parameter es-
timate, which is influential in terms of model scale, and the relative
influence of individual data sources upon the parameter. A poorly-
estimated parameter is revealed by a profile that is flat (delta likeli-
hood values below ~1.96 across a large parameter range), and/or may
be characterized by data conflicts (where one or more data sources
achieves a minimum likelihood at a much higher or lower parameter
value than the others, or than the total likelihood. Wang et al. (2017)
proposed the “psi” statistic, which quantifies whether the maximum
likelihood estimate of Ry for a specific data component falls within the
95 % confidence interval for the total likelihood. This method has the
potential to measure of the information content of a given likelihood
component (lower values indicate less information, and are a rough
measure of the degree of mismatch between the total likelihood for a
given EM and the profile obtained for that data component). We did not
implement the psi statistic in this study, as it is not widely used and the
comparison of psi statistics from models with dissimilar parameteriza-
tions was not clear. Indications of poor parameter estimation or data
conflict suggest that either model assumptions or data inputs need be re-
evaluated.

2.8.4. Retrospective analysis

A retrospective analysis is a useful approach for addressing the
consistency of terminal-year estimates. The analysis sequentially
removes a year of data (a peel) at a time and reruns the model. The
typical interpretation of this analysis is that serial over- or under-
estimation of quantities such as SSB or fishing mortality are indicative
of unidentified process error, and require a revisitation of model as-
sumptions. The severity of over- or under-estimation is normally eval-
uated by eye and by the calculation of rho (Eq. 4) which is then
compared to pre-determined thresholds (Hurtado-Ferro et al., 2015). We
conducted retrospective analyses using the retro function from r4ss and
mean rho over five, one-year peels was calculated as:

1 (Xr— X/’I-'tt
rho = HZt:l (T) (4)

where X is the SSB or fishing mortality, X is the corresponding estimate
from the reference model (model fitted to the full dataset), T is the
terminal year of the model, and h is the number of peels (Hurtado-Ferro
et al., 2015). Models with rho values less than —0.15 or greater than
0.20 would fail the retrospective diagnostic based on the rule of thumb
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as proposed by Hurtado-Ferro et al. (2015).

2.8.5. Age-structured production model

Maunder and Piner (2015) proposed an age-structured production
model (ASPM) as a model diagnostic for complex age-structured inte-
grated assessments. Briefly, this approach fixes selectivity, assumes
average recruitment, and disregards compositional data. The tool can be
used to determine whether the stock dynamics are readily explained by
the production function and catches alone, which would suggest that the
survey time series provides information regarding absolute abundance
(Minte-Vera et al.,, 2017). A discrepancy between the ASPM and
age-structured stock trajectory might indicate mis-specification of the
components which make up the production function.

The ASPM performs best in situations characterized by high and low
periods of fishing effort (also known as “contrast™) and where observa-
tions (i.e., catch, life history, and index) are reasonable representations
of the actual states. It has been shown to be sensitive to mis-
specification of key systems-modeled processes that control the shape of
the production function (Carvalho et al., 2017). However, failure of the
ASPM is not necessarily indicative of model mis-specification and could
be due to several factors. The stock could be recruitment driven (e.g.,
short-lived fishes with high recruitment variability) and/or lightly
exploited such that the fishing signal is not strong enough to drive
change in the stock.

A deterministic recruitment model is a similar means to diagnose a
model’s ability to capture the production function. Deterministic
recruitment model is a simpler alternative to the ASPM as it only re-
quires recruitment to be constrained to what would be predicted by the
stock-recruit relationship without deviation (Merino et al., 2022). For
both the ASPM and deterministic recruitment model, we calculated the
relative difference in model estimates of Ry, MSY, and the mean absolute
difference (MARE) in predicted SSB between the full model and the
ASPM/deterministic recruitment model; these metrics are taken to
measure how well-defined and influential the production function is
upon stock dynamics, given the mis-specifications investigated in our
study.

2.8.6. Hindcast cross-validation (MASE)

The accuracy and precision of a model’s prediction skill can be
measured with hindcast cross-validation, which involves comparing
observations to predicted future values (Kell et al., 2022). It is similar to
retrospective analysis in that it involves peeling one year of data away at
a time and re-fitting the model but involves an extra step of predicting
the removed observation. The predicted values are cross-validated by
comparing the model’s one-step-ahead forecast, or expected value, of
the observation at time t %) versus a “naive” forecasted value equal to
the last observation (y;_1) for a given number of hindcasting time steps
(h). The prediction skill can be calculated using the mean absolute scaled
error (MASE) between models, where values less than one indicate that
the model did better than the naive approach:

T
%Et—T—hﬂ

L
%Zt:T—thl e = yeal

.& Y
MASE = (5)

MASE was calculated for relative abundance indices and composi-
tion data using ten hindcast steps.

2.8.7. Recruitment trend

The principle of the goodness-of-fit tests (runs and RMSE) described
above is that residual patterns in model estimates can be indicative of
model mis-specification and un-modeled process. The estimation of
recruitment deviates is a principle way that process error is incorporated
into stock assessments, and residual trends therein may similarly indi-
cate a mis-specification (uncaptured process error). Following Merino
et al. (2022) the existence of a significant linear trend in the recruitment
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deviates was quantified, and monotonic trends, and non-monotonic
(any) trends in recruitment deviates were tested. Additionally, it was
calculated if first-order autocorrelation in the deviates was different
from O and runs tests (using a threshold of p > 0.05 to pass) were applied
to test for non-randomness.

3. Results
3.1. Convergence

Overall, 82 % (1264/1536) of the models converged; results are only
presented for converged models (

Table 2. All correctly-specified EMs converged, and convergence
frequency across all scenarios declined as the number of mis-
specifications increased to a minimum of 79 % for four mis-
specifications. Proportionally fewer mis-specified models converged
when fishing mortality was high, regardless of recruitment variability.
These were typically disqualified due to gradients above the threshold.
Models with low recruitment variability and low fishing mortality
converged the most frequently overall, though convergence rates
declined with increasing mis-specifications.

3.2. Relative error

The magnitude of error in estimated SSB and depletion varied among
OM replicates, with systematic changes in error given by the fishing
mortality vector and level of recruitment variability. The MRE of ter-
minal SSB was highest with greater model-misspecification and greater
variation in recruitment for both exploitation (F) scenarios, though the
absolute value of error was greater under the high F scenario. This same
pattern was present for MRE of estimated depletion, though the overall
scale of error was smaller (ranging from —50-50 %, Fig. 1a).

3.3. Residual analysis

The residual analyses examined fits to the survey abundance time-
series, as well as the calculation of the root-mean-square error (RMSE)
for the survey abundance time-series, length, and age composition data.
RMSE for fishery and survey compositional data increased systemati-
cally with an increasing number of mis-specifications, while the average
RMSE for the survey index of abundance did not dramatically increase
even in the presence of 3 or 4 mis-specifications (Fig. 2a). Scenarios with
high fishing mortality and/or low recruitment variability exhibited the
largest increases in RMSE for composition data as the number of mis-
specifications increased. Importantly, no models resulted in RMSE
values above the 30 % threshold indicated in Winker et al. (2018).

The majority (97 %) of correct models passed the runs test; while
pass rates declined with increasing numbers of misspecification, the
overall failure rate only ranged from 4 % to 10 % (Fig. 3 and Table 2).
Visual inspection of models that failed the runs test showed slightly
worse fits to the data for the highly mis-specified models compared to
the correct model (Fig. 3). There were similarities between the perfor-
mance of the runs test and RMSE. Firstly, most diagnostic responsiveness
(e.g., increased failure rates with increased degree of misspecification)
emerged for the compositional data while p-values for the survey index
of abundance were less responsive (Fig. 3). There also appeared to be
greater sensitivity (more failures) to increased mis-specification when
fishing mortality was high and/or recruitment variability was low, as
was seen for RMSE.

3.4. Ry likelihood profile

Of the 254,064 unique models run as part of the profiling exercise,
99 % converged and were included in this analysis. Fig. 4 presents the
likelihood profiles for the total objective function, survey data and
length and age composition data, scaled so that the x-axis represents the
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Table 2
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Percentage of runs (values) that passed each diagnostic across the F (row groups) and recruitment scenarios (column groups) for various numbers of misspecifications
(columns). The values in the cells and the cell color denote the percentage of replicates that passed the tests, ranging from 0 % (dark red) to 100 % (dark green). Not all
diagnostics have published or widely used quantitative thresholds, so pass rates were not obtainable for every diagnostic examined.

sigma R=10.1 sigma R = 0.4 sigma R=1.0
Diagnostic 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
% Converged 100 94 96 98 100 100 97 96 97 100 100 98 97 98 100
Mohn's Rho (SSB) 100 97 97 95 94 94 95 95 97 94 75 76 82 86 81
Mohn's Rho (F) 94 97 95 94 94 94 95 97 95 100 75 76 81 86 81
Hindcast Fishery Age 56 55 54 51 50 69 68 66 63 62 75 73 74 78 81
Hindcast Survey Age 56 53 45 30 12 62 61 51 40 38 62 59 58 54 50
Hindcast Survey Bio 75 58 57 51 50 50 58 49 52 44 75 73 68 70 75 -
Hindcast Fishery Len 88 77 76 78 81 62 68 72 74 75 62 65 66 67 69 i
Hindcast Survey Len 62 53 42 38 38 62 56 51 50 50 75 70 66 62 62
Runs Test Fishery Age 100 93 95 95 94 94 95 93 94 94 94 92 89 89 81
Runs Test Fishery Len 100 100 99 98 100 100 98 97 100 100 100 98 96 94 94
Runs Test Survey Age 81 80 79 78 69 100 100 96 89 75 100 97 90 87 81
Runs Test Survey Bio 100 98 93 89 94 100 100 100 100 94 94 94 94 94 94
Runs Test Survey Len 94 95 96 95 94 100 95 95 95 94 100 ool 91 89 75
% Converged 100 77 68 55 56 100 81 66 64 69 100 64 65 53 50
Mohn's Rho (SSB) 100 98 98 97 100 100 100 100 100 100 100 98 98 100 100
Mohn's Rho (F) 100 98 98 97 100 100 100 100 100 100 94 95 98 100 100
Hindcast Fishery Age 62 59 63 51 44 62 62 65 61 64 81 78 74 76 88
Hindcast Survey Age 56 55 42 37 22 56 56 41 41 27 62 56 47 47 50
Hindcast Survey Bio 69 67 68 74 67 62 60 63 51 45 50 56 55 50 38 =
Hindcast Fishery Len 69 65 60 63 67 56 60 57 54 64 69 66 60 62 62 E
Hindcast Survey Len 50 47 45 43 44 69 62 65 61 55 75 73 69 50 25 -
Runs Test Fishery Age 100 98 94 94 100 94 98 98 100 91 88 93 95 97 100
Runs Test Fishery Len 94 94 95 91 89 100 98 98 100 100 100 100 98 97 100
Runs Test Survey Age 94 92 85 86 89 100 92 81 73 55 100 90 84 76 62
Runs Test Survey Bio 100 98 100 100 100 100 100 100 100 100 100 100 98 97 100
Runs Test Survey Len 94 96 94 91 78 100 96 94 95 100 100 93 90 79 62

difference between the fixed Rg for the model at hand and the value for
Ro from the OM. The MLE for R, indicated by the total likelihood, was
well-defined for correct EMs. For EMs with zero or one mis-
specifications, the total likelihood agreed with the survey and length-
composition data, while the age composition data indicated Rq values
slightly lower than the other data sources. The likelihood profiles
differed systematically from those obtained using the correct EM upon
the introduction of two or more mis-specifications. The qualitative and
relative behavior of the profiles was strikingly consistent within EMs:
the survey data were always the broadest, and the length and age
composition profiles were consistently narrower than the survey and
shifted slightly below the total MLEs. Profiles for the age composition
data had lower specificity overall (many statistically indistinguishable
models above and below the MLE). Conflict between the best R, values
of the survey and length composition data versus the age composition
data was present in all EMs.

3.5. Retrospective analysis

The thresholds proposed by Hurtado-Ferro et al. (2015) had little
ability to detect model mis-specification in our framework. Overall, 5 %
of the EMs had rho values for the spawning biomass and fishing mor-
tality time series outside of the thresholds [-0.15, 0.2] (Fig. 5). For

correct EMs at all levels of fishing mortality and recruitment variability,
rho values for both SSB and fishing mortality were centered around
0 with very few models falling outside the thresholds, though higher rho
values occurred with the highest level of recruitment variability
explored. For the low F scenarios, rho values for SSB and fishing mor-
tality did diverge from zero to a greater degree than the high F scenarios.
The change in rho was most pronounced for scenarios with low F and
high recruitment variability. EMs with high fishing mortality did not
show clear trends in the magnitude or direction of rho values with
increasing levels of misspecification nor across recruitment variability
levels.

3.6. Age-structured production model

The performance of the ASPM varied by scenario. Generally, the
ASPM estimated SSB trajectories that were higher in scale and smoother
through time when fishing mortality was low (Fig. 6). The ASPM was
better able to capture the scale and dynamics of the SSB trajectory under
the high F scenario, with minimal difference from the base model under
high F and low recruitment variability (Fig. 6). The ASPM and model
with deterministic recruitment consistently resulted in lower MSY.

Both the ASPM and deterministic recruitment results showed virtu-
ally identical patterns in terms of relative error in R from the full model,
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Fig. 3. Box plots of p-values from Runs test for A) survey indices of abundance, length and age composition data and B) fishery length and age composition data
(bottom) for two levels of fishing mortality (rows). The traditional interpretation of this test is that p-values greater than 0.05 (dashed line) indicate no evidence to
reject the null hypothesis that residuals are normally distributed (thus values above the line “pass” the test). The x-axis represents the number of misspecifications
present in the estimation method (0 mis-specifications corresponds to the correct estimator). Colors correspond to the value of recruitment variability used in the OM.

and the MARE of SSB (Fig. 7). Both the ASPM and deterministic
recruitment were able to estimate Ry well. However, the MARE of SSB
was consistently over estimated. There were differences between the
trends of MARE of SSB across the number of mis-specifications between
the ASPM and deterministic recruitment model. For the ASPM models,
MARE of SSB showed a general increase as the number of mis-
specifications increased across all levels of fishing mortality and
recruitment variability. For the deterministic recruitment models at all
recruitment variability levels, MARE of SSB decreased as the number of
mis-specifications increased for models with low fishing mortality but
increased as the number of mis-specifications increased for models with
high fishing mortality Both ASPM and deterministic recruitment models
with high recruitment variability had the smallest difference in MSY
from the full model and models with low recruitment variability had the
greatest difference in MSY from the full model.

3.7. Hindcast cross validation (MASE)

The MASE statistic indicated that models had better predictive per-
formance than the null (e.g. MASE < 1) for all levels of misspecification,
with increasing predictive performance with fewer misspecifications
(Fig. 8). However, the proportion of models that passed this diagnostic
only ranged from 54 % (fully misspecified) to 66 % (correct model).
There were not strong patterns in MASE statistics across data types nor F
levels, though it seemed that the lowest passing rates occurred under
lower levels of recruitment variability (54 % at the lowest, to 68 %
under the highest values of sigmaR). Of the models that had worse
predictive power than a null model (MASE > 1), the failed statistic most
commonly occurred for age-composition data (Fig. 8). Overall, the
hindcast statistic had the highest failure rates of all diagnostics regard-
less of exploitation level or recruitment variability (Table 2).
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Fig. 4. Likelihood profiles for log(R0) shown for a subset of estimation methods with zero through four misspecifications. Each panel corresponds to either the total
likelihood (top), or survey, length or age composition components (bottom three panels). The x-axis has been re-centered to the corresponding MLE from the correct
(not mis-specified parameters) estimation method (vertical blue line); profiles have been filtered to only display model runs with changes in the scaled negative log-
likelihood less than 10 units. Green tiles indicate models closer to the minimum negative log-likelihood; red values are higher.

3.8. Recruitment trend

Significant linear trends in recruitment deviates usually indicated
the presence of at least one model mis-specification at least for low
fishing mortality scenarios, and increasing the number of mis-
specifications tended to increase the proportion of model runs that
showed significant linear trends in recruitment deviates (Fig. 9). How-
ever, a substantial proportion of mis-specified models did not indicate
significant trends in recruitment deviates (false negatives), and some
correctly specified models showed significant linear trends in the
recruitment deviates (false positives). Additionally, rates of false posi-
tives and false negatives were not consistent across OM replicates.
Testing for the presence of monotonic trends or any (non-monotonic)
trend showed similar results as the test for linear trends in recruitment
deviates. Runs tests of the recruitment deviates and testing for any non-
zero first order autocorrelation indicated a poor ability to discriminate
between correctly specified models and mis-specified models under the
low fishing mortality scenario.

4. Discussion
4.1. Limitations

4.1.1. Data richness

Several characteristics of our study design limit the interpretation of
our results and form the basis for future research regarding the utility
and robustness of diagnostic tools. The simulations explored here are
centered on a data-rich, age-structured assessment model, with a longer
time series of data (particularly compositional data) than is likely
available even for the most heavily-monitored stocks (Maunder et al.,
2014; Ono et al., 2015). The experiment presented here was designed to
eliminate data concerns so that the performance of diagnostics tests
could be evaluated in a “best-case scenario”; we did not wish to
construct candidate EMs that were so mis-specified that they would be
dismissed out of hand by any competent analyst (e.g., an extinct popu-
lation, survey estimates completely out of range). A potential risk of our
simulation design is that these data are so informative and abundant that
models are able to approximate the correct solution (i.e., fit the survey
time series to a satisfactory degree) even when parameters are
mis-specified. This could explain the apparent lack of power that the
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diagnostics appear to have for discerning between correctly specified
and mis-specified models, particularly for the survey time-series. Model
diagnostics that did not perform well in our study are unlikely to
perform well for similar stocks with fewer or worse data. An additional
research avenue related to this topic is the diagnostic use of changes to
the effective sample size for compositional data under a
Dirichlet-multinomial (D-M) distribution (Thorson et al., 2023). How-
ever, a minority of global models have reliable compositional data to
begin with, and a minority of those use the D-M distribution in esti-
mation routines. This highlights the primacy of developing and testing
diagnostic tools that are applicable to a range of model types.

A simulation that explores how diagnostic performance varies with a
reduction in time series length of frequency, smaller compositional
sample sizes, or larger observational errors would test this hypothesis.
Relatedly, we did not introduce temporal variability into our simulation
framework, which may have dampened our ability to detect a retro-
spective trend. Model-specific confidence intervals can be calculated for
rho (Miller and Legault, 2017), though this approach has not been
adapted widely. We suggest further research into the topic of retro-
spective thresholds; recent work has indicated that retrospective per-
formance indeed varies across model complexity and the amount of data
provided to the model (Breivik et al., 2023) or the breadth of model
configurations considered in an ensemble (Brooks and Brodziak, 2024).
Our results suggest that even in the absence of temporal variability, the
combination of low exploitation levels, high recruitment variability
and/or high levels of model misspecification can produce patterning in
rho values, so it is not inconceivable that thresholds specific to
recruitment and exploitation histories could be developed.

4.1.2. Data quality

Most assessments, particularly those that rely on fisheries-dependent
data sources, will utilize data that are biased to an unknown degree. This
study assumes that all data used in the EMs are representative and un-
biased relative to the dynamics of the OM, again a deliberate decision to
represent a ‘best-case scenario’. In addition to the data availability issues
discussed above, the impact of data quality on diagnostic performance
remains an open question for future research (Punt, 2023, this issue;
Liljestrand et al., 2024). Processes such as hyperstability, effort creep, or
the under-reporting of catch can result in non-proportional indices of
relative abundance. The presence of these dynamics could manifest
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Fig. 5. Boxplots of rho from 5-year retrospectives in SSB (left) and fishing mortality (right) for two levels of fishing mortality (rows). The x-axis represents the
number of mis-specified parameters in the estimation method (0 misspecifications corresponds to the correct estimator). Colors correspond to the value of
recruitment variability used in the OM. Dashed lines indicate the thresholds suggested by Hurtado-Ferro et al. (2015) for poor rho values.

through the residual runs test, poor ASPM, hindcast cross-validation, or
by inducing a trend in the recruitment deviates. It is possible that some
diagnostics are more useful for identifying data mis-specifications rather
than parameter or model mis-specifications. An urgent area of future
research is to investigate the performance of diagnostic tests in models
with well-specified processes and parameters but poorly-representative
data.

4.1.3. Recruitment driven dynamics and model parsimony

This study is also limited because the operating model appears to be
recruitment-driven, meaning that the biomass dynamics suggested by
the age-structured model are distinct from what the underlying pro-
duction function would suggest, so the recruitment time series (and
deviations thereof) explain the stock’s trajectory. (In contrast, a “pro-
duction driven” stock would be one where the time series of biomass is
well-explained by the mean stock-recruitment relationship and histori-
cal fishery removals). This is likely because of the “data-richness” of the
simulation, in that the composition data (from which recruitment esti-
mates are derived) was abundant and continuous throughout the time
series. The varied performance of the ASPM diagnostic across scenarios
is consistent with findings that such tools perform best when applied to
production, not recruitment-driven stocks (Minte-Vera et al., 2017).
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This relates to the above discussion of model and data complexity, and is
important considering that many global stocks do not consider age
structure at all for management purposes. We emphasize that several
tools, particularly goodness-of-fit tests and explorations of model
convergence are applicable across a range of model types.

All operating models tested here used one of two vectors for fishing
mortality. Some diagnostics, like MASE, might simply echo the stock’s
responsiveness to fishing pressure, which in this case will be more
pronounced in trajectories that have lower SSB because of reduced
recruitment. As stated in Punt et al. (2023, this issue), process error can
occur in multiple model processes, including selectivity. This study does
not investigate the impacts of time-varying selectivity curves, or
allowing the estimation of the descending limb of the double normal
curve, which could enable the model to compensate for additional mis-
specified processes. However, given that many mis-specified models
were able to pass various diagnostic tests, we anticipate that introducing
further flexibility into the model structures would reinforce the ability
for mis-specified models to satisfy diagnostic criteria. An investigation
into the relative performance of these production-related diagnostics for
stocks with and without well-informed production functions would be
informative.
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Fig. 6. Estimated spawning stock biomass trajectories for correctly specified ASPM EMs (green lines) and correctly specified age-structured integrated model

(yellow lines).

4.2. How do individual diagnostics perform?

4.2.1. Fits to the data and parameter estimation

Model convergence was the strongest indicator of the number of
misspecifications, which is consistent with our recommendation (and
that of the Cookbook) that it be the first diagnostic test performed, and
alternative structures explored if the test is failed. Out of all diagnostics
other than model convergence, the RMSE test most reliably returned
higher (poorer) values with an increasing amount of misspecifications.
This is reassuring evidence that goodness-of-fit tests can be a useful first
step in evaluating a model. In contrast, the runs test using the traditional
cutoff of 0.05 was one of the least reliable diagnostics. A majority of
highly mis-specified models passed the runs test at this threshold, cor-
responding to the fact that all models seemed to visually fit the survey
index. Given this result, it is possible that the statistical cutoff for passing
the test is not appropriate. Our results suggest that correct models have,

on average, p-values of 0.5 or higher — though the range was uninfor-
matively large (<0.05-0.95). It is also illustrative that diagnostic per-
formance was most robust (i.e., failure rates higher with increased mis-
specification) in scenarios with high fishing mortality and/or low
recruitment variability. This corresponds to previous studies that have
indicated that model contrast is often required to inform stock dynamics
(Magnusson and Hilborn, 2007), and suggests caution for analysts
applying goodness-of-fit tests to lightly exploited stocks. Similarly, both
residual diagnostics exhibited greater variation when applied to
compositional data, while survey time-series scores remained flat. This
result is likely related to the production question described above, and
underscores the importance of running diagnostics on multiple data
sources (when available). Analysts should consider whether visually
satisfactory fits to survey abundance time series are sufficient for model
acceptance, and be warned that there are circumstances (high obser-
vation errors, abundance of other data sources) that can lead a
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Fig. 7. Boxplots of the relative difference in a deterministic recruitment model and full model of Ry, MSY, and MARE of SSB for two levels of fishing mortality (rows).
The x-axis represents the number of mis-specifications present in the estimation method (0 misspecifications corresponds to the correct estimator). Colors correspond

to the value of recruitment variability used in the OM.

mis-specified model to fit the survey time series well.

Likelihood profiles appear to remain internally consistent, with the
relative degree of conflict stable across mis-specified models (e.g. survey
abundance data were always less informative than fishery and survey
length composition data, with broader profiles more distinct from the
total likelihood). This indicates that likelihood profiles can remain a
useful tool for determining data conflicts and information content
regardless of the degree of misspecification in an assessment model, but
would not alert the analyst to the presence of misspecification.
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4.2.2. Model Consistency

The present study complements recent research to offer new insights
into the process of identifying and addressing retrospective patterns in
fish stock assessments. Legault (2020) compared the rho-adjustment to
the “Rose” approach, a time-intensive process whereby a retrospective
pattern is eliminated across an ensemble of models, allowing the analyst
to change multiple processes or data inputs. That evaluation determined
that both approaches are viable for removing retrospective patterns,
though neither identifies the cause(s), and the choice between ap-
proaches depends on the time and expertise available. rho calculated
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Fig. 8. Boxplots of hindcast cross-validation MASE for A) survey indices of abundance, length and age composition data and B) fishery length and age composition
data (bottom) for two levels of fishing mortality (rows). The x-axis represents the number of mis-specifications present in the estimation method (0 misspecifications
corresponds to the correct estimator). Colors correspond to the value of recruitment variability used in the OM. MASE scores below 1 (dashed line) have greater

predictive power than a null model.

from retrospective analyses in our study was a surprisingly poor corre-
late to model misspecification (given the traditional cutoff range of
—0.15-0.2 for SSB, Hurtado-Ferro et al., 2015), though retrospective
performance did degrade with increasing mis-specifications. This does
not indicate that the retrospective diagnostic is a poor tool, rather that
the presence of a retrospective pattern (and associated failure of the rho
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cutoff) is not a guaranteed outcome when the parameters we examined
are mis-specified. This finding is similar to those of Breivik et al. (2023)
who indicated that the acceptable range for the traditional rho diag-
nostic varies with the amount of data and type of model used. The au-
thors proposed an alternative “post-sample rho significance test” with
the aim to reduce subjectivity in decisions about significant
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Recruitment diagnostic: linear trend
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models run.

retrospective patterns in state-space assessment models. The new sta-
tistic, which conditions the distribution of rho values on the data prior to
the retrospective period, enables the analyst to evaluate whether the
retrospective pattern is truly anomalous or reasonable given the model
used. This presents a promising avenue for future research, though
readers are reminded that retrospective patterns can be reduced while
reference points remain biased (Szuwalski et al., 2018). We do not
propose alternative, universal ranges for the original rho statistic.

4.2.3. Prediction skill

For most data components, MASE scores were related to the number
of model misspecifications, suggesting that the hindcast diagnostic can
evaluate model performance and can potentially detect model mis-
specification. However, the MASE criterion used here to quantify pre-
diction skill was not sensitive enough to detect mis-specification across
all models; this is consistent with earlier work indicating that good
MASE performance for hindcasting is likely to occur if the stock is
production driven and the production function is estimable from the
data (Minte-Vera et al., 2021), which is not the case in our example. It is
notable that the MASE statistic was the most commonly failed across all
levels of F and recruitment variability (Table 2), and that the high F —
low recruitment scenario did not exhibit improved performance of this
diagnostic as it did for other tests. Given that MASE tests explicitly for
prediction skill, it’s understandable that scores less than 1 are harder to
obtain when the precision of the data is high and the biomass trend is
relatively flat; this is the reason why users may elect to set a precision
threshold for the naive prediction error below which the statistic is no
longer penalized, an area that requires further research.

The ASPM and deterministic recruitment model diagnostics appear
versatile and promising. Carvalho et al. (2017) showed via simulation
analysis that ASPM was the only diagnostic capable of detecting
mis-specification of the key systems-modeled processes that control the
shape of the production function. Here, the ASPM and the deterministic
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recruitment model were not able to provide evidence for a production
function, essentially confirming this example as a recruitment-driven
model. The deterministic recruitment model returned virtually the
same results as the ASPM, so either diagnostic could be used as an
alternative to measure the effects of fishing. Our findings suggest that
the ASPM performs best under scenarios with low-to-medium recruit-
ment variability and when fishing mortality is high, such that contrast is
induced in the time series — an emergent theme among both estimation
and diagnostic performance. These findings, as well as those for the
MASE diagnostic, underscore the importance of data contrast and,
relatedly, the presence of a production function in determining diag-
nostic performance, which was

Estimated recruitments are one of the primary ways process error is
modeled in stock assessments, so examining the recruitment deviates for
trend and non-randomness makes intuitive sense as a potential model
diagnostic (Merino et al., 2022). Merino et al. (2022) explored using a
test for statistical significance of a linear trend in the recruitment re-
siduals as a potential diagnostic for identifying model mis-specification
within an ensemble of models. Our study is the first time (to our
knowledge) that this diagnostic has been formally evaluated within a
simulation framework. As currently formulated, this diagnostic may
have some discriminatory power in identifying mis-specified models
from correctly specified models. While it was more likely that models
with significant linear trend in the residuals were mis-specified, there
was still a chance (~7 %) that the model was correctly specified
(false-positive). This is close to the assumed false positive rate of the
statistical test (p<=0.05). However, there remains a large false negative
rate for mis-specified models. Further simulation testing is needed to
refine either the statistical thresholds used to identify significant resid-
ual trend to see if that improves discriminatory power or the types of
mis-specifications this test may be used to identify.
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4.3. Good practices in applying model diagnostics

4.3.1. Updating the “Cookbook”

The original cookbook (Carvalho et al., 2021) proposed a linear
workflow of diagnostic tools, whereby a model is required to “pass” a set
of diagnostics in a given order. That workflow inherently prioritized
certain tests such as residual diagnostics and the runs test before like-
lihood profiling or retrospective analyses. The spirit of that approach —
that a model should converge and reasonably fit the data to be consid-
ered a candidate - is unchanged, and we point readers to both the
original workflow as well as the ordered list provided in Table 2 when
applying diagnostic tests. Our findings further contextualize how mod-
elers should use the outcomes of diagnostics: firstly, it is evident that the
degree of recruitment variability and exploitation history together
modulate diagnostic performance (likely through the induction of
contrast in the data), so quantitative thresholds for most diagnostics, if
desired, would need to be developed with those factors in mind. Sec-
ondly, diagnostics of prediction skill (namely the MASE statistic) appear
less insensitive to model misspecification overall, though with more
promising performance for age-composition data than for survey
biomass. Further research into the best way to test for and improve
prediction skill, particularly the use of thresholds or minima for such
diagnostics, is warranted. Finally, our results show that it is possible to
develop plausible, realistic stock assessments that fit data well and still
perform poorly on some model diagnostics. We suggest that the com-
munity should strive for a balance among the considerations of model
realism and diagnostic performance.

4.3.2. Tradeoffs in model development

The primary challenge in developing diagnostic workflows arises
because stock assessors must evaluate a small subset of total possible
models representing a population, far fewer than the hundreds of
thousands of models run for this simulation analysis. In our study, the
RMSE, ASPM and likelihood profile diagnostics were the most internally
consistent and responsive to the presence of misspecification. Yet an
assessment scientist would only see results for, at most, a dozen models,
and have no knowledge of how divergent the selected model is from
reality. Furthermore, the information gleaned from diagnostics such as
the RMSE is not much more useful than a simple visual inspection of the
model fits; it is likely that models with poor RMSE scores would have
been discarded in the first place based on their poor fits to the survey
data. This means that the scientist’s holistic evaluation of the model’s
ecological plausibility remains necessary.

The tentative “good practices” and associated precautions presented
in Table 3 warrant a comment about the general push towards auto-
mation of assessment procedures. We assert that stock assessment
modeling requires the experience and the subjective evaluation of
competing priorities, which are not replaceable by a set of diagnostic
algorithms — particularly when the true recruitment trend might be
unknown, as discussed above. Tools such as machine learning (partic-
ularly for image classification), boosted regression trees, and artificial
intelligence present a promising avenue that may improve data collec-
tion (Zhang et al., 2022) and detect patterns in population dynamics
(Mendoza et al., 2012; Memarzadeh et al., 2019). Furthermore, the
nature of assessment science requires analysts to place value on some-
times competing priorities, whether in a formal framework such as a
management strategy evaluation (Punt et al., 2016), or in the process of
data or model weighting (Francis, 2017). These subjective tasks invite
the consideration of socio-economic topics and the participation of
fishery stakeholders, which could lead to model configurations being
selected despite poor performance on one or more diagnostic criteria.
For this reason, as well as the growing body of evidence that standard-
ized cutoffs for diagnostic performance are not ideal for the selection of
management models, we discourage the use of automatic pass/fail
criteria for most diagnostic tests. Instead, analysts are encouraged to
couple the results of diagnostic tests with their expert evaluation of the
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Table 3

Tentative good practices and precautions for applying diagnostic tests to as-
sessments. This table is meant to be taken as an ordered guide; should a model
fail the diagnostic “good practice” for a given row, we suggest exploration of

alternative model structure(s).

Diagnostic

Good Practice

Precaution

Plausibility

Convergence and
Check for Global
Solution

Goodness of fit
Residual
Diagnostics

Model
Consistency
RO likelihood
profile

Age structured
production model

Retrospective
analysis

Prediction Skill

Recruitment trend

Contextualize model in
ecological, life-history and
fishery dynamics (realism)

Final gradient below pre-
specified minimum (e.g.,
1E—4); Hessian matrix is
invertible;

No parameters are on
bound

Consider Bayesian
approaches when
applicable

Visual inspection of
residuals and model fits

Profile over key model
parameters (Rg, M and
steepness if applicable);
Check for minima outside
of 95 % CI of base model;
Evaluate data conflicts and
likelihood surface

Explore when there are
multiple data sources,
especially for compositions

Visually inspect
retrospective patterns;
Rose approach, resource
permitting (Legault, 2020);
Consider post-sample rho (
Breivik et al. 2023);
Consider model-specific
confidence intervals for rho
(Miller and Legault, (2017)

Consider leave-one-out
cross validation, especially
when time series are sparse
or few

Visually inspect
recruitment deviates/
calculate quantitative
metrics for trend and non-
randomness in the deviates
(Merino et al., 2022)

Risk of model over-
complication (e.g., too many
or improper time-varying
processes, Szuwalski, 2022;
Szuwalski, 2017; Fisch, 2023,
)

Particularly difficult when
working with multi-species
and multi-area assessments
Avoid massaging data or
exhaustive chain lengths
(jitter, MCMC) to force
convergence; set terms of
analyses ahead-of-time

The p-value of 0.05 (runs test)
might be too low; RMSE cutoff
of 30 % might be too high
Tests appear more sensitive
when applied to
compositional data than
indices

Beware small time series
Consider One-Step-Ahead
residuals for compositional
data (Trijoulet et. al. 2023)

Consider how prior
likelihoods are included;
Model specification and data
weighting can impact
behavior (Wang et al., 2017)

Recruitment-driven models
(e.g. short-lived species, low
recruitment variability, and/
or low exploitation history)
might have poorly defined
production functions;
Biomass scale might be poorly
informed when fishing
mortality is low (Minte-Vera
et al. 2022)

Rho within fixed threshold
cannot rule out parameter
misspecification;

Consider time-varying
processes and data weighting;
Reference points can remain
biased even when
retrospective patterns
disappear (Szuwalski et al.
2018)

MASE criterion within
threshold cannot rule out
parameter misspecification;
more research needed

Models with significant linear
trend in the recruitment
deviates are likely to be mis-
specified; the absence of linear
trend is not evidence that the
model is correctly specified.
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model’s plausibility, given the biological and historical context of the
stock, and in consultation with managers. We caution assessors against
reverting to simplified assessment types (e.g., data-limited methods,
Legault et al., 2023,2023) in order to pass diagnostic tests as they carry
the risk of poor management performance.

5. Conclusion

This study substantially expands the simulation framework devel-
oped by Carvalho et al. (2017) and updates the framework for applying
diagnostics to integrated fisheries assessments presented by Carvalho
et al. (2021). There remains several outstanding research avenues as the
community continues to refine (or discard) quantitative diagnostic
criteria. Further investigation of diagnostic performance should eval-
uate 1) the impact of changes to data quality or availability (particularly
for the case of data-limited stocks (e.g., no age or length structure); 2) if
there are correlations between the operating model characteristics (e.g.
general stock trajectory or production/recruitment driven dynamics, or
trends in process error) and diagnostic performance, and 3) whether the
introduction of time-varying components (such as recruitment regime
shifts, or time blocks in selectivity) impact the performance of diagnostic
tests, particularly those associated with prediction skill. The scientific
assessment community should continue to investigation via simulation
without neglecting the subjective expertise and decision-making skill
required to produce analyses for scientific management.
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