

SEDAR Southeast Data, Assessment, and Review

SEDAR 82

South Atlantic Gray Triggerfish

SECTION III: Assessment Report

February 2024

SEDAR 4055 Faber Place Drive, Suite 201 North Charleston, SC 29405

Contents

1	Int	roduction							
	1.1	Executive Summary	9						
	1.2	Workshop Time and Place	10						
	1.3	Terms of Reference	10						
	1.4	List of Participants	11						
	1.5	Document List	12						
	1.6	Comments on Terms of Reference	13						
2	Dat	ta Beview and Undate	14						
-	2 1		11						
	2.1		14						
	2.2	Data Update	14						
		2.2.1 Life History	14						
		2.2.2 Landings and Discards	15						
		2.2.3 Indices of abundance	15						
		2.2.4 Length Composition	16						
		2.2.5 Age Composition	16						
3	Sto	ock Assessment Methods	16						
	3.1	Overview	16						
	3.2	Data Sources	16						
	3.3	Model Configuration	17						
		3.3.1 Stock dynamics	17						
		3.3.2 Initialization	17						
		3.3.3 Natural mortality rate	17						
		3.3.4 Growth	17						
		3.3.5 Age Error	18						
		3.3.6 Weight-Length conversion	18						
		3.3.7 Spawning stock	18						
		3.3.8 Recruitment	19						
		3.3.9 Landings and Discards	19						
		3.3.10 Fishing Mortality	19						

		3.3.11 Selectivities	20
		3.3.12 Indices of abundance	20
		3.3.13 Catchability	20
		3.3.14 Biological Reference Points	20
		3.3.15 Fitting criterion	21
		3.3.16 Parameters Estimated	21
	3.4	Per Recruit and Equilibrium Analysis	22
	3.5	Benchmark/Reference Point Methods	22
	3.6	Sensitivity Analysis	22
	3.7	Age Structured Production Model (ASPM)	23
	3.8	Retrospective Analysis	24
	3.9	Monte Carlo/Bootstrap Ensemble (MCBE) Analysis	24
		3.9.1 Bootstrapping of Observed Data	25
		3.9.2 Monte Carlo Sampling	25
	3.10	Projection Analysis	26
		3.10.1 Initialization	26
		3.10.2 Uncertainty	26
		3.10.3 Scenarios	27
4	Sto	ale Assessment Results	97
4	510	CK Assessment Results	41
		Massures of Overall Model Fit	 97
	4.1	Measures of Overall Model Fit	27
	4.1 4.2	Measures of Overall Model Fit	27 27 27
	4.14.24.34.4	Measures of Overall Model Fit	27 27 27 27
	 4.1 4.2 4.3 4.4 	Measures of Overall Model Fit	27 27 27 28
	 4.1 4.2 4.3 4.4 4.5 4.6 	Measures of Overall Model Fit	27 27 27 28 28 28
	 4.1 4.2 4.3 4.4 4.5 4.6 	Measures of Overall Model Fit	27 27 27 28 28 28 28
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.0 	Measures of Overall Model Fit	27 27 27 28 28 28 28 28 28
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 	Measures of Overall Model Fit	27 27 27 28 28 28 28 28 28 28 29
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Measures of Overall Model Fit	27 27 27 28 28 28 28 28 28 29 29
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Measures of Overall Model Fit	27 27 27 28 28 28 28 28 28 29 29 29 29
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Measures of Overall Model Fit	27 27 27 28 28 28 28 28 29 29 29 29 30
	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 	Measures of Overall Model FitParameter EstimatesTotal Abundance, Spawning Biomass and RecruitmentSelectivitySelectivityFishing Mortality and RemovalsSpawner-Recruitment ParametersPer Recruit and Equilibrium AnalysesBenchmarks/Reference PointsStatus of the Stock and FisherySensitivity AnalysesAge Structured Production Model (ASPM)Retrospective Analyses	27 27 27 28 28 28 28 28 29 29 29 29 30 30

5	Discussion	30
	5.1 Comments on Assessment Results	30
	5.2 Comments on Projections	31
6	Research Recommendations	31
7	References	33
8	Tables	38
9	Figures	64
AĮ	opendices 1	139
Α	ADMB Parameter Estimates	139
В	Abbreviations and Symbols	L 49
	DeerRe	
	40 ^t	

List of Tables

1	Life history at age	39
2	Landings and discards (observed)	40
3	Landings and discards CVs (observed; used in MCBE)	41
4	Index of abundance and CVs (observed)	42
5	Numbers of trips for length and age compositions (observed)	43
6	Numbers of fish in length and age compositions (observed)	44
7	Abundance at age (1000 fish)	45
8	Biomass at age (total weight; mt)	46
9	Biomass at age (total weight; 1000 lb)	47
10	Status indicators time series: fishing mortality, biomass, and recruitment	48
11	Selectivities by survey or fleet	49
12	Fishing mortality rates by fleet (fully selected; time series)	50
13	Fishing mortality rate.	51
14	Landings at age (estimated; total numbers; 1000 fish)	52
15	Landings at age (estimated; total weight; 1000 lb)	53
16	Discards at age (estimated; total numbers; 1000 fish)	54
17	Discards at age (estimated; total weight; 1000 lb)	55
18	Landings by fleet (estimated; numbers; 1000 fish)	56
19	Landings by fleet (estimated; weight; 1000 lb)	57
20	Discards by fleet (estimated; numbers; 1000 fish)	58
21	Discards by fleet (estimated; numbers; 1000 lb)	59
22	Benchmarks and status indicators	60
23	Sensitivity results summary	61
24	Projection results for $F = F_{40}$	62
25	Projection results for $F = 75\% F_{40}$	63
26	Parameter estimates from the BAM base run	.39
27	Abbreviations and symbols	.49

List of Figures

1	Data timeline	65
2	Growth model fits	66
3	Length to age conversion matrices	67
4	Age error matrix	68
5	Female maturity and reproductive output at age	69
6	Age and length compositions (annual), by fleet	70
7	Age compositions (pooled): commercial handline (south)	76
8	Age compositions (pooled): recreational headboat (south)	77
9	Age compositions (pooled): SERFS trap/video survey (south)	78
10	Length compositions (pooled): recreational headboat discards (south)	79
11	Age composition residuals (annual): commercial handline (south)	80
12	Age composition residuals (annual): recreational headboat (south)	81
13	Age composition residuals (annual): SERFS trap/video survey (south)	82
14	Length composition residuals (annual): recreational headboat discards (south)	83
15	Landings: commercial handline (north)	84
16	Landings and dead discards: commercial handline (south)	85
17	Landings: general recreational (north)	86
18	Landings: general recreational (south)	87
19	Landings: headboat recreational (south)	88
20	Discards: general recreational (north)	89
21	Discards: general recreational (south)	90
22	Discards: headboat recreational (south)	91
23	Index of abundance: SERFS trap/video	92
24	Abundance: annual numbers at age	93
25	Biomass: annual weight at age	94
26	Recruitment time series	95
27	Biomass time series: total and spawning stock	96
28	Selectivity: SERFS trap/video	97
29	Selectivity: commercial handline landings	98
30	Selectivity: recreational landings	99

31	Selectivity: recreational discards
32	Selectivity: weighted average across fleets from the terminal year
33	Fully selected fishing mortality rates by fleet (stacked bar plot)
34	Landings and discards in numbers by fleet (stacked bar plot) $\ldots \ldots 103$
35	Landings and discards in numbers by fleet (stacked bar plot)
36	Spawner recruit curve
37	Probability densities of spawner-recruit quantities
38	Yield per recruit and spawning potential ratio at F
39	Equilibrium removals and spawning stock at F
40	Probability densities of $F_{40\%}$ -related benchmarks from MCBE analysis
41	Estimated time series of SSB and F relative to benchmarks
42	Probability densities of terminal status estimates from MCBE analysis
43	Phase plot of terminal status estimates from MCBE analysis
44	Age structure relative to the equilibrium expected at $F_{40\%}$
45	Sensitivity to initial $F(F_{init})$ (S01-S02)
46	Sensitivity to natural mortality (S03-S04)
47	Sensitivity to discard mortality (S05-S06)
48	Sensitivity to excluding age error (S07)
49	Sensitivity to age comp plus group (S08)
50	Sensitivity to age-dependent batch fecundity (S09)
51	Sensitivity to age-dependent batch number (S10)
52	Sensitivity to age-dependent batch number and batch fecundity (S11)
53	Sensitivity to estimating steepness (S12)
54	Sensitivity to high value of general recreational discards (S13)
55	Sensitivity to start year of SERFS trap/video index (S14)
56	Sensitivity to estimating selectivity for general recreational (rGN) landings (S15) $\ldots \ldots \ldots \ldots \ldots 125$
57	Sensitivity to weight on SERFS trap/video index (S16-S17)
58	Sensitivity to weight on SERFS trap/video age comps (S18-S19)
59	Sensitivity to weight on all age comps (S20-S21)
60	Sensitivity to weight on all length comps (S22-S23)
61	ASPM Index of abundance: SERFS trap/video
62	Sensitivity to age structure (age structured production model) (aspm)

63	Retrospective analysis (retro)
64	Projections with fishing mortality rate at $F_{40\%}$ (F, SSB, and recruitment)
65	Projections with fishing mortality rate at $F_{40\%}$ (landings, discards, and indices)
66	Projections with fishing mortality rate at $F_{40\%}$ (probability that SSB > $MSST$)
67	Projections with fishing mortality rate at $75\% F_{40\%}$ (F, SSB, and recruitment)
68	Projections with fishing mortality rate at $75\% F_{40\%}$ (landings, discards, and indices)
69	Projections with fishing mortality rate at $75\% F_{40\%}$ (probability that $SSB > MSST$)

s, and bat SSB > A

1 Introduction

1.1 Executive Summary

The primary objectives of this assessment were to build on the previous assessment (SEDAR 41, 2016 Benchmark SEDAR41 2016), considering new and existing data sources and analytical methods, and to develop methods to be used for future operational assessments. This assessment was conducted by the Southeast Fisheries Science Center in cooperation with regional data providers, for the assessment period 1982-2021.

Available data on this stock included indices of abundance, landings, discards, and samples of annual length compositions and age compositions from fishery-dependent and fishery-independent sources. A single index of abundance was developed during the SEDAR process and fitted by the model: a fishery independent index combining chevron trap and video data, collected by the Southeast Reef Fish Survey (SERFS). Landings and discard data were available from all significant recreational and commercial sources.

The model used in the previous assessment of this stock—and updated here—was the Beaufort Assessment Model (BAM), an integrated statistical catch-age formulation (Williams and Shertzer 2015). A base run of BAM was configured to provide estimates of key management quantities, such as stock and fishery status. Uncertainty in estimates from the base run was evaluated through a mixed Monte Carlo/Bootstrap Ensemble (MCBE) analysis.

Estimated time series of stock status (SSB/MSST) showed a gradual decline during the assessment period, to a minimum value in the terminal year. Current stock status was estimated in the base run to be $SSB_{2021}/MSST = 1.33$, indicating that the stock is not overfished. Through its history, SSB has never dropped below MSST. Results from the MCBE suggested that the estimate of SSB/MSST is rather uncertain, but the stock status is not (Figures 42, 43). The assessment showed that 70.3% of MCBE runs agreed with the stock status result from the base model, that the stock is not overfished in the terminal year.

The estimated time series of $F/F_{40\%}$ from the base model suggests that F has only exceeded $F_{40\%}$ in 2009 and 2010, and in the two most recent years of the assessment (2020 and 2021). However, there is considerable uncertainty in $F/F_{40\%}$ as demonstrated by the MCBE, especially toward the end of the assessment period. Current fishery status in the terminal year, with current F represented by the geometric mean from 2019-2021 ($F_{\text{current}} = F_{2019-2021} = 0.65$), was estimated by the base run to be $F_{2019-2021}/F_{40\%} = 1.16$. Thus, at the end of the assessment Gray Triggerfish was undergoing overfishing. However, results from the MCBE show that there is a lot of uncertainty in the status of the fishery. The assessment showed that 53.6% of MCBE runs agreed with the fishing status result from the model, and the median value of $F_{2019-2021}/F_{40\%}$ from the MCBE runs (1.06) suggests overfishing. The majority of recent fishing mortality for this stock is from the general recreational landings (Table 12; Figure 33).

1.2 Workshop Time and Place

The SEDAR 82 Assessment Process for South Atlantic Gray Triggerfish was conducted via a series of webinars held between March 2023 and January 2024.

1.3 Terms of Reference

- 1. Review any changes in data or analyses following the Data Workshop. Summarize data as used in each assessment model. Provide justification for any deviations from Data Workshop recommendations.
- 2. Develop population assessment model(s) that are appropriate for the available data.
 - a. Provide standard model outputs such as parameter estimates and derived quantities.
 - b. Evaluate model diagnostics.
 - c. If multiple models are applied, then compare and contrast model performances and appropriateness.
 - d. Identify modeling issues encountered.
 - e. Comment on the data component weighting used in this stock assessment, if necessary.
- 3. Recommend biological reference points for use in management.
- 4. Characterize uncertainty in the assessment and estimated values.
 - a. Incorporate uncertainty of appropriate input data.
 - b. Provide measures of uncertainty for estimated parameters and derived quantities, including biological reference points and stock status that incorporates appropriate input parameter and data uncertainty.
- 5. Provide recommendations for future research to improve the assessment. Distinguish between long term research needs and short-term research recommendations that could potentially be implemented for Gray Triggerfish Operational Assessments.
- 6. Complete an Assessment Workshop Report in accordance with project schedule deadlines.

1.4 List of Participants

Assessment Development Team

Nikolai Klibansky, Lead Analyst	NMFS/SEFSC
Kyle Shertzer	NMFS/SEFSC
Erik Williams	NMFS/SEFSC
Walter Bubley	SAFMC SSC/SCNDR
Jie Cao	SAFMC SSC/NCSU
Mike Rinaldi	ACCSP
Meredith Whitten	NCDNR

Assessment Process Observers

Kelly Adler	NMFS/SEFSC
Robert Allman	NMFS/SEFSC
Sarina Atkinson	NMFS/SEFSC
Nate Bacheler	NMFS/SEFSC
Samantha Binion-Rock	NMFS/SEFSC
Christopher Bradshaw	FLFWC
Ken Brennan	NMFS/SEFSC
Rob Cheshire	NMFS/SEFSC
Ellie Corbett	FLFWC
Margaret Finch	SCDNR
Eric Fitzpatrick	NMFS/SEFSC
Dawn Franco	GADNR
Elizabeth Gooding	SCDNR
Kimberly Johnson	NMFS/SEFSC
Mike Judge	NMFS/SEFSC
Maria Kappos	FLFWC
Wilson Laney	HAP
Alan Lowther	NMFS/SEFSC
Vivian Matter	NMFS/SEFSC
Harry Morales	SAFMC SGAP
Matthew Nuttall	\dots NMFS/SEFSC
Michaela Pawluk	\dots NMFS/SEFSC
Jennifer Potts	NMFS/SEFSC
Vanessa Ramirez Perez	CFMC
Marcel Reichert	SAFMC/SSC
Walt Rogers	NMFS/SEFSC
Tracey Smart	SCDNR
Julie Vecchio	SCDNR
Michelle Willis	SCDNR

Council Representative

Kerry	Marhefka	 	SAFMC						

Staff

Meisha Key	$\ldots \ldots SEDAR$
Kathleen Howington	SEDAR
Julie Neer	SEDAR

Chip Collier	SAFMC Staff
Judd Curtis	SAFMC Staff
Mike Schmidtke	SAFMC Staff
Alisha Gray	SERO

1.5 Document List

Document	Title	Authors	Date
number			Received
Documents Prepared for the Assessment Process			
SEDAR82-AW01	South Atlantic U.S. gray triggerfish (Balistes	Fitzpatrick $2022b$	12/12/2022
	capriscus) age and length composition from the rec-		
	reational fisheries		
SEDAR82-AW02	South Atlantic U.S. gray triggerfish (Balistes	Fitzpatrick	12/12/2022
	<i>capriscus</i>) age and length composition from the com-	2022 <i>a</i>	
	mercial fisheries		
SEDAR82-AW03	Commercial Discard Estimation of South Atlantic	McCarthy et al.	2/21/2023
	Gray Triggerfish	2022	
Reference Documents			
SEDAR82-RD58	Timing and locations of reef fish spawning off the	Farmer et al.	11/30/2022
	southeastern United States	2017	
SEDAR82-RD59	Virginia Game Fish Tagging Program Annual Re-	Musick and	12/14/2022
	port 2021	Gillingham 2022	
SEDAR82-RD60	Report of the Working Group on Fish Ecology	ICES 2008	12/14/2022
	(WGFE)		
SEDAR82-RD60	Report of the Working Group on Fish Ecology	ICES 2009	12/14/2022
	(WGFE)		
SEDAR82-RD61	Seaweed, seaweed everywhere	Gower and King	1/4/2023
		2019	
SEDAR82-RD62	The great Atlantic Sargassum belt	Wang et al. 2019	1/4/2023
SEDAR82-RD63	The establishment of a pelagic Sargassum population	Johns et al. 2020	1/4/2023
	in the tropical Atlantic: Biological consequences of a		
	basin-scale long distance dispersal event		
SEDAR82-RD64	Southeast Florida and South Carolina Anglers' Re-	Responsive Man-	3/3/2023
	lease Practices and Their Attitudes Toward Descend-	agement 2022	
	ing Devices		

1.6 Comments on Terms of Reference

Note: Original ToRs are in normal font. Statements addressing ToRs are in italics and preceded by a dash (-).

- Review any changes in data or analyses following the Data Workshop. Summarize data as used in each assessment model. Provide justification for any deviations from Data Workshop recommendations.
 See section 2.
- 2. Develop population assessment model(s) that are appropriate for the available data.
 - a. Provide standard model outputs such as parameter estimates and derived quantities.
 See section 4.2.
 - b. Evaluate model diagnostics.
 - See sections describing results of sensitivity analysis (4.10), an age-structured production model (4.11), and retrospective analysis (4.12).
 - c. If multiple models are applied, then compare and contrast model performances and appropriateness. - See section 4.11 describing results of the age-structured production model.
 - d. Identify modeling issues encountered.
 - See discussion section 5.1
 - e. Comment on the data component weighting used in this stock assessment, if necessary.
 All data components were given equal weight, but see section 3.3.15 for considerations given to data weighting.
- 3. Recommend biological reference points for use in management.
 - See methods sections 3.3.14 and 3.5 and results section 4.8.
- 4. Characterize uncertainty in the assessment and estimated values.
 - a. Incorporate uncertainty of appropriate input data.
 See methods section 3.9
 - b. Provide measures of uncertainty for estimated parameters and derived quantities, including biological reference points and stock status that incorporates appropriate input parameter and data uncertainty.
 See results section 4.8
- 5. Provide recommendations for future research to improve the assessment. Distinguish between long term research needs and short-term research recommendations that could potentially be implemented for Gray Triggerfish Operational Assessments.
- See research recommendations section 6
- 6. Complete an Assessment Workshop Report in accordance with project schedule deadlines.
 This SEDAR 82 Research Track Assessment Report satisfies this ToR.

2 Data Review and Update

In the current SEDAR 82 assessment, data through 2021 were considered. For some data sources, the data were simply updated with the additional years of data (2015-2021) using the same methods as in the prior assessments. However, for some sources, it was necessary to update data prior to 2015 as well. The input data for this assessment are described below, with emphasis on the data that required modification beyond just the addition of years. A summary timeline of data sources fit to in this assessment is plotted in Figure 1.

2.1 Data Review

In this research track assessment, the Beaufort assessment model (BAM) was fitted to many of the same data sources as in the SEDAR 41, 2016 Benchmark.

- Landings: commercial handline (south and north), recreational headboat (south), general recreational (south and north)
- Discards: recreational headboat (south), general recreational (south and north)
- Indices of abundance: SERFS trap/video
- Length compositions of discards: recreational headboat
- Age compositions of landings: commercial handline, recreational headboat, and SERFS trap/video survey.

Contrasts to data used in the SEDAR 41, 2016 Benchmark assessment include:

- The SEDAR 82 model time period was 1982 2021 in contrast to 1988 2014 for the SEDAR 41, 2016 Benchmark.
- Although the basic fleet structure for removals (landings and discards) was the same as in SEDAR 41, 2016 Benchmark, in SEDAR 82 removals were spatially divided along the North Carolina-Virginia line [i.e. the northern boundary of the Southeast Fishery Management Council's (SAFMC) jurisdiction] and modeled separately. Landings or discards from north of this line are referred to as "nort" and those from south of this line are referred to as "south". All indices and composition data are from the southern region that encompasses the SAFMC jurisdiction.
- The age composition data was divided into two time periods (period a, early: 1982 2014 and (period b, late: 2015 2021) due to improvements in aging methods in the latter period. In the early period ages 1-5+ were used in age compositions while in the late period ages 1-8+ were used.

2.2 Data Update

2.2.1 Life History

Some life-history inputs from SEDAR 41, 2016 Benchmark remained the same in SEDAR 82, but several others were updated based on newer data. The length to weight conversion equation, time of peak spawning, and length to batch fecundity equation were the same. Population and fishery growth model parameters, proportions female-at-age, maturity-at-age, number of batches spawned-at-age, maximum observed age, natural mortality constant, and natural mortality-at-age were all updated for SEDAR 82. Primary life-history information is summarized in Table 1. Discard mortality rates also differed from SEDAR 41, 2016 Benchmark.

2.2.2 Landings and Discards

Landings estimates were combined into three fleets: commercial handline, recreational headboat, and general recreational (Table 2). Data providers also provided coefficients of variation (CVs) associated with landings (Table 3), which were not used in fitting the stock assessment model but were used to generate bootstrap data sets during the uncertainty analysis. Commercial landings of Gray Triggerfish were compiled from 1950 through 2021 for the entire U.S. Atlantic Coast, in whole weight (WW). Only landings from 1982 to 2021 were included in this assessment as landings prior to 1982 were minimal. Sources for landings in the U.S. South Atlantic (Florida through North Carolina) included the Florida Trip Ticket program (FTT), South Carolina Department of Natural Resources (SCDNR), North Carolina Division of Marine Fisheries (NCDMF), and the Atlantic Coastal Cooperative Statistics Program (ACCSP).

Commercial handline landings included gear types such as hook and line, bandit reels, and similar hook gear. Landings from other commercial gear types and commercial dead discards were limited and these were included in the commercial handline landings in the assessment. Commercial dead discards were provided to the assessment team in numbers and were converted to weight (1000 lb) during the assessment process. Weight of discards was computed by converting the available recreational discard length compositions to weight with equation 2. Annual mean weights were computed, and then an overall mean weight of a discarded fish as 1.06 lb. Commercial dead discards in numbers were multiplied by that value to compute dead discards in weight. The total weight of commercial dead discards over the assessment period was 12.5 1000 lb.

Commercial handline landings were divided into separate spatial fleets, north and south of the North Carolina-Virginia border (NC-VA border; northern Council boundary). The north landings include any landings north of the northern Council boundary. The south landings extend to the Florida Keys in Monroe County, Florida along US Highway 1 (southern Council boundary). Landings in Monroe County were apportioned by data providers to exclude landings north of the Florida Keys, which are considered part of the Gulf of Mexico (Table 2).

For this assessment, estimates of recreational landings and discards from the private, charter, and shore modes were based on current Marine Recreational Information Program (MRIP) methodology. This included landings from 1981 to 2021, from the Florida Keys to Massachusetts. These removals were combined into general recrational landings and discards, but were divided into separate spatial fleets, north and south of the NC-VA border. For the northern area, headboat mode landings and discards were included with the general recreational landings and discards. In the southern, recreational landings and discards from the headboat mode were provided by the Southeast Region Headboat Survey (SRHS) (Table 2), and were retained as a separate fleet.

In years where landings or discards were estimated to be zero, but were non-zero earlier and later in the time series, these zeros were considered to be missing information and were filled with linear interpolation by the assessment team. A simple method was applied, using the R function stats::approx which fills a missing value t, y_t) in a time series by interpolating a straight line from adjacent non-missing values $(t - 1, y_{t-1})$ and $(t + 1, y_{t+1})$. This method was applied to commercial landings (north) for 1984 – 1989, general recreational landings (north) for 1981, general recreational discards (north) for 1988, and headboat discards (south) in 1987, 1990, 1993, and 1998.

2.2.3 Indices of abundance

Two indices of abundance were recommended for use in SEDAR 82: SERFS chevron trap (Bubley and Willis 2022) and SERFS video index (Bacheler et al. 2022). These indices were developed from the SERFS which deploys chevron traps with video cameras mounted on them. Trap and video data are paired. The separate indices showed very similar trends and were combined into a single SERFS trap/video index using an averaging approach (Conn Method; Conn 2010). The resulting index and CVs are presented in Table 4.

2.2.4 Length Composition

Length compositions were developed from the recreational headboat discard sampling data from the U.S. South Atlantic. Sample sizes by year and fleet are reported in Tables 5 (number of trips) and 6 (number of fish). Following the methodology of SEDAR 41, 2016 Benchmark and other Beaufort Lab stock assessments, the contribution of each length was weighted by the discards by state.

2.2.5 Age Composition

Age data were available from the commercial handline, recreational headboat, and SERFS sampling programs in the U.S. South Atlantic. The age composition data was divided into two time periods (period a, early: 1982 - 2014 and period b, late: 2015 - 2021) due to improvements in aging methods in the latter period. In the early period ages 1-5+ were used in age compositions while in the late period ages 1-8+ were used. Sample sizes by year and fleet are reported in Tables 5 (trips) and 6 (fish).

3 Stock Assessment Methods

This assessment updates the primary model applied during the SEDAR 41, 2016 Benchmark assessment for Gray Triggerfish (*Balistes capriscus*) off the Southeastern United States (hereafter South Atlantic Gray Triggerfish). The methods are reviewed below, and any changes since the SEDAR 41, 2016 Benchmark are emphasized.

3.1 Overview

This operational assessment updated the primary model applied in SEDAR 41, 2016 Benchmark (SEDAR41 2016), which was developed using the Beaufort Assessment Model (BAM) software (Williams and Shertzer 2015). BAM applies a statistical catch-age formulation, coded in AD Model Builder (Fournier et al. 2012). BAM is referred to as an integrated model because it uses multiple data sources relevant to population and fishery dynamics (e.g. removals, length and age compositions, and indices of abundance) in a single framework (Schaub et al. 2024). In essence, the catch-age model simulates a population forward in time while including fishing processes (Quinn and Deriso 1999; Shertzer et al. 2008). Quantities to be estimated are systematically varied until characteristics of the simulated population match available data on the real population. The model is similar in structure to Stock Synthesis (Methot and Wetzel 2013) and other stock assessment models used in the United States (Dichmont et al. 2016; Li et al. 2021). Versions of BAM have been used in previous SEDAR assessments of reef fishes in the U.S. South Atlantic, such as Black Sea Bass, Blueline Tilefish, Gag, Greater Amberjack, Red Grouper, Red Porgy, Red Snapper, Snowy Grouper, Tilefish, and Vermilion Snapper, as well as in the previous SEDAR assessment of Gray Triggerfish (SEDAR41 2016).

3.2 Data Sources

The catch-age model included data from the fishery independent SERFS trap/video survey, and fleets that landed or discarded South Atlantic Gray Triggerfish: commercial handline, recreational headboat, and the general recreational fleet. The model was fitted to closely to annual landings and dead discards (Table 2) with a CV of 0.05. As noted in section 2 CVs associated with landings (Table 3) were used in the uncertainty analysis, but not the base model. The model was also fitted to the fishery independent SERFS trap/video survey index of abundance (Table 4). The model was also fitted to annual length compositions of headboat recreational discards and annual age compositions from commercial handline and recreational headboat landings, and from the SERFS trap/video survey. Samples sizes associated with composition data are provided in numbers of trips (Table 5) and numbers of fish (Table 6). Data used in the model are described in section 2 of this report, the SEDAR 82 Data Workshop Report (SEDAR82-DW 2023), and Data Workshop working papers (see https://sedarweb.org/assessments/sedar-82).

3.3 Model Configuration

Model structure and equations of the BAM are detailed in Williams and Shertzer (2015). The time period for this assessment was 1982 - 2021. A general description of the assessment model follows.

3.3.1 Stock dynamics

In the assessment model, new biomass was acquired through growth and recruitment, while abundance of existing cohorts experienced mortality from fishing and natural sources. The population was assumed closed to immigration and emigration. The modeled population included age classes $1 - 8^+$, where the oldest age class 8^+ allowed for the accumulation of fish (i.e., plus group).

3.3.2 Initialization

Initial (1982) abundance at age was estimated in the model as follows. The equilibrium age structure was computed for ages 1–8 based on natural mortality and initial fishing mortality (F_{init}). The value of F_{init} was estimated in the model, with a light normal prior centered at a low value, since landings prior to 1982were very low. The prior was necessary since likelihood profiling conducted during the assessment suggested that the data provided little information to freely estimate F_{init} . Lognormal deviations around the equilibrium age structure were found not to deviate from zero during model development and thus were fixed at zero.

3.3.3 Natural mortality rate

The natural mortality rate (M) was assumed constant over time, but decreasing with age. The form of M as a function of age was based on Lorenzen (1996). As in previous SEDAR assessments, the age-dependent estimates of M_a were rescaled to provide the same fraction of fish surviving from age-5 through the oldest observed age (16 yr) as would occur with constant M = 0.38 (SEDAR82-DW 2023). This approach using cumulative mortality is consistent with the findings of Hoenig (1983) and Hewitt and Hoenig (2005). For the MCBE analysis, M was randomly drawn from a uniform distribution from 0.2387 - 0.5313, and M_a rescaled accordingly.

3.3.4 Growth

Mean length in the population $[l_a;$ fork length (FL) in millimeters, (mm)] was modeled with the von Bertalanffy function of age (a)

$$l_a = L_{\infty}(1 - exp[-K(a - t_0 + \tau)])$$
(1)

where $L_{\infty} = 441$, K = 0.36, and $t_0 = -0.94$, are parameters estimated external to the assessment model during the SEDAR 82 process and $\tau = 0.5$, representing a fraction of the year (Figure 2A). Here, l_a is being computed at midyear. All parameters in Eq. 1 were treated as fixed input to the assessment model. For fitting length composition data, the distribution of size at age was assumed normal with coefficient of variation estimated by external fitting $(CV_l = 0.16)$. A constant CV, rather than constant standard deviation, was suggested by the size at age data. The population growth model is used in the assessment model to generate a length-age conversion matrix applied to the population and discards (Figure 3A).

A separate growth model, also using Eq. 1, was developed external to the assessment based on fishery-dependent ages and length data, and was applied to the landings. The estimated parameters for this where $L_{\infty,L} = 517$, $K_L = 0.12$, $t_{0,L} = -6.62$, and $CV_{l,L} = 0.11$ (Figure 2B). The fishery growth model is used in the assessment model to generate a length-age conversion matrix applied to the landings (Fig 3B).

3.3.5 Age Error

An ageing error matrix was developed for SEDAR 82 using methods developed by Punt et al. (2008) using Agemat software developed by the Northwest Fisheries Science Center (Johnson et al. 2023). Data used to develop the age error matrix were for a set of fish aged using both otoliths and dorsal spines, in an age validation study conducted prior to this assessment. Otoliths ages are considered to be more accurate for this species, but spines are much easier to collect, thus most of the available age data are based on spine ages. All of the age data used in the current assessment were based on spines. Thus, the age-error matrix estimates error for each age between otolith and spine ages. A comparison of models developed using Agemat software showed modeling age error with a consant CV across ages was the most parsimonious approach. The resulting matrix is shown in Figure 4.

3.3.6 Weight-Length conversion

Weight at age $[w_a; WW$ in kilograms (kg)] was modeled as a power function of l_a

$$w_a = \theta_1 l_a^{\theta_2}$$

where $\theta_1 = 2.8e - 08$ and $\theta_2 = 2.97$ are parameters estimated external to the assessment model during the SEDAR 41, 2016 Benchmark process and treated as fixed input to the assessment model (Table 1).

3.3.7 Spawning stock

Spawning stock was modeled using fecundity measured at the time of peak spawning. For Gray Triggerfish, peak spawning was considered to occur at the end of June (June 29^{th} ; $spawn_time_frac = 181/365 = 0.5$. Batch fecundity (f_{batch} ; eggs) was computed from fork length (FL; mm) with the equation

$$f_{\text{batch}} = c + dL \tag{3}$$

where c = -1776483, d = 8704. Note that although this equation allows f_{batch} to be negative at smaller sizes (F;204mm), these smaller fish would generally be younger than age-1 and are not included in the assessment model (Table 1).

Number of batches spawned (n_{batch}) also vary with age (Table 1). Annual fecundity for each mature female is the product of f_{batch} and n_{batch} . Spawning stock fecundity per fish, is the product of annual fecundity, proportion female, and proportion of females mature (Figure 5A). Spawning stock fecundity per fish is represented in Figure 5B and Table 1 in the reprod column (in units of 10^{12} eggs per fish). In the model, this reprod vector is multiplied by numbers of fish-at-age alive at the time of spawning to compute the spawning stock (i.e. total egg production; the SSB analog) defining stock size. In this report, the terms "spawning stock biomass" and abbreviation SSB are still used because they are customary, but in all cases refer to total egg production.

(2)

3.3.8 Recruitment

Expected recruitment of age-1 fish was predicted from spawning stock fecundity using the mean recruitment model. This is a slight modification from the approach of SEDAR 41, 2016 Benchmark. That assessment used the Beverton–Holt spawner–recruit model, but because the steepness parameter (h) could not be estimated (went to its upper bound), the mean recruitment model was approximated by fixing steepness at h = 0.99. Instead, the SEDAR 82 assessment applies the mean recruitment model directly, by estimating the average annual recruitment (here, R_0).

This modification was made after initial model explorations, including likelihood profiling on h, found that steepness still could not be estimated. This result is not uncommon, as steepness is often difficult to estimate reliably (Conn et al. 2010). The underlying assumption of the mean recruitment model is that recruitment is independent of spawning biomass, which is known to be incorrect for extremely low values of spawning biomass (e.g., zero spawners, zero recruits), unless recruits derive from outside the system. This approach has been applied in other recent Beaufort Lab stock assessments (SEDAR73 2021; SEDAR76 2023) and is recommended as a "null model" by Brooks (2024).

To include annual variability in recruitment, the model estimates lognormal deviations around that average, and estimates the standard deviation (σ_R) of this lognormal distribution. In early runs of the model, σ_R had a tendency to be estimated at the lower bound and thus was initialized at a value of 0.6 from a meta-analysis, and estimated with a normal prior. Annual variation in recruitment was assumed to occur with lognormal deviations for years 1990 – 2018 only. The first year recruitment residuals were estimated (1990) was the year when age composition data was first available (for the headboat fleet), providing information on year class strength. The last year that recruitment residuals were estimated (2018) was two years prior to the last year of age composition data (for the commercial handline fleet). Gray Triggerfish start to be selected by this fleet around age-3, so year class strength for the 2018 age-1 recruits may be detected in the 2020 age composition data.

3.3.9 Landings and Discards

Time series of removals from three fleets were modeled over the 1982 - 2021 assessment period: commercial handline, general recreational, and recreational headboat. Landings for each fleet over the assessment period were provided by the Data Workshop panel. Commercial discard estimates were only available for the southern area, and were a small proportion of commercial landings. So for the southern area, a discard mortality rate of 0.59was applied to commercial discards, and the estimated dead discards were pooled with commercial handline landings. Headboat discards were also a small proportion of headboat landings and discards were modeled separately. General recreational discards were assumed to have the same selectivity as for headboat discards, in part due to insufficient composition data to model a separate selectivity. The same discard mortality rate was assumed for all fleets and for the entire assessment period ($\delta = 0.59$). As noted in section 2.2.2, landings and discards were modeled as spatial sub-fleets (south and north), divided at the NC-VA border, when the data allowed. Removals were modeled with the Baranov catch equation (Baranov 1918) and were fitted in either units of weight (1000 lb whole weight, commercial) or numbers (1000 fish, recreational).

3.3.10 Fishing Mortality

For each time series of landings and discard mortalities, the assessment model estimated a separate full fishing mortality rate (F). Age-specific rates were then computed as the product of full F and selectivity at age. Apical F was computed as the maximum of F at age summed across fleets.

3.3.11 Selectivities

Selectivity at age was estimated using a two-parameter, flat-topped, logistic model in most cases. Headboat discard selectivity was the exception, which was modeled with a logistic-exponential function, which declines exponentially from 100% selection at age-1. The function has 4-parameters, but three were fixed during the assessment process, such that only the parameter describing the rate of decent of the curve was estimated.

Separate selectivity functions were estimated for commercial handline, recreational headboat landings, recreational headboat discards, as well as for the SERFS trap/video index. Selectivities for general recreational landings and discards were set equal to those estimated for recreational headboat landings and discards, respectively.

In the development of the base model, alternative functional forms and time blocking of selectivity were investigated extensively in attempts to improve fits to composition data. But these alternative configurations generally increased complexity without improving fits substantially, and the assessment team chose the current configuration in the interest of parsimony. Examples of early configurations which were attempted but rejected include modeling recreational selectivity with a dome-shaped function, modeling separate selectivities for the headboat and general recreational fleets (see sensitivity run S15), and including multiple time blocks for the SERFS trap/video survey.

Consideration was also given to including separate selectivity time blocks for fishery-dependent selectivities associated with size limits, but it was judged that the limits that had been imposed likely had a negligible effect on selectivity. A 12 inch (304 mm) size limit was applied throughout the South Atlantic in 2015 (and Florida before that), but corresponds to age-1 fish not frequently caught by the fishery. A 14 inch (356 mm) size limit, corresponding to age-3 fish, was implemented in Florida from 2015-2020 but did not appear to have an overall effect on the composition data for the entire region.

3.3.12 Indices of abundance

The model was fit to a single index of relative abundance: SERFS trap/video. As noted in section 2.2.3 this index was a combination of separate chevron trap and video indices. The resulting index and CVs are presented in Table 4.

3.3.13 Catchability

In the BAM, catchability scales indices of relative abundance to the estimated vulnerable population at large. The catchability coefficient for the SERFS trap/video index was assumed constant through time.

3.3.14 Biological Reference Points

Because the assessment did not estimate a spawner-recruit relationship, but instead applied the null model, MSY could not be estimated directly, and instead a proxy was used for biological reference points (benchmarks). The proxy used here was based on a proxy for MSY ($L_{F40\%}$), based on $F_{40\%}$; that is, the fishing rate that would allow a stock to attain 40% of the maximum spawning potential (SPR_{40}), which would have been obtained in the absence of fishing mortality. The value of $F_{40\%}$ was chosen here because of its commonality in fishery management and because it has been shown to be an effective proxy (e.g., Legault and Brooks (2013); Hartford et al. (2019)). The proxy of $F_{30\%}$ has been shown to be appropriate only for very resilient stocks (Brooks et al. 2010), and even $F_{40\%}$ might be an aggressive benchmark for some stocks (Clark 2002; Hartford et al. 2019; Zhou et al. 2020). Reference points based on $F_{40\%}$ have also been used in recent assessments for reef fishes in the South Atlantic (SEDAR68 2021). Computed benchmarks in SEDAR 82 associated with SPR_{40} included the fishing mortality rate ($F_{40\%}$), $L_{F40\%}$, $D_{F40\%}$ (discards at $F_{40\%}$), total biomass ($B_{F40\%}$), and spawning stock (SSB_{F40\%}; Gabriel and Mace 1999). In this assessment, spawning stock

measures population fecundity. The minimum stock size threshold MSST was also computed, by scaling $SSB_{F40\%}$ by a proportion p which is defined a (1 - M) or 0.5, whichever is greater. Here p = (1 - M) = 0.62 and MSST is defined as $0.62 * SSB_{F40\%}$. These benchmarks are conditional on the estimated selectivity functions and the relative contributions of each fleet's fishing mortality. The selectivity pattern used here was the effort-weighted selectivities at age, with effort from each fleet estimated as the full F averaged over the last three years of the assessment.

3.3.15 Fitting criterion

The fitting criterion was a penalized likelihood approach in which observed landings and discards were fit closely, and observed composition data and the abundance index were fit to the degree that they were compatible. Landings, discards, and index data were fitted using lognormal likelihoods. Length and age composition data were fit using the Dirichlet-multinomial distribution, with sample size represented by the annual number of trips (Table 4), adjusted by an estimated variance inflation factor (i.e. one additional parameter for each fleet's composition data).

The SEDAR 41, 2016 Benchmark fit composition data using the robust multinomial with iterative re-weighting (Francis 2011). Since Francis (2011), additional work on this topic has questioned the use of the multinomial distribution in stock assessment models (Francis 2014), and has recommended the Dirichlet-multinomial as an alternative (Francis 2017; Thorson et al. 2017). A chief advantage of the Dirichlet-multinomial is that it is self-weighting through estimation of an additional variance inflation parameter for each composition component, making iterative re-weighting unnecessary. Another advantage is that it can better account for overdispersion, or, larger variance in the data than would be expected by the multinomial. Overdispersion can result from intra-haul correlation, which results when fish caught in the same set are more alike in length or age than fish caught in a different set (Pennington and Volstad 1994). The Dirichlet-multinomial has been implemented in Stock Synthesis (Methot and Wetzel 2013; Thorson et al. 2017) and in the BAM, and since the SEDAR 41, 2016 Benchmark has become the standard likelihood for fitting composition data in assessments of South Atlantic reef fishes.

The model includes the capability for each component of the likelihood to be weighted by user-supplied values. When applied to landings and indices, these weights modify the effect of the input CVs. In this application to Gray Triggerfish, CVs of landings and discards (in arithmetic space) were assumed equal to 0.05 to achieve a close fit to these data while allowing some imprecision. In practice, the small CVs are a matter of computational convenience, as they help achieve a close fit, while avoiding having to solve the Baranov equation iteratively (which is complex when there are multiple fisheries). In contrast to the SEDAR 41, 2016 Benchmark, iterative re-weighting was not conducted here, in part because the composition likelihoods were self-weighting. Thus, user-supplied data weights were all set equal in the base model, with effective relative weights among data components determined by CVs (landings, discards, index) and the estimated Dirichlet-multinomial variance parameters.

In addition, the compound objective function included several prior distributions, applied to the Dirichlet-multinomial variance inflation factor parameters associated with each set of composition data and the slope parameter for the selectivity function of the general recreational fleet. Priors were applied to maintain parameter estimates near reasonable values, and to prevent the optimization routine from drifting into parameter space with negligible gradient in the likelihood which can result in a non-positive definite Hessian matrix (an indication of incomplete or incorrect parameter solutions).

3.3.16 Parameters Estimated

The model estimated a total of 375 parameters including average fishing mortality rates (8 par.) and annual fishing mortality rates (320 par.) for each fleet; annual recruitment deviations (29 par.), selectivity parameters (7 par.), Dirichlet-multinomial variance inflation factors (7 par.), a catchability coefficient associated with each index (1 parameter), the standard deviation of the lognormal recruitment residuals (σ_R ; 1 par.), initial F (F_{init} ; 1 par.), and virgin recruitment (R_0 ; 1 par.).

3.4 Per Recruit and Equilibrium Analysis

Yield per recruit and spawning potential ratio were computed as functions of F, as were equilibrium landings and spawning biomass. Equilibrium landings were also computed as functions of biomass B, which itself is a function of F. As in computation of $F_{40\%}$ -related benchmarks (described in section 3.5), per recruit and equilibrium analyses applied the most recent selectivity patterns averaged across fleets, weighted by each fleet's F from the last three years (2019–2021) of the assessment.

3.5 Benchmark/Reference Point Methods

A stock-recruit relationship wasn't estimable in this assessment, necessitating a proxy for MSY-based reference points. The quantities $F_{40\%}$, SSB_{F40\%}, $B_{F40\%}$, and $L_{F40\%}$ were estimated here and are recommended as proxies for MSY-based reference points. The value of $F_{40\%}$ is the *F* that provides 40% SPR. To compute biomass benchmarks, equilibrium recruitment was assumed equal to expected recruitment in arithmetic space (mean unbiased). However, in BAM, spawner-recruit parameters correspond to median-unbiased recruitment. Thus, on average, expected recruitment is higher than that estimated directly from the spawner-recruit model (i.e., R_0 , when using the mean recruitment model), because of lognormal deviation in recruitment. Therefore, the method of benchmark estimation accounted for lognormal deviation by including a bias correction in equilibrium recruitment. The bias correction (ς) was computed from the variance (σ_R^2) of recruitment deviation in log space: $\varsigma = \exp(\sigma_R^2/2)$. Then, equilibrium recruitment (R_{eq}) associated with any *F* is

$$R_{eq} = \varsigma R_0 \tag{4}$$

where R_0 is median-unbiased virgin recruitment. The R_{eq} and mortality schedule imply an equilibrium age structure and an average sustainable yield (ASY). The estimate of $F_{40\%}$ is the F giving 40% of the SPR, and the estimate of $L_{F40\%}$ is that ASY. The estimates of $SSB_{F40\%}$, $B_{F40\%}$, and $D_{F40\%}$ follow from the corresponding equilibrium age structure.

Estimates of $L_{F40\%}$ and related benchmarks are conditional on selectivity pattern. The selectivity pattern used here was an average of terminal-year selectivities from each fleet, where each fleet-specific selectivity was weighted in proportion to its corresponding estimate of F averaged over the last three years (2019–2021). If the selectivities or relative fishing mortalities among fleets were to change, so would the estimates of $L_{F40\%}$ and related benchmarks.

The maximum fishing mortality threshold (MFMT) is defined here as $F_{40\%}$, and the minimum stock size threshold (MSST) as $(1 - M) * SSB_{F40\%}$. Overfishing is defined as F > MFMT and overfished as SSB < MSST. However, if the stock is overfished, the rebuilding target would be $SSB_{F40\%}$. Current status of the stock is represented by SSB in the latest assessment year (2021), and current status of the fishery is represented by the geometric mean of F from the latest three years (2019–2021). Generally, South Atlantic assessments have considered the mean over the terminal three years to be a more robust metric than that of a single, terminal year.

3.6 Sensitivity Analysis

Sensitivity of results to some key model inputs and assumptions was examined through sensitivity analyses. Sensitivity runs were chosen to address specific questions that arose during the SEDAR 82 assessment process. They were intended to demonstrate directionality of results with changes in inputs or simply to explore model behavior. For several of these sensitivity analyses where a parameter was fixed over a range (e.g. sensitivity to M, discard mortality, weight of data sources), results were generated for the runs associated with the lower and upper limits of the range, as well as several runs based on a sequence of values between those limits. In these instances the presentation of results focuses on the runs associated with the limits, and these runs are given identifying numbers (e.g. S1 and S2 associated with low and high values of M). These sensitivity model runs vary from the base run as follows.

- S1-S2: Vary initial F (F_{init}) as a fixed value.
 F_{init} was fixed over a range from 0.01 (S1) to 0.5 (S2), generating a sequence of 21 runs.
- S3-S4: Vary natural mortality
 M was fixed over a range from 0.2387 (S3) to 0.5313 (S4), generating a sequence of 5 runs.
- S5-S6: Vary discard mortality rate
 Discard mortality rate was fixed over a range from 0.364 (S5) to 0.814 (S6) for all discard fleets modeled separately in the base model (i.e. recreational fleets), generating a sequence of 5 runs.
- S07: Assume no age error
- S08: Age comps for all years use age 1 8 +
- S09: Assume that batch fecundity is not age-dependent
- S10: Assume that batch number is not age-dependent
- S11: Assume that batch fecundity and batch number are not age-dependent
- S12: Estimate steepness
 Use a Beverton-Holt stock-recruit relationship and estimate steepness, with an initial value of 0.8
- S13: Smooth general recreational discard value for 2016
- S14: Start SERFS trap/video index in 1990
- S15: Include general recreational (rGN) length compositions and estimate separate selectivity for rGN
- S16-S17: Vary weight of SERFS trap/video index
 The weighting parameter for the SERFS trap/video index was fixed over a range from 0.2 (S16) to 5 (S17), generating a sequence of 13 runs.
- S18-S19: Vary weight of SERFS trap/video age comps
 The weighting parameter for the SERFS trap/video age comps was fixed over a range from 0.2 (S18) to 5 (S19), generating a sequence of 13 runs.
- S20-S21: Vary weight of all age comps
 The weighting parameter for all age comps was fixed over a range from 0.2 (S20) to 5 (S21), generating a sequence of 13 runs.
- S22-S23: Vary weight of all length comps
 The weighting parameter for all length comps was fixed over a range from 0.2 (S22) to 5 (S23), generating a sequence of 13 runs.

3.7 Age Structured Production Model (ASPM)

Age Structured Production Models (ASPM) have been used in past South Atlantic assessments as supplementary analyses to compare with the primary statistical catch-at-age model. Recent research has shown that ASPMs can be informative diagnostics for detecting misspecification in key processes (Carvalho et al. 2017; 2021; Maunder and Piner 2017) Much of the documentation for the ASPM section of this report was originally printed in earlier reports (SFB-NMFS 2016*b*;*a*).

Age structured production models have existed since the advent of catch-at-age models in the mid-1980s (Fournier and Archibald 1982; Hilborn 1990; Kimura and Tagart 1982; Ludwig and Walters 1985; Megrey 1989). ASPMs have been used extensively for highly migratory pelagics, where age collection can be difficult, and other stock assessment analyses as well (Cubillos et al. 2002; Geromont and Butterworth 1999; Nishida et al. 2001; Nishida and Rademeyer 2011; Porch 2003; Restrepo 1997; Restrepo and Legault 1998; Ricard and Basson 2002). ASPMs can be viewed as either a simplified version of statistical catch-at-age models. The simplification from more advanced statistical catch-at-age models is due to the absence of any age or length composition data. Because no age or length data are used in an ASPM, then year class strength is expected to follow a simple production function (i.e. a stockrecruit function; Butterworth and Rademeyer 2008; Field et al. 2008). With this simplification, ASPMs have a greatly reduced number of parameters compared to a full statistical catch-at-age model. Of course with reduced parameters comes simplifying assumptions (e.g. fixed fleet selectivities). In this ASPM, using a mean recruitment model, recruitment is modeled as in the full BAM (statistical catch-at-age model) as an average value, independent of stock size (see section 3.3.8).

The ASPM is a direct modification of the full BAM, where age-structure is still represented but age-dependent processes and dynamics are fixed. In the BAM, much of the age-dependent life history information was already fixed (e.g. growth, maturity, fecundity, natural mortality). In the ASPM, selectivities are fixed at values estimated in the full BAM. The ASPM fits to landings and discards and the SERFS trap/video index, but age and length composition data is not fitted. So without age composition data, Dirichlet-Multinomial parameters were removed from the model. Recruitment deviations were fixed at zero. The parameters that the ASPM estimated were the average F and annual F-deviations for each fleet, the catchability parameter for the SERFS trap/video index, and R_0 . These methods follow the basic workflow described by Carvalho et al. (2021, their section 3.2.2).

3.8 Retrospective Analysis

Retrospective analyses were run by reducing the terminal year of the model (2021) one year at a time (new terminal years 2016-2020), thereby trimming all time series accordingly, and rerunning the assessment model. This analysis facilitates investigation of patterns in model results, particularly terminal status estimates, that may occur when recent data are excluded.

Retrospective analyses should be interpreted with caution when data sources are not continuous between 2016 and 2021 (Figure 1). In this case the SERFS trap/video index was not available in 2020 and SERFS trap/video age compositions were not available in 2020 or 2021. The final year of recruitment deviations in each retrospective run was set to the terminal year minus three years to mirror the base run model configuration.

3.9 Monte Carlo/Bootstrap Ensemble (MCBE) Analysis

For the base run of the catch-age model (BAM), uncertainty in results and precision of estimates were computed through an ensemble modeling approach (Scott et al. 2016; Jardim et al. 2021) using a mixed Monte Carlo and bootstrap framework (Efron and Tibshirani 1993; Manly 1997). Monte Carlo and bootstrap methods are often used to characterize uncertainty in ecological studies, and the mixed approach has been applied successfully in previous SEDAR stock assessments (Restrepo et al. 1992; Legault et al. 2001; SEDAR68 2021; SEDAR73 2021; SEDAR76 2023). The approach is among those recommended for use in SEDAR assessments (SEDAR Procedural Guidance 2010).

The approach translates uncertainty in model input into uncertainty in model output, by fitting the model many times with different values of "observed" data and key input parameters. A chief advantage of the approach is that the results describe a range of possible outcomes, so that uncertainty is characterized more thoroughly than it could be by any single fit or small set of sensitivity runs. A minor disadvantage of the approach is that computation times can be long, though current parallel computing techniques largely mitigate those demands (i.e. multiple models can be run simultaneously rather than sequentially).

In this assessment, the BAM was re-fit in n = 2001 trials that differed from the original inputs by bootstrapping on data sources, and by Monte Carlo sampling of several key input parameters. Of the 2001 trials, 1878 were ultimately retained in the uncertainty analysis. The remaining runs were discarded because of poor model convergence (maximum gradient ≥ 0.1) or unrealistic values of $F_{40\%}[2019 - 2021]$ (≥ 5). A check was also conducted to see if any estimated parameters were near bounds (within 1% of the range between bounds from either bound) in each run, to see if they should be removed from the ensemble. The MCBE should be interpreted as providing an approximation to the uncertainty associated with each output. The results are approximate for two related reasons. First, not all combinations of Monte Carlo parameter inputs are equally likely, as biological parameters might be correlated. Second, all runs are given equal weight in the results, yet some might provide better fits to data than others.

3.9.1 Bootstrapping of Observed Data

To include uncertainty in time series of observed landings, discards, and indices of abundance, multiplicative lognormal errors were applied through a parametric bootstrap. To implement this approach in the MCBE trials, random variables $(x_{s,y})$ were drawn for each year y of time series s from a normal distribution with mean 0 and variance $\sigma_{s,y}^2$ [that is, $x_{s,y} \sim N(0, \sigma_{s,y}^2)$]. Annual observations were then perturbed from their original values $(\hat{O}_{s,y})$,

$$O_{s,y} = \hat{O}_{s,y} [\exp(x_{s,y} - \sigma_{s,y}^2/2)]$$
(5)

The term $\sigma_{s,y}^2/2$ is a bias correction that centers the multiplicative error on the value of 1.0. Standard deviations in log space were computed from CVs in arithmetic space, $\sigma_{s,y} = \sqrt{\log(1.0 + CV_{s,y}^2)}$. The CVs used to generate bootstrap data sets of landings and discards were supplied by the data providers (Table 3). The CVs used to generate bootstrap data sets of indices of abundance were the same as those used when fitting the assessment model (Table 4).

Uncertainty in age and length compositions were included by drawing new distributions for each year of each data source, following a multinomial sampling process. Ages (or lengths) of individual fish (Table 6) were drawn at random with replacement using the cell probabilities of the original data. For each year of each data source, the number of fish sampled was the same as in the original data (Table 4).

3.9.2 Monte Carlo Sampling

In each successive fit of the model, several parameters were fixed (i.e., not estimated) at values drawn at random from distributions described below.

Natural mortality The point estimate of natural mortality (M = 0.38) was provided by the SEDAR 82 Workshop Panel with some uncertainty. To carry forward this source of uncertainty, Monte Carlo sampling was used to generate deviations from the point estimate. A new M value was drawn for each MCBE trial from a uniform distribution between 0.2387 and 0.5313. In each run of the ensemble, a drawn value of constant M was then used to rescale natural mortality at age, as described for the base model above.

Standard deviation of recruitment deviations (σ_R) In the base model, the standard deviation of recruitment deviations (σ_R) was initialized at a value of 0.6 from a meta-analysis, and estimated with a normal prior with $\mu = 0.6$. For each MCBE trial, a new initial value was drawn from a truncated normal distribution defined by $\mu = 0.6$ and $\sigma = 0.15$ truncated to 0.3 to 1.0, and the prior updated to be centered at the randomly drawn value.

Discard mortalities Similarly, discard mortalities δ applied to discard fleets included in the base model (i.e. recreational discards) were subjected to Monte Carlo variation as follows. New values for all sources of discards were drawn for each MCBE trial from a uniform distribution (range [0.364, 0.814]). Recall that in the base model commercial discards were minimal and were combined with commercial landings outside the model. Therefore the discard mortality rate for commercial discards was not randomized in the MCBE process.

3.10 Projection Analysis

Projections were run to quantify future stock conditions given different values of fishing mortality rate. The structure of the projection model was the same as that of the assessment model, and parameter estimates were those from the assessment. Any time-varying quantities, such as selectivity, were fixed to the most recent values of the assessment period. A single selectivity curve was applied to calculate landings computed by averaging selectivities across fleets using geometric mean Fs from the last three years of the assessment period, similar to computation of $L_{\rm F40\%}$ benchmarks (section 3.5).

Expected values of SSB (time of peak spawning), F, recruits, and landings were represented by deterministic projections using parameter estimates from the base run. These projections were built on the estimated spawner-recruit relationship with bias correction, and were thus consistent with estimated benchmarks in the sense that long-term fishing at $F_{40\%}$ would yield $L_{F40\%}$ from a stock size at $SSB_{F40\%}$. Uncertainty in future time series was quantified through stochastic projections that extended the ensemble model fits of the stock assessment model.

3.10.1 Initialization

Although the terminal year of the assessment is 2021, the assessment model computes abundance at age (N_a) at the start of 2022. For projections, those estimates were used to initialize N_a . However, the assessment has no information to inform the strength of 2022 recruitment, and thus it computes 2022 recruits (N_1) as the expected value, that is, without deviation from the spawner-recruit curve, and corrected to be unbiased in arithmetic space. In the stochastic projections, lognormal stochasticity was applied to these abundances after adjusting them to be unbiased in log space, with variability based on the estimate of σ_R . Thus, the initial abundance in year one of projections (2022) included this variability in N_1 . The deterministic projections were not adjusted in this manner, because deterministic recruitment was set to mean recruitment.

Fishing rates that define the projections were assumed to start in 2024. Because the assessment period ended in 2021, the projections required an interim period (2022–2024). Fishing mortality during this interim period was set at the estimate of F_{current} from the assessment model.

3.10.2 Uncertainty

To characterize uncertainty in future stock dynamics stochasticity was included in replicate projections, each an extension of a single assessment fit from the ensemble. Thus, projections carried forward uncertainties in natural mortality and discard mortality, as well as in estimated quantities such as spawner-recruit parameters (R_0 and σ_R), selectivity curves, and in initial (start of 2022) abundance at age.

Initial and subsequent recruitment values were generated with stochasticity using a Monte Carlo procedure in which the estimated recruitment of each model within the ensemble is used to compute expected annual recruitment values (\bar{R}_y) . Variability is added to the mean values by choosing multiplicative deviations at random from a lognormal distribution,

$$R_y = \bar{R}_y \exp(\epsilon_y). \tag{6}$$

Here ϵ_y is drawn from a normal distribution with mean 0 and standard deviation σ_R , where σ_R is the standard deviation from the relevant ensemble model run.

The procedure generated 20,001 replicate projections of models within the ensemble drawn at random (with replacement). In cases where the same model run was drawn, projections would still differ as a result of stochasticity in projected recruitment streams. Central tendencies were represented by the deterministic projections of the base run, as well as by medians of the stochastic projections. Precision of projections was represented graphically by the 5^{th} and 95^{th} percentiles of the replicate projections.

3.10.3 Scenarios

In the projections, management started in 2024, the earliest year possible. Projections were carried forward to 2031. In all scenarios $F = F_{\text{current}}$ from 2022 to 2024:

- Scenario 1: $F = F_{40\%}$ from 2024 to 2031
- Scenario 2: $F = 75\% F_{40\%}$ from 2024 to 2031

4 Stock Assessment Results

4.1 Measures of Overall Model Fit

The Beaufort assessment model (BAM) generally fit well to the available data. Predicted age compositions from each fishery were reasonably close to observed data in most years. Fits to length compositions for the headboat recreational discards (rHD) were not quite as good (Figure 6,10, 14). The predicted distribution of lengths tended to be more platykurtic than the observed distribution. This is probably due to the fact that about 90% of the headboat discards fall into only three length bins (240 - 300 mm), the age-1 selectivity is fixed at 1.0, and the population growth model predicts a broader distribution of lengths at age-1 (Figure 3A). The model was configured to fit observed landings and discards closely (Figures 15, 16, 17, 18, 19, 20, 21, and 22). The fit to the SERFS trap/video index captured the general trend well but not all annual fluctuations (Figure 23).

4.2 Parameter Estimates

Estimates of all parameters from the catch-age model are shown in Appendix A. No parameters were hitting bounds. Estimates of management quantities and some key parameters, such as those of the mean-recruitment model, are reported in sections below.

4.3 Total Abundance, Spawning Biomass and Recruitment

Total abundance shows an early period of higher abundance prior to 1990. A drop and a pulse of increasing abundance occurs from 1990 - 1995, followed by a decline to 1998. Abundance is relatively steady for the remainder of the assessment period, punctuated by a second pulse of higher abundance from 2010 - 2016 (Figure 24 Table 7). The trend in total biomass is similar but shows a more gradual decline and leveling off, punctuated by the same two pulses (25; 8, and 9). These high periods appear to be driven by recruitment (red bars in Figure 24 and 25; Figure 26A), which is following trends in the SERFS trap/video index (Figure 23). The time series of landings, and to a lesser degree discards, tend to be positively correlated with abundance in the stock, showing relative highs similar to predicted biomass and a similar decrease from 1997 - 2000 (Figures 34 and 35; Tables 18, 19, 20 and 21). Total biomass and spawning stock biomass (SSB) show similar trends, but with major highs and lows shifted one year later for SSB (Figure 27; Table 10). Recruitment has fluctuated during the period when deviations were estimated (1990-2018) ranging from 2,378,084 to 7,138,726 fish with relative lows in 1990, 1997, and 2017 and peaks in 1994, 2012, and 2014. However, there is little evidence of a long term trend (Figure 26A; Table 10). Similarly, recruitment deviations showed fluctuations over this same period with no evidence of a long term trend (Figure 26B).

4.4 Selectivity

Selectivity of the SERFS trap/video index is shown in Figure 28. Selectivities of landings from commercial and recreational fleets are shown in Figures 29 and 30. selectivities of recreational discard fleets are shown in Figure 31. Recall that selectivities for a given fleet were the same for north and south areas. In the most recent years, full selection occurred near age-4 in the recreational fleets, age-5 in the commercial handline fleet, age-5 in the SERFS trap/video. Logistic selectivity functions were used for all landings fleets. Selectivities of discard mortalities had a negative exponential shape, with age at full selection fixed at age-1, an estimated 32% selection at age-2, and $\approx 0\%$ selection at age 3+ (Figure 31).

Average selectivities of landings were computed from F-weighted selectivities in the most recent period of regulations (Figure 32). These average selectivities were used to compute point estimates of benchmarks. All selectivities from the most recent period, including average selectivities, are tabulated in Table 11. In the average selectivity, full selection occurred near age-4, like the recreational fleets which are responsible for > 80% of the total removals in most years (Figures 34 and 35).

4.5 Fishing Mortality and Removals

Estimates of total F at age are shown in Table 13 and estimates of landings and discards at age (in numbers and pounds whole weight) are shown in Tables 14, 15, 16, 17. In any given year, the maximum F at age (i.e., apical F) may be less than that year's sum of fully selected Fs across fleets (e.g. 2016). This inequality exists because full selection occurs at different ages among gears.

The estimated fishing mortality rates (F) have generally increased over the assessment period (Figure 33; Tables 10 and 12), with local peaks in 1991, 1997, 2009, 2016, and 2020. The predominant source of fishing mortality is the general recreational fleet, particularly in recent decades. Most of the F is from the area south of the NC-VA border. Although fishing mortality in the north has been variable over time, on average, it has been a fairly steady proportion of total $F(F_{sum})$.

Estimated time series of landings and discards (in number and pounds whole weight) by fleet are shown in Tables 18, 19, 20, 21. The majority of estimated removals were from the general recreational fleet, followed by commercial handline, and recreational headboat (Figures 34, 35; Tables 18, 19). The proportion of total removals attributed to the general recreational fleet has increased over time.

4.6 Spawner-Recruitment Parameters

The mean recruit relationship and variability around that mean are shown in Figure 36. Values of recruitmentrelated parameters were as follows: unfished age-1 recruitment $\widehat{R}_0 = 4306649$, and standard deviation of recruitment residuals in log space $\widehat{\sigma}_R = 0.41$ (which resulted in bias correction of $\varsigma = 1.09$). Uncertainty in recruitment quantities were estimated through the MCBE analysis (Figure 37).

4.7 Per Recruit and Equilibrium Analyses

Yield per recruit and spawning potential ratio were each computed as functions of F. These computations applied the most recent selectivity patterns averaged across fleets, weighted by F from the last three years (2019–2021; Figures 38).

As in per recruit analyses, equilibrium removals and equilibrium spawning biomass were each computed as a functions of F (Figure 39). The equilibrium removals curve (or else equilibrium landings if discards are separated) is the curve from which F_{MSY} is typically estimated, as the value of F for which removals (landings) are maximized.

4.8 Benchmarks/Reference Points

As described in section 3.5, biological reference points (benchmarks) were derived analytically assuming equilibrium dynamics, corresponding to the mean-unbiased recruitment (Figure 36). Reference points estimated were $F_{40\%}$, $L_{F40\%}$, $D_{F40\%}$, $B_{F40\%}$, and $SSB_{F40\%}$. Based on $F_{40\%}$, three possible values of F at optimum yield (OY) were considered— $F_{OY} = 65\% F_{40\%}$, $F_{OY} = 75\% F_{40\%}$, and $F_{OY} = 85\% F_{40\%}$ —and for each, the corresponding yield was computed. Standard errors of benchmarks were approximated as those from MCBE analysis (section 3.9).

Maximum likelihood estimates (base run) of benchmarks, as well as median values from MCBE analysis, are summarized in Table 22. Point estimates of reference points were $F_{40\%} = 0.56 \text{ (y}^{-1})$, $L_{F40\%} = 1865 (1000 \text{ lb})$, $B_{F40\%} = 6266 \text{ (mt)}$, and $\text{SSB}_{F40\%} = 6951918 (10^{12} \text{ eggs})$. Median estimates were $F_{40\%} = 0.57 \text{ (y}^{-1})$, $L_{F40\%} = 1904 (1000 \text{ lb})$, $B_{F40\%} = 6389 \text{ (mt)}$, and $\text{SSB}_{F40\%} = 7.33 (10^{12} \text{ eggs})$. Note that the $L_{F40\%}$ values (proxies for MSY) correspond to landings plus the small amount of commercial dead discards pooled with commercial landings. Distributions of these benchmarks from the MCBE analysis are shown in Figure 40.

4.9 Status of the Stock and Fishery

The estimated time series of $F/F_{40\%}$ suggests that the fishing rate has been gradually increasing since the beginning of the assessment (1982) with overfishing in only a few years, including the most recent years (Table 10, Figure 41). Current fishery status in the terminal year, with current F represented by the geometric mean from years 2019-2021, was estimated by the base run to be $F/F_{40\%} = 1.16$ (Table 22). The fishery status was less certain than the stock status (Figures 42, 43). Of the MCBE runs, approximately 53.6% agreed with the base run that the stock is not currently experiencing overfishing.

4.10 Sensitivity Analyses

Sensitivity runs, described in section 3.3, may be useful for evaluating implications of assumptions in the base model, and for interpreting MCBE results in terms of expected effects from input parameters. Time series of $F/F_{40\%}$, SSB/MSST, recruitment (\bar{R}_y), and SSB are plotted for all runs in each sensitivity analysis. Summarized results presented in Table 23. For analyses where parameters were fixed at a sequence of values, only the runs associated with the lower and upper limits of the sequence are presented in Table 23.

Figures show sensitivity to initial F (F_{init} ; Figure 45), natural mortality rate (Figure 46), discard mortality rate (Figure 47), age error (Figure 48), using age comps from 1 to 8+ for all years (Figure 49), age-dependent batch fecundity (Figure 50), age-dependent batch number (Figure 51), age-dependent batch fecundity and batch number (Figure 52), estimating steepness (Figure 53), high 2016 value of general recreational discards in the south (Figure 54), start year of SERFS trap/video index (Figure 55), estimating a separate selectivity for general recreational (rGN) landings (Figure 56), weight on SERFS trap/video index (Figure 57), weight on SERFS trap/video age compositions (Figure 58), weight on all age compositions (Figure 59), and weight on all length compositions (Figure 60).

4.11 Age Structured Production Model (ASPM)

The fit to the SERFS trap/video index in the ASPM, suggested a gradual decline in abundance over the course of the assessment period, and failed to capture most interannual trend in the index (Figure 61). Comparing this with the base model index fit (Figure 61) suggests that estimation of recruitment deviations is necessary to adequately estimate the trend in the index. Results of the ASPM are presented in Figure 62 and Table 23. Without the influence of age or length composition information, the ASPM estimated a much higher R_0 value than the base model, suggesting that the size of the population is much larger. As a diagnostic, this suggests that for Gray Triggerfish, accounting for variability in recruitment is also important for estimating the scale of the spawning stock and the population.

4.12 Retrospective Analyses

Retrospective analyses did not suggest any patterns of substantial over- or underestimation in terminal-year estimates of $F/F_{40\%}$, SSB/MSST, recruitment (\bar{R}_y), and SSB (Figure 63).

4.13 Projections

Projection results with $F = F_{40\%}$ from 2024 to 2031 are shown in Figures 64, 65, and 66 and Table 24. Projection results with $F = 75\% F_{40\%}$ from 2024 to 2031 are shown in Figures 67, 68, and 69, and Table 25. Among all scenarios considered, the probability that SSB exceeds MSST [P(SSB > MSST)] is at least 0.7 in all years of all projections. Thus, under no management prescription considered in the projections thus far is the South Atlantic Gray Triggerfish stock predicted to be overfished.

5 Discussion

5.1 Comments on Assessment Results

Estimated benchmarks played a central role in this assessment. Values of MSST and $F_{40\%}$ were used to gauge the status of the stock and fishery. Computation of benchmarks was conditional on selectivity. If selectivity patterns change in the future, for example as a result of new size limits or different relative catch allocations among sectors estimates of benchmarks would likely change as well.

The base run of the BAM indicated that the stock is not overfished (SSB₂₀₂₁/MSST = 1.33), but that overfishing is occurring ($F_{2019-2021}/F_{40\%}$ = 1.16). Sensitivity runs and MCBE analyses show that that there is substantial uncertainty in these qualitative results, with considerably more uncertainty in the overfishing status than in the stock status. Almost half of the MCBE runs suggest that overfishing is not occurring. This is partly because the estimated *F*-status indicator $F/F_{40\%}$ is very close to the cutoff value of 1, so much of the distribution around $F/F_{40\%}$ is is below 1. Comparing the MCBE results (Figure 41) with sensitivity to natural mortality (Figure 46), it is clear that much of the uncertainty in this stock assessment was driven by variation in *M* over the range that was considered (0.2387-0.5313). This range was computed based on ranges chosen for other stock assessments in the South Atlantic region, which on average are 38% above and below the base value.

The ASPM diagnostic helped demonstrate that trends in abundance, indexed the SERFS trap/video survey, were not well explained by trends in removals. It was necessary to account for variability in recruitment to adequately fit the index. Similar patterns were presented an exampled provided by Carvalho et al. (2021). Furthermore, in the base model, the trend in recruitment was not well supported by information in the age compositions.

Results of several individual sensitivity runs suggest that stock status might be higher and fishery status might be lower than what is observed in the base run, for example, if there was no ageing error or if age-dependence of

fecundity was not taken into account. Such analyses demonstrate the importance of including these relationships in the model, but they are not considered equally valid to the base model.

In this assessment, removals were separated into north and south subfleets, along a management boundary, in the interest of providing separate catch advice for the South Atlantic council area, south of that boundary. The northern removals were not simply excluded because it is hypothesized that they are part of the same biological stock, though further research in population structure is warranted. Gray Triggerfish tends to be a warmer water species and observations of the species north of the North Carolina/Virginia border are more limited than in areas to the south. Seasonal patterns of spring absence and fall presence of juvenile and adult Gray Triggerfish north of 36° N latitude in the Northeast Fisheries Science Center Bottom Trawl Survey and other data sources may suggest immigration from the south during the warmer months. Tagging data exist for Gray Triggerfish caught in Virginia waters, but most recaptured fish were caught after a short period at large, nearly all between June and November. Evidence from mitochondrial (Antoni et al. 2011) and microsatellite (Antoni 2017; Antoni and Saillant 2017) DNA suggest that Gray Triggerfish are genetically homogeneous from the waters off of east Texas in the Gulf of Mexico to South Carolina (i.e. the northern extent of sampling in the western Atlantic) and even shows connectivity with fish collected in France. Long distance movement is suggested by genetic analysis of Gray Triggerfish in other regions, inviting investigation into north and south movement in the US Atlantic as well.

5.2 Comments on Projections

As usual, projections should be interpreted in light of the model assumptions and key aspects of the data. Some major considerations are the following:

- In general, projections of fish stocks are highly uncertain, particularly in the long term (e.g., beyond 5–10 years).
- Although projections included many major sources of uncertainty, they did not include structural (model) uncertainty. That is, projection results are conditional on one set of functional forms used to describe population dynamics, selectivity, recruitment, etc.
- Fisheries were assumed to continue fishing at their estimated current proportions of total effort, using the estimated current selectivity patterns. Benchmarks (e.g. $L_{F40\%}$) are conditional on the estimated selectivity functions and the relative contributions of each fleet's fishing mortality. New management regulations that reallocate harvest in a way that alters proportions of F by fleet or selectivity patterns would likely affect projection results.
- The projections assumed that the estimated spawner-recruit relationship applies in the future and that past residuals represent future uncertainty in recruitment. If future recruitment is characterized by runs of large or small year classes or an overall trend in average recruitment, possibly due to environmental or ecological conditions, stock trajectories will be affected.
- Projections apply the Baranov catch equation to relate F and landings using a one-year time step, as in the assessment. The catch equation implicitly assumes that mortality occurs throughout the year. This assumption is violated when seasonal closures are in effect, introducing additional and unquantified uncertainty into the projection results.

6 Research Recommendations

Although it is difficult to estimate the duration of potential research projects, research recommendations have been divided into short and long term groups. Recommendations in the short term group largely suggest further analysis

of existing data, and progress may be made relatively quickly. But any of the recommendations could potentially be developed into short or long term projects.

 $\mathbf{S} \mathrm{hort} \ \mathrm{term}$

- Continue to investigate aging methods and aging error: Are spines the best way to age triggerfish? What are the limits of spine based age readings? Increase the number of age samples used to estimate an age-error matrix and consider multiple sources of error. In this assessment, age-error due to differences in aging otoliths versus spines was characterized. But other sources of error, such as error between readers, could also be important.
- Refine estimates of age-dependent reproductive output and associated relationships (i.e. maturity, batch fecundity, and batch number) considering the newest methodologies.
- Investigate methods for standardizing age or length composition data available US South Atlantic Gray Triggerfish, accounting for covariates (e.g. depth, latitude, longitude, time of year).

Long term

- Improve understanding of recruitment, stock structure and potential range shifts in the Atlantic Ocean, including areas outside of SAFMC jurisdiction and outside of the US EEZ.
- Expand fishery independent information to northern areas, maintaining consistent sampling for the SERFS trap/video index of abundance and age compositions.
- Develop direct estimates of natural mortality and associated uncertainty.

otPer

• Investigate temporal variation in recruitment and survivorship, considering potential environmental relationships.

SEDAR 82 SAR Section III

7 References

- Antoni, L., 2017. Population Structure, Connectivity, and Phylogeography of Two Balistidae with High Potential for Larval Dispersal: Balistes capriscus and Balistes vetula. Ph. d. diss.
- Antoni, L., N. Emerick, and E. Saillant. 2011. Genetic variation of gray triggerfish in US waters of the Gulf of Mexico and Western Atlantic Ocean as inferred from mitochondrial DNA sequences. North American Journal of Fisheries Management 31:714–721.
- Antoni, L., and E. Saillant. 2017. Spatial connectivity in an adult-sedentary reef fish with extended pelagic larval phase. Molecular ecology **26**:4955–4965.
- Bacheler, N. M., R. T. Cheshire, and K. W. Shertzer. 2022. Standardized video counts of southeast US Atlantic gray triggerfish (*Balistes capriscus*) from the Southeast Reef Fish Survey. SEDAR, North Charleston, SC SEDAR82-DW04:16.
- Baranov, F. I. 1918. On the question of the biological basis of fisheries. Nauchnye Issledovaniya Ikhtiologicheskii Instituta Izvestiya 1:81–128.
- Brooks, E. N. 2024. Pragmatic approaches to modeling recruitment in fisheries stock assessment: A perspective. Fisheries Research **270**:106896.
- Brooks, E. N., J. E. Powers, and E. Cortes. 2010. Analytical reference points for age-structured models: application to data-poor fisheries. ICES Journal of Marine Science 67:165–175. URL (GotoISI)://WOS:000272687300016.
- Bubley, W. J., and C. M. Willis. 2022. Gray Triggerfish Fishery-Independent Index of Abundance and Length/Age Compositions in US South Atlantic Waters Based on a Chevron Trap Survey (1990-2021). SEDAR, North Charleston, SC SEDAR82-DW05:21.
- Butterworth, D. S., and R. A. Rademeyer. 2008. Statistical catch-at-age analysis vs. ADAPT-VPA: the case of Gulf of Maine cod. ICES Journal of Marine Science **65**:1717–1732.
- Carvalho, F., A. E. Punt, Y.-J. Chang, M. N. Maunder, and K. R. Piner. 2017. Can diagnostic tests help identify model misspecification in integrated stock assessments? Fisheries Research .
- Carvalho, F., H. Winker, D. Courtney, M. Kapur, L. Kell, M. Cardinale, M. Schirripa, T. Kitakado, D. Yemane, K. R. Piner, M. N. Maunder, I. G. Taylor, C. R. Wetzel, K. Doering, K. F. Johnson, and R. D. Methot. 2021. A cookbook for using model diagnostics in integrated stock assessments. Fisheries Research 240:18.
- Clark, W. G. 2002. $F_{35\%}$ revisited ten years later. North American Journal of Fisheries Management 22:251–257.
- Conn, P. B. 2010. Hierarchical analysis of multiple noisy abundance indices. Canadian Journal of Fisheries and Aquatic Sciences .
- Conn, P. B., E. H. Williams, and K. W. Shertzer. 2010. When can we reliably estimate the productivity of fish stocks? Canadian Journal of Fisheries and Aquatic Sciences 67:511–523.
- Cubillos, L. A., A. Hernández, A. Sepúlveda, and D. F. Arcos. 2002. Equilibrium yield-curve analysis through an analytic age-structured production model: A sensitivity study for the Chilean jack mackerel fishery. Fisheries research 54:395–407.
- Dichmont, C. M., R. A. Deng, A. E. Punt, J. Brodziak, Y.-J. Chang, J. M. Cope, J. N. Ianelli, C. M. Legault, R. D. Methot Jr, C. E. Porch, M. H. Prager, and K. W. Shertzer. 2016. A review of stock assessment packages in the United States. Fisheries Research 183:447–460.
- Efron, B., and R. Tibshirani. 1993. An Introduction to the Bootstrap. Chapman and Hall, London.

- Farmer, N. A., W. D. Heyman, M. Karnauskas, S. Kobara, T. I. Smart, J. C. Ballenger, M. J. Reichert, D. M. Wyanski, M. S. Tishler, and K. C. Lindeman. 2017. Timing and locations of reef fish spawning off the southeastern United States. PLoS One 12:e0172968.
- Field, J. G., C. L. Moloney, L. du Buisson, A. Jarre, T. Stroemme, M. R. Lipinski, and P. Kainge. 2008. Exploring the BOFFFF hypothesis using a model of southern African deepwater hake (Merluccius paradoxus). Fisheries for global welfare and environment, 5th World Fisheries Congress pages 17–26.
- Fitzpatrick, E. E. 2022a. South Atlantic U.S. gray triggerfish (Balistes capriscus) age and length composition from the commercial fisheries. National Marine Fisheries Service (NMFS), Southeast Fisheries Science Center (SEFSC), Sustainable Fisheries Division. Beaufort, NC. SEDAR82-AW02. SEDAR, North Charleston, SC. page 13.
- Fitzpatrick, E. E. 2022b. South Atlantic U.S. gray triggerfish (Balistes capriscus) age and length composition from the recreational fisheries. National Marine Fisheries Service (NMFS), Southeast Fisheries Science Center (SEFSC), Sustainable Fisheries Division. Beaufort, NC. SEDAR82-AW01. SEDAR, North Charleston, SC. page 17.
- Fournier, D., and C. P. Archibald. 1982. A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences 39:1195–1207.
- Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27:233–249.
- Francis, R. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences **68**:1124–1138.
- Francis, R. 2014. Replacing the multinomial in stock assessment models: A first step. Fisheries Research 151:70-84.
- Francis, R. 2017. Revisiting data weighting in fisheries stock assessment models. Fisheries Research 192:5–15.
- Gabriel, W. L., and P. M. Mace, 1999. A review of biological reference points in the context of the precautionary approach. NOAA Technical Memorandum-F/SPO-40.
- Geromont, H., and D. Butterworth. 1999. SCRS/98/77 A fleet-disaggregated age-structured production model for application to Atlantic bluefin tuna. Collective Volume of Scientific Papers ICCAT **49**:403–415.
- Gower, J., and S. King. 2019. Seaweed, seaweed everywhere. Science 365:27–27.
- Hartford, W. J., S. R. Sagarese, and M. Karnauskas. 2019. Coping with information gaps in stock productivity for rebuilding and achieving maximum sustainable yield for grouper-snapper fisheries. Fish and Fisheries 20:303– 321.
- Hewitt, D. A., and J. M. Hoenig. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin 103:433–437.
- Hilborn, R. 1990. Estimating the parameters of full age-structured models from catch and abundance data. Bull. Int. N. Pacific Fish Comm 50:207–213.
- Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 81:898-903.
- ICES. 2008. Report of the Working Group on Fish Ecology (WGFE), 3-7 March 2008, ICES, Copenhagen, Denmark. ICES CM 2008/LRC:04 page 120.
- ICES. 2009. Report of the Working Group on Fish Ecology (WGFE), 26–30 October 2009, ICES Headquarters, Copenhagen. ICES CM 2009/LRC:08 page 133.
- Jardim, E., M. Azevedo, J. Brodziak, E. N. Brooks, K. F. Johnson, N. Klibansky, C. P. Millar, C. Minto, I. Mosqueira, R. D. M. Nash, P. Vasilakopoulos, and B. K. Wells. 2021. Operationalizing ensemble models for scientific advice to fisheries management. ICES Journal of Marine Science URL https://doi.org/10.1093/icesjms/fsab010.

- Johns, E. M., R. Lumpkin, N. F. Putman, R. H. Smith, F. E. Muller-Karger, D. T. Rueda-Roa, C. Hu, M. Wang, M. T. Brooks, and L. J. Gramer. 2020. The establishment of a pelagic Sargassum population in the tropical Atlantic: Biological consequences of a basin-scale long distance dispersal event. Journal of Progress in Oceanography 182:102269.
- Johnson, K. F., A. E. Punt, J. T. Thorson, and I. G. Taylor, 2023. nwfscAgeingError: Source Code for Punt et al. (2008): Ageing Error and Imprecision. URL http://github.com/pfmc-assessments/nwfscAgeingError.
- Kimura, D. K., and J. V. Tagart. 1982. Stock reduction analysis, another solution to the catch equations. Canadian Journal of Fisheries and Aquatic Sciences **39**:1467–1472.
- Legault, C. M., and E. N. Brooks. 2013. Can stock–recruitment points determine which spawning potential ratio is the best proxy for maximum sustainable yield reference points? ICES Journal of Marine Science **70**:1075–1080.
- Legault, C. M., J. E. Powers, and V. R. Restrepo. 2001. Mixed Monte Carlo/bootstrap approach to assessing king and Spanish mackerel in the Atlantic and Gulf of Mexico: Its evolution and impact. Amercian Fisheries Society Symposium 24:1–8.
- Li, B., K. W. Shertzer, P. D. Lynch, J. N. Ianelli, C. M. Legault, E. H. Williams, R. D. Methot Jr, E. N. Brooks, J. J. Deroba, A. M. Berger, S. R. Sagarese, J. K. T. Brodziak, I. G. Taylor, M. A. Karp, C. R. Wetzel, and M. Supernaw. 2021. A comparison of 4 primary age-structured stock assessment models used in the United States. Fishery Bulletin 119:149–167.
- Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of Fish Biology **49**:627–642.
- Ludwig, D., and C. J. Walters. 1985. Are age-structured models appropriate for catch-effort data? Canadian Journal of Fisheries and Aquatic Sciences **42**:1066–1072.
- Manly, B. F. J. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biolog, 2nd edition. Chapman and Hall, London.
- Maunder, M. N., and K. R. Piner. 2017. Dealing with data conflicts in statistical inference of population assessment models that integrate information from multiple diverse data sets. Fisheries Research **192**:16–27.
- McCarthy, K., S. G. Smith, S. Atkinson, E. Fitzpatrick, G. Decossas, S. M. Rivera, S. Alhale, and J. Díaz. 2022. Commercial Discard Estimation of South Atlantic Gray Triggerfish. SEDAR82-AW03. SEDAR, North Charleston, SC. page 46.
- Megrey, B. A. 1989. Review and comparison of age-structured stock assessment models. American Fisheries Society Symposium **6**:8–48.
- Methot, R. D., and C. R. Wetzel. 2013. Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research 142:86–99.
- Musick, S., and L. Gillingham. 2022. Virginia Game Fish Tagging Program Annual Report 2021. VIMS Marine Resource Report No. 2022-3. Virginia Institute of Marine Science, William and Mary.
- Nishida, T., N. Miyabe, H. Shono, T. Matsumoto, and C.-C. Hsu. 2001. Stock assessment of bigeye tuna (Thunnus obesus) resources in the indian ocean by the age structured production model (ASPM) analyses. IOTC Proceedings 4:461–471.
- Nishida, T., and R. Rademeyer, 2011. Stock and risk assessments on bigeye tuna (Thunnus obesus) in the Indian Ocean based on AD Model Builder implemented Age-Structured Production Model (ASPM). Report, IOTC-2011-WPTT-42.
- Pennington, M., and J. H. Volstad. 1994. Assessing the effect of intra-haul correlation and variable density on estimates of population characteristics from marine surveys. Biometrics **50**:725–732.

- Porch, C. E. 2003. A preliminary assessment of Atlantic white marlin (Tetrapturus albidus) using a statespace implementation of an age-structured production model. Col. Vol. Sci. Pap. Int. Comm. Conserv. Atl. Tunas 55:559–527.
- Punt, A. E., D. C. Smith, K. KrusicGolub, S. J. C. J. o. F. Robertson, and A. Sciences. 2008. Quantifying agereading error for use in fisheries stock assessments, with application to species in Australia's southern and eastern scalefish and shark fishery 65:1991–2005.

Quinn, T. J., and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New York, New York.

- Responsive Management. 2022. Southeast Florida and South Carolina Anglers' Release Practices and Their Attitudes Toward Descending Devices. Responsive Management Report. 130 Franklin Street Harrisonburg, VA 22801. www.responsivemanagement.com .
- Restrepo, V. 1997. An implementation of the age-structured production model with application to West Atlantic bluefin tuna fisheries. Collective Volume of Scientific Papers ICCAT **46**:348–356.
- Restrepo, V. R., J. M. Hoenig, J. E. Powers, J. W. Baird, and S. C. Turner. 1992. A simple simulation approach to risk and cost analysis, with applications to swordfish and cod fisheries. Fishery Bulletin **90**:736–748.
- Restrepo, V. R., and C. M. Legault. 1998. A stochastic implementation of an age-structured production model. Collective Volume of Scientific Papers ICCAT **48**:277–288.
- Ricard, D., and M. Basson. 2002. Application of an age-structured production model (ASPM) to the Indian Ocean bigeye tuna (Thunnus obesus) resource. IOTC Proceedings **5**:189–202.
- Schaub, M., M. N. Maunder, M. Kéry, J. T. Thorson, E. K. Jacobson, and A. E. Punt. 2024. Lessons to be learned by comparing integrated fisheries stock assessment models (SAMs) with integrated population models (IPMs). Fisheries Research 272:106925.
- Scott, F., E. Jardim, C. Millar, and S. Cervino. 2016. An applied framework for incorporating multiple sources of uncertainty in fisheries stock assessments. PLOS ONE 11:1–21.
- SEDAR Procedural Guidance, 2010. SEDAR Procedural Workshop IV: Characterizing and Presenting Assessment Uncertainty.
- SEDAR41. 2016. SEDAR 41 Stock Assessment Report: South Atlantic Gray Triggerfish. SEDAR, North Charleston SC page 428.
- SEDAR68. 2021. SEDAR 68 South Atlantic Scamp Stock Assessment Report. SEDAR, North Charleston SC page 194. URL http://sedarweb.org/sedar-68.
- SEDAR73. 2021. SEDAR 73 South Atlantic Red Snapper Stock Assessment Report. SEDAR, North Charleston SC page 194. URL http://sedarweb.org/sedar-73.
- SEDAR76. 2023. SEDAR 76 South Atlantic Black Sea Bass Stock Assessment Report. SEDAR, North Charleston SC page 182. URL http://sedarweb.org/sedar-73.
- SEDAR82-DW. 2023. SEDAR 82 South Atlantic Gray Triggerfish Data Workshop Final Report. SEDAR, North Charleston SC page 258. URL https://sedarweb.org/documents/sedar-82-south-atlantic-gray-triggerfish-data-workshop-report/.
- SFB-NMFS. 2016a. Age structured production model (ASPM) for U.S. South Atlantic Gray Triggerish (Balistes capriscus) SEDAR41-RW03. SEDAR, North Charleston SC page 23.
- SFB-NMFS, 2016b. Age structured production model (ASPM) for U.S. South Atlantic Red Snapper (Lutjanus campechanus). SEDAR41-RW02. Report, SEDAR, North Charleston, SC.
- Shertzer, K. W., M. H. Prager, D. S. Vaughan, and E. H. Williams, 2008. Fishery models. Pages 1582–1593 in S. E. Jorgensen and F. Fath, editors. Population Dynamics. Vol. [2] of Encyclopedia of Ecology, 5 vols. Elsevier, Oxford.
- Thorson, J. T., K. F. Johnson, R. D. Methot, and I. G. Taylor. 2017. Model-based estimates of effective sample size in stock assessment models using the Dirichlet-multinomial distribution. Fisheries Research 192:84–93.
- Wang, M., C. Hu, B. B. Barnes, G. Mitchum, B. Lapointe, and J. P. Montoya. 2019. The great Atlantic Sargassum *belt.* Science **365**:83–87.
- Williams, E. H., and K. W. Shertzer, 2015. Technical documentation of the Beaufort Assessment Model (BAM). NOAA Technical Memorandum-NMFS-SEFSC-671.
- Zhou, S., A. E. Punt, Y. Lei, R. A. Deng, and S. D. Hoyle. 2020. Identifying spawner biomass per-recruit reference points from life-hisotry parameters. Fish and Fisheries 21:760–773.

er bi ier bi ier bilder ich bilde

8 Tables

Jot Reviewed

Table 1. Life-history characteristics at age. Variables include size information of fish at midyear: fork length for the population (FL) and landings (FL_L) in millimeters (mm), whole weight (WW) in kilograms (kg) and pounds (lb) for the population. Other variables include proportion female (P_{fem}), proportion of females mature ($P_{\text{fem.mat}}$), batch fecundity (f_{batch}) and number of batches (n_{batch}) of individual females. Reproductive value (reprod) is an SSB analog in units of million eggs produced per fish in the population. M = natural mortality.

Age	$FL_{pop} (mm)$	$FL_L (mm)$	WW (kg)	WW (lb)	$P_{\rm fem}$	$P_{\rm fem.mat}$	$f_{\rm batch}$	$n_{\rm batch}$	reprod	M
1	256	321	0.39	0.86	0.59	0.75	0.45	0.10	0.02	0.61
2	312	343	0.70	1.55	0.55	0.93	0.94	2.10	1.01	0.51
3	351	362	0.99	2.19	0.56	0.98	1.27	3.30	2.31	0.46
4	378	380	1.24	2.73	0.53	1.00	1.51	4.30	3.44	0.43
5	397	395	1.44	3.17	0.55	1.00	1.68	6.30	5.81	0.41
6	410	409	1.58	3.49	0.55	1.00	1.79	6.30	6.21	0.40
7	419	421	1.69	3.73	0.55	1.00	1.87	6.30	6.50	0.39
8	426	432	1.77	3.91	0.55	1.00	1.93	6.30	6.69	0.39
		JO'	20	s S	6	je				

Table 2. Observed time series of landings (L) and discards (D) for commercial handline landings, south (L.cHLs); commercial handline landings, north (L.cHLn); recreational headboat landings, south (L.rHBs); general recreational landings, south (L.rGNs); general recreational landings, north (L.rGNn); recreational headboat discards, south (D.rHDs); general recreational discards, south (D.rGDs); and general recreational discards, north (D.rGDn). Commercial landings are in units of 1000 lb whole weight. Recreational landings and all discards are in units of 1000 fish.

Year	L.cHLs	L.cHLn	L.rHBs	L.rGNs	L.rGNn	D.rHDs	D.rGDs	D.rGDn
1982	96.64	0.10	29.50	91.17	0.51	3.32	27.53	0.10
1983	68.30	0.90	28.61	75.95	51.41	13.09	271.57	0.10
1984	73.68	0.82	26.90	221.80	3.07	5.92	45.81	0.10
1985	68.42	0.75	35.60	97.94	5.72	12.94	58.86	0.10
1986	68.70	0.67	28.37	51.64	22.59	7.16	169.93	0.84
1987	73.97	0.59	29.58	75.30	70.36	21.06	138.60	4.90
1988	80.95	0.52	34.93	160.64	1.85	34.97	83.68	4.44
1989	97.32	0.44	37.37	228.61	60.15	1.11	348.18	3.97
1990	191.67	0.36	71.70	184.32	50.15	1.57	60.79	37.38
1991	270.91	1.24	85.53	577.08	59.06	2.04	475.37	9.94
1992	262.23	0.89	91.73	262.11	23.17	1.31	218.49	4.69
1993	324.98	4.48	107.07	215.51	64.69	1.46	69.73	9.71
1994	372.84	17.97	90.39	118.10	57.09	1.61	78.17	7.53
1995	472.22	19.80	93.37	78.69	61.50	6.12	98.04	5.20
1996	433.61	16.70	89.95	118.10	118.44	1.92	118.15	48.48
1997	548.83	15.15	106.17	113.83	445.10	2.65	72.85	24.44
1998	408.76	8.58	65.86	79.30	26.35	6.40	39.80	8.10
1999	272.26	10.07	37.22	119.76	1.58	10.15	89.68	1.87
2000	196.18	5.17	34.09	99.51	29.21	3.67	105.49	6.52
2001	215.37	5.16	32.98	93.93	34.24	3.59	61.73	13.44
2002	192.13	15.29	57.63	191.36	71.67	17.25	142.78	8.38
2003	182.85	11.43	45.75	217.29	31.52	5.83	193.19	8.94
2004	243.26	8.90	78.07	202.43	132.34	20.65	177.03	21.84
2005	267.42	5.89	63.58	143.93	111.13	26.73	163.09	2.14
2006	238.18	5.05	43.15	253.24	7.00	16.03	166.61	2.84
2007	316.18	10.60	66.40	389.02	65.15	10.56	246.52	50.82
2008	320.40	5.75	44.76	322.04	14.10	6.50	173.74	1.66
2009	355.47	15.92	59.94	438.06	168.09	6.15	254.21	44.02
2010	441.72	11.45	68.81	317.65	75.72	11.42	146.04	41.17
2011	481.73	17.56	53.36	214.51	27.42	6.80	79.18	8.26
2012	280.64	34.38	49.10	194.69	131.39	7.47	112.11	10.82
2013	317.58	25.80	56.49	265.83	48.90	5.16	188.01	21.77
2014	275.90	10.62	53.11	410.45	161.22	7.16	247.26	12.09
2015	342.50	5.14	45.97	188.92	38.11	17.83	316.73	19.05
2016	308.18	7.61	37.84	724.98	75.04	39.58	1470.94	32.01
2017	323.64	26.31	43.36	421.06	115.93	16.83	413.00	13.36
2018	313.96	19.63	35.09	251.86	147.57	14.07	362.68	26.46
2019	321.79	12.94	35.77	304.86	147.69	15.60	283.32	26.69
2020	310.72	8.24	28.14	352.51	258.50	8.55	145.70	69.69
2021	210.23	9.04	26.19	464.52	124.24	8.61	358.12	25.22

Table 3. Observed time series of CVs used in the Monte Carlo/Bootstrap Ensemble (MCBE) associated with landings (L) and discards (D) for commercial handline landings, south (L.cHLs); commercial handline landings, north (L.cHLn); recreational headboat landings, south (L.rHBs); general recreational landings, south (L.rGNs); general recreational landings, north (L.rGNn); recreational headboat discards, south (D.rHDs); general recreational discards, south (D.rGDs); and general recreational discards, north (D.rGDn). These CVs were used to generate bootstrap data sets in the ensemble model analysis only. When fitting to landings and discards the assessment model, CVs of 0.05 were used.

Year	L.cHLs	L.cHLn	L.rHBs	L.rGNs	L.rGNn	D.rHDs	D.rGDs	D.rGDn
1982	0.10	0.10	0.35	0.34	0.34	0.58	0.68	0.68
1983	0.10	0.10	0.39	0.39	0.39	0.54	0.71	0.71
1984	0.10	0.10	0.34	0.37	0.37	0.34	0.69	0.69
1985	0.10	0.10	0.53	0.57	0.57	0.46	0.63	0.63
1986	0.10	0.10	0.52	0.35	0.35	0.78	0.52	0.52
1987	0.10	0.10	0.45	0.40	0.40	0.56	0.38	0.38
1988	0.10	0.10	0.45	0.41	0.41	0.60	0.32	0.32
1989	0.10	0.10	0.53	0.35	0.35	0.54	0.27	0.27
1990	0.10	0.10	0.62	0.22	0.22	0.47	-0.35	0.35
1991	0.10	0.10	0.62	0.38	0.38	0.35	0.47	0.47
1992	0.10	0.10	0.58	0.24	0.24	0.27	0.22	0.22
1993	0.10	0.10	0.29	0.28	0.28	0.33	0.26	0.26
1994	0.06	0.06	0.34	0.18	0.18	0.26	0.32	0.32
1995	0.06	0.06	0.33	0.19	0.19	0.24	0.27	0.27
1996	0.06	0.06	0.32	0.26	0.26	0.28	0.34	0.34
1997	0.07	0.07	0.27	0.73	0.73	0.36	0.30	0.30
1998	0.06	0.06	0.31	0.31	0.31	0.31	0.25	0.25
1999	0.07	0.07	0.28	0.19	0.19	0.37	0.21	0.21
2000	0.07	0.07	0.35	0.27	0.27	0.34	0.22	0.22
2001	0.08	0.08	0.42	0.21	0.21	0.25	0.20	0.20
2002	0.06	0.06	0.45	0.18	0.18	0.20	0.21	0.21
2003	0.06	0.06	0.47	0.25	0.25	0.26	0.25	0.25
2004	0.05	0.05	0.48	0.23	0.23	0.17	0.22	0.22
2005	0.05	0.05	0.41	0.23	0.23	0.30	0.18	0.18
2006	0.05	0.05	0.46	0.27	0.27	0.31	0.25	0.25
2007	0.05	0.05	0.42	0.16	0.16	0.31	0.18	0.18
2008	0.05	0.05	0.49	0.20	0.20	0.49	0.18	0.18
2009	0.05	0.05	0.15	0.17	0.17	0.15	0.35	0.35
2010	0.05	0.05	0.16	0.18	0.18	0.16	0.23	0.23
2011	0.05	0.05	0.10	0.23	0.23	0.10	0.23	0.23
2012	0.06	0.06	0.09	0.21	0.21	0.09	0.27	0.27
2013	0.05	0.05	0.10	0.18	0.18	0.10	0.29	0.29
2014	0.05	0.05	0.08	0.21	0.21	0.08	0.20	0.20
2015	0.05	0.05	0.07	0.18	0.18	0.07	0.22	0.22
2016	0.05	0.05	0.06	0.37	0.37	0.06	0.35	0.35
2017	0.05	0.05	0.08	0.16	0.16	0.08	0.23	0.23
2018	0.05	0.05	0.05	0.16	0.16	0.05	0.26	0.26
2019	0.05	0.05	0.06	0.21	0.21	0.06	0.25	0.25
2020	0.05	0.05	0.06	0.29	0.29	0.06	0.33	0.33
2021	0.05	0.05	0.05	0.24	0.24	0.05	0.26	0.26

-	Year	sTVs	cv.sTVs	
-	1982			
	1983			
	1984			
	1985			
	1986			
	1987			
	1988			
	1989			
	1990		•	
	1991	1.274	0.146	
	1992	0.880	0.164	
	1993	0.777	0.142	
	1994	1.095	0.140	
	1995	1.363	0.132	
	1996	1.690	0.130	
	1997	1.993	0.143	
	1998	1.706	0.151	
	1999	0.893	0.180	
	2000	0.689	0.206	
	2001	0.946	0.141	X
	2002	1.403	0.160	
	2003	0.636	0.240	
	2004	1.117	0.162	
	2005	0.768	0.151	
	2006	0.653	0.181	
	2007	0.809	0.157	
	2008	0.871	0.172	
	2009	0.641	0.174	
	2010	0.500	0.151	
	2011	0.834	0.110	
	2012	1.087	0.088	
	2013	1.240	0.086	
	2014	1.213	0.086	
	2015	0.899	0.081	
	2010	1.201	0.090	
	2017	1.190	0.081	
	2018	0.854 0.007	0.086	
	2019 2020	0.907	0.094	
	2020 2021	0.536	0.165	
•	2021	0.550	0.100	

Table 4. Observed index of abundance and CVs from the SERFS trap/video survey (sTVs).

Table 5. Sample sizes (number of trips) for age compositions (ac) or length compositions (lc) for commercial handline, south, early years (cHLsa); commercial handline, south, late years (cHLsb); recreational headboat, south, early years (rHBsa); recreational headboat, south, late years (rHBsb); SERFS trap video survey, south, early years (sTVsa); SERFS trap video survey, south, late years (sTVsb); and recreational headboat discards, south, all years (rHDs). In early years (1982-2014), the assessment fit to ages 1-5+ and in the late years (2015-2021), it fit to ages 1-8+.

Year	ac.cHLsa	ac.cHLsb	ac.rHBsa	ac.rHBsb	ac.sTVsa	ac.sTVsb	lc.rHDs
1982							
1983							
1984							
1985							
1986							
1987							
1988						• •	
1989							
1990			10				•
1991			21		56		
1992					85		•
1993					119	· ·	
1994					151	· ·	•
1995					145		
1996					175		•
1997				•	185		•
1998				0	122		
1999					62		
2000					90		
2001	•	•	•	· ·	91		•
2002			· · ·	•	107		
2003			18	•	34		
2004	25	•	· · ·	•	79		•
2005		•	18		100		44
2006	87		30		68		42
2007	196		51		100		41
2008	205		10		64		28
2009	178	· ·	26	•	79		49
2010	214		53	•	97		48
2011	213		35	•	116		31
2012	111	•	46	•	190		36
2013	97	•	134	•	281		40
2014	68		171		304		48
2015		121		133		191	70
2016		68		238		177	96
2017		55		165		195	82
2018		43		137		153	79
2019		40		51		158	87
2020		33	•				10
2021							

Table 6. Sample sizes (number of fish) for age compositions (ac) or length compositions (lc) for commercial handline, south, early years (cHLsa); commercial handline, south, late years (cHLsb); recreational headboat, south, early years (rHBsa); recreational headboat, south, late years (rHBsb); SERFS trap video survey, south, early years (sTVsa); SERFS trap video survey, south, late years (sTVsb); and recreational headboat discards, south, all years (rHDs). In early years (1982-2014), the assessment fit to ages 1-5+ and in the late years (2015-2021), it fit to ages 1-8+.

Year	ac.cHLsa	ac.cHLsb	ac.rHBsa	ac.rHBsb	ac.sTVsa	ac.sTVsb	lc.rHDs
1982						•	
1983							
1984							
1985							
1986							
1987							
1988						• •	
1989							
1990			18				
1991			37		302	0	
1992					165	ΥΟ.	
1993					976		
1994					393		
1995					568		
1996					1142		
1997					726		
1998				C.	457		
1999					181		
2000				· ·	220		
2001				· ·	224		
2002			· ·	•	313		
2003			35		72		
2004	187		· · · ·		193		•
2005			66		337		110
2006	461		129		175		102
2007	673	· · ·	97		330		111
2008	734		18		272		89
2009	686	X.	27		238		124
2010	976		97		197		118
2011	1262	•	65	•	338		59
2012	760		137		451		61
2013	563		502		909		143
2014	423		557		976		212
2015		677		286		296	378
2016		292		594		295	440
2017		191	•	404	•	299	420
2018		112		291		298	358
2019		129		92		294	412
2020		104					50
2021							

Year	1	2	3	4	5	6	7	8	Total
1982	4687.90	2504.81	1490.38	913.82	563.16	352.53	222.81	393.32	11128.73
1983	4687.90	2527.49	1494.97	915.04	563.48	352.53	222.80	393.30	11157.52
1984	4687.90	2372.84	1477.12	911.63	559.18	349.63	220.85	389.83	10968.99
1985	4687.90	2513.74	1408.55	882.65	537.18	333.88	210.74	371.77	10946.41
1986	4687.90	2502.30	1494.62	861.09	541.10	334.40	209.85	369.79	11001.05
1987	4687.90	2437.69	1477.05	920.84	535.26	341.80	213.28	373.39	10987.21
1988	4687.90	2445.05	1437.36	896.36	557.50	328.82	211.99	367.50	10932.47
1989	4687.90	2470.37	1445.36	867.47	537.17	338.76	201.71	359.04	10907.79
1990	2981.84	2329.30	1427.27	845.44	492.46	308.20	196.17	327.97	8908.65
1991	6044.29	1561.95	1368.21	832.38	473.73	277.96	175.51	301.45	11035.48
1992	5004.72	2955.20	881.92	699.47	368.86	208.22	123.11	213.34	10454.84
1993	5988.46	2580.42	1713.74	484.49	349.00	183.35	104.32	170.24	11574.01
1994	7138.73	3198.26	1513.30	940.30	238.78	170.63	90.31	136.57	13426.87
1995	6086.70	3820.31	1888.14	867.67	498.57	125.93	90.68	121.77	13499.77
1996	3361.89	3239.36	2256.17	1098.84	470.07	268.53	68.34	116.42	10879.64
1997	2378.08	1733.64	1891.75	1303.49	593.64	253.32	145.86	101.35	8401.12
1998	2864.19	1232.29	1003.05	1007.55	607.69	273.25	117.43	115.72	7221.16
1999	3280.60	1521.03	728.74	593.61	567.68	342.41	155.22	133.75	7323.06
2000	4458.24	1717.85	895.35	431.35	337.34	323.76	196.95	167.86	8528.71
2001	4020.58	2346.76	1012.29	528.04	244.71	192.39	186.25	211.95	8742.97
2002	4198.25	2135.51	1386.77	596.42	298.02	138.63	109.92	229.77	9093.29
2003	3030.20	2174.79	1243.86	778.94	310.50	155.16	72.77	180.09	7946.31
2004	3961.96	1524.40	1256.81	706.40	414.29	165.45	83.38	137.23	8249.91
2005	3813.49	2009.55	877.78	680.98	344.04	200.71	80.78	108.78	8116.10
2006	3021.48	1951.71	1163.03	483.06	338.90	170.17	100.04	95.42	7323.80
2007	4964.63	1529.96	1126.17	642.03	242.01	168.88	85.46	99.13	8858.29
2008	3678.46	2490.36	868.10	559.98	264.80	97.76	68.66	75.78	8103.89
2009	4942.80	1887.83	1430.23	446.92	243.47	112.78	41.90	62.51	9168.43
2010	3820.84	2482.44	1056.82	639.64	150.19	78.63	36.59	34.20	8299.34
2011	6194.81	1952.99	1411.68	507.78	238.48	53.70	28.23	25.67	10413.34
2012	6785.48	3298.55	1139.42	744.39	221.48	100.46	22.73	23.03	12335.54
2013	3978.22	3599.56	1922.35	605.23	342.84	100.38	45.84	21.08	10615.50
2014	7069.02	2039.98	2084.15	1054.53	296.04	165.79	48.89	32.91	12791.31
2015	6474.52	3658.69	1177.18	1093.54	484.60	134.80	76.06	37.90	13137.28
2016	4651.25	3300.79	2127.65	677.39	587.74	259.89	72.87	62.21	11739.80
2017	3264.66	1660.94	1681.31	1061.79	287.35	246.01	109.57	57.51	8369.13
2018	3336.98	1501.23	923.58	885.12	489.66	131.11	113.08	77.55	7458.32
2019	4687.90	1559.93	840.74	492.96	417.30	228.55	61.65	90.52	8379.56
2020	4687.90	2330.23	882.76	418.80	204.03	169.19	93.27	62.70	8848.88
2021	4687.90	2399.08	1306.09	381.55	133.52	62.49	52.07	48.47	9071.17

1 0 1 1 1 1 1 1 1 1 1 1	Table	7. Estimat	d tota	l abundance	at	age	(1000)	fish)	at	start	of	yea	ir
---	-------	------------	--------	-------------	----	-----	--------	-------	----	-------	----	-----	----

Year	1	2	3	4	5	6	7	8	Total
1982	1837.67	1756.02	1480.67	1133.50	808.50	558.38	377.37	697.55	8649.67
1983	1837.67	1771.92	1485.24	1135.01	808.97	558.39	377.35	697.51	8672.07
1984	1837.67	1663.50	1467.50	1130.79	802.79	553.80	374.05	691.37	8521.46
1985	1837.67	1762.28	1399.38	1094.84	771.20	528.84	356.93	659.34	8410.47
1986	1837.67	1754.27	1484.88	1068.09	776.84	529.67	355.41	655.82	8462.64
1987	1837.67	1708.97	1467.43	1142.20	768.45	541.39	361.22	662.21	8489.54
1988	1837.67	1714.13	1427.99	1111.84	800.37	520.83	359.04	651.76	8423.63
1989	1837.67	1731.88	1435.95	1076.00	771.19	536.58	341.64	636.76	8367.67
1990	1168.89	1632.98	1417.98	1048.68	707.01	488.18	332.25	581.65	7377.61
1991	2369.38	1095.02	1359.30	1032.48	680.11	440.27	297.26	534.62	7808.45
1992	1961.86	2071.78	876.17	867.62	529.56	329.81	208.51	378.36	7223.67
1993	2347.49	1809.03	1702.58	600.96	501.04	290.42	176.69	301.91	7730.11
1994	2798.40	2242.17	1503.44	1166.34	342.81	270.27	152.96	242.21	8718.60
1995	2386.00	2678.27	1875.85	1076.25	715.77	199.47	153.58	215.95	9301.14
1996	1317.87	2270.99	2241.48	1363.00	674.86	425.34	115.75	206.48	8615.77
1997	932.21	1215.38	1879.43	1616.84	852.26	401.25	247.04	179.75	7324.15
1998	1122.77	863.91	996.52	1249.76	872.43	432.81	198.89	$\bar{2}05.23$	5942.30
1999	1286.00	1066.34	724.00	736.32	814.99	542.37	262.89	237.21	5670.11
2000	1747.64	1204.31	889.52	535.04	484.30	512.82	333.57	297.70	6004.92
2001	1576.08	1645.22	1005.70	654.98	351.31	304.73	315.45	375.90	6229.37
2002	1645.72	1497.12	1377.74	739.79	427.85	219.58	186.17	407.50	6501.48
2003	1187.84	1524.66	1235.75	966.19	445.77	245.77	123.26	319.39	6048.64
2004	1553.10	1068.69	1248.63	876.22	594.77	262.07	141.21	243.37	5988.06
2005	1494.90	1408.82	872.07	844.68	493.92	317.91	136.82	192.91	5762.02
2006	1184.43	1368.26	1155.45	599.19	486.54	269.54	169.44	169.22	5402.07
2007	1946.15	1072.60	1118.84	796.38	347.44	267.50	144.74	175.80	5869.45
2008	1441.97	1745.89	862.45	694.59	380.17	154.84	116.29	134.39	5530.58
2009	1937.59	1323.48	1420.92	554.35	349.54	178.63	70.96	110.86	5946.33
2010	1497.78	1740.34	1049.94	793.40	215.61	124.54	61.98	60.66	5544.25
2011	2428.38	1369.16	1402.48	629.85	342.38	85.06	47.82	45.52	6350.65
2012	2659.92	2312.48	1132.00	923.34	317.97	159.12	38.49	40.85	7584.18
2013	1559.47	2523.51	1909.83	750.72	492.21	159.00	77.63	37.39	7509.76
2014	2771.07	1430.15	2070.58	1308.04	425.01	262.60	82.80	58.37	8408.62
2015	2538.03	2564.96	1169.51	1356.42	695.71	213.52	128.82	67.21	8734.19
2016	1823.30	2314.05	2113.80	840.24	843.79	411.65	123.42	110.33	8580.58
2017	1279.75	1164.42	1670.36	1317.04	412.53	389.67	185.57	101.99	6521.34
2018	1308.10	1052.45	917.57	1097.91	702.98	207.68	191.52	137.54	5615.74
2019	1837.67	1093.61	835.26	611.47	599.10	362.02	104.42	160.53	5604.07
2020	1837.67	1633.63	877.01	519.48	292.91	267.99	157.96	111.20	5697.86
2021	1837.67	1681.90	1297.58	473.28	191.68	98.98	88.20	85.95	5755.24

Table 8. Estimated total biomass at age (mt) at start of year.

Year	1	2	3	4	5	6	7	8	Total
1982	4051.30	3871.30	3264.30	2498.90	1782.40	1231.00	831.90	1537.80	19069.10
1983	4051.30	3906.40	3274.40	2502.20	1783.50	1231.00	831.90	1537.70	19118.40
1984	4051.30	3667.40	3235.30	2492.90	1769.80	1220.90	824.60	1524.20	18786.40
1985	4051.30	3885.10	3085.10	2413.70	1700.20	1165.90	786.90	1453.60	18541.70
1986	4051.30	3867.50	3273.60	2354.70	1712.60	1167.70	783.50	1445.80	18656.70
1987	4051.30	3767.60	3235.10	2518.10	1694.10	1193.50	796.30	1459.90	18716.00
1988	4051.30	3779.00	3148.10	2451.20	1764.50	1148.20	791.50	1436.90	18570.70
1989	4051.30	3818.10	3165.70	2372.10	1700.20	1182.90	753.20	1403.80	18447.40
1990	2576.90	3600.10	3126.10	2311.90	1558.70	1076.20	732.50	1282.30	16264.70
1991	5223.50	2414.10	2996.70	2276.20	1499.40	970.60	655.30	1178.60	17214.50
1992	4325.10	4567.40	1931.60	1912.80	1167.50	727.10	459.70	834.10	15925.30
1993	5175.30	3988.20	3753.50	1324.90	1104.60	640.30	389.50	665.60	17041.80
1994	6169.40	4943.10	3314.50	2571.30	755.80	595.80	337.20	534.00	19221.00
1995	5260.20	5904.50	4135.50	2372.70	1578.00	439.80	338.60	476.10	20505.30
1996	2905.40	5006.60	4941.60	3004.90	1487.80	937.70	255.20	455.20	18994.30
1997	2055.20	2679.40	4143.40	3564.50	1878.90	884.60	544.60	396.30	16146.80
1998	2475.30	1904.60	2196.90	2755.20	1923.40	954.20	438.50	452.50	13100.40
1999	2835.10	2350.90	1596.10	1623.30	1796.70	1195.70	579.60	523.00	12500.30
2000	3852.80	2655.00	1961.00	1179.50	1067.70	1130.60	735.40	656.30	13238.40
2001	3474.60	3627.10	2217.20	1444.00	774.50	671.80	695.40	828.70	13733.30
2002	3628.20	3300.60	3037.40	1630.90	943.20	484.10	410.40	898.40	14333.20
2003	2618.70	3361.30	2724.30	2130.10	982.70	541.80	271.70	704.10	13334.80
2004	3424.00	2356.00	2752.70	1931.70	1311.20	577.80	311.30	536.50	13201.30
2005	3295.70	3105.90	1922.60	1862.20	1088.90	700.90	301.60	425.30	12702.90
2006	2611.20	3016.50	2547.30	1321.00	1072.60	594.20	373.50	373.10	11909.40
2007	4290.50	2364.70	2466.60	1755.70	766.00	589.70	319.10	387.60	12939.80
2008	3179.00	3849.00	1901.40	1531.30	838.10	341.40	256.40	296.30	12192.70
2009	4271.60	2917.70	3132.60	1222.10	770.60	393.80	156.40	244.40	13109.30
2010	3302.00	3836.80	2314.70	1749.10	475.30	274.60	136.60	133.70	12222.90
2011	5353.60	3018.50	3091.90	1388.60	754.80	187.50	105.40	100.40	14000.60
2012	5864.10	5098.10	2495.60	2035.60	701.00	350.80	84.90	90.10	16720.10
2013	3438.00	5563.30	4210.40	1655.00	1085.10	350.50	171.10	82.40	16556.00
2014	6109.10	3152.90	4564.80	2883.70	937.00	578.90	182.50	128.70	18537.60
2015	5595.30	5654.70	2578.30	2990.40	1533.80	470.70	284.00	148.20	19255.40
2016	4019.60	5101.60	4660.10	1852.40	1860.20	907.50	272.10	243.20	18916.70
2017	2821.30	2567.10	3682.50	2903.50	909.50	859.10	409.10	224.80	14376.90
2018	2883.80	2320.20	2022.90	2420.50	1549.80	457.90	422.20	303.20	12380.50
2019	4051.30	2411.00	1841.40	1348.00	1320.80	798.10	230.20	353.90	12354.70
2020	4051.30	3601.50	1933.50	1145.20	645.70	590.80	348.20	245.20	12561.50
2021	4051.30	3707.90	2860.60	1043.40	422.60	218.20	194.40	189.50	12688.00

Table 9. Estimated total biomass at age (1000 lb) at start of year.

Table 10. Estimated time series of status indicators. Fishing mortality rate is apical F (F; a.k.a. F_{full}). Total biomass (B; mt) and spawning stock biomass (SSB; 1e+12 eggs) are at the start of the year. The MSST is defined by MSST = (1 - M)SSB_{F40%}, with constant M = 0.38. SPR is static spawning potential ratio and R_y is expected annual recruitment.

Year	F	$F/F_{40\%}$	В	$B/B_{\rm unfished}$	SSB	$\rm SSB/SSB_{F40\%}$	SSB/MSST	SPR	R_y
1982	0.059	0.105	8650	0.919	14.79	2.127	3.459	0.862	4687903
1983	0.071	0.126	8672	0.921	14.75	2.121	3.450	0.777	4687903
1984	0.106	0.189	8521	0.905	14.33	2.061	3.351	0.773	4687903
1985	0.064	0.115	8410	0.893	14.14	2.034	3.308	0.839	4687903
1986	0.050	0.089	8463	0.899	14.31	2.058	3.346	0.839	4687903
1987	0.078	0.138	8490	0.902	14.28	2.054	3.340	0.791	4687903
1988	0.089	0.158	8424	0.895	14.09	2.027	3.296	0.784	4687903
1989	0.146	0.261	8368	0.889	13.59	1.954	3.178	0.649	4687903
1990	0.163	0.291	7378	0.784	12.78	1.839	2.990	0.678	2981837
1991	0.415	0.738	7808	0.829	10.54	1.516	2.466	0.436	6044289
1992	0.291	0.519	7224	0.767	9.58	1.378	2.240	0.548	5004718
1993	0.308	0.549	7730	0.821	9.69	1.395	2.268	0.565	5988458
1994	0.232	0.414	8719	0.926	10.48	1.507	2.451	0.635	7138726
1995	0.211	0.377	9301	0.988	12.33	1.774	2.884	0.655	6086695
1996	0.211	0.375	8616	0.915	13.44	1.934	3.144	0.624	3361885
1997	0.369	0.657	7324	0.778	12.16	1.750	2.845	0.504	2378084
1998	0.166	0.295	5942	0.631	10.49	1.509	2.454	0.700	2864188
1999	0.153	0.273	5670	0.602	9.63	1.385	2.252	0.698	3280604
2000	0.153	0.272	6005	0.638	8.95	1.287	2.093	0.700	4458240
2001	0.160	0.285	6229	0.662	9.02	1.297	2.109	0.701	4020581
2002	0.245	0.436	6501	0.691	9.11	1.311	2.131	0.589	4198247
2003	0.221	0.394	6049	0.642	9.10	1.309	2.129	0.587	3030196
2004	0.317	0.565	5988	0.636	8.49	1.221	1.986	0.519	3961961
2005	0.296	0.528	5762	0.612	7.94	1.142	1.857	0.542	3813488
2006	0.289	0.514	5402	0.574	7.78	1.119	1.819	0.540	3021483
2007	0.500	0.891	5869	0.623	6.84	0.984	1.600	0.419	4964632
2008	0.448	0.797	5531	0.587	6.70	0.964	1.568	0.458	3678463
2009	0.726	1.293	5946	0.632	6.21	0.893	1.451	0.349	4942799
2010	0.625	1.112	5544	0.589	6.08	0.875	1.423	0.393	3820838
2011	0.460	0.819	6351	0.675	6.47	0.931	1.514	0.488	6194808
2012	0.385	0.685	7584	0.806	7.80	1.122	1.824	0.512	6785481
2013	0.320	0.569	7510	0.798	9.70	1.396	2.270	0.531	3978220
2014	0.379	0.676	8409	0.893	9.85	1.417	2.304	0.492	7069015
2015	0.215	0.383	8734	0.928	10.97	1.578	2.566	0.610	6474520
2016	0.464	0.826	8581	0.911	11.28	1.622	2.638	0.278	4651246
2017	0.378	0.672	6521	0.693	9.52	1.370	2.227	0.425	3264655
2018	0.355	0.632	5616	0.596	8.21	1.181	1.920	0.447	3336981
2019	0.497	0.884	5604	0.595	6.82	0.981	1.596	0.415	4687903
2020	0.779	1.387	5698	0.605	5.80	0.835	1.357	0.342	4687903
2021	0.717	1.276	5755	0.611	5.69	0.819	1.331	0.337	4687903

Table 11. Selectivity at age for commercial handline landings (L.cHLs), recreational headboat landings (L.rHBs), general recreational landings (L.rGNs), recreational headboat discards (D.rHDs), general recreational discards (D.rGDs), SERFS trap/video survey index (U.sTVs), selectivity of landings averaged across fisheries (L.avg), selectivity of discards averaged across fisheries (D.avg), and selectivity of total removals (Total = L.avg). All selectivities were estimated from age or length comps from the southern portion of the stock area, so fleet abbreviations have the suffix 's'. These selectivities were also applied to northern portions of the stock area, for which comp data was not available.

Age	L.cHLs	L.rHBs	L.rGNs	D.rHDs	D.rGDs	U.sTVs	L.avg	D.avg	Total
1	0.00	0.01	0.01	1.00	1.00	0.02	0.00	0.12	0.12
2	0.02	0.08	0.08	0.32	0.32	0.14	0.07	0.04	0.10
3	0.23	0.55	0.55	0.01	0.01	0.52	0.48	0.00	0.49
4	0.79	0.95	0.95	0.00	0.00	0.88	0.91	0.00	0.91
5	0.98	1.00	1.00	0.00	0.00	0.98	0.99	0.00	0.99
6	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
7	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
8	1.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00
		Ŏ	2°		20				

SEDAR 82 SAR Section III

Table 12. Estimated time series of fully selected fishing mortality rates for commercial handline landings, south (L.cHLs); commercial handline landings, north (L.cHLn); recreational headboat landings, south (L.rHs); general recreational landings, north (L.rGNn); recreational headboat discards, south (D.rHDs); general recreational discards, south (D.rGDs); and general recreational discards, north (D.rGDn). Also shown is F_{full} (i.e. apical F), the maximum F at age summed across fleets, and F_{sum} , the sum of all fleet-specific values of fully selected F.

Year	$F_{\rm L.cHLs}$	$F_{\rm L.cHLn}$	$F_{\rm L.rHBs}$	$F_{\rm L.rGNs}$	$F_{\rm L.rGNn}$	$F_{\rm D.rHDs}$	$F_{\rm D.rGDs}$	$F_{\rm D.rGDn}$	$F_{\rm full}$	$F_{\rm sum}$
1982	0.014	0.000	0.011	0.033	0.000	0.001	0.007	0.000	0.059	0.066
1983	0.010	0.000	0.011	0.028	0.019	0.003	0.067	0.000	0.071	0.138
1984	0.011	0.000	0.010	0.084	0.001	0.001	0.011	0.000	0.106	0.119
1985	0.011	0.000	0.014	0.038	0.002	0.003	0.014	0.000	0.064	0.082
1986	0.011	0.000	0.011	0.020	0.009	0.002	0.042	0.000	0.050	0.093
1987	0.012	0.000	0.011	0.028	0.027	0.005	0.034	0.001	0.078	0.118
1988	0.013	0.000	0.013	0.062	0.001	0.009	0.021	0.001	0.089	0.119
1989	0.016	0.000	0.015	0.091	0.024	0.000	0.087	0.001	0.146	0.235
1990	0.034	0.000	0.030	0.078	0.021	0.001	0.022	0.013	0.163	0.199
1991	0.056	0.000	0.042	0.287	0.029	0.000	0.101	0.002	0.415	0.518
1992	0.068	0.000	0.054	0.156	0.014	0.000	0.050	0.001	0.291	0.342
1993	0.091	0.001	0.060	0.120	0.036	0.000	0.014	0.002	0.308	0.324
1994	0.094	0.005	0.045	0.059	0.029	0.000	0.013	0.001	0.232	0.247
1995	0.105	0.004	0.041	0.034	0.027	0.001	0.018	0.001	0.211	0.231
1996	0.083	0.003	0.034	0.045	0.045	0.001	0.036	0.015	0.211	0.262
1997	0.102	0.003	0.042	0.045	0.177	0.001	0.033	0.011	0.369	0.415
1998	0.082	0.002	0.032	0.038	0.013	0.003	0.016	0.003	0.166	0.188
1999	0.061	0.002	0.021	0.068	0.001	0.004	0.032	0.001	0.153	0.190
2000	0.050	0.001	0.021	0.062	0.018	0.001	0.028	0.002	0.153	0.184
2001	0.058	0.001	0.021	0.058	0.021	0.001	0.017	0.004	0.160	0.182
2002	0.053	0.004	0.034	0.112	0.042	0.005	0.040	0.002	0.245	0.291
2003	0.049	0.003	0.026	0.125	0.018	0.002	0.071	0.003	0.221	0.297
2004	0.067	0.002	0.047	0.121	0.079	0.006	0.054	0.007	0.317	0.384
2005	0.081	0.002	0.043	0.097	0.075	0.008	0.050	0.001	0.296	0.355
2006	0.078	0.002	0.030	0.175	0.005	0.006	0.062	0.001	0.289	0.358
2007	0.113	0.004	0.049	0.287	0.048	0.003	0.062	0.013	0.500	0.578
2008	0.131	0.002	0.037	0.265	0.012	0.002	0.053	0.001	0.448	0.503
2009	0.165	0.007	0.050	0.364	0.140	0.002	0.063	0.011	0.726	0.801
2010	0.216	0.006	0.060	0.276	0.066	0.003	0.043	0.012	0.625	0.683
2011	0.221	0.008	0.042	0.168	0.022	0.001	0.016	0.002	0.460	0.479
2012	0.109	0.013	0.034	0.136	0.092	0.001	0.019	0.002	0.385	0.407
2013	0.104	0.008	0.032	0.149	0.027	0.001	0.049	0.006	0.320	0.376
2014	0.073	0.003	0.026	0.200	0.078	0.001	0.043	0.002	0.379	0.426
2015	0.081	0.001	0.022	0.092	0.019	0.003	0.056	0.003	0.215	0.278
2016	0.074	0.002	0.018	0.335	0.035	0.011	0.398	0.009	0.464	0.881
2017	0.080	0.007	0.022	0.211	0.058	0.006	0.154	0.005	0.378	0.543
2018	0.085	0.005	0.021	0.153	0.090	0.005	0.134	0.010	0.355	0.504
2019	0.111	0.004	0.028	0.237	0.115	0.004	0.075	0.007	0.497	0.583
2020	0.152	0.004	0.027	0.343	0.252	0.002	0.037	0.017	0.779	0.835
2021	0.123	0.005	0.025	0.445	0.119	0.002	0.091	0.006	0.717	0.816

	Year	1	2	3	4	5	6	7	8
	1982	0.008	0.006	0.028	0.053	0.058	0.059	0.059	0.059
	1983	0.071	0.027	0.035	0.062	0.067	0.068	0.068	0.068
	1984	0.013	0.012	0.055	0.099	0.106	0.106	0.106	0.106
	1985	0.018	0.010	0.032	0.059	0.064	0.064	0.064	0.064
	1986	0.044	0.017	0.024	0.045	0.049	0.050	0.050	0.050
	1987	0.041	0.018	0.039	0.072	0.077	0.078	0.078	0.078
	1988	0.031	0.016	0.045	0.082	0.088	0.089	0.089	0.089
	1989	0.089	0.039	0.076	0.136	0.146	0.146	0.146	0.146
	1990	0.037	0.022	0.079	0.149	0.162	0.163	0.163	0.163
	1991	0.106	0.062	0.211	0.384	0.412	0.414	0.415	0.415
	1992	0.052	0.035	0.139	0.265	0.289	0.291	0.291	0.291
	1993	0.017	0.024	0.140	0.278	0.306	0.308	0.308	0.308
	1994	0.015	0.017	0.096	0.204	0.230	0.232	0.232	0.232
	1995	0.021	0.017	0.081	0.183	0.209	0.211	0.211	0.211
	1996	0.052	0.028	0.089	0.186	0.208	0.210	0.210	0.211
	1997	0.047	0.037	0.170	0.333	0.366	0.369	0.369	0.369
	1998	0.023	0.015	0.065	0.144	0.164	0.166	0.166	0.166
	1999	0.037	0.020	0.064	0.135	0.152	0.153	0.153	0.153
	2000	0.032	0.019	0.068	0.137	0.152	0.153	0.153	0.153
	2001	0.023	0.016	0.069	0.142	0.158	0.160	0.160	0.160
	2002	0.048	0.030	0.117	0.223	0.243	0.244	0.245	0.245
	2003	0.077	0.038	0.106	0.201	0.220	0.221	0.221	0.221
	2004	0.069	0.042	0.153	0.289	0.315	0.317	0.317	0.317
	2005	0.060	0.037	0.137	0.268	0.294	0.296	0.296	0.296
	2006	0.071	0.040	0.134	0.261	0.286	0.289	0.289	0.289
	2007	0.080	0.057	0.239	0.456	0.496	0.500	0.500	0.500
	2008	0.057	0.045	0.204	$\bar{0}.403$	0.444	0.447	0.448	0.448
	2009	0.079	0.070	0.345	0.661	0.720	0.726	0.726	0.726
	2010	0.061	0.054	0.273	0.557	0.618	0.624	0.625	0.625
	2011	0.020	0.029	0.180	0.400	0.455	0.460	0.460	0.460
	2012	0.024	0.030	0.173	0.345	0.381	0.385	0.385	0.385
	2013	0.058	0.036	0.140	0.285	0.317	0.319	0.320	0.320
	2014	0.049	0.040	0.185	0.348	0.377	0.379	0.379	0.379
	2015	0.064	0.032	0.093	0.191	0.213	0.215	0.215	0.215
	2016	0.420	0.165	0.235	0.428	0.461	0.464	0.464	0.464
	$2\overline{0}17$	0.167	0.077	0.182	0.344	0.375	0.377	0.378	0.378
•	2018	0.150	0.070	0.168	0.322	0.352	0.355	0.355	0.355
	2019	0.089	0.059	0.237	0.452	0.493	0.496	0.497	0.497
	2020	0.060	0.069	0.379	0.713	0.773	0.778	0.779	0.779
	2021	0.103	0.080	0.354	0.659	0.712	0.716	0.717	0.717

Table 13. Estimated instantaneous fishing mortality rate F (per yr) at age

Year	1	2	3	4	5	6	7	8
1982	0.95	7.27	32.71	38.77	26.27	16.64	10.57	18.66
1983	1.14	9.00	39.97	45.15	30.14	19.05	12.10	21.36
1984	1.90	13.83	63.25	70.03	46.18	29.15	18.50	32.66
1985	1.10	8.48	35.53	41.41	27.38	17.20	10.91	19.25
1986	0.81	6.25	28.30	31.14	21.43	13.40	8.45	14.89
1987	1.33	10.04	45.39	52.01	32.73	21.11	13.24	23.18
1988	1.53	11.54	50.41	57.54	38.71	23.06	14.94	25.91
1989	2.53	19.56	84.28	90.18	59.99	38.19	22.85	40.67
1990	1.71	19.18	87.00	95.76	60.74	38.43	24.58	41.10
1991	8.99	33.97	209.17	218.62	133.09	78.79	49.98	85.85
1992	4.98	42.33	91.88	133.71	76.70	43.76	26.00	45.06
1993	6.08	37.18	180.49	96.38	76.17	40.48	23.15	37.77
1994	4.90	30.95	111.53	142.35	40.53	29.36	15.62	23.62
1995	3.47	30.56	118.29	118.66	77.61	19.90	14.41	19.35
1996	2.09	28.69	152.97	152.40	73.01	42.28	10.82	18.43
1997	2.89	30.12	237.91	303.74	151.09	65.19	37.72	26.21
1998	1.30	7.85	50.22	110.19	75.67	34.55	14.93	14.71
1999	1.49	9.82	36.31	61.28	65.82	40.26	18.35	15.81
2000	2.17	11.92	47.11	45.06	39.12	38.03	23.25	19.82
2001	1.98	16.44	54.09	57.11	29.54	23.54	22.90	26.07
2002	3.52	25.75	122.58	97.57	53.12	24.98	19.90	41.61
2003	2.26	23.58	99.74	116.30	50.58	25.55	12.04	29.81
2004	4.31	23.96	142.93	145.78	92.75	37.43	18.95	31.20
2005	3.72	28.18	90.31	131.30	72.60	42.83	17.33	23.33
2006	2.86	26.69	116.99	91.08	69.93	35.51	20.98	20.01
2007	8.39	37.28	192.77	194.08	79.01	55.68	28.31	32.84
2008	5.33	51.61	129.01	153.10	79.00	29.49	20.81	22.97
2009	12.07	66.04	337.88	179.72	105.05	49.11	18.33	27.34
2010	7.35	67.89	204.02	226.32	58.02	30.71	14.36	13.42
2011	7.86	34.61	187.45	137.93	72.57	16.56	8.75	7.96
2012	8.44	58.15	145.60	178.84	58.36	26.78	6.09	6.17
2013	3.94	51.01	202.14	123.27	77.14	22.86	10.49	4.83
2014	9.42	39.03	283.32	254.75	77.21	43.67	12.94	8.71
2015	4.19	33.95	83.18	155.51	76.84	21.66	12.28	6.12
2016	6.63	75.07	353.80	194.46	180.85	80.71	22.74	19.41
2017	4.02	30.34	223.22	254.28	74.60	64.53	28.88	15.16
2018	3.81	25.33	114.05	200.29	120.60	32.64	28.29	19.40
2019	7.83	37.66	142.88	148.10	135.43	74.91	20.30	29.81
2020	12.75	90.21	225.99	177.98	92.49	77.36	42.83	28.80
2021	11.70	86.59	315.57	153.16	57.13	26.97	22.57	21.01

Table 14. Total landings at age in numbers (1000 fish)

Year	1	2	3	4	5	6	7	8
1982	1.60	14.89	79.09	107.74	82.19	57.62	39.94	76.02
1983	1.92	18.44	96.64	125.50	94.30	65.96	45.72	87.02
1984	3.20	28.35	152.91	194.63	144.50	100.94	69.91	133.06
1985	1.85	17.38	85.90	115.08	85.66	59.55	41.22	78.41
1986	1.36	12.80	68.41	86.54	67.05	46.38	31.92	60.65
1987	2.24	20.58	109.73	144.54	102.41	73.11	50.03	94.44
1988	2.58	23.65	121.87	159.92	121.12	79.86	56.46	105.53
1989	4.25	40.08	203.76	250.65	187.70	132.24	86.33	165.69
1990	2.87	39.32	210.33	266.14	190.05	133.06	92.87	167.41
1991	15.11	69.61	505.71	607.62	416.42	272.82	188.84	349.72
1992	8.38	86.75	222.13	371.63	240.00	151.54	98.24	183.56
1993	10.23	76.20	436.37	267.87	238.34	140.17	87.45	153.88
1994	8.24	63.43	269.65	395.63	126.82	101.67	59.02	96.24
1995	5.84	62.63	285.99	329.78	242.84	68.92	54.43	78.82
1996	3.51	58.80	369.82	423.57	228.44	146.39	40.86	75.06
1997	4.86	61.73	575.19	844.19	472.75	225.73	142.51	106.77
1998	2.18	16.09	121.41	306.25	236.77	119.62	56.39	59.92
1999	2.50	20.13	87.78	170.32	205.96	139.41	69.31	64.40
2000	3.64	24.42	113.90	125.24	122.42	131.69	87.86	80.74
2001	3.34	33.70	130.76	158.72	92.43	81.50	86.53	106.18
2002	5.92	52.77	296.36	271.17	166.21	86.49	75.20	169.49
2003	3.80	48.32	241.14	323.24	158.25	88.48	45.51	121.42
2004	7.24	49.10	345.55	405.17	290.21	129.60	71.61	127.08
2005	6.25	57.74	218.34	364.91	227.16	148.32	65.46	95.04
2006	4.81	54.70	282.85	253.15	218.81	122.97	79.27	81.52
2007	14.10	76.40	466.06	539.41	247.21	192.81	106.96	133.77
2008	8.96	105.76	311.90	425.52	247.20	102.11	78.62	93.56
2009	20.30	135.34	816.90	499.51	328.69	170.05	69.24	111.38
2010	12.36	139.13	493.24	629.00	181.55	106.34	54.25	54.68
2011	13.22	70.93	453.19	383.34	227.07	57.35	33.07	32.41
2012	14.20	119.17	352.02	497.05	182.61	92.72	23.00	25.13
2013	6.62	104.54	488.71	342.60	241.37	79.17	39.64	19.66
2014	15.84	80.00	684.97	708.02	241.57	151.21	48.88	35.48
2015	7.04	69.58	201.09	432.20	240.43	74.99	46.41	24.93
2016	11.15	153.84	855.38	540.47	565.87	279.46	85.90	79.07
2017	6.75	62.18	539.67	706.72	233.41	223.44	109.10	61.75
2018	6.41	51.92	275.74	556.66	377.36	113.03	106.88	79.03
2019	13.16	77.17	345.43	411.62	423.74	259.40	76.70	121.43
2020	21.43	184.86	546.38	494.66	289.40	267.89	161.83	117.30
2021	19.68	177.46	762.96	425.68	178.74	93.38	85.28	85.58

Table 15. Estimated total landings at age in weight (1000 lb)

	1	0	2	4	۲	C	7	0
Year	1	2	ა	4	Э	0	(8
1982	26.18	4.68	0.09	0.00	0.00	0.00	0.00	0.00
1983	239.92	44.07	0.87	0.00	0.00	0.00	0.00	0.00
1984	44.20	7.48	0.15	0.00	0.00	0.00	0.00	0.00
1985	60.78	10.93	0.20	0.00	0.00	0.00	0.00	0.00
1986	150.37	27.14	0.54	0.00	0.00	0.00	0.00	0.00
1987	139.66	24.51	0.49	0.00	0.00	0.00	0.00	0.00
1988	104.45	18.32	0.35	0.00	0.00	0.00	0.00	0.00
1989	299.02	53.84	1.03	0.00	0.00	0.00	0.00	0.00
1990	78.67	20.67	0.41	0.00	0.00	0.00	0.00	0.00
1991	446.67	39.31	1.07	0.00	0.00	0.00	0.00	0.00
1992	186.90	37.16	0.35	0.00	0.00	0.00	0.00	0.00
1993	70.55	10.13	0.21	0.00	0.00	0.00	0.00	0.00
1994	75.79	11.34	0.17	0.00	0.00	0.00	0.00	0.00
1995	90.10	18.93	0.30	0.00	0.00	0.00	0.00	0.00
1996	126.45	41.15	0.93	0.00	0.00	0.00	0.00	0.00
1997	79.76	19.51	0.67	0.00	0.00	0.00	0.00	0.00
1998	47.29	6.82	0.18	0.00	0.00	0.00	0.00	0.00
1999	87.78	13.70	0.21	0.00	0.00	0.00	0.00	0.00
2000	102.20	13.23	0.22	0.00	0.00	0.00	0.00	0.00
2001	65.71	12.85	0.18	0.00	0.00	0.00	0.00	0.00
2002	143.33	24.55	0.51	0.00	0.00	0.00	0.00	0.00
2003	166.57	40.63	0.75	0.00	0.00	0.00	0.00	0.00
2004	193.65	25.19	0.66	0.00	0.00	0.00	0.00	0.00
2005	162.61	28.92	0.40	0.00	0.00	0.00	0.00	0.00
2006	151.66	33.18	0.63	0.00	0.00	0.00	0.00	0.00
2007	278.21	28.93	0.65	0.00	0.00	0.00	0.00	0.00
2008	147.86	33.63	0.36	0.00	0.00	0.00	0.00	0.00
2009	269.05	34.45	-0.77	0.00	0.00	0.00	0.00	0.00
2010	162.73	35.42	0.46	0.00	0.00	0.00	0.00	0.00
2011	85.11	8.93	0.20	0.00	0.00	0.00	0.00	0.00
2012	112.03	18.15	0.20	0.00	0.00	0.00	0.00	0.00
2013	164.07	50.07	0.85	0.00	0.00	0.00	0.00	0.00
2014	242.32	23.45	0.75	0.00	0.00	0.00	0.00	0.00
2015	295.95	56.67	0.59	0.00	0.00	0.00	0.00	0.00
2016	1212.29	320.07	6.66	0.01	0.00	0.00	0.00	0.00
2017	374.77	66.25	2.13	0.00	0.00	0.00	0.00	0.00
2018	347.72	54.14	1.06	0.00	0.00	0.00	0.00	0.00
2019	292.42	32.93	0.55	0.00	0.00	0.00	0.00	0.00
2020	191.91	31.73	0.35	0.00	0.00	0.00	0.00	0.00
2021	333.49	57.59	0.92	0.00	0.00	0.00	0.00	0.00

Table 16. Estimated total discards at age in numbers (1000 fish)

Year	1	2	3	4	5	6	7	8
1982	22.62	7.23	0.20	0.00	0.00	0.00	0.00	0.00
1983	207.34	68.11	1.90	0.00	0.00	0.00	0.00	0.00
1984	38.20	11.56	0.33	0.00	0.00	0.00	0.00	0.00
1985	52.53	16.89	0.44	0.00	0.00	0.00	0.00	0.00
1986	129.95	41.95	1.18	0.00	0.00	0.00	0.00	0.00
1987	120.70	37.89	1.07	0.00	0.00	0.00	0.00	0.00
1988	90.27	28.32	0.78	0.00	0.00	0.00	0.00	0.00
1989	258.41	83.22	2.26	0.01	0.00	0.00	0.00	0.00
1990	67.99	31.94	0.90	0.00	0.00	0.00	0.00	0.00
1991	386.02	60.76	2.35	0.01	0.00	0.00	0.00	0.00
1992	161.52	57.43	0.77	0.00	0.00	0.00	0.00	0.00
1993	60.97	15.65	0.47	0.00	0.00	0.00	0.00	0.00
1994	65.50	17.52	0.38	0.00	0.00	0.00	0.00	0.00
1995	77.87	29.26	0.66	0.00	0.00	0.00	0.00	0.00
1996	109.28	63.60	2.03	0.00	0.00	0.00	0.00	-0.00
1997	68.93	30.16	1.46	0.00	0.00	0.00	0.00	0.00
1998	40.87	10.54	0.40	0.00	0.00	0.00	0.00	0.00
1999	75.86	21.18	0.47	0.00	0.00	0.00	0.00	0.00
2000	88.32	20.45	0.49	0.00	0.00	0.00	0.00	0.00
2001	56.79	19.87	0.40	0.00	0.00	0.00	0.00	0.00
2002	123.87	37.94	1.12	0.00	0.00	0.00	0.00	0.00
2003	143.95	62.80	1.64	0.00	0.00	0.00	0.00	0.00
2004	167.36	38.93	1.44	0.00	0.00	0.00	0.00	0.00
2005	140.53	44.70	0.88	0.00	0.00	0.00	0.00	0.00
2006	131.07	51.28	1.38	0.00	0.00	0.00	0.00	0.00
2007	240.43	44.72	1.43	0.00	0.00	0.00	0.00	0.00
2008	127.79	51.97	0.80	0.00	0.00	0.00	0.00	0.00
2009	232.52	53.25	1.69	0.00	0.00	0.00	0.00	0.00
2010	140.63	54.74	1.00	0.00	0.00	0.00	0.00	0.00
2011	73.55	13.80	0.44	0.00	0.00	0.00	0.00	0.00
2012	96.82	28.05	0.43	0.00	0.00	0.00	0.00	0.00
2013	141.79	77.39	1.86	0.00	0.00	0.00	0.00	0.00
2014	209.41	36.25	1.64	0.00	0.00	0.00	0.00	0.00
2015	255.76	87.58	1.29	0.00	0.00	0.00	0.00	0.00
2016	1047.68	494.69	14.59	0.02	0.00	0.00	0.00	0.00
2017	323.88	102.39	4.67	0.01	0.00	0.00	0.00	0.00
2018	300.50	83.67	2.33	0.01	0.00	0.00	0.00	0.00
2019	252.72	50.90	1.20	0.00	0.00	0.00	0.00	0.00
2020	165.85	49.05	0.76	0.00	0.00	0.00	0.00	0.00
2021	288.20	89.01	2.03	0.00	0.00	0.00	0.00	0.00

Table 17. Estimated total discards at age in weight (1000 lb)

Year	L.cHLs	L.cHLn	L.rHBs	L.rGNs	L.rGNn	Total
1982	30.61	0.03	29.51	91.18	0.51	151.84
1983	21.64	0.29	28.61	75.96	51.42	177.91
1984	23.35	0.26	26.90	221.93	3.07	275.51
1985	21.70	0.24	35.61	97.98	5.73	161.25
1986	21.81	0.21	28.38	51.66	22.59	124.65
1987	23.51	0.19	29.58	75.35	70.40	199.04
1988	25.73	0.16	34.94	160.96	1.85	223.64
1989	30.97	0.14	37.39	229.53	60.21	358.25
1990	61.28	0.12	71.82	185.07	50.20	368.49
1991	87.24	0.40	85.72	585.95	59.15	818.46
1992	85.31	0.29	91.93	263.72	23.18	464.43
1993	108.61	1.50	107.13	215.76	64.71	497.71
1994	127.36	6.14	90.32	117.98	57.06	398.88
1995	162.10	6.81	93.27	78.62	61.45	402.25
1996	148.84	5.74	89.86	117.94	118.28	480.67
1997	185.80	5.13	106.11	113.76	444.06	854.87
1998	134.95	2.83	65.91	79.37	26.36	309.41
1999	87.02	3.21	37.25	120.08	1.59	249.14
2000	61.86	1.63	34.11	99.67	29.23	226.49
2001	68.81	1.65	32.98	93.98	34.25	231.67
2002	63.03	5.01	57.65	191.62	71.71	389.03
2003	61.00	3.81	45.77	217.75	31.53	359.86
2004	81.18	2.97	78.10	202.62	132.42	497.30
2005	88.82	1.95	63.60	144.02	111.19	409.59
2006	79.32	1.68	43.14	252.93	7.00	384.07
2007	106.37	3.57	66.34	386.98	65.09	628.35
2008	109.12	1.96	44.75	321.40	14.10	491.32
2009	124.46	5.58	59.94	437.56	168.02	795.55
2010	157.28	4.08	68.75	316.34	75.64	622.09
2011	172.80	6.32	53.31	213.84	27.41	473.68
2012	100.54	12.31	49.11	194.95	131.51	488.43
2013	114.09	9.25	56.53	266.88	48.93	495.68
2014	98.13	3.77	53.14	412.47	161.53	729.04
2015	118.81	1.78	45.98	189.04	38.11	393.72
2016	105.74	2.62	37.81	712.60	74.90	933.66
2017	110.73	9.03	43.31	416.38	115.57	695.01
2018	105.08	6.59	35.07	250.56	147.12	544.42
2019	106.01	4.27	35.75	303.50	147.37	596.91
2020	105.04	2.78	28 15	353~44	259.00	748 41

Table 18. Estimated time series of landings (L) in numbers (1000 fish) for commercial handline landings, south (L.cHLs); commercial handline landings, north (L.cHLn); recreational headboat landings, south (L.rHBs); general recreational landings, north (L.rGNn); and total landings.

2021

75.20

3.23

 $124.33 \quad 694.70$

26.19

465.75

Table 19. Estimated time series of landings (L) in weight (1000 lb) for commercial handline landings, south (L.cHLs);
commercial handline landings, north (L.cHLn); recreational headboat landings, south (L.rHBs); general recreational
landings, south (L.rGNs); general recreational landings, north (L.rGNn); and total landings.

Year	L.cHLs	L.cHLn	L.rHBs	L.rGNs	L.rGNn	Total
1982	96.65	0.10	88.21	272.62	1.52	459.09
1983	68.30	0.90	85.52	227.06	153.70	535.48
1984	73.68	0.82	80.40	663.41	9.18	827.50
1985	68.43	0.75	106.29	292.49	17.09	485.04
1986	68.71	0.67	84.54	153.90	67.30	375.12
1987	73.98	0.59	88.16	224.55	209.79	597.08
1988	80.98	0.52	104.16	479.82	5.51	670.98
1989	97.37	0.44	111.20	682.61	179.07	1070.69
1990	191.96	0.36	212.75	548.26	148.73	1102.06
1991	271.61	1.24	252.53	1726.21	174.26	2425.85
1992	262.88	0.89	266.56	764.68	67.21	1362.22
1993	325.33	4.48	298.70	601.57	180.42	1410.50
1994	372.47	17.97	248.55	324.68	157.03	1120.70
1995	471.31	19.79	255.07	215.01	168.06	1129.25
1996	432.83	16.70	247.17	324.41	325.33	1346.45
1997	548.25	15.15	298.92	320.47	1250.95	2433.73
1998	409.44	8.58	192.24	231.51	76.88	918.65
1999	272.85	10.07	111.79	360.36	4.76	759.82
2000	196.41	5.17	102.19	298.59	87.55	689.91
2001	215.50	5.16	96.68	275.46	100.38	693.16
2002	192.24	15.29	164.54	546.89	204.66	1123.61
2003	182.99	11.43	129.65	616.79	89.31	1030.17
2004	243.39	8.90	221.79	575.41	376.06	1425.55
2005	267.55	5.89	181.49	410.99	317.29	1183.21
2006	238.12	5.05	121.70	713.48	19.75	1098.09
2007	315.62	10.60	185.62	1082.75	182.11	1776.71
2008	320.09	5.75	123.30	885.65	38.85	1373.63
2009	355.34	15.92	160.32	1170.40	449.42	2151.41
2010	440.70	11.44	181.80	836.59	200.04	1670.57
2011	480.06	17.55	139.90	561.12	71.93	1270.56
2012	280.84	34.38	129.55	514.23	346.89	1305.89
2013	318.31	25.80	148.52	701.13	128.55	1322.31
2014	276.20	10.63	142.28	1104.37	432.49	1965.97
2015	342.67	5.14	126.06	518.31	104.49	1096.68
2016	307.45	7.61	103.34	1947.97	204.75	2571.13
2017	322.51	26.30	120.02	1153.91	320.27	1943.02
2018	313.19	19.63	100.01	714.60	419.60	1567.03
2019	321.19	12.94	102.45	869.74	422.32	1728.64
2020	310.98	8.24	77.53	973.57	713.43	2083.75
2021	210.33	9.04	68.40	1216.29	324.68	1828.74

Table 20. Estimated time series of discards (D) in numbers (1000 fish) for recreational headboat discards, south (D.rHDs); general recreational discards, south (D.rGDs); general recreational discards, north (D.rGDn); and total discards.

	Year	D.rHDs	D.rGDs	D.rGDn	Total	
	1982	3.32	27.53	0.10	30.95	
	1983	13.09	271.67	0.10	284.85	
	1984	5.92	45.82	0.10	51.83	
	1985	12.94	58.87	0.10	71.91	
	1986	7.16	170.05	0.84	178.05	
	1987	21.07	138.70	4.90	164.66	
	1988	34.97	83.72	4.44	123.13	
	1989	1.11	348.81	3.97	353.89	
	1990	1.57	60.80	37.38	99.75	
	1991	2.04	475.08	9.94	487.05	
	1992	1.31	218.40	4.69	224.41	
	1993	1.46	69.72	9.71	80.90	
	1994	1.61	78.15	7.53	87.30	X
	1995	6.12	98.01	5.20	109.33	
	1996	1.92	118.13	48.48	168.53	
	1997	2.65	72.86	24.44	99.94	
	1998	6.40	39.80	8.10	54.29	
	1999	10.15	89.68	1.87	101.70	
	2000	3.67	105.48	6.52	115.66	
	2001	3.59	61.72	13.44	78.75	
	2002	17.25	142.76	8.38	168.39	
	2003	5.83	193.17	8.94	207.95	
	2004	20.65	177.01	21.84	219.50	
	2005	26.73	163.06	2.14	191.93	
	2006	16.03	166.60	2.84	185.47	
	2007	10.56	246.42	50.82	307.80	
	2008	6.50	173.70	1.66	181.85	
	2009	6.15	254.10	44.02	304.27	
	2010	11.42	146.02	41.17	198.60	
	2011	6.80	79.17	8.26	94.24	
6	2012	7.47	112.09	10.82	130.37	
	2013	5.16	188.07	21.77	214.99	
	2014	7.16	247.27	12.09	266.52	
	2015	17.82	316.33	19.05	353.20	
	2016	39.58	1467.43	32.01	1539.03	
	2017	16.83	412.96	13.36	443.15	
	2018	14.07	362.39	26.45	402.92	
	2019	15.60	283.60	26.70	325.90	
	2020	8.55	145.74	69.70	224.00	
	2021	8.61	358.17	25.22	392.00	

Ç

Year	D.rHDs	D.rGDs	D.rGDn	Total
1982	3.23	26.73	0.09	30.05
1983	12.74	264.52	0.09	277.35
1984	5.72	44.28	0.09	50.10
1985	12.57	57.20	0.09	69.86
1986	6.96	165.31	0.82	173.09
1987	20.42	134.48	4.75	159.66
1988	33.91	81.16	4.30	119.37
1989	1.08	338.96	3.86	343.90
1990	1.59	61.46	37.78	100.84
1991	1.88	438.08	9.16	449.13
1992	1.29	213.84	4.60	219.73
1993	1.39	66.45	9.26	77.09
1994	1.54	74.66	7.20	83.40
1995	6.04	96.62	5.13	107.79
1996	1.99	122.61	50.32	174.92
1997	2.67	73.31	24.59	100.56
1998	6.10	37.98	7.73	51.81
1999	9.73	85.99	1.79	97.51
2000	3.46	99.65	6.16	109.27
2001	3.51	60.39	13.15	77.05
2002	16.69	138.13	8.11	162.93
2003	5.85	193.59	8.96	208.39
2004	19.54	167.52	20.67	207.74
2005	25.92	158.12	2.08	186.11
2006	15.88	165.04	2.82	183.73
2007	9.83	229.44	47.31	286.59
2008	6.45	172.46	1.65	180.56
2009	5.81	240.06	41.59	287.45
2010	11.29	144.38	40.70	196.38
2011	6.34	73.76	7.70	87.79
2012	7.18	107.72	10.39	125.30
2013	5.31	193.36	22.38	221.05
2014	6.64	229.44	11.22	247.30
2015	17.39	308.66	18.59	344.64
2016	40.04	1484.55	32.38	1556.97
2017	16.36	401.59	13.00	430.95
2018	13.50	347.63	25.38	386.51
2019	14.59	265.25	24.97	304.81
2020	8.23	140.32	67.11	215.67
2021	8.33	346.51	24.40	379.24

Table 21. Estimated time series of discards (D) in weight (1000 lb) for recreational headboat discards, south (D.rHDs); general recreational discards, south (D.rGDs); general recreational discards, north (D.rGDn); and total discards.

Table 22. Estimated status indicators, benchmarks, and related quantities from the base run of the Beaufort catch-age model, conditional on estimated current selectivities averaged across fleets. Also presented are median values and measures of precision (standard errors, SE), 25^{th} and 75^{th} percentiles from the Monte Carlo Bootstrap Ensemble (MCBE). Rate estimates (F) are in units of y^{-1} ; status indicators are dimensionless; and biomass estimates are in units of metric tons or pounds, as indicated. Spawning stock biomass (SSB) is measured in 1e+12 eggs. The MSST is defined by $MSST = (1 - M)SSB_{F40\%}$, with constant M = 0.38

			MCBE				
Quantity	Units	Estimate	Median	SE	25%	75%	
$F_{40\%}$	y ⁻¹	0.56	0.57	0.22	0.42	0.77	
$85\% F_{40\%}$	y^{-1}	0.48	0.49	0.18	0.36	0.65	
$75\% F_{40\%}$	y^{-1}	0.42	0.43	0.16	0.32	0.58	
$65\% F_{40\%}$	y^{-1}	0.37	0.37	0.14	0.27	0.5	
$F_{30\%}$	y^{-1}	0.89	0.91	0.39	0.65	1.26	
$F_{40\%}$	y^{-1}	0.56	0.57	0.22	0.42	0.77	
$F_{50\%}$	y^{-1}	0.37	0.38	0.13	0.28	0.5	
$B_{\mathrm{F40\%}}$	metric tons	6266	6389	2043	5305	8322	
$SSB_{F40\%}$	1e+12 eggs	6.95	7.33	0.68	6.9	7.85	
MSST	1e+12 eggs	4.28	4.33	0.79	3.94	4.98	
$L_{\rm F40\%}$	1000 lb whole	1865	1904	556	1586	2412	
$D_{ m F40\%}$	1000 lb dead fish	254	256	256	256	256	
$D_{ m F40\%}$	1000 dead fish	262	269	269	269	269	
$R_{\rm F40\%}$	1000 fish	4688 🗬	4889	2877	3221	7530	
$L_{85\%F40\%}$	1000 lb whole	1770	1806	530	1500	2294	
$L_{75\%F40\%}$	1000 lb whole	1683	1724	510	1426	2185	
$L_{65\%F40\%}$	1000 lb whole	1578	1625	484	1344	2058	
$F_{2019-2021}/F_{40\%}$		1.16	1.06	0.76	0.64	1.75	
$SSB_{2021}/MSST$	- 1	1.33	1.41	0.69	0.91	2.03	
$\mathrm{SSB}_{2021}^{-1}/\mathrm{SSB}_{\mathrm{F40\%}}$	-	0.82	0.86	0.29	0.62	1.1	

JotPer

Table 23. Results from sensitivity runs of the Beaufort Assessment Model compared with the base model. Results of the age structured production model (ASPM; aspm) and retrospective (retro) runs are also presented. Current F represented by geometric mean of last three assessment years $(F/F_{40\%} = F_{2019-2021}/F_{40\%})$. $L_{F40\%}$ is in 1000 lb weight. Spawning stock biomass (SSB) is measured in 1e+12 eggs. Stock and rebuild status based on terminal year (SSB/MSST = SSB₂₀₂₁/MSST; SSB/SSB_{F40\%} = SSB₂₀₂₁/SSB_{F40\%}). Years associated with reference points in retrospective runs differ from other runs. See text for full description of sensitivity, ASPM, and retrospective runs.

ID	Description	$F_{40\%}$	$\mathrm{SSB}_{\mathrm{F40\%}}$	$L_{\rm F40\%}$	$F/F_{40\%}$	SSB/MSST	$R_0 \ (1000 fish)$
base	base	0.562	6.95	1864.75	1.16	1.33	4307
S01	F init lo	0.562	6.95	1865.19	1.16	1.33	4308
S02	F init up	0.562	6.95	1863.97	1.16	1.33	4302
S03	M lo	0.295	8.52	1384.31	3.07	0.50	1923
S04	M up	1.037	8.33	3292.91	0.38	2.88	11447
S05	Dmort lo	0.596	6.71	1894.14	1.10	1.37	4153
S06	Dmort up	0.532	7.19	1842.94	1.22	1.29	4457
S07	age error none	0.429	9.23	2415.76	0.66	1.88	5790
S08	age1to8	0.625	6.36	1722.24	1.39	1.20	3983
S09	fecbatchconstant	0.802	8.78	2044.73	0.81	1.65	4307
S10	nbatchconstant	1.597	9.92	2199.59	0.41	2.15	4307
S11	fecbatchnbatchconstant	3.000	20.50	2053.32	0.22	2.42	4307
S12	steep estimate init0.8	0.561	6.97	1868.96	1.16	1.33	4317
S13	smooth D rGDs 2016	0.562	6.85	1834.02	1.17	1.33	4241
S14	styr c pue sTVs 1990 $$	0.544	7.19	1914.11	1.06	1.41	4493
S15	sel rGN rHB separate	0.420	5.14	1473.55	1.23	1.30	3186
S16	w cpue sTVs lo	0.570	6.63	1792.94	1.28	1.25	4092
S17	w cpue sTVs up	0.563	6.04	1654.35	1.59	1.05	3225
S18	w agec sTVs lo	0.530	7.39	1962.77	1.01	1.46	4479
S19	w agec sTVs up	0.644	6.21	1680.09	1.44	1.15	3936
S20	w agec all lo	0.563	6.87	1836.43	1.18	1.32	4160
S21	w agec all up	0.573	6.38	1723.99	1.32	1.23	4041
S22	w lenc all lo	0.563	6.94	1865.59	1.16	1.34	4300
S23	w lenc all up	0.561	6.96	1867.14	1.17	1.31	4266
aspm	aspm	0.478	18.91	4560.03	0.22	3.05	12732
retro 20	retro endyr2020	0.534	7.12	1819.52	0.87	1.59	4399
retro19	retro endyr2019	0.488	7.06	1637.40	0.79	1.90	4384
retro18	retro endyr2018	0.431	6.98	1413.98	1.01	1.94	4318
retro17	retro endyr2017	0.401	7.30	1433.82	0.84	2.00	4436
retro16	retro endyr2016	0.424	7.02	1470.20	0.85	2.06	4259

Table 24. Projection results with fishing mortality rate fixed at $F = F_{40}$ starting in 2025 and projecting forward to 2031. From 2022 to 2024 the fishing mortality rate was fixed at $F_{current} = 0.65$. R = number of age-1 recruits (1000 fish), F = fishing mortality rate (per year), S = spawning stock (1e+12 eggs), L = landings expressed in numbers (n, 1000 fish) or whole weight (w, 1000 lb), <math>P(SSB > MSST) = proportion of stochastic projection replicates with SSB > MSST. The subscript b indicates expected values (deterministic) from the base run; the subscript m indicates median values from the stochastic projections.

SEDAR 82 SAR Section III

Table 25. Projection results with fishing mortality rate fixed at $F = 75\% F_{40}$ starting in 2025 and projecting forward to 2031. From 2022 to 2024 the fishing mortality rate was fixed at $F_{\text{current}} = 0.65$. R = number of age-1 recruits (1000 fish), F = fishing mortality rate (per year), S = spawning stock (1e+12 eggs), L = landings expressed in numbers (n, 1000 fish) or whole weight (w, 1000 lb), P(SSB > MSST) = proportion of stochastic projection replicates with SSB > MSST. The subscript b indicates expected values (deterministic) from the base run; the subscript m indicates median values from the stochastic projections.

Year	$R_{\rm b}$	$R_{\rm m}$	$F_{\rm b}$	$F_{\rm m}$	$S_{\rm b}$	$S_{\rm m}$	$L_{\rm b}$ (n)	$L_{\rm m}$ (n)	$L_{\rm b}~({\rm w})$	$L_{\rm m}~({\rm w})$	$D_{\rm b}~({\rm n})$	$D_{\rm m}~({\rm n})$	$D_{\rm b}~({\rm w})$	$D_{\rm m}~({\rm w})$	P(SSB > MSST)
2022	4688	4510	0.65	0.61	5.80	6.23	636	668	1679	1751	303	267	294	256	0.72
2023	4688	4506	0.65	0.61	6.07	6.41	703	697	1839	1837	303	268	292	257	0.73
2024	4688	4489	0.65	0.61	6.26	6.48	728	693	1911	1836	303	266	292	256	0.73
2025	4688	4512	0.42	0.42	6.75	6.90	507	515	1339	1369	198	188	191	180	0.78
2026	4688	4456	0.42	0.42	7.36	7.46	556	559	1488	1499	199	188	192	181	0.85
2027	4688	4484	0.42	0.42	7.75	7.79	586	586	1582	1586	199	189	192	181	0.90
2028	4688	4456	0.42	0.42	7.95	7.97	602	600	1636	1635	199	188	192	180	0.93
2029	4688	4510	0.42	0.42	8.06	8.10	610	609	1662	1661	199	188	192	181	0.94
2030	4688	4472	0.42	0.42	8.11	8.13	613	612	1675	1674	199	187	192	180	0.95
2031	4688	4478	0.42	0.42	8.13	8.17	614	614	1680	1682	199	190	192	182	0.95
	NotPeerRen														

Assessment Report

9 Figures

Jot Reviewed

Figure 1. Timeline of data fit to in this assessment. Date types include landings (L), indices of abundance (index; CPUE), age compositions (comp), and length compositions. Data sources include the commercial (com) handline, recreational headboat and general recreational fleets, and the SERFS trap video survey. Sources of landings and discards are from north and south areas along the US Atlantic coast, divided at the border of Virginia and North Carolina. Age composition data were divided into early $(a \le 2014)$ and a late $(b \ge 2015)$ years.

landings com handline SERFS trap video south landings com handline north SERFS trap video south landings rec headboat south SERFS trap video south landings rec general south rec headboat south b landings rec general north rec headboat south a discards rec headboat discards south rec headboat south discards rec general discards south rec headboat discards s discards rec general discards north rec general south index SERFS trap video south rec general north age comp com handline south a rec general discards so age comp com handline south b rec general discards no age comp rec headboat south a com handline south b age comp rec headboat south b com handline south a age comp SERFS trap video south a com handline north age comp SERFS trap video south b com handline ingth comp rec headboat discards south

Figure 2. Fitting of growth models for the (A) population and (B) fishery.

	А												
	lenprob												
069	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.300 _[0			
-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001		0.282			
630	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002		0.265			
-	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007		0.247			
570	0.000	0.000	0.000	0.001	0.005	0.010	0.015	0.020		0.229			
-	0.000	0.000	0.001	0.006	0.016	0.027	0.037	0.044		0.212			
510	0.000	0.000	0.004	0.019	0.040	0.058	0.073	0.083		-0.194			
-	0.000	0.001	0.016	0.049	0.081	0.104	0.118	0.128		-0 176			
450	0.000	0.006	0.046	0.097	0.132	0.150	0.159	0.163		-0 150			
۔ ڀ	0.000	0.024	0.100	0.154	0.174	0.178	0.176	0.173		0.133			
390 390	0.002	0.072	0.165	0.191	0.185	0.172	0.160	0.151		0.141			
	0.014	0.150	0.207	0.187	0.158	0.135	0.120	0.110		F0.124			
330	0.061	0.221	0.197	0.144	0.109	0.087	0.074	0.066		0.106			
-	0.166	0.229	0.142	0.087	0.060	0.046	0.038	0.033		-0.088			
270	0.269	0.168	0.077	0.042	0.027	0.020	0.016	0.013		0.071			
-	0.264	0.087	0.032	0.016	0.010	0.007	0.005	0.005		-0.053			
510	0.155	0.032	0.010	0.005	0.003	0.002	0.002	0.001		-0.035			
-	0.055	0.008	0.002	0.001	0.001	0.000	0.000	0.000		0.018			
150	0.013	0.002	0.000	0.000	0.000	0.000	0.000	0.000] []]	L0.000			
	1	2	3	4	5 age bir	6 ns	7	8					

Figure 3. Length to age conversion matrices for the (A) population and (B) fishery, used in the model.

В		

lenprob.L

0										
69	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.350_
-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.329
630	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.309
-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001		0.288
570	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.005		0.268
-	0.000	0.000	0.000	0.000	0.002	0.005	0.012	0.023		0.247
510	0.000	0.000	0.001	0.003	0.011	0.025	0.046	0.070		-0.226
-	0.000	0.001	0.006	0.020	0.047	0.081	0.118	0.151		-0.206
ains 450	0.001	0.008	0.032	0.076	0.128	0.174	0.207	0.226		0.200
gth I	0.009	0.046	0.111	0.179	0.227	0.247	0.247	0.234		0.105
a90 390	0.057	0.149	0.230	0.266	0.261	0.234	0.201	0.169		FU. 105
-	0.184	0.274	0.285	0.247	0.195	0.148	0.111	0.084		10.144
330	0.311	0.286	0.212	0.143	0.094	0.062	0.042	0.029		0.124
-	0.275	0.169	0.094	0.052	0.029	0.017	0.011	0.007		0.103
270	0.128	0.056	0.025	0.012	0.006	0.003	0.002	0.001		0.082
-	0.031	0.011	0.004	0.002	0.001	0.000	0.000	0.000		0.062
210	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000		0.041
-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.021
150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		Lo.000
-	1	2	3	4	5	6	7	8		
age bins										

Figure 4. Aging error matrix used in the assessment, relating true ages to observed (comps) ages.

age error											
1.000	0.045	0.003	0.001	0.000	0.000	0.000	0.000		-1.000 -0.941		
0.000	0.910	0.171	0.024	0.005	0.002	0.001	0.000		-0.882 -0.824		
0.000	0.045	0.652	0.231	0.057	0.016	0.006	0.001		-0.765 -0.706		
0.000	0.000	0.171	0.489	0.242	0.086	0.031	0.003		0.588 0.529		
0.000	0.000	0.003	0.231	0.391	0.233	0.105	0.012		-0.471 -0.412		
0.000	0.000	0.000	0.024	0.242	0.326	0.218	0.034		0.353 0.294 0.235		
0.000	0.000	0.000	0.001	0.057	0.233	0.278	0.069		0.176 0.118		
0.000	0.000	0.000	0.000	0.005	0.104	0.361	0.881		0.059		
1	2	3	4	5 ages (tr	6 ue)	7	8	-			
NOL											
	1.000 0.000 0.000 0.000 0.000 0.000 1	1.000 0.045 0.000 0.910 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 2	1.000 0.045 0.003 0.000 0.910 0.171 0.000 0.045 0.652 0.000 0.000 0.171 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 2 3	1.000 0.045 0.003 0.001 0.000 0.910 0.171 0.024 0.000 0.045 0.652 0.231 0.000 0.000 0.171 0.489 0.000 0.000 0.003 0.231 0.000 0.000 0.003 0.231 0.000 0.000 0.003 0.231 0.000 0.000 0.003 0.231 0.000 0.000 0.004 0.024 0.000 0.000 0.001 0.024 0.000 0.000 0.001 0.001 1 2 3 4	1.000 0.045 0.003 0.001 0.000 0.000 0.910 0.171 0.024 0.005 0.000 0.045 0.652 0.231 0.057 0.000 0.000 0.171 0.489 0.242 0.000 0.000 0.003 0.231 0.391 0.000 0.000 0.003 0.231 0.391 0.000 0.000 0.003 0.231 0.391 0.000 0.000 0.001 0.024 0.242 0.000 0.000 0.001 0.024 0.242 0.000 0.000 0.001 0.005 0.057 1 2 3 4 5 0.000 0.000 0.000 0.000 3 1 2 3 4 5 0.000 0.000 0.000 3 3 1 2 3 4 5 0.000 1 5 3 4 0.000 1 5 3 5 0.000	age error 1.000 0.045 0.003 0.001 0.000 0.002 0.000 0.910 0.171 0.024 0.005 0.002 0.000 0.045 0.652 0.231 0.057 0.016 0.000 0.000 0.171 0.489 0.242 0.086 0.000 0.000 0.003 0.231 0.391 0.233 0.000 0.000 0.003 0.231 0.391 0.233 0.000 0.000 0.001 0.024 0.242 0.326 0.000 0.000 0.001 0.024 0.242 0.326 0.000 0.000 0.001 0.005 0.233 0.000 0.000 0.000 0.005 0.104 1 2 3 4 5 6 0.000 0.000 0.000 0.005 0.104 1 2 3 4 5 6 0.000 0.000 4 5 6 6	inge error 1.000 0.045 0.003 0.001 0.000 0.000 0.001 0.000 0.910 0.171 0.024 0.005 0.002 0.001 0.000 0.045 0.652 0.231 0.057 0.016 0.006 0.000 0.000 0.171 0.489 0.242 0.086 0.031 0.000 0.000 0.003 0.231 0.391 0.233 0.105 0.000 0.000 0.003 0.231 0.391 0.233 0.105 0.000 0.000 0.003 0.231 0.391 0.233 0.105 0.000 0.000 0.001 0.024 0.242 0.326 0.218 0.000 0.000 0.001 0.057 0.233 0.278 1 2 3 4 5 6 7 0.000 0.000 0.000 0.005 0.104 0.361 1 2 3 4 5 6 7	age error 1.000 0.045 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.910 0.171 0.024 0.005 0.002 0.001 0.000 0.000 0.045 0.652 0.231 0.057 0.016 0.006 0.001 0.000 0.000 0.171 0.489 0.242 0.086 0.031 0.003 0.000 0.000 0.171 0.489 0.242 0.086 0.031 0.003 0.000 0.000 0.033 0.231 0.391 0.233 0.105 0.115 0.012 0.000 0.000 0.001 0.024 0.242 0.326 0.218 0.031 0.000 0.000 0.001 0.057 0.233 0.278 0.069 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8	age error 1.000 0.045 0.003 0.001 0.000 0.000 0.000 0.000 0.910 0.171 0.024 0.005 0.002 0.001 0.000 0.000 0.045 0.652 0.231 0.057 0.016 0.006 0.001 0.000 0.000 0.171 0.489 0.242 0.086 0.031 0.003 0.000 0.000 0.003 0.231 0.391 0.233 0.105 0.012 0.000 0.000 0.003 0.231 0.391 0.233 0.105 0.012 0.000 0.000 0.001 0.057 0.233 0.278 0.069 0.000 0.000 0.001 0.057 0.233 0.278 0.699 0.000 0.000 0.000 0.005 0.104 0.361 0.831 1 2 3 4 5 6 7 8		

SEDAR 82 SAR Section III

Figure 5. (A) Female maturity and (B) reproductive output (million eggs) at age.

Figure 6. Observed (open circles) and estimated (solid line) annual age and length compositions by fleet. In panels indicating the data set: acomp = age compositions; lcomp = length compositions; cHLsa = commercial handline, south, early years; cHLsb = commercial handline, south, late years; rHBsa = recreational headboat, south, early years; rHBsb = recreational headboat, south, late years; sTVsa = SERFS trap video survey, south, early years; sTVsb = SERFS trap video survey, south, late years; and rHDs = recreational headboat discards, south, all years.

sM = MARMAP longline survey, rA = general recreational. N indicates the number of trips from which individual fish samples were taken. The four digit number in upper right corner of each panel indicates year of sampling (e.g. 1997, 1998).

Figure 6. (cont.) Observed (open circles) and estimated (solid line) annual age and length compositions by fleet.

Figure 6. (cont.) Observed (open circles) and estimated (solid line) annual age and length compositions by fleet.

Figure 6. (cont.) Observed (open circles) and estimated (solid line) annual age and length compositions by fleet.

Figure 6. (cont.) Observed (open circles) and estimated (solid line) annual age and length compositions by fleet.

Figure 6. (cont.) Observed (open circles) and estimated (solid line) annual age and length compositions by fleet.

Figure 7. Observed (open circles) and estimated (solid line) pooled age compositions for commercial handline (south) for early (A; 1990 - 2014) and late (B; 2015 - 2019) periods.

Figure 8. Observed (open circles) and estimated (solid line) pooled age compositions for recreational headboat (south) for early (A; 1990 - 2014) and late (B; 2015 - 2019) periods.

Figure 9. Observed (open circles) and estimated (solid line) pooled age compositions for the SERFS trap/video survey (south) for early (A; 1990 - 2014) and late (B; 2015 - 2019) periods.

Figure 10. Observed (open circles) and estimated (solid line) pooled length compositions for recreational headboat discards (south) for all years (2005-2020).

Figure 11. Pearson residual plots for age compositions for commercial handline (south) for early (A; 1990 – 2014) and late (B; 2015 – 2019) periods. Yellow circles indicate positive residuals. Blue circles indicate negative residuals. The size of circles is scaled uniquely in each panel and is relative to the legend above each panel. Pearson residuals are computed as $(ob - pr)/sqrt(pr * (1 - pr)/n_{eff})$, where ob and pr are observed and predicted proportion at age and n_{eff} is effective sample size.

Figure 12. Pearson residual plots for age compositions for commercial handline (south) for early (A; 1990 – 2014) and late (B; 2015 – 2019) periods. Yellow circles indicate positive residuals. Blue circles indicate negative residuals. The size of circles is scaled uniquely in each panel and is relative to the legend above each panel. Pearson residuals are computed as $(ob - pr)/sqrt(pr * (1 - pr)/n_{eff})$, where ob and pr are observed and predicted proportion at age and n_{eff} is effective sample size.

Figure 13. Pearson residual plots for age compositions for commercial handline (south) for early (A; 1990 – 2014) and late (B; 2015 – 2019) periods. Yellow circles indicate positive residuals. Blue circles indicate negative residuals. The size of circles is scaled uniquely in each panel and is relative to the legend above each panel. Pearson residuals are computed as $(ob - pr)/sqrt(pr * (1 - pr)/n_{eff})$, where ob and pr are observed and predicted proportion at age and n_{eff} is effective sample size.

Figure 14. Pearson residual plots for age compositions for length compositions for recreational headboat discards (south) for all years (2005-2020). Yellow circles indicate positive residuals. Blue circles indicate negative residuals. The size of circles is scaled uniquely in each panel and is relative to the legend above each panel. Pearson residuals are computed as $(ob - pr)/sqrt(pr * (1 - pr)/n_{eff})$, where ob and pr are observed and predicted proportion at age and n_{eff} is effective sample size.

Figure 15. Observed (open circles) and estimated (line, solid circles) commercial handline (north) landings (1000 lb whole weight).

Figure 16. Observed (open circles) and estimated (line, solid circles) commercial handline (south) landings and dead discards (1000 lb whole weight).

Figure 17. Observed (open circles) and estimated (line, solid circles) general recreational (north) landings (1000 fish).

Figure 18. Observed (open circles) and estimated (line, solid circles) general recreational (south) landings (1000 fish).

Figure 19. Observed (open circles) and estimated (line, solid circles) headboat recreational (south) landings (1000 fish).

Figure 20. Observed (open circles) and estimated (line, solid circles) general recreational (north) discards (1000 dead fish).

Figure 21. Observed (open circles) and estimated (line, solid circles) general recreational (south) discards (1000 dead fish).

Figure 22. Observed (open circles) and estimated (line, solid circles) headboat recreational (south) discards (1000 dead fish).

Figure 23. Observed (open circles) and estimated (line, solid circles) SERFS trap/video index In the upper panel, error bars indicate ± 2 standard errors of the observed index (U_{ob}). In the lower panel are the log residuals of the fit to the index and the color of the box indicates the p-value of the runs test (green > 0.05, orange ≤ 0.05 and > 0.01, red < 0.01) and the width of the box is 3 times the standard error. Points that fall outside 3 standard errors are plotted in red.

Figure 24. Estimated abundance (numbers) at age at start of year.

Figure 25. Estimated biomass at age at start of year.

Figure 26. Estimated recruitment time series. (A) Estimated recruitment of age-1 fish. Horizontal dashed line indicates $R_{F40\%}$. (B) Log recruitment residuals (open circles). These are annual recruitment deviations (r_y) estimated within the model. The solid tan line is a lowess smoother fit to the residuals.

Figure 27. Estimated total biomass and spawning stock time series. (A) Estimated total biomass (metric tons) at start of year. Horizontal dashed line indicates $B_{F40\%}$. (B) Estimated spawning stock (million eggs) at time of peak spawning (June 29th; 0.5 yr).

Figure 28. Selectivity for the SERFS trap/video index. The first year of each selectivity block is indicated in the legend. In this case, there was only one selectivity block.

Figure 29. Selectivity for commercial handline landings. The first year of each selectivity block is indicated in the legend. In this case, there was only one selectivity block. The same selectivity was applied to both north and south areas.

Figure 30. Selectivity for (A) headboat and (B) general recreational landings. The first year of each selectivity block is indicated in the legend. In this case, there was only one selectivity block. Note that the general recreational selectivity was assumed equal to the headboat selectivity. The same selectivity was applied to both north and south areas.

Figure 31. Selectivity for (A) headboat and (B) general recreational discards. The first year of each selectivity block is indicated in the legend. In this case, there was only one selectivity block. Note that the general recreational selectivity was assumed equal to the headboat selectivity. The same selectivity was applied to both north and south areas.

Figure 32. Average selectivity from the terminal assessment year weighted by geometric mean Fs from the last three assessment years, for (A) landings, (B) discards, and (C) total removals. These selectivities are used in computation of benchmarks and central-tendency projections.

Figure 33. Estimated fully selected fishing mortality rate (per year) by fleet for discards (D) and landings (L) for general recreational discards, north (D.rGDn); general recreational discards, south (D.rGDs); headboat recreational discards, south (D.rHDs); general recreational landings, north (L.rGNn); general recreational landings, south (L.rGNs); headboat recreational landings, south (L.rHBs); commercial handline landings, north (L.cHLn); and commercial handline landings, south (L.cHLs).

Figure 34. Estimated landings and discards in (A) absolute numbers and (B) proportion of total numbers by fleet from the catch-at-age model, for general recreational discards, north (D.rGDn); general recreational discards, south (D.rGDs); headboat recreational discards, south (D.rHDs); general recreational landings, north (L.rGNn); general recreational landings, south (L.rGNs); headboat recreational landings, south (L.rHBs); commercial handline landings, north (L.cHLn); and commercial handline landings, south (L.cHLs).

Year

Figure 35. Estimated landings and discards in (A) absolute weight and (B) proportion of total weight by fleet from the catch-at-age model, for general recreational discards, north (D.rGDn); general recreational discards, south (D.rGDs); headboat recreational discards, south (D.rHDs); general recreational landings, north (L.rGNn); general recreational landings, south (L.rGNs); headboat recreational landings, south (L.rHBs); commercial handline landings, north (L.cHLn); and commercial handline landings, south (L.cHLs).

Year

104

Figure 37. Probability densities of (A) spawner-recruit quantities R0 (unfished recruitment of age-1 fish), (B) steepness, (C) unfished spawners per recruit, and (D) the standard deviation of the recruitment residuals in log space. Solid vertical lines represent point estimates or values from the BAM base run; dashed and dotted vertical lines represent medians and 95% confidence limits from the MCBE runs, respectively (n = 1878). The solid colored lines represent 10 randomly selected simulation runs.

Figure 38. (A) Yield per recruit (lb) and (B) spawning potential ratio (spawning biomass per recruit relative to that at the unfished level) over a range of F. Both curves are based on average selectivity from the end of the assessment period (see Figure 32).

Figure 39. The top panels shows equilibrium landings at F. The peak occurs where fishing rate is $F_{40\%} = 0.56$ and equilibrium landings are $L_{F40\%} = 1865$ (1000 lb). The bottom panel shows equilibrium spawning biomass at F. Both curves are based on average selectivity from the end of the assessment period.

Figure 40. Probability densities of $F_{40\%}$ -related benchmarks (A) $F_{40\%}$, (B) MSST, (C) $L_{F40\%}$, and (D) $B_{F40\%}$ from MCBE analysis (n = 1878). Vertical lines represent point estimates from the BAM base run; dashed vertical lines represent medians from the MCBE runs.

Figure 41. Estimated time series of SSB and F relative to benchmarks: (top) spawning biomass relative to the minimum stock size threshold (MSST), (bottom) F relative to $F_{40\%}$. Shaded region represents 95% confidence bands from the MCBE runs (n = 1878).

Figure 42. Probability densities of terminal status estimates from MCBE analysis of the Beaufort Assessment Model (n = 1878). Vertical lines represent point estimates from the BAM base run; dashed vertical lines represent medians from the MCBE runs.

Figure 44. Estimated age structure from a series of individual years during the assessment, relative to the equilibrium expected at $F_{40\%}$.

age (yr)

Figure 45. Sensitivity to initial F (F_{init}) (S01-S02). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 46. Sensitivity to fixed values of natural mortality (S03-S04). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 47. Sensitivity to fixed values of discard mortality (S05-S06). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 48. Sensitivity to excluding age error (S07). Estimated time series of F and SSB relative to benchmarks $(F_{40\%} \text{ and } MSST)$, as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 49. Sensitivity to using age comps from 1 to 8 for all years (S08). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 50. Sensitivity to age-dependent batch fecundity (S09). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 51. Sensitivity to age-dependent batch number (S10). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 52. Sensitivity to age-dependent batch number and batch fecundity (S11). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 53. Sensitivity to estimating steepness (S12). Estimated time series of F and SSB relative to benchmarks $(F_{40\%} \text{ and } MSST)$, as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 54. Sensitivity to high value of general recreational discards (S13). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 55. Sensitivity to start year of SERFS trap/video index (S14). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 56. Sensitivity to estimating selectivity for general recreational (rGN) landings (S15). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 57. Sensitivity to weight on SERFS trap/video index (S16-S17). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 58. Sensitivity to weight on SERFS trap/video age comps (S18-S19). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 59. Sensitivity to weight on all age comps (S20-S21). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 60. Sensitivity to weight on all length comps (S22-S23). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 61. Observed (open circles) and estimated (line, solid circles) SERFS trap/video index for the Age-Structured Production Model (ASPM). In the upper panel, error bars indicate ± 2 standard errors of the observed index (U_{ob}) . In the lower panel are the log residuals of the fit to the index and the color of the box indicates the p-value of the runs test (green > 0.05, orange ≤ 0.05 and > 0.01, red < 0.01) and the width of the box is 3 times the standard error. Points that fall outside 3 standard errors are plotted in red.

Year

Figure 62. Sensitivity to age structure (age structured production model) (aspm). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Sensitivity runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 63. Retrospective analysis (retro). Estimated time series of F and SSB relative to benchmarks ($F_{40\%}$ and MSST), as well as number of age-1 recruits and stock size (SSB; million eggs). Solid black line and solid circles indicate estimates from the BAM base run. Retrospective runs are indicated by colored lines, represented in the legend. Values to the right of each time series indicate which is the sensitivity (sens) run, or indicate a fixed numeric value that was varied in that run. (A) $F/F_{40\%}$, (B) SSB/MSST, (C) number of recruits, and (D) SSB.

Figure 64. Plots of (A) F, (B) SSB, and (C) recruitment for base years (black lines with gray shading) and projection years (blue lines with light blue shading) with fishing mortality rate at $F_{40\%}$. Expected values associated with the base run (solid time series lines) and medians of stochastic runs (dashed time series lines) are plotted. Shaded bands to 5th and 95th percentiles of stochastic runs. Solid horizontal green lines mark $F_{40\%}$ -related benchmarks; dashed horizontal pink lines represent medians of stochastic runs. The terminal year of the assessment (2021) is indicated by a vertical black line.

Figure 65. Plots of (A) landings, (B) discards, and (C) indices for base years (black lines with gray shading) and projection years (blue lines with light blue shading) with fishing mortality rate at $F_{40\%}$. Expected values associated with the base run (solid time series lines) and medians of stochastic runs (dashed time series lines) are plotted. Shaded bands to 5th and 95th percentiles of stochastic runs. Solid horizontal green lines mark $F_{40\%}$ -related benchmarks; dashed horizontal pink lines represent medians of stochastic runs. The terminal year of the assessment (2021) is indicated by a vertical black line.

Figure 66. Plots of probability that SSB > MSST for base and projection years (solid line and open circles with fishing mortality rate at $F_{40\%}$. The terminal year of the assessment (2021) is indicated by a vertical black line. Expected values associated with the base run (solid time series lines) and medians of stochastic runs (dashed time series lines) are plotted. Probabilities 0.5 and 0.7 are indicated by horizontal black lines.

Figure 67. Plots of (A) F, (B) SSB, and (C) recruitment for base years (black lines with gray shading) and projection years (blue lines with light blue shading) with fishing mortality rate at $75\% F_{40\%}$. Expected values associated with the base run (solid time series lines) and medians of stochastic runs (dashed time series lines) are plotted. Shaded bands to 5th and 95th percentiles of stochastic runs. Solid horizontal green lines mark $F_{40\%}$ -related benchmarks; dashed horizontal pink lines represent medians of stochastic runs. The terminal year of the assessment (2021) is indicated by a vertical black line.

Figure 68. Plots of (A) landings, (B) discards, and (C) indices for base years (black lines with gray shading) and projection years (blue lines with light blue shading) with fishing mortality rate at $75\% F_{40\%}$. Expected values associated with the base run (solid time series lines) and medians of stochastic runs (dashed time series lines) are plotted. Shaded bands to 5th and 95th percentiles of stochastic runs. Solid horizontal green lines mark $F_{40\%}$ -related benchmarks; dashed horizontal pink lines represent medians of stochastic runs. The terminal year of the assessment (2021) is indicated by a vertical black line.

Figure 69. Plots of probability that SSB > MSST for base and projection years (solid line and open circles with fishing mortality rate at $75\% F_{40\%}$. The terminal year of the assessment (2021) is indicated by a vertical black line. Expected values associated with the base run (solid time series lines) and medians of stochastic runs (dashed time series lines) are plotted. Probabilities 0.5 and 0.7 are indicated by horizontal black lines.

Appendix A Parameter estimates from the Beaufort Assessment Model

ID	Parameter	Value
1	log.R0	15.2760000
2	rec.sigma	0.4118900
3	log.dev.rec.1990	-0.3676200
4	log.dev.rec.1991	0.3389500
5	log.dev.rec.1992	0.1502200
6	log.dev.rec.1993	0.3296700
7	log.dev.rec.1994	0.5053700
8	log.dev.rec.1995	0.3459500
9	log.dev.rec.1996	-0.2476600
10	log.dev.rec.1997	-0.5938600
11	log.dev.rec.1998	-0.4078800
12	log.dev.rec.1999	-0.2721300
13	log.dev.rec.2000	0.0345940
14	log.dev.rec.2001	-0.0687340
15	log.dev.rec.2002	-0.0254930
16	log.dev.rec.2003	-0.3515300
17	log.dev.rec.2004	-0.0834210
18	log.dev.rec.2005	-0.1216200
19	log.dev.rec.2006	-0.3544100
20	log.dev.rec.2007	0.1421800
21	log.dev.rec.2008	-0.1576600
22	log.dev.rec.2009	0.1377700
23	log.dev.rec.2010	-0.1196900
24	log.dev.rec.2011	0.3635500
25	log.dev.rec.2012	0.4546300
26	log.dev.rec.2013	-0.0793260
27	log.dev.rec.2014	0.4955600
28	log.dev.rec.2015	0.4077100
29	log.dev.rec.2016	0.0769750
30	log.dev.rec.2017	-0.2770100
31	log.dev.rec.2018	-0.2550900
32	log.dm.lenc.rHDs	-1.4050000
33	log.dm.agec.cHLsa	-1.5572000
34	log.dm.agec.cHLsb	0.3513500
35	log.dm.agec.rHBsa	-0.9629300
36	log.dm.agec.rHBsb	-0.0911840
37	log.dm.agec.sTVsa	-1.3479000
38	log.dm.agec.sTVsb	1.4386000
39	selpar.01b01.cHLs	3.4799000
40	selpar.02b01.cHLs	2.5275000

Table	26.	(continued)
-------	-----	-------------

	ID	Parameter	Value	
	41	selpar.01b01.sTVs	2.9530000	
	42	selpar.02b01.sTVs	1.9090000	
	43	selpar.01b01.rHBs	2.9255000	
	44	selpar.02b01.rHBs	2.6975000	
	45	selpar.04b01.rHDs	0.9360000	
	46	log.q.cpue.sTVs	-14.3830000	
	47	log.avg.F.L.cHLs	-2.8340000	
	48	log.dev.F.L.cHLs.1982	-1.4001000	
	49	log.dev.F.L.cHLs.1983	-1.7441000	
	50	log.dev.F.L.cHLs.1984	-1.6436000	
	51	log.dev.F.L.cHLs.1985	-1.6949000	
	52	log.dev.F.L.cHLs.1986	-1.6972000	
	53	log.dev.F.L.cHLs.1987	-1.6304000	
	54	log.dev.F.L.cHLs.1988	-1.5255000	
	55	log.dev.F.L.cHLs.1989	-1.2967000	
	56	log.dev.F.L.cHLs.1990	-0.5515000	
	57	log.dev.F.L.cHLs.1991	-0.0413440	
	58	log.dev.F.L.cHLs.1992	0.1389800	
	59	log.dev.F.L.cHLs.1993	0.4344700	
	60	log.dev.F.L.cHLs.1994	0.4728800	
	61	log.dev.F.L.cHLs.1995	0.5822700	
	62	log.dev.F.L.cHLs.1996	0.3467400	
	63	log.dev.F.L.cHLs.1997	0.5473900	
	64	log.dev.F.L.cHLs.1998	0.3306900	
	65	log.dev.F.L.cHLs.1999	0.0345980	
	66	log.dev.F.L.cHLs.2000	-0.1629100	
	67	log.dev.F.L.cHLs.2001	-0.0089538	
	68	log.dev.F.L.cHLs.2002	-0.1113800	
	69	log.dev.F.L.cHLs.2003	-0.1829400	
	70	log.dev.F.L.cHLs.2004	0.1326000	
	71	$\log.dev.F.L.cHLs.2005$	0.3154700	
	72	log.dev.F.L.cHLs.2006	0.2813600	
	73	$\log.dev.F.L.cHLs.2007$	0.6502300	
	74	$\log.dev.F.L.cHLs.2008$	0.8021500	
\sim	75	$\log.dev.F.L.cHLs.2009$	1.0341000	
	76	$\log.dev.F.L.cHLs.2010$	1.3033000	
	77	$\log.dev.F.L.cHLs.2011$	1.3227000	
	78	$\log.dev.F.L.cHLs.2012$	0.6185100	
	79	$\log.dev.F.L.cHLs.2013$	0.5680600	
	80	$\log.dev.F.L.cHLs.2014$	0.2133400	

Table 26.	(continued)
-----------	-------------

ID	Parameter	Value
81	log.dev.F.L.cHLs.2015	0.3233400
82	log.dev.F.L.cHLs.2016	0.2366000
83	$\log.dev.F.L.cHLs.2017$	0.3091800
84	log.dev.F.L.cHLs.2018	0.3656300
85	log.dev.F.L.cHLs.2019	0.6394600
86	log.dev.F.L.cHLs.2020	0.9524200
87	log.dev.F.L.cHLs.2021	0.7351800
88	log.avg.F.L.cHLn	-6.6874000
89	log.dev.F.L.cHLn.1982	-4.4104000
90	log.dev.F.L.cHLn.1983	-2.2199000
91	log.dev.F.L.cHLn.1984	-2.2847000
92	log.dev.F.L.cHLn.1985	-2.3603000
93	log.dev.F.L.cHLn.1986	-2.4757000
94	log.dev.F.L.cHLn.1987	-2.6051000
95	log.dev.F.L.cHLn.1988	-2.7298000
96	log.dev.F.L.cHLn.1989	-2.8473000
97	log.dev.F.L.cHLn.1990	-2.9742000
98	log.dev.F.L.cHLn.1991	-1.5771000
99	log.dev.F.L.cHLn.1992	-1.6913000
100	log.dev.F.L.cHLn.1993	0.0033891
101	log.dev.F.L.cHLn.1994	1.2948000
102	log.dev.F.L.cHLn.1995	1.2656000
103	log.dev.F.L.cHLn.1996	0.9451400
104	log.dev.F.L.cHLn.1997	0.8118200
105	log.dev.F.L.cHLn.1998	0.3190500
106	log.dev.F.L.cHLn.1999	0.5885900
107	log.dev.F.L.cHLn.2000	0.0534340
108	log.dev.F.L.cHLn.2001	0.1123100
109	log.dev.F.L.cHLn.2002	1.2104000
110	log.dev.F.L.cHLn.2003	0.8973000
111	log.dev.F.L.cHLn.2004	0.6778000
112	log.dev.F.L.cHLn.2005	0.3525500
113	log.dev.F.L.cHLn.2006	0.2808200
114	log.dev.F.L.cHLn.2007	1.1100000
115	log.dev.F.L.cHLn.2008	0.6355000
116	log.dev.F.L.cHLn.2009	1.7821000
117	log.dev.F.L.cHLn.2010	1.5058000
118	log.dev.F.L.cHLn.2011	1.8675000
119	log.dev.F.L.cHLn.2012	2.3717000
120	log.dev.F.L.cHLn.2013	1.9090000

	ID	Parameter	Value	
	121	log.dev.F.L.cHLn.2014	0.8089100	•
	122	log.dev.F.L.cHLn.2015	-0.0225270	
	123	log.dev.F.L.cHLn.2016	0.3914100	
	124	log.dev.F.L.cHLn.2017	1.6561000	
	125	log.dev.F.L.cHLn.2018	1.4493000	
	126	log.dev.F.L.cHLn.2019	1.2814000	
	127	log.dev.F.L.cHLn.2020	1.1752000	
	128	log.dev.F.L.cHLn.2021	1.4413000	
	129	log.avg.F.L.rHBs	-3.6175000	
	130	log.dev.F.L.rHBs.1982	-0.9103200	
	131	log.dev.F.L.rHBs.1983	-0.9385000	
	132	log.dev.F.L.rHBs.1984	-0.9754400	
	133	log.dev.F.L.rHBs.1985	-0.6745700	
	134	log.dev.F.L.rHBs.1986	-0.9150300	
	135	log.dev.F.L.rHBs.1987	-0.8781100	
	136	log.dev.F.L.rHBs.1988	-0.6950100	
	137	log.dev.F.L.rHBs.1989	-0.5899500	
	138	log.dev.F.L.rHBs.1990	0.1182000	•
	139	log.dev.F.L.rHBs.1991	0.4468700	
	140	log.dev.F.L.rHBs.1992	0.7030400	
	141	log.dev.F.L.rHBs.1993	0.8004600	
	142	log.dev.F.L.rHBs.1994	0.5259900	
	143	log.dev.F.L.rHBs.1995	0.4157400	
	144	log.dev.F.L.rHBs.1996	0.2424200	
	145	log.dev.F.L.rHBs.1997	0.4543900	
	146	log.dev.F.L.rHBs.1998	0.1613100	
	147	log.dev.F.L.rHBs.1999	-0.2400500	
	148	log.dev.F.L.rHBs.2000	-0.2317700	
	149	log.dev.F.L.rHBs.2001	-0.2695300	
	150	log.dev.F.L.rHBs.2002	0.2282000	
	151	log.dev.F.L.rHBs.2003	-0.0226600	
	152	log.dev.F.L.rHBs.2004	0.5554000	
	153	log.dev.F.L.rHBs.2005	0.4641800	
()	154	log.dev.F.L.rHBs.2006	0.1045000	
	155	log.dev.F.L.rHBs.2007	0.6042800	
	156	log.dev.F.L.rHBs.2008	0.3196000	
	157	log.dev.F.L.rHBs.2009	0.6182000	
	158	log.dev.F.L.rHBs.2010	0.8053400	
	159	log.dev.F.L.rHBs.2011	0.4451200	
	160	log.dev.F.L.rHBs.2012	0.2454800	
				-

Table 26. (continued)

ntinued)

ID Parameter Value 161 log.dev.F.L.rHBs.2013 0.1600300 162 log.dev.F.L.rHBs.2014 -0.0419950 163 log.dev.F.L.rHBs.2015 -0.1828700 164 log.dev.F.L.rHBs.2016 -0.4135500 165 log.dev.F.L.rHBs.2017 -0.2037200 166 log.dev.F.L.rHBs.2019 -0.0407850 167 log.dev.F.L.rHBs.2020 0.0183480 169 log.dev.F.L.rHBs.2021 -0.0704270 170 log.avg.F.L.rGNs =2.2503000 171 log.dev.F.L.rGNs.1982 -1.1492000 172 log.dev.F.L.rGNs.1983 -1.3222500 173 log.dev.F.L.rGNs.1984 -0.2322500 174 log.dev.F.L.rGNs.1985 -1.0295000 175 log.dev.F.L.rGNs.1984 -0.323200 176 log.dev.F.L.rGNs.1987 -1.3103000 177 log.dev.F.L.rGNs.1991 1.0019000 180 log.dev.F.L.rGNs.1992 0.3897800 182 log.dev.F.L.rGNs.1993 0.1334100 183 <t< th=""><th></th><th></th><th></th></t<>			
161 $\log.dev.F.L.rHBs.2013$ 0.1600300 162 $\log.dev.F.L.rHBs.2014$ -0.0419950 163 $\log.dev.F.L.rHBs.2015$ -0.1828700 164 $\log.dev.F.L.rHBs.2016$ -0.4135500 165 $\log.dev.F.L.rHBs.2017$ -0.2037200 166 $\log.dev.F.L.rHBs.2017$ -0.2037200 166 $\log.dev.F.L.rHBs.2017$ -0.2037200 167 $\log.dev.F.L.rHBs.2019$ 0.0407850 168 $\log.dev.F.L.rHBs.2019$ 0.0407850 168 $\log.dev.F.L.rHBs.2021$ -0.0704270 170 $\log.av.F.L.rGNs.1982$ -1.1492000 171 $\log.dev.F.L.rGNs.1982$ -1.1492000 172 $\log.dev.F.L.rGNs.1983$ -1.3291000 173 $\log.dev.F.L.rGNs.1983$ -1.3291000 174 $\log.dev.F.L.rGNs.1984$ -0.2322500 175 $\log.dev.F.L.rGNs.1984$ -0.2322500 176 $\log.dev.F.L.rGNs.1985$ -1.0295000 175 $\log.dev.F.L.rGNs.1987$ -1.3103000 176 $\log.dev.F.L.rGNs.1987$ -1.3103000 177 $\log.dev.F.L.rGNs.1987$ -0.3023200 180 $\log.dev.F.L.rGNs.1989$ -0.323200 181 $\log.dev.F.L.rGNs.1991$ 1.0019000 181 $\log.dev.F.L.rGNs.1993$ 0.1334100 182 $\log.dev.F.L.rGNs.1993$ 0.1334100 183 $\log.dev.F.L.rGNs.1995$ -1.1222000 184 $\log.dev.F.L.rGNs.1997$ -0.8431500 185 $\log.dev.F.L.rGNs.1997$ -0.8431500 186 $\log.dev.F.L.rGNs.2001$ -0.5896300 197 $\log.dev.F.$	ID	Parameter	Value
162log.dev.F.L.rHBs.2014 -0.0419950 163log.dev.F.L.rHBs.2015 -0.1828700 164log.dev.F.L.rHBs.2016 -0.4135500 165log.dev.F.L.rHBs.2017 -0.2037200 166log.dev.F.L.rHBs.2017 -0.2037200 167log.dev.F.L.rHBs.2019 0.0407850 168log.dev.F.L.rHBs.2019 0.0407850 169log.dev.F.L.rHBs.2021 -0.0704270 170log.avg.F.L.rGNs -2.2503000 171log.dev.F.L.rGNs.1982 -1.1492000 172log.dev.F.L.rGNs.1983 -1.3291000 173log.dev.F.L.rGNs.1983 -1.3291000 174log.dev.F.L.rGNs.1984 -0.2322500 175log.dev.F.L.rGNs.1985 -1.0295000 175log.dev.F.L.rGNs.1985 -1.0295000 176log.dev.F.L.rGNs.1986 -1.6830000 177log.dev.F.L.rGNs.1987 -1.3103000 178log.dev.F.L.rGNs.1988 -0.5346500 179log.dev.F.L.rGNs.1989 -0.1425000 179log.dev.F.L.rGNs.1990 -0.3023200 180log.dev.F.L.rGNs.1991 1.0019000 181log.dev.F.L.rGNs.1993 0.1334100 183log.dev.F.L.rGNs.1993 -0.5739800 184log.dev.F.L.rGNs.1995 -1.1222000 185log.dev.F.L.rGNs.1997 -0.8431500 184log.dev.F.L.rGNs.1998 -0.5266700 190log.dev.F.L.rGNs.2001 -0.5896300 191log.dev.F.L.rGNs.2003 0.1699000 192log.dev.F.L	161	log.dev.F.L.rHBs.2013	0.1600300
163 $\log.dev.F.L.rHBs.2015$ -0.1828700 164 $\log.dev.F.L.rHBs.2016$ -0.4135500 165 $\log.dev.F.L.rHBs.2017$ -0.2037200 166 $\log.dev.F.L.rHBs.2017$ -0.2037200 167 $\log.dev.F.L.rHBs.2019$ 0.0407850 168 $\log.dev.F.L.rHBs.2021$ -0.0704270 169 $\log.dev.F.L.rHBs.2021$ -0.0704270 170 $\log.avg.F.L.rGNs$ -2.2503000 171 $\log.dev.F.L.rGNs.1982$ -1.1492000 172 $\log.dev.F.L.rGNs.1983$ -1.3291000 173 $\log.dev.F.L.rGNs.1983$ -1.3291000 174 $\log.dev.F.L.rGNs.1984$ -0.2322500 175 $\log.dev.F.L.rGNs.1985$ -1.0295000 176 $\log.dev.F.L.rGNs.1985$ -1.0295000 177 $\log.dev.F.L.rGNs.1986$ -1.6830000 178 $\log.dev.F.L.rGNs.1987$ -1.3103000 179 $\log.dev.F.L.rGNs.1988$ -0.5346500 178 $\log.dev.F.L.rGNs.1989$ -0.1425000 179 $\log.dev.F.L.rGNs.1990$ -0.3023200 180 $\log.dev.F.L.rGNs.1991$ 1.0019000 181 $\log.dev.F.L.rGNs.1993$ 0.1334100 183 $\log.dev.F.L.rGNs.1993$ -0.5739800 184 $\log.dev.F.L.rGNs.1994$ -0.5739800 185 $\log.dev.F.L.rGNs.1997$ -0.8431500 186 $\log.dev.F.L.rGNs.1997$ -0.8431500 187 $\log.dev.F.L.rGNs.2001$ -0.5866300 191 $\log.dev.F.L.rGNs.2003$ 0.1699000 192 $\log.dev.F.L.rGNs.2004$ 0.1416000 194 $\log.dev.F.L.$	162	log.dev.F.L.rHBs.2014	-0.0419950
164 $\log.dev.F.L.rHBs.2016$ -0.4135500 165 $\log.dev.F.L.rHBs.2017$ -0.2037200 166 $\log.dev.F.L.rHBs.2018$ -0.2243700 167 $\log.dev.F.L.rHBs.2019$ 0.0407850 168 $\log.dev.F.L.rHBs.2020$ 0.0183480 169 $\log.dev.F.L.rHBs.2021$ -0.0704270 170 $\log.avg.F.L.rGNs$ -2.2503000 171 $\log.dev.F.L.rGNs.1982$ -1.1492000 172 $\log.dev.F.L.rGNs.1983$ -1.3291000 173 $\log.dev.F.L.rGNs.1983$ -1.3291000 174 $\log.dev.F.L.rGNs.1984$ -0.2322500 175 $\log.dev.F.L.rGNs.1985$ -1.0295000 176 $\log.dev.F.L.rGNs.1985$ -1.0295000 177 $\log.dev.F.L.rGNs.1985$ -1.3103000 176 $\log.dev.F.L.rGNs.1987$ -1.3103000 177 $\log.dev.F.L.rGNs.1988$ -0.5346500 178 $\log.dev.F.L.rGNs.1989$ -0.1425000 179 $\log.dev.F.L.rGNs.1989$ -0.1425000 180 $\log.dev.F.L.rGNs.1990$ -0.3023200 180 $\log.dev.F.L.rGNs.1991$ 1.0019000 181 $\log.dev.F.L.rGNs.1992$ 0.3897800 182 $\log.dev.F.L.rGNs.1993$ -0.5739800 183 $\log.dev.F.L.rGNs.1994$ -0.5739800 184 $\log.dev.F.L.rGNs.1995$ -1.1222000 185 $\log.dev.F.L.rGNs.1997$ -0.8431500 186 $\log.dev.F.L.rGNs.1998$ -1.0199000 188 $\log.dev.F.L.rGNs.2001$ -0.5866300 191 $\log.dev.F.L.rGNs.2003$ 0.1699000 192 $\log.dev.F.L.$	163	log.dev.F.L.rHBs.2015	-0.1828700
165 $\log.dev.F.L.rHBs.2017$ -0.2037200 166 $\log.dev.F.L.rHBs.2018$ -0.2243700 167 $\log.dev.F.L.rHBs.2019$ 0.0407850 168 $\log.dev.F.L.rHBs.2020$ 0.0183480 169 $\log.dev.F.L.rHBs.2021$ -0.0704270 170 $\log.avg.F.L.rGNs$ -2.2503000 171 $\log.dev.F.L.rGNs.1982$ -1.1492000 172 $\log.dev.F.L.rGNs.1983$ -1.3291000 173 $\log.dev.F.L.rGNs.1983$ -1.3291000 174 $\log.dev.F.L.rGNs.1984$ -0.2322500 175 $\log.dev.F.L.rGNs.1985$ -1.0295000 175 $\log.dev.F.L.rGNs.1986$ -1.6830000 176 $\log.dev.F.L.rGNs.1987$ -1.3103000 177 $\log.dev.F.L.rGNs.1987$ -1.3103000 178 $\log.dev.F.L.rGNs.1987$ -0.3023200 180 $\log.dev.F.L.rGNs.1989$ -0.1425000 179 $\log.dev.F.L.rGNs.1991$ 1.0019000 181 $\log.dev.F.L.rGNs.1991$ 1.0019000 182 $\log.dev.F.L.rGNs.1993$ 0.1334100 183 $\log.dev.F.L.rGNs.1994$ -0.5739800 184 $\log.dev.F.L.rGNs.1995$ -1.1222000 185 $\log.dev.F.L.rGNs.1997$ -0.8431500 186 $\log.dev.F.L.rGNs.1997$ -0.8431500 187 $\log.dev.F.L.rGNs.2001$ -0.5896300 191 $\log.dev.F.L.rGNs.2001$ -0.5896300 192 $\log.dev.F.L.rGNs.2001$ -0.5896300 193 $\log.dev.F.L.rGNs.2004$ 0.1416000 194 $\log.dev.F.L.rGNs.2005$ -0.0856190 195 $\log.dev.F.L.r$	164	log.dev.F.L.rHBs.2016	-0.4135500
166log.dev.F.L.rHBs.2018 -0.2243700 167log.dev.F.L.rHBs.2019 0.0407850 168log.dev.F.L.rHBs.2020 0.0183480 169log.dev.F.L.rHBs.2021 -0.0704270 170log.avg.F.L.rGNs -2.2503000 171log.dev.F.L.rGNs.1982 -1.1492000 172log.dev.F.L.rGNs.1983 -1.3291000 173log.dev.F.L.rGNs.1983 -1.3291000 174log.dev.F.L.rGNs.1984 -0.2322500 175log.dev.F.L.rGNs.1984 -0.2322500 176log.dev.F.L.rGNs.1985 -1.0295000 175log.dev.F.L.rGNs.1986 -1.6830000 176log.dev.F.L.rGNs.1986 -1.6830000 177log.dev.F.L.rGNs.1987 -1.3103000 178log.dev.F.L.rGNs.1988 -0.3023200 180log.dev.F.L.rGNs.1999 -0.3023200 180log.dev.F.L.rGNs.1991 1.0019000 181log.dev.F.L.rGNs.1992 0.3897800 182log.dev.F.L.rGNs.1993 0.1334100 183log.dev.F.L.rGNs.1994 -0.5739800 184log.dev.F.L.rGNs.1995 -1.1222000 185log.dev.F.L.rGNs.1997 -0.8431500 186log.dev.F.L.rGNs.1998 -1.0199000 188log.dev.F.L.rGNs.2001 -0.5896300 191log.dev.F.L.rGNs.2002 0.0621310 192log.dev.F.L.rGNs.2003 0.1699000 193log.dev.F.L.rGNs.2004 0.1416000 194log.dev.F.L.rGNs.2007 1.0007000 195log.dev.F.L.rGN	165	log.dev.F.L.rHBs.2017	-0.2037200
167 $\log_{c} dev.F.L.rHBs.2019$ 0.0407850 168 $\log_{c} dev.F.L.rHBs.2021$ -0.0704270 170 $\log_{c} avg.F.L.rGNs$ -2.2503000 171 $\log_{c} dev.F.L.rGNs.1982$ -1.1492000 172 $\log_{c} dev.F.L.rGNs.1983$ -1.3291000 173 $\log_{c} dev.F.L.rGNs.1983$ -1.3291000 174 $\log_{c} dev.F.L.rGNs.1984$ -0.2322500 174 $\log_{c} dev.F.L.rGNs.1984$ -0.2322500 175 $\log_{c} dev.F.L.rGNs.1985$ -1.0295000 175 $\log_{c} dev.F.L.rGNs.1986$ -1.6830000 176 $\log_{c} dev.F.L.rGNs.1986$ -1.6830000 177 $\log_{c} dev.F.L.rGNs.1987$ -1.3103000 178 $\log_{c} dev.F.L.rGNs.1987$ -0.3023200 180 $\log_{c} dev.F.L.rGNs.1991$ 1.0019000 181 $\log_{c} dev.F.L.rGNs.1991$ 0.3897800 182 $\log_{c} dev.F.L.rGNs.1993$ 0.1334100 183 $\log_{c} dev.F.L.rGNs.1993$ 0.1334100 184 $\log_{c} dev.F.L.rGNs.1994$ -0.5739800 185 $\log_{c} dev.F.L.rGNs.1997$ -0.8431500 186 $\log_{c} dev.F.L.rGNs.1998$ -1.0199000 188 $\log_{c} dev.F.L.rGNs.2001$ -0.5896300 190 $\log_{c} dev.F.L.rGNs.2002$ 0.0621310 191 $\log_{c} dev.F.L.rGNs.2004$ 0.1416000 192 $\log_{c} dev.F.L.rGNs.2004$ 0.1416000 193 $\log_{c} dev.F.L.rGNs.2007$ 1.0007000 194 $\log_{c} dev.F.L.rGNs.2007$ 1.0007000 195 $\log_{c} dev.F.L.rGNs.2008$ 0.9241400 <	166	log.dev.F.L.rHBs.2018	-0.2243700
168 $\log_{c} dev.F.L.rHBs.2020$ 0.0183480 169 $\log_{c} dev.F.L.rHBs.2021$ -0.0704270 170 $\log_{c} avg.F.L.rGNs$ -2.2503000 171 $\log_{c} dev.F.L.rGNs.1982$ -1.1492000 172 $\log_{c} dev.F.L.rGNs.1983$ -1.3291000 173 $\log_{c} dev.F.L.rGNs.1983$ -1.3291000 174 $\log_{c} dev.F.L.rGNs.1984$ -0.2322500 174 $\log_{c} dev.F.L.rGNs.1984$ -0.2322500 175 $\log_{c} dev.F.L.rGNs.1985$ -1.0295000 176 $\log_{c} dev.F.L.rGNs.1986$ -1.6830000 176 $\log_{c} dev.F.L.rGNs.1987$ -1.3103000 177 $\log_{c} dev.F.L.rGNs.1987$ -1.3103000 178 $\log_{c} dev.F.L.rGNs.1988$ -0.5346500 179 $\log_{c} dev.F.L.rGNs.1989$ -0.1425000 179 $\log_{c} dev.F.L.rGNs.1990$ -0.3023200 180 $\log_{c} dev.F.L.rGNs.1991$ 1.0019000 181 $\log_{c} dev.F.L.rGNs.1991$ 1.0019000 182 $\log_{c} dev.F.L.rGNs.1993$ 0.1334100 183 $\log_{c} dev.F.L.rGNs.1994$ -0.5739800 184 $\log_{c} dev.F.L.rGNs.1995$ -1.1222000 185 $\log_{c} dev.F.L.rGNs.1997$ -0.4366700 186 $\log_{c} dev.F.L.rGNs.1998$ -1.0199000 188 $\log_{c} dev.F.L.rGNs.2001$ -0.5896300 190 $\log_{c} dev.F.L.rGNs.2002$ 0.621310 192 $\log_{c} dev.F.L.rGNs.2003$ 0.1699000 193 $\log_{c} dev.F.L.rGNs.2004$ 0.1416000 194 $\log_{c} dev.F.L.rGNs.2007$ 1.0007000 <td>167</td> <td>log.dev.F.L.rHBs.2019</td> <td>0.0407850</td>	167	log.dev.F.L.rHBs.2019	0.0407850
169 $\log_{dev}.F.L.rHBs.2021$ -0.0704270 170 $\log_{avg}.F.L.rGNs$ -2.2503000 171 $\log_{dev}.F.L.rGNs.1983$ -1.1492000 172 $\log_{dev}.F.L.rGNs.1983$ -1.3291000 173 $\log_{dev}.F.L.rGNs.1983$ -1.3291000 174 $\log_{dev}.F.L.rGNs.1984$ -0.2322500 174 $\log_{dev}.F.L.rGNs.1984$ -0.23225000 175 $\log_{dev}.F.L.rGNs.1985$ -1.0295000 175 $\log_{dev}.F.L.rGNs.1986$ -1.6830000 176 $\log_{dev}.F.L.rGNs.1986$ -1.6830000 177 $\log_{dev}.F.L.rGNs.1987$ -1.3103000 178 $\log_{dev}.F.L.rGNs.1988$ -0.5346500 179 $\log_{dev}.F.L.rGNs.1989$ -0.1425000 180 $\log_{dev}.F.L.rGNs.1990$ -0.3023200 180 $\log_{dev}.F.L.rGNs.1991$ 1.0019000 181 $\log_{dev}.F.L.rGNs.1992$ 0.3897800 182 $\log_{dev}.F.L.rGNs.1993$ 0.1334100 183 $\log_{dev}.F.L.rGNs.1993$ -0.5739800 184 $\log_{dev}.F.L.rGNs.1994$ -0.5739800 185 $\log_{dev}.F.L.rGNs.1995$ -1.1222000 186 $\log_{dev}.F.L.rGNs.1997$ -0.8431500 187 $\log_{dev}.F.L.rGNs.1998$ -1.0199000 188 $\log_{dev}.F.L.rGNs.2000$ -0.5266700 190 $\log_{dev}.F.L.rGNs.2001$ -0.5896300 191 $\log_{dev}.F.L.rGNs.2003$ 0.1699000 193 $\log_{dev}.F.L.rGNs.2004$ 0.1416000 194 $\log_{dev}.F.L.rGNs.2005$ -0.0856190 195 $\log_{dev}.F.L.rGNs.2007$	168	log.dev.F.L.rHBs.2020	0.0183480
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	169	log.dev.F.L.rHBs.2021	-0.0704270
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	log.avg.F.L.rGNs	-2.2503000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171	log.dev.F.L.rGNs.1982	-1.1492000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	172	log.dev.F.L.rGNs.1983	-1.3291000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	173	log.dev.F.L.rGNs.1984	-0.2322500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	174	log.dev.F.L.rGNs.1985	-1.0295000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	175	log.dev.F.L.rGNs.1986	-1.6830000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	176	log.dev.F.L.rGNs.1987	-1.3103000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	177	log.dev.F.L.rGNs.1988	-0.5346500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178	log.dev.F.L.rGNs.1989	-0.1425000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	179	log.dev.F.L.rGNs.1990	-0.3023200
181 log.dev.F.L.rGNs.1992 0.3897800 182 log.dev.F.L.rGNs.1993 0.1334100 183 log.dev.F.L.rGNs.1994 -0.5739800 184 log.dev.F.L.rGNs.1994 -0.5739800 184 log.dev.F.L.rGNs.1995 -1.1222000 185 log.dev.F.L.rGNs.1995 -0.8527800 186 log.dev.F.L.rGNs.1996 -0.8527800 186 log.dev.F.L.rGNs.1997 -0.8431500 187 log.dev.F.L.rGNs.1997 -0.4366700 188 log.dev.F.L.rGNs.2000 -0.5266700 190 log.dev.F.L.rGNs.2001 -0.5896300 191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2007 1.0007000 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2009 1.2390000 198 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	180	log.dev.F.L.rGNs.1991	1.0019000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	181	log.dev.F.L.rGNs.1992	0.3897800
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	182	log.dev.F.L.rGNs.1993	0.1334100
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	183	log.dev.F.L.rGNs.1994	-0.5739800
185 log.dev.F.L.rGNs.1996 -0.8527800 186 log.dev.F.L.rGNs.1997 -0.8431500 187 log.dev.F.L.rGNs.1998 -1.0199000 188 log.dev.F.L.rGNs.1999 -0.4366700 189 log.dev.F.L.rGNs.2000 -0.5266700 190 log.dev.F.L.rGNs.2001 -0.5896300 191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2007 1.0007000 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2009 1.2390000 198 log.dev.F.L.rGNs.2010 0.9646100 199 log.dev.F.L.rGNs.2011 0.4670000	184	log.dev.F.L.rGNs.1995	-1.1222000
186 log.dev.F.L.rGNs.1997 -0.8431500 187 log.dev.F.L.rGNs.1998 -1.0199000 188 log.dev.F.L.rGNs.1999 -0.4366700 189 log.dev.F.L.rGNs.2000 -0.5266700 190 log.dev.F.L.rGNs.2001 -0.5896300 191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2007 1.0007000 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2009 1.2390000 198 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	185	log.dev.F.L.rGNs.1996	-0.8527800
187 log.dev.F.L.rGNs.1998 -1.0199000 188 log.dev.F.L.rGNs.1999 -0.4366700 189 log.dev.F.L.rGNs.2000 -0.5266700 190 log.dev.F.L.rGNs.2001 -0.5896300 191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2009 1.2390000 198 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	186	log.dev.F.L.rGNs.1997	-0.8431500
188 log.dev.F.L.rGNs.1999 -0.4366700 189 log.dev.F.L.rGNs.2000 -0.5266700 190 log.dev.F.L.rGNs.2001 -0.5896300 191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2010 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	187	log.dev.F.L.rGNs.1998	-1.0199000
189 log.dev.F.L.rGNs.2000 -0.5266700 190 log.dev.F.L.rGNs.2001 -0.5896300 191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2010 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	188	log.dev.F.L.rGNs.1999	-0.4366700
190 log.dev.F.L.rGNs.2001 -0.5896300 191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	189	log.dev.F.L.rGNs.2000	-0.5266700
191 log.dev.F.L.rGNs.2002 0.0621310 192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	190	log.dev.F.L.rGNs.2001	-0.5896300
192 log.dev.F.L.rGNs.2003 0.1699000 193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	191	log.dev.F.L.rGNs.2002	0.0621310
193 log.dev.F.L.rGNs.2004 0.1416000 194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	192	log.dev.F.L.rGNs.2003	0.1699000
194 log.dev.F.L.rGNs.2005 -0.0856190 195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	193	$\log.dev.F.L.rGNs.2004$	0.1416000
195 log.dev.F.L.rGNs.2006 0.5059700 196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	194	$\log.dev.F.L.rGNs.2005$	-0.0856190
196 log.dev.F.L.rGNs.2007 1.0007000 197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	195	$\log.dev.F.L.rGNs.2006$	0.5059700
197 log.dev.F.L.rGNs.2008 0.9241400 198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	196	$\log.dev.F.L.rGNs.2007$	1.0007000
198 log.dev.F.L.rGNs.2009 1.2390000 199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	197	$\log.dev.F.L.rGNs.2008$	0.9241400
199 log.dev.F.L.rGNs.2010 0.9646100 200 log.dev.F.L.rGNs.2011 0.4670000	198	$\log.dev.F.L.rGNs.2009$	1.2390000
200 log.dev.F.L.rGNs.2011 0.4670000	199	$\log.dev.F.L.rGNs.2010$	0.9646100
	200	$\log. dev. F. L. rGNs. 2011$	0.4670000

Table 26.	(continued)
-----------	-------------

ID Parameter Value
201 log.dev.F.L.rGNs.2012 0.2569800
202 log.dev.F.L.rGNs.2013 0.3448300
203 log.dev.F.L.rGNs.2014 0.6400700
204 log.dev.F.L.rGNs.2015 -0.1362400
205 log.dev.F.L.rGNs.2016 1.1558000
206 log.dev.F.L.rGNs.2017 0.6924000
207 log.dev.F.L.rGNs.2018 0.3749700
208 log.dev.F.L.rGNs.2019 0.8124700
209 log.dev.F.L.rGNs.2020 1.1815000
210 log.dev.F.L.rGNs.2021 1.4406000
211 log.avg.F.L.rGNn -3.7878000
212 log.dev.F.L.rGNn.1982 -4.8038000
213 log.dev.F.L.rGNn.1983 -0.1818600
214 log.dev.F.L.rGNn.1984 –2.9755000
215 log.dev.F.L.rGNn.1985 –2.3319000
216 log.dev.F.L.rGNn.1986 -0.9727200
217 log.dev.F.L.rGNn.1987 0.1591900
218 log.dev.F.L.rGNn.1988 -3.4642000
219 log.dev.F.L.rGNn.1989 0.0568550
220 log.dev.F.L.rGNn.1990 -0.0694920
221 log.dev.F.L.rGNn.1991 0.2462100
222 log.dev.F.L.rGNn.1992 -0.5043800
223 log.dev.F.L.rGNn.1993 0.4666600
224 log.dev.F.L.rGNn.1994 0.2371300
225 log.dev.F.L.rGNn.1995 0.1688800
226 log.dev.F.L.rGNn.1996 0.6875300
227 log.dev.F.L.rGNn.1997 2.0562000
228 log.dev.F.L.rGNn.1998 -0.5849100
229 log.dev.F.L.rGNn.1999 -3.2267000
230 log.dev.F.L.rGNn.2000 -0.2160000
231 log.dev.F.L.rGNn.2001 -0.0616620
232 log.dev.F.L.rGNn.2002 0.6167100
233 log.dev.F.L.rGNn.2003 -0.2250300
$\overline{234}$ log.dev.F.L.rGNn.2004 1.2537000
235 log.dev.F.L.rGNn.2005 1.1931000
236 log.dev.F.L.rGNn.2006 -1.5435000
237 log.dev.F.L.rGNn.2007 0.7555100
238 log.dev.F.L.rGNn.2008 -0.6651200
239 log.dev.F.L.rGNn.2009 1.8193000
Table 26. (

	ID	Parameter	Value	
	241	log.dev.F.L.rGNn.2011	-0.0497300	
	242	log.dev.F.L.rGNn.2012	1.4008000	
	243	log.dev.F.L.rGNn.2013	0.1859100	
	244	log.dev.F.L.rGNn.2014	1.2401000	
	245	log.dev.F.L.rGNn.2015	-0.2002200	
	246	log.dev.F.L.rGNn.2016	0.4405000	
	247	log.dev.F.L.rGNn.2017	0.9481400	
	248	log.dev.F.L.rGNn.2018	1.3800000	
	249	log.dev.F.L.rGNn.2019	1.6275000	
	250	$\log.dev.F.L.rGNn.2020$	2.4081000	
	251	log.dev.F.L.rGNn.2021	1.6573000	
	252	log.avg.F.D.rHDs	-6.2890000	
	253	log.dev.F.D.rHDs.1982	-0.8369800	
	254	log.dev.F.D.rHDs.1983	0.5573100	
	255	log.dev.F.D.rHDs.1984	-0.2489100	
	256	log.dev.F.D.rHDs.1985	0.5258800	
	257	log.dev.F.D.rHDs.1986	-0.0552860	
	258	$\log.dev.F.D.rHDs.1987$	1.0271000	
	259	log.dev.F.D.rHDs.1988	1.5296000	
	260	log.dev.F.D.rHDs.1989	-1.9014000	
	261	log.dev.F.D.rHDs.1990	-1.1896000	
	262	log.dev.F.D.rHDs.1991	-1.4551000	
	263	$\log.dev.F.D.rHDs.1992$	-1.8264000	
	264	log.dev.F.D.rHDs.1993	-1.8683000	
	265	log.dev.F.D.rHDs.1994	-1.9532000	
	266	log.dev.F.D.rHDs.1995	-0.5072100	
	267	log.dev.F.D.rHDs.1996	-1.1529000	
	268	$\log.dev.F.D.rHDs.1997$	-0.4257600	
	269	log.dev.F.D.rHDs.1998	0.3465500	
	270	log.dev.F.D.rHDs.1999	0.6692000	
	271	log.dev.F.D.rHDs.2000	-0.6343700	
×	272	log.dev.F.D.rHDs.2001	-0.6145600	
	273	$\log.dev.F.D.rHDs.2002$	0.9441500	
	$\overline{2}74$	$\log.dev.F.D.rHDs.2003$	0.1384700	
	275	$\log.dev.F.D.rHDs.2004$	1.2273000	
	276	$\log.dev.F.D.rHDs.2005$	1.4788000	
	277	$\log.dev.F.D.rHDs.2006$	1.1696000	
	278	$\log.dev.F.D.rHDs.2007$	0.3601300	
	279	$\log.dev.F.D.rHDs.2008$	0.0587390	
	280	$\log.dev.F.D.rHDs.2009$	-0.1988200	

Table 26. (continued)

	ID	Parameter	Value	
	281	log.dev.F.D.rHDs.2010	0.5938900	
	282	log.dev.F.D.rHDs.2011	-0.3282300	
	283	log.dev.F.D.rHDs.2012	-0.3737800	
	284	log.dev.F.D.rHDs.2013	-0.3134600	
	285	log.dev.F.D.rHDs.2014	-0.3902700	
	286	log.dev.F.D.rHDs.2015	0.5351300	
	287	log.dev.F.D.rHDs.2016	1.7550000	
	288	log.dev.F.D.rHDs.2017	1.2168000	
	289	log.dev.F.D.rHDs.2018	1.0294000	
	290	log.dev.F.D.rHDs.2019	0.8044600	
	291	log.dev.F.D.rHDs.2020	0.1440900	
	292	log.dev.F.D.rHDs.2021	0.1628700	
	293	log.avg.F.D.rGDs	-3.2367000	
	294	log.dev.F.D.rGDs.1982	-1.7752000	
	295	log.dev.F.D.rGDs.1983	0.5381200	
	296	log.dev.F.D.rGDs.1984	-1.2552000	
	297	log.dev.F.D.rGDs.1985	-1.0112000	
	298	log.dev.F.D.rGDs.1986	0.0603450	
	299	log.dev.F.D.rGDs.1987	-0.1405100	
	300	log.dev.F.D.rGDs.1988	-0.6497900	
	301	log.dev.F.D.rGDs.1989	0.7994500	
	302	log.dev.F.D.rGDs.1990	-0.5873800	
	303	log.dev.F.D.rGDs.1991	0.9433200	
	304	log.dev.F.D.rGDs.1992	0.2350300	
	305	log.dev.F.D.rGDs.1993	-1.0558000	
	306	log.dev.F.D.rGDs.1994	-1.1229000	
	307	$\log.dev.F.D.rGDs.1995$	-0.7867100	
	308	log.dev.F.D.rGDs.1996	-0.0861030	
	309	$\log.dev.F.D.rGDs.1997$	-0.1636100	
	310	log.dev.F.D.rGDs.1998	-0.8777500	
	311	log.dev.F.D.rGDs.1999	-0.2038600	
	312	log.dev.F.D.rGDs.2000	-0.3272200	
	313	$\log.dev.F.D.rGDs.2001$	-0.8210200	
()	314	$\log.dev.F.D.rGDs.2002$	0.0052948	
\sim	315	log.dev.F.D.rGDs.2003	0.5859600	
	316	log.dev.F.D.rGDs.2004	0.3234500	
	317	$\log.dev.F.D.rGDs.2005$	0.2350600	
	318	log.dev.F.D.rGDs.2006	0.4586500	
	319	$\log.dev.F.D.rGDs.2007$	0.4578300	
	320	log.dev.F.D.rGDs.2008	0.2919500	

Table 26.	(continued)
-----------	-------------

ID	Parameter	Value	
321	log.dev.F.D.rGDs.2009	0.4704400	
322	log.dev.F.D.rGDs.2010	0.0898560	
323	log.dev.F.D.rGDs.2011	-0.9264100	
324	$\log.dev.F.D.rGDs.2012$	-0.7178600	
325	log.dev.F.D.rGDs.2013	0.2300700	
326	log.dev.F.D.rGDs.2014	0.0998370	
327	log.dev.F.D.rGDs.2015	0.3590500	
328	$\log.dev.F.D.rGDs.2016$	2.3156000	
329	$\log.dev.F.D.rGDs.2017$	1.3650000	
330	$\log.dev.F.D.rGDs.2018$	1.2255000	
331	$\log.dev.F.D.rGDs.2019$	0.6524200	
332	log.dev.F.D.rGDs.2020	-0.0724240	
333	$\log.dev.F.D.rGDs.2021$	0.8387400	
334	log.avg.F.D.rGDn	-6.3196000	
335	log.dev.F.D.rGDn.1982	-4.3509000	
336	log.dev.F.D.rGDn.1983	-4.3270000	
337	log.dev.F.D.rGDn.1984	-4.3404000	
338	log.dev.F.D.rGDn.1985	-4.3472000	
339	log.dev.F.D.rGDn.1986	-2.1618000	
340	log.dev.F.D.rGDn.1987	-0.4012600	
341	log.dev.F.D.rGDn.1988	-0.5048600	
342	log.dev.F.D.rGDn.1989	-0.5927800	
343	log.dev.F.D.rGDn.1990	2.0089000	
344	log.dev.F.D.rGDn.1991	0.1589100	
345	log.dev.F.D.rGDn.1992	-0.5222800	
346	log.dev.F.D.rGDn.1993	0.0558610	
347	log.dev.F.D.rGDn.1994	-0.3792800	
348	log.dev.F.D.rGDn.1995	-0.6398000	
349	log.dev.F.D.rGDn.1996	2.1061000	
350	log.dev.F.D.rGDn.1997	1.8268000	
351	log.dev.F.D.rGDn.1998	0.6126600	
352	log.dev.F.D.rGDn.1999	-0.9910000	
353	log.dev.F.D.rGDn.2000	-0.0286440	
354	$\log.dev.F.D.rGDn.2001$	0.7375300	
355	$\log.dev.F.D.rGDn.2002$	0.2527900	
356	$\log.dev.F.D.rGDn.2003$	0.5959100	
357	log.dev.F.D.rGDn.2004	1.3138000	
358	log.dev.F.D.rGDn.2005	-1.0141000	
359	log.dev.F.D.rGDn.2006	-0.5296800	
360	log.dev.F.D.rGDn.2007	1.9618000	

	ID	Parameter	Value	
	361	log.dev.F.D.rGDn.2008	-1.2776000	
	362	log.dev.F.D.rGDn.2009	1.8001000	
	363	log.dev.F.D.rGDn.2010	1.9066000	
	364	log.dev.F.D.rGDn.2011	-0.1035700	
	365	$\log.dev.F.D.rGDn.2012$	0.0266660	
	366	$\log.dev.F.D.rGDn.2013$	1.1565000	
	367	$\log.dev.F.D.rGDn.2014$	0.1648800	
	368	$\log.{\rm dev.F.D.rGDn.2015}$	0.6320000	
	369	$\log.dev.F.D.rGDn.2016$	1.5731000	
	370	$\log.dev.F.D.rGDn.2017$	1.0170000	
	371	log.dev.F.D.rGDn.2018	1.6910000	
	372	log.dev.F.D.rGDn.2019	1.3722000	
	373	log.dev.F.D.rGDn.2020	2.2728000	
	374	log.dev.F.D.rGDn.2021	1.2682000	
	375	F.init	0.0753210	
40		eerfe	sile	

Table 26. (continued)

Appendix B Abbreviations and Symbols

Table 27. Acronyms and abbreviations used in this report

Symbol	Meaning
ABC	Acceptable Biological Catch
AW	Assessment Workshop (here, for gray triggerfish)
ASY	Average Sustainable Yield
B	Total biomass of stock, conventionally on January 1
BAM	Beaufort Assessment Model (a statistical catch-age formulation)
CPUE	Catch per unit effort; used after adjustment as an index of abundance
CV	Coefficient of variation
DW	Data Workshop (here, for gray triggerfish)
F	Instantaneous rate of fishing mortality
F_{MSY}	Fishing mortality rate at which MSY can be attained
FL	State of Florida
GA	State of Georgia
GLM	Generalized linear model
K	Average size of stock when not exploited by man; carrying capacity
kg	Kilogram(s); I kg is about 2.2 lb.
KID IL	I nousand pounds; thousands of pounds
ID m	Pound(s); 1 10 is about 0.404 kg
III M	Instantaneous rate of natural (non fishing) mortality
MARMAP	Marina Resources Monitoring A seasement and Prediction Program a fishery independent data collection program
MARINIAL	of SCDNR
MCBE	Monte Carlo/Bootstrap Ensemble an approach to quantifying uncertainty in model results
MEMT	Maximum fishing-mortality threshold: a limit reference point used in U.S. fishery management: often based on
	From Provide the P
mm	$\overset{MST}{\text{Millimeter}(s): 1 inch = 25.4 \text{ mm}$
MRFSS	Marine Recreational Fisheries Statistics Survey, a data-collection program of NMFS, predecessor of MRIP
MRIP	Marine Recreational Information Program, a data-collection program of NMFS, descended from MRFSS
MSST	Minimum stock-size threshold; a limit reference point used in U.S. fishery management. The SAFMC has defined
	MSST for gray triggerfish as $(1 - M)$ SSB _{MSY} = 0.7 SSB _{MSY} .
MSY	Maximum sustainable yield (per year)
\mathbf{mt}	Metric ton(s). One mt is 1000 kg , or about 2205 lb .
N	Number of fish in a stock, conventionally on January 1
NC	State of North Carolina
NMFS	National Marine Fisheries Service, same as "NOAA Fisheries Service"
NOAA	National Oceanic and Atmospheric Administration; parent agency of NMFS
DCE	Optimum yield; SFA specifies that $OY \leq MSY$.
PSE	Proportional standard error
n SAEMC	Recruitment
SC	State of South Carolina
SCDNB	Department of Natural Resources of SC
SDNR	Standard deviation of normalized residuals
SEDAR	SouthEast Data Assessment and Review process
SEFIS	SouthEast Fishery-Independent Survey
SERFS	SouthEast Reef Fish Survey
SFA	Sustainable Fisheries Act; the Magnuson–Stevens Act, as amended
SL	Standard length (of a fish)
SPR	Spawning potential ratio
SSB	Spawning stock biomass; mature biomass of males and females
SSB_{MSY}	Level of SSB at which MSY can be attained
TIP	Trip Interview Program, a fishery-dependent biodata collection program of NMFS
TL	Total length (of a fish), as opposed to FL (fork length) or SL (standard length)
VPA	Virtual population analysis, an age-structured assessment
WW	Whole weight, as opposed to GW (gutted weight)
yr	Year(s)