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A B S T R A C T

Movement is a central feature of the ecology of fish, yet the study of fish movement has been inhibited due to its
multidimensional nature and technological and analytical limitations. We used a relatively new fine-scale
acoustic tracking system to quantify movements of an economically valuable, demersal marine fish species (gray
triggerfish Balistes capriscus) on a natural hardbottom reef on the continental shelf of North Carolina, USA.
Overall, 30 fish were tagged and released, and 104,170 highly precise (˜1–3m) spatial positions were estimated
during the 43-d study. To quantify gray triggerfish movements, we used a combination of exploratory data
analyses and hidden Markov models (HMM), the latter of which can identify and elucidate normally hidden
behavioral states. Both methods suggested gray triggerfish movements varied by diel period and among in-
dividuals, and that some of the variation among individuals could be explained by fish size. Depending on model
specification, HMMs identified two or three behavioral states, one of which was likely resting that occurred
mostly at night and another was likely foraging or transit that occurred mostly during the day. Moreover, resting
at night occurred in small, discrete patches within the study area, whereas foraging or transit behaviors occurred
broadly throughout the study area. We encourage a wider use of acoustic telemetry and HMMs to shed light on
the normally hidden behaviors of demersal fishes.

1. Introduction

Movement is a fundamental, organizing feature of animal ecology,
influencing gene flow, colonization and extinction rates, disease spread,
intraspecific interactions, and population and community dynamics
(Nathan et al., 2008). Despite its importance, methodologies for
quantifying movement have received less attention than methods for
measuring population density and survival, in part because movement
is inherently a multidimensional (spatial and temporal) phenomenon
(Turchin, 1998). Elucidating movement is also challenging because it
varies widely based on an animal’s physiological demands, internal
state, and their biotic and abiotic environment (Gurarie et al., 2009).

Quantifying the movements of marine organisms has tended to lag
behind those in terrestrial environments due to various logistical and
technical challenges imposed by the open ocean. It is difficult to find
and tag marine organisms that spend most of their time underwater, far
offshore, or in deep seafloor habitats. Moreover, animals in terrestrial

environments are most commonly tracked using devices based on the
global positioning system (Kays et al., 2015), but these tags cannot be
spatially located while underwater, so they are only useful for tracking
marine organisms that regularly come to the surface (e.g., Michelot
et al., 2017; Quick et al., 2017). Most fish species do not break the
water’s surface, so traditional tracking methods cannot be used for this
diverse group of marine organisms. Some tags can estimate an animal’s
position while underwater, but these tags typically use sunrise and
sunset times and perhaps water temperature for geolocation, and they
are therefore useful only for fish moving across broad spatial scales
(e.g., bluefin tuna Thunnus thynnus; Block et al., 2005). Very recently,
novel tracking systems have been developed that can provide meters-
level spatial resolution of a wide variety of marine fishes using arrays of
underwater receivers (e.g., Espinoza et al., 2011), allowing for fine-
scale relocations of many animal species that were previously un-
trackable.

Although recent technological advances in tracking devices have
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resulted in an abundance of tracking studies (Kays et al., 2015), ap-
proaches for analyzing these datasets have been a bottleneck (Calabrese
et al., 2016). Traditionally, animal movement data have been analyzed
empirically to determine temporal movement patterns across space,
home range size, and diurnal or seasonal movement rates (see review
by White and Garrott 1990). Yet an animal’s movement path is com-
posed of a mixture of different behavioral states (e.g., resting, feeding,
transiting) that may leave statistically unique signatures. Recent
movement models have been developed that can be used to identify
behavioral states of individually tracked organisms using information
such as distance moved over time, turning angle, acceleration or de-
celeration, and depth or elevation (Langrock et al., 2012; Leos-Barajas
et al., 2017). Most of these movement models are hidden Markov
models (HMMs; Franke et al., 2006), which are time series models that
use an observation model derived from relocation data to make in-
ferences about an animal’s “hidden” or non-observable behavioral
states (Langrock et al., 2012). Hidden Markov models have been rarely
applied to fish telemetry data.

Here we use exploratory data analyses and HMMs to describe the
movement patterns and identify behavioral states of a marine fish
species, gray triggerfish (Balistes capriscus), on a natural temperate reef
in the western North Atlantic Ocean. Gray triggerfish is a demersal reef-
associated fish species (asymptotic length=457mm fork length;
Burton et al. 2015) that is targeted by recreational and commercial
fishers along the southeast United States Atlantic coast (hereafter,
SEUS), and occurs in 15–100m water depth (Bacheler et al., 2016a,
2016b). Movements of gray triggerfish have been elucidated in relation
to hurricanes (Bacheler et al., 2019) and around artificial reefs (Herbig
and Szedlmayer, 2016), but their movements around natural reefs, and
their associated behavioral states, are unknown.

We tested four hypotheses about triggerfish movement. First, we
hypothesized that movements would vary among individual gray trig-
gerfish. Many animal populations exhibit leptokurtic movements,
whereby most individuals remain in relatively small areas while others
move long distances (Fraser et al., 2001), but this topic has received
little attention for marine fishes. Second, we hypothesized that some of
the individual differences in movements could be explained by fish size.
This question has important implications for the ecology of the species,
size-based fisheries management practices, and the efficacy of marine
protected areas across the species ontogeny, but to the best of our
knowledge has not been previously examined in gray triggerfish. Third,
we hypothesized that gray triggerfish would exhibit diurnal move-
ments, given that Herbig and Szedlmayer (2016) documented highly
diurnal movements of gray triggerfish around artificial reefs in the Gulf
of Mexico, with fish moving substantially more during the day than at
night. Last, we hypothesized that gray triggerfish would display dif-
ferent movement behaviors in distinct areas within the study area. Each
of these hypotheses has importance for applied fisheries management
(e.g., design of marine protected areas), as well as for a broad, ecolo-
gical understanding given the relative dearth of information about de-
mersal marine fishes whose natural behavior is rarely observed.

2. Material and methods

2.1. Study site

This study was conducted at an area of mixed low-relief hardbottom
reef and sand habitats covering approximately 0.5 km2 on the con-
tinental shelf of North Carolina, USA (Fig. 1). The specific site was lo-
cated about 35 km east of Cape Lookout, North Carolina, in 37m of
water and was chosen for three reasons. First, gray triggerfish have
been tagged at this location by Runde (2017), who documented high
abundance and site fidelity of the species. Second, a high-resolution
bathymetric seafloor map was available for the study area (C. Taylor,
unpublished data). Third, the bathymetric relief across the study area
was low, which eliminated acoustic signal dead zones that can

complicate fish telemetry studies in high-relief habitats (Bacheler et al.,
2015).

2.2. Data collection

We quantified the movements of gray triggerfish using a Vemco
positioning system (VPS). In VPS, an array of underwater receivers are
used to acoustically triangulate coded transmitters within the array,
providing meters-level precision of spatial positions each time the
transmitter emits a signal (Espinoza et al., 2011; Piraino and
Szedlmayer, 2014). Several previous studies have successfully used VPS
to quantify demersal marine fish movements (e.g., Espinoza et al.,
2011; Furey et al., 2013; Piraino and Szedlmayer, 2014; Herbig and
Szedlmayer, 2016; Williams-Grove and Szedlmayer, 2017).

The process by which receivers were deployed and retrieved and
fish were tagged was previously described in detail by Bacheler et al.
(2018), so we only provide a brief summary here. We deployed 20
submersible Vemco VR2AR receivers on 31 August 2017 in a 4×5 grid
at the study area (Fig. 1). Receivers were separated by ˜200m from one
another based on the detection range estimates of Bacheler et al. (2015)
using smaller (V9) transmitters. Thus, our receivers covered an area
that was 600× 800m in size.

Gray triggerfish were captured, tagged, and released in the study
area on 15 September 2017. After capture in baited traps, gray trig-
gerfish were immediately placed in a holding tank and then tagged
externally with Vemco V13-1x transmitters. We attached transmitters
externally to maximize the detection range of transmitters (Dance et al.,
2016) and minimize the time it took to attach transmitters to reduce
barotrauma effects (Burns et al., 2002; Jepsen et al., 2015). Transmit-
ters emitted unique acoustic signals every 110–250 sec on a frequency
of 69 kHz, weighed 11 g in air, and had a battery life of approximately
2.5 years. Gray triggerfish were tracked for 43 d (until 27 October
2017), at which point receivers were retrieved and detection data were
downloaded.

We also deployed a separate reference transmitter in the study area
to estimate water temperature and horizontal positional error of
transmitters (Fig. 1). This reference transmitter (Vemco V13T-1x; ping
rate= 9–11min) was attached to a 4-m line connected to a buoy on one
end and weight on the other. The reference transmitter was used to
calculate horizontal positional error as the difference in distance be-
tween the reference tag’s known location and its estimated position
each time it emitted a signal. Daily horizontal position estimates from
the reference tag were used to make inferences about the accuracy and
precision of gray triggerfish positions.

2.3. Analyses

We tested our four hypotheses using two quantitative approaches –
exploratory data analyses and HMMs. These two analytical approaches
were analyzed independently from one another but were based on the
same raw acoustic data. When used in combination, these two ap-
proaches are more powerful and informative than either approach
alone, especially if there is strong agreement between the two. For the
exploratory data analyses, movement rate of gray triggerfish was the
response variable used for all calculations. Movement rates (m/s) for
each fish in the study area were calculated as the distance moved (m)
between each successive pair of spatial positions divided by the time
between detections (s). The downside of using movement rates is that it
assumes straight-line movements between detections, when in fact fish
may not move in straight lines. Given that gray triggerfish were de-
tected on average every 2–4min, this issue is less critical in our study
compared to studies with longer time intervals between detections
(Alós et al., 2016), but it does imply that our movement rates should be
interpreted as minimum estimates.

Specific exploratory data analyses were used to provide an initial
evaluation of each of our hypotheses. First, we tested for differences in
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movement rates across individuals using a linear model, treating fish as
a categorical variable. This and all subsequent analyses were conducted
in R (R Core Team, 2017). Second, we tested for size-dependent
movement rates of gray triggerfish by relating mean movement rates of
each fish across the entire study to their fork length using a linear
model. For this analysis, we weighted points based on the available
sample size for each fish. And last, we tested for diel differences in
movement rates for gray triggerfish using a linear model; hour of the
day was binned into 24 hourly bins and treated as a categorical variable
in the model. Observations that straddled two adjacent hourly bins
were assigned to the first bin. For all linear models, model effects were
considered fixed effects. We used Akaike information criterion (AIC) to
test whether the above linear models were better or worse when in-
cluding the variable of interest compared to excluding that variable
(Burnham and Anderson, 2002). We compared the AICs of fitted models
to select the most parsimonious formulations, and models with the
lowest AIC values (ΔAIC= 0) were considered the best model in the set.

We also described the movement behaviors of gray triggerfish using
HMMs. These models have recently become a popular method to ana-
lyze animal movements (e.g., Langrock et al., 2014; DeRuiter et al.,
2017; Michelot et al., 2017), and in a few cases have been applied to
marine fishes (e.g., Patterson et al., 2009; Phillips et al., 2015; Heerah
et al., 2017; Papastamatiou et al., 2018). We used HMMs to classify
gray triggerfish movement behaviors into the most likely underlying
(hidden) behavioral states that give rise to our empirical, observed
data. In our case, observed data included in the HMMs were step length,
which was the distance moved during each time interval, and turning
angle, which was the change in direction between time intervals t and t
+ 1. A fish continuing in exactly the same direction across two time
intervals would have a turning angle of 0°, whereas a fish turning in the
opposite direction would have a turning angle of 180°.

The HMMs require that telemetry data are provided on a consistent
time interval, but our telemetry data occurred on an irregular time
interval to reduce the likelihood of acoustic signal collision among in-
dividuals. We regularized our telemetry data by interpolating the ani-
mals’ locations on a regular time grid using package crawl (Johnson
et al., 2008) in R (R Core Team, 2017), which implements continuous-
time correlated random walk models to provide a consistent time

interval for the HMMs. We explored a variety of time intervals for
regularization, but ultimately chose a 4-min interval because most time
intervals in the data were between 2 and 4min. Regardless of the time
interval used for regularization, output from the HMMs were nearly
identical.

There were also instances where longer gaps between acoustic de-
tections were apparent due to, for instance, temporary emigration of
individual fish from the study area. Regularizing telemetry data across
these longer time gaps was problematic because it introduced sub-
stantial regularization uncertainty. Therefore, we split tracks for in-
dividual fish when there were temporal gaps in detections longer than
20min, which removed the temporal gap from further analyses.
Multiple split tracks were then treated as independent time series
arising from the same underlying statistical model. Because a common
set of parameters was fitted to all tracks, the same behavioral states
govern the movement before and after the gap, and they can therefore
capture any existing correlation. Moreover, individual tracks for fish
that included fewer than 100 detections were also removed from ana-
lyses because a continuous-time model needs to be fitted to each track
for the regularization, and numerical issues arose for short tracks. Short
tracks also provide very little information about the dynamics of
switching between behavioral states. We also ran HMMs with different
values for the time of temporal gaps and minimum sample sizes for
detections and all HMM outputs were very similar, suggesting in-
sensitivity of HMMs to our choice of threshold values. If telemetered
gray triggerfish did not have any tracks with more than 100 detections,
they were excluded from our HMM analyses.

A primary strength of HMMs is the ability to identify underlying
behavioral states of animals that are not easily observed (i.e., un-
supervised), which is particularly useful for demersal marine fishes. For
instance, marine fishes may exhibit resting, foraging, and traveling
states. A key challenge, however, is determining how many behavioral
states should be included in HMMs (Pohle et al., 2017). Traditional
model selection approaches like Akaike information criterion appear to
select a much larger number of states than is expected or meaningful
based on a priori knowledge (DeRuiter et al., 2017; Li and Bolker,
2017). Pohle et al. (2017) argue that the number of states in HMMs
should be chosen pragmatically using a combination of statistical and

Fig. 1. Left panel: location of the study (green filled circle) east of Cape Lookout along the coast of North Carolina, USA, in 2017. Right panel: close-up view of the
study area where a Vemco positioning system was used to estimate fine-scale positions of telemetered gray triggerfish (Balistes capriscus). The background of the right
panel is a multibeam sonar map showing the bathymetry (depth) of the study area, submersible receivers are represented by black filled circles, the reference tag
location is represented by the blue filled circle, and tagging locations are represented by yellow filled circles. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).
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biological inferences. Given we have very limited inference about the
behavioral states of gray triggerfish, we focused our analyses on two-
and three-state HMMs, by far the most common in the movement
ecology literature. We refrain from presenting more complicated
models because (1) we lack biological justification that more than three
behavioral states exist for gray triggerfish, (2) increasing the number of
behavioral states results in a quadratic increase in the number of
parameters to estimate, and (3) the goodness-of-fit improved little with
additional states.

We fitted the models using the R package momentuHMM v1.4.1
(McClintock and Michelot, 2018). In all models, we used gamma dis-
tributions to model the step lengths and von Mises distributions for the
turning angles. The von Mises distribution is a continuous probability
distribution on the circle and has a concentration parameter, which
measures how concentrated the turning angles are around their mean.
An angle concentration of 0 indicates random turning angles, while
values ˜1 indicate highly correlated turning angles. The package mo-
mentuHMM uses numerical optimization to obtain maximum likelihood
estimates of all model parameters. Initial parameter values must be
provided to begin optimization, and poorly-chosen starting values can
lead to failure to identify the global maximum of the likelihood function
(Michelot et al., 2016). To ensure that we correctly estimated the
parameters, we ran the fitting procedure 25 times with randomly se-
lected starting parameters, and kept the models with highest maximum
likelihood. There were no signs of convergence issues for the selected
fits, even for the more complex models.

We modeled the transition probabilities of the HMM as functions of
fish length and time (hour) of day to address our specific hypotheses. A
multinomial logit link function was used to ensure that the transition
probabilities were between 0 and 1, and that rows of the transition
probability matrix summed to 1 (Michelot et al., 2016). The effect of
the time of day should be cyclic over 24-hour periods to capture the
circadian rhythm of the fish. This was implemented with the inclusion
of the periodic covariates cos t(2 /24) and sin t(2 /24), where t is the
time of the observation as a number between 0 and 24 (Towner et al.,
2016). We considered five 2-state and five 3-state models with the
following covariate dependencies: (1) no covariates (hereafter, “base”
model, (2) fish length only (“length”), (3) time of day only (“tod”), (4)
fish length and time of day (“tod+ length”), and (5) fish length and
time of day with interaction (“full”). We again used AIC for HMM
covariate selection (Burnham and Anderson, 2002). For the selected
models, we estimated the unobserved behavioral states using the Vi-
terbi algorithm, which is the standard method to derive the most likely
sequence of states of a HMM given the observations and the fitted
model (Zucchini et al., 2016). From the Viterbi algorithm, we obtained
an estimated behavioral state for each observed location.

Last, we estimated the probability of state persistence and state
switching for fish in each of the HMMs. High state transition prob-
abilities would indicate switching among behavioral states was
common for gray triggerfish, while low transition and high persistence
probabilities would indicate gray triggerfish movement behaviors oc-
curred in bouts and were correlated. All transition probabilities were
obtained by fixing each covariate to its mean value.

3. Results

Thirty adult gray triggerfish tagged in our study ranged in size from
250 to 335mm fork length (Table 1). Using observed positional data for
each fish (Appendix A), we determined that six gray triggerfish either
died in the study area or lost their transmitter, 13 fish permanently
emigrated from the study area during the study, and 11 fish were alive,
retained their transmitter, and remained in the study area at the end of
the study (Table 1). We censored all fish that stopped moving due to tag
loss or death from all analyses after their movement ceased. Overall,
104,170 spatial positions were determined for the 30 telemetered gray

Table 1
Information for individual gray triggerfish (Balistes capriscus) in North Carolina,
USA, in 2017. A Vemco positioning system was used to estimate spatial posi-
tions for telemetered gray triggerfish, and fish were tagged on 15 September
2017. An asterisk next to the fish tag number indicates that fish was excluded
from hidden Markov models due to insufficient estimated positions.

Tag Fork
length (mm)

Number of
estimated positions

Last day detected Fate

30 335 1764 27-Sep Emigrated
31 270 4321 10-Oct Lost tag or died
32 290 235 29-Sep Emigrated
33 265 1668 02-Oct Lost tag or died
34 275 2002 29-Sep Lost tag or died
35 335 982 01-Oct Emigrated
36 310 7884 27-Oct Alive in array
37 280 6992 27-Oct Alive in array
38 250 8491 27-Oct Alive in array
39 273 1263 23-Sep Lost tag or died
40 325 1079 01-Oct Lost tag or died
41* 275 178 18-Sep Emigrated
42* 268 242 15-Oct Emigrated
43 320 661 26-Sep Emigrated
44 295 8223 27-Oct Alive in array
45* 312 92 15-Sep Emigrated
46 285 4345 27-Oct Alive in array
47 268 8881 27-Oct Alive in array
48 315 837 22-Sep Lost tag or died
49 285 5061 27-Oct Alive in array
50* 305 204 18-Sep Emigrated
51 318 1320 24-Sep Emigrated
52 275 10912 27-Oct Alive in array
53* 250 167 27-Sep Emigrated
54 270 9018 27-Oct Alive in array
55* 308 63 16-Sep Emigrated
56 312 5028 27-Oct Alive in array
57 305 370 20-Sep Emigrated
58 255 11789 27-Oct Alive in array
59* 315 98 17-Sep Emigrated

Fig. 2. Daily horizontal positional error (m) estimates of a reference transmitter
deployed in North Carolina, USA, in 2017. The estimated position of the re-
ference tag each time it emitted an acoustic signal was compared to its actual,
known position to determine the horizontal positional error on each day of the
study. Daily boxes show median horizontal positional error rates by the thick
horizontal black line, bottom and top of boxes provide 25th and 75th percen-
tiles, respectively, and whiskers are 1.5 times the interquartile range.
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triggerfish during the 43-d study (mean=3,472 detections per fish;
range= 63 – 11,789; Table 1).

Using the reference transmitter, we estimated median daily hor-
izontal positional error at approximately 1–3m (Fig. 2). Median hor-
izontal positional error of the reference transmitter appeared to in-
crease slightly throughout the study, from around 1m early in the study
to 2–3m near the end of the study (Fig. 2). Rarely, some individual
horizontal positional error estimates were as high as 10m. In general,
these results suggest that spatial precision of telemetered gray trigger-
fish in the study area was quite high over the same time frame.

Seven telemetered gray triggerfish did not meet minimum sample
size requirements of the HMMs (i.e., at least 100 spatial positions with
no more than a 20-min temporal interruption; Table 1). These seven
fish were excluded from all HMM analyses, leaving 23 fish that were
included in HMMs.

Model selection for the 2- and 3-state HMMs indicated that full
models including fish size, time of day, and their interaction were
preferred over various reduced models (Table 2). The 2-state full model
that included tod and length effects, as well as their interaction, was 49
AIC points lower than the second-best model that excluded the tod×
length interaction. Similarly, the 3-state full model was 301 AIC points
lower than the next best model that only included tod (Table 2). Thus, it
appears that, regardless of the number of assumed behavioral states,
gray triggerfish movement behavior varied by time of day, fish length,
and their interaction. All subsequent results focus on 2- and 3-state full
models that were preferred based on AIC.

The 2- and 3-state gray triggerfish HMMs identified behavioral
states that differed in their step lengths and turning angles (Fig. 3,
Table 3). In the 2-state model, state 1 was characterized by a short step
length, with fish only moving a mean of 2.7m every min, and a lack of
concentrated turning angles (angle concentration= 0.18), suggesting
frequent change of direction (Table 3). In contrast, state 2 was char-
acterized by a much longer step length (mean= 21.7m) and turning
angles concentrated around 0° (angle concentration= 0.78), suggesting
movement direction was often similar (correlated) among successive
positions (Table 3). In the 3-state HMM, state 1 was similar to the 2-
state model in that step length was short (mean=1.6m) and turning
angles were diffuse (angle concentration=0.33). State 3 in the 3-state
model was similar to state 2 in the 2-state model, typified by a longer
step length (mean=27.5m) and a high turning angle concentration
(1.08) around 0° (Fig. 3, Table 3). State 2 in the 3-state model had a
moderate step length (mean=6.4m), but the least concentrated
turning angle of all behavioral states (angle concentration= 0.02),
suggesting frequent turning.

There were significant individual differences in movement rates and

state behaviors among gray triggerfish in our study. Mean movement
rates varied among individuals, ranging from a minimum of 0.028m/s
for fish #45 to 0.127m/s for fish #55, with an overall mean of
0.061m/s (Fig. 4A). In the 2-state HMM, individual fish spent 24 to
97% of their total time in state 1 (low movement state) and their re-
maining time (3–76%) in state 2 (Fig. 4B). Results for the 3-state model
were similarly variable among individuals. Time spent by individual
fish in state 1 was the most variable, ranging from 10 to 86% among
individuals (Fig. 4C), but the time spent by gray triggerfish in state 2
(12–62%) and state 3 (2–59%) was also quite variable (Fig. 4C).

Exploratory data analyses and HMMs indicated that some of the
variability in gray triggerfish movement could be explained by fish size.
Exploratory data analyses indicated that movement rates for larger fish
were about twice as high than for smaller fish (P < 0.0001), in-
creasing from a mean of approximately 0.04 m/s at 250 mm fork length
to 0.08 m/s at 335 mm (Fig. 5A). The 2-state HMM showed that larger
gray triggerfish tended to spend more time in State 2, which was ty-
pified by higher movement rates, compared to smaller gray triggerfish
that spent more time in state 1 (Fig. 5C). Similarly, in the 3-state model,
larger gray triggerfish spent about twice as much time in state 3 and less
time in state 2 compared to smaller gray triggerfish (Fig. 5E). However,
there did not appear to be a size effect on the time spent in state 1 for
the 3-state HMM (Fig. 5E).

Strongly diel movement rates and state probabilities for gray trig-
gerfish were also observed using exploratory data analyses and HMMs.
Mean movement rates of gray triggerfish were significantly lower
(˜0.03m/s) at night and higher (0.07–0.10m/s) during the day
(F=1122, P < 0.0001; Fig. 5B, Appendix B1, B2), and median
movement rates followed the same general pattern. These results were
obvious from the both 2- and 3-state HMMs. At night, the 2-state HMM
suggested gray triggerfish spent most (> 90%) of their time in state 1
(low movement state), while most of their time during the day (˜ 70%)
was spent in state 2, the high movement state (Fig. 5D). The 3-state
HMM results were very similar to the 2-state model, indicating gray
triggerfish spent most of their time in state 1 at night (˜ 60%) and state
3 during the day (˜ 50%; Fig. 5F). State 2 was exhibited by gray trig-
gerfish similarly (˜ 30%) both day and night (Fig. 5F).

The spatial distribution of locations where gray triggerfish exhibited
various behavioral states in the HMMs were nonrandom and spatially
distinct. Gray triggerfish exhibited state 1 behaviors in 15 or 20 small
(< 100m diameter) patches that were associated with low-relief
hardbottom throughout the study area (Fig. 6). In contrast, state 2 (in
the 2-state model) and state 3 (in the 3-state model) behaviors occurred
more broadly across the study region. State 2 in the 3-state model oc-
curred in distinct patches, but these patches tended to be much larger
(up to 200m in diameter) than locations where state 1 behaviors were
exhibited by gray triggerfish (Fig. 6B).

Gray triggerfish displayed highly correlated state behaviors. Gray
triggerfish remained in their current behavioral state with a probability
greater than 0.80 across all states and models, and in the 2-state model,
the probability of state persistence was at least 0.96 for both states
(Table 4). The lowest probability of staying in the current state was
observed for state 2 of the 3-state model (0.83). The probability of
switching to a different state was always less than 0.10 across all
models and states (Table 4).

4. Discussion

Gray triggerfish inhabit demersal seafloor habitats where they are
rarely observed directly, yet understanding their movement behavior is
important for their sustainable management and conservation. During
summer and fall months, we found that gray triggerfish movements and
behavioral states varied greatly across the diel period (higher during
the day than at night) and among individuals, the latter of which could
partially be explained by fish size. Gray triggerfish also exhibited strong
persistence in each behavioral state identified by the HMMs, suggesting

Table 2
Model selection of 2-state and 3-state hidden Markov models fit to gray
triggerfish (Balistes capriscus) telemetry data from North Carolina, USA, in
2017. Models are defined in the Methods section, K is the number of para-
meters in the model, and ΔAIC is the Akaike information criterion of that
model relative to the best model in the set. The full models included tod,
length, and their interaction, while base models did not include any pre-
dictor variables.

Model K ΔAIC

2-state model
full 21 0
tod+ length 17 49
tod 15 110
length 13 1549
base 11 1579
3-state model
full 50 0
tod 32 301
tod+ length 38 470
length 26 1988
base 20 2110
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serially correlated behaviors. Strong agreement between our ex-
ploratory data analyses and HMMs indicated that our results are robust.

The main benefit of HMMs is the ability to identify behavioral states
of animals that are not easily observed. However, it can be challenging
to interpret each behavioral state from the HMMs for a species such as
gray triggerfish with little supporting biological information. It is likely
that state 1 of both the 2- and 3-state models is resting behavior; fish
moved very little and was similar in magnitude to our estimated median
horizontal position error, had a low turning angle concentration, and
mostly exhibited this behavioral state at night when gray triggerfish are
thought to rest on the bottom (Herbig and Szedlmayer, 2016). State 2 of
the 2-state model and state 3 of the 3-state model were characterized by
faster movement mostly in a correlated direction, so those states are
likely transit or foraging. State 2 of the 3-state model is more difficult to
interpret because it was characterized by moderate movement rates,
frequent turning, and occurred both day (when they are active) and
night (when they typically rest). More research is needed to determine

Fig. 3. Distributions (lines) and histograms (gray bars) of step lengths (m) and turning angles for 2-state (left column) and 3-state (right column) hidden Markov
models developed for telemetered gray triggerfish (Balistes capriscus) in North Carolina, USA, in 2017. A fish continuing in exactly the same direction across two time
intervals would have a turning angle of 0°, whereas a fish turning in the opposite direction would have a turning angle of 180°.

Table 3
Estimates of telemetered gray triggerfish (Balistes capriscus) step length (m) and
turning angle distributions in the 2-state and 3-state hidden Markov models at
4-min intervals in North Carolina, USA, in 2017. Step length is the mean dis-
tance moved in each state during each time interval, and “Step SD” is the
standard deviation of step length. The angle concentration is a measure of how
concentrated the distribution is around its mean.

State 1 State 2 State 3

2-state model
Step mean (m) 2.7 21.7 –
Step SD 2.4 16.7 –
Angle concentration 0.18 0.78 –
3-state model
Step mean (m) 1.6 6.4 27.5
Step SD 1.2 4.2 17.7
Angle concentration 0.33 0.02 1.08
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Fig. 4. Individual-level variability in movement rates and state probabilities among telemetered gray triggerfish (Balistes capriscus) in North Carolina, USA, in 2017.
(A) Boxplot of observed movement rates of telemetered gray triggerfish, also showing mean movement rates (red line). (B) The amount of time each individual
telemetered gray triggerfish spent in each of the two states of the 2-state hidden Markov model. (C) The amount of time each individual telemetered gray triggerfish
spent in each of the three states of the 3-state hidden Markov model. Empty columns of B and C indicate fish that were excluded from hidden Markov models due to
limited sample sizes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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if this was a true behavioral state (and not just a blending of other
behavioral states), and if so, what behaviors gray triggerfish are ex-
hibiting while in this state.

Gray triggerfish exhibited highly variable movement behaviors

across individuals. For instance, there was a ˜350% difference in
movement rates between individuals moving the least and most in our
study, which was similar to the substantial differences among in-
dividuals in the time they spent in resting and transit behavioral states

Fig. 5. (A) Relationship between movement rate and length of telemetered gray triggerfish (Balistes capriscus), weighted by the total number of positions available for
each fish in North Carolina, USA, in 2017. (B) Diel movement rates of telemetered gray triggerfish in our study; boxes show median (thick horizontal black line), 25th,
and 75th percentiles of movement rate; whiskers are 1.5 times the interquartile range; and red line is mean movement rate by hour of the day. (C) Size-dependent and
(D) time-of-day-dependent stationary state probabilities for two behavioral states of gray triggerfish using hidden Markov models. (E) Size-dependent and (F) time-of-
day-dependent stationary state probabilities for three behavioral states of gray triggerfish using hidden Markov models. Solid lines show mean stationary state
probabilities, and error bars indicate 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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in our HMMs. A portion of the variation in gray triggerfish movement
rates was explained by fish size, which is consistent with most studies
finding a positive relationship between movement rates and animal size
(Ware, 1978; Swihart et al., 1988). However, the size range of fish

examined in our study (250–335mm fork length) was fairly narrow, so
our analyses may not represent gray triggerfish of a broader size range.
For instance, larval and juvenile gray triggerfish are pelagic and as-
sociate with floating debris while likely circling the Atlantic Ocean

Fig. 6. Locations where telemetered gray triggerfish (Balistes capriscus) exhibited various behavioral states in the 2-state (A) or 3-state (B) hidden Markov models in
North Carolina, USA, in 2017. Note that points overlap, and state 1 is plotted on top of states 2 or 3. Receiver locations are noted by the filled white circles.
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(Harper and McClellan, 1997), suggesting fish of that smaller size move
or drift much more than the larger sizes examined in our study.
Movement rates of gray triggerfish larger than the sizes examined in our
study (i.e.,> 335mm fork length) are also unknown.

While size explained some of the observed behavioral differences
among gray triggerfish in our study, other factors such as sex or per-
sonality may have contributed to the substantial differences in move-
ments among individuals. Externally determining sex is not possible for
gray triggerfish, so we were unable to examine potential differences in
movement rates between males and females. Recent research suggests
variability in animal personalities like boldness or shyness can explain
individual differences in movement behaviors (Villegas-Ríos et al.,
2018). Heterogeneity in movement rates can also produce leptokurtic
distributions, where most individuals move small distances (“stayers”)
and some move very large distances (“movers”; Gilliam and Fraser,
2001). Gray triggerfish superficially appeared to display leptokurtic
movements in our study, but it is unclear if this is due to differences
among the sexes (i.e., one sex moving much more than the other),
personality, or some other trait. Whether movement distributions are
leptokurtic or not has important implications for marine protected area
design, predator-prey interactions, and the genetic consequences of
fishery harvests (Fraser et al., 2001; Grüss et al., 2011).

In addition to identifying distinct behavioral states, our analyses
also characterized locations where gray triggerfish displayed each of
the states. Resting behavior only occurred in small areas around low-
relief hardbottom (i.e., ledges), whereas foraging or transit behaviors
occurred broadly throughout the study area over a variety of sand and
hardbottom areas. In a similar study, blacktip reef sharks (Carcharhinus
melanopterus) and grey reef sharks (Carcharhinus amblyrhynchos) used
relatively small deep areas when they were less active and broad,
shallow areas for feeding (Papastamatiou et al., 2018); the main dif-
ference was that sharks were much more active during the night than at
day, the opposite of gray triggerfish. Being able to determine specific
locations where gray triggerfish or other species display behaviors can
be used to identify habitats that require protection and optimally design
marine protected areas for specific behavioral states.

Gray triggerfish movements and behavioral states were highly
variable across the diel period. Movement rates were over 200% higher
during daylight hours than at night, and fish spent much more time in a
resting state at night than during the day. Similarly, Herbig and
Szedlmayer (2016) showed that, on average, gray triggerfish ranged

over a much larger area during the day (˜ 2000m2) than at night (˜
200m2) around artificial reefs in the Gulf of Mexico. Other closely re-
lated species such as fine-scale triggerfish (Balistes polylepis), orangeside
triggerfish (Sufflamen verres), and black triggerfish (Melichthys niger)
show similar diel patterns of resting at night and being active during the
day (Hobson, 1965; Kavanagh and Olney, 2006). Herbig and
Szedlmayer (2016) posit that inactivity of gray triggerfish at night may
be a strategy to reduce predation from nocturnal predators like sharks,
or perhaps their prey are not active at night.

There were some shortcomings of our study. First, since we focused
on a demersal marine species, we mostly lacked biological information
that could be used to help develop our HMMs (i.e., choosing the number
of HMM states, verification that each HMM state is an actual behavioral
state), as recommended by Pohle et al. (2017). Anecdotal information
from fishers and SCUBA divers suggests gray triggerfish rest on the
bottom at night without foraging, consistent with the resting behavioral
state we identified that mostly occurred at night. However, similar
biological information does not exist for other behavioral states of gray
triggerfish. Second, we used two characteristics of gray triggerfish
movement behavior – step length and turning angles – to parameterize
our HMMs, but additional concurrent information on such factors as
depth or acceleration would have helped to refine and classify beha-
vioral states of gray triggerfish and should be used in future studies
where possible (Leos-Barajas et al., 2017). Last, gray triggerfish have
been shown to display highly seasonal movements (Herbig and
Szedlmayer, 2016), yet our study occurred over a relatively short (43-d)
period in September–October 2017. Thus, it would be imprudent to
assume that the gray triggerfish movement behaviors quantified in our
study would be static year-round.

With recent advances in tracking technologies and new analytical
approaches such as HMMs, some believe we have entered a golden age
of animal tracking science (Kays et al., 2015). Tags are becoming more
reliable, smaller, and less invasive, allowing for the tracking of more
animal species than ever before, including relatively small marine fish
like gray triggerfish that display relatively high site fidelity in the open
ocean. Data from fish tracking studies are being used by scientists and
managers to determine optimal marine protected area design (Meyer
et al., 2007), identify essential fish habitats (Simpfendorfer et al.,
2010), and quantify fish mortality rates (Bacheler et al., 2009). Thus,
we encourage a wider use of VPS systems combined with HMMs to shed
light on the normally hidden behaviors of demersal marine fishes.
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Table 4
State transition probabilities of telemetered gray triggerfish (Balistes capriscus)
among behavioral states estimated by the 2-state and 3-state hidden Markov
models in North Carolina, USA, in 2017. Since transition probabilities depended
somewhat on time of day, they are provided here for 12:00 local time, and all
transition probabilities were obtained by fixing each covariate to its mean
value.

Next state

Current state State 1 State 2 State 3

2-state model
State 1 0.96 0.04 –
State 2 0.03 0.97 –
3-state model
State 1 0.91 0.08 0.01
State 2 0.08 0.83 0.09
State 3 0.00 0.06 0.94
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Appendix A. Movement paths of each telemetered gray triggerfish (Balistes capriscus) in this study, 15 September – 27 October 2017, in
North Carolina, USA. The grid of submersible receivers used to estimate gray triggerfish positions are shown by black dots. Note that lines
representing gray triggerfish movement paths overlap often
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Appendix B1 Time series of movement rates estimated for telemetered gray triggerfish (Balistes capriscus) over the course of the study, 15
September – 27 October 2017, in North Carolina, USA. Missing data for fish in certain time periods was due to those fish being absent from
the study area. Only fish 30 through 44 are shown in this plot
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Appendix B2 Time series of movement rates estimated for telemetered gray triggerfish (Balistes capriscus) over the course of the study, 15
September–27 October 2017, in North Carolina, USA. Missing data for fish in certain time periods was due to those fish being absent from
the study area. Only fish 45 through 59 are shown in this plot
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