# Factors affecting estimates of size at age and growth in grey triggerfish Balistes capriscus from the northern Gulf of Mexico 

R. J. Allman, W. F. Patterson III, C. L. Fioramonti and A. E. Pacicco<br>SEDAR82-RD05

June 14, 2021


This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

# Factors affecting estimates of size at age and growth in grey triggerfish Balistes capriscus from the northern Gulf of Mexico 

R. J. Allman* $\dagger$, W. F. Patterson III $\ddagger$, C. L. Fioramonti§ and A. E. Pacicco $\|$<br>*National Marine Fisheries Service, Southeast Fisheries Science Center, Panama City Laboratory, 3500 Delwood Beach Road, Panama City, FL 32408, U.S.A. , $\ddagger$ Department of Fisheries and Aquatic Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL 32653, U.S.A., §Natural Science Division, Gulf Coast State College, 5230 West Highway 98, Panama City, FL 32401, U.S.A. and \|Riverside Technologies Inc., National Marine Fisheries Service, Panama City Laboratory, 3500 Delwood Beach Road, Panama City, FL 32408, U.S.A.

(Received 15 February 2017, Accepted 9 November 2017)


#### Abstract

Growth zones in dorsal spines of grey triggerfish Balistes capriscus from the northern Gulf of Mexico were utilized to estimate growth and examine factors that may affect estimates of size at age. Age was estimated from dorsal-spine sections of 4687 individuals sampled from U.S. waters during 2003-2013, including both fishery-independent $(n=1312)$ and fishery-dependent $(n=3375)$ samples. Ninety-six per cent $(n=4498)$ of these sections were deemed suitable for ageing; average per cent error between two independent readers was $10.8 \%$. Fork length $\left(L_{\mathrm{F}}\right)$ ranged from 65 to 697 mm and age estimates from 0 to 14 years. Both sex and sample source (fishery-independent $v$. recreational) significantly affected estimated size at age for 2-6 year-old fish. Data were pooled between sources to fit sex-specific von Bertalanffy growth functions. Results for the female model were $L_{\infty}=387 \mathrm{~mm} L_{\mathrm{F}}$, $k=0.52$ year $^{-1}$ and $t_{0}=0.01$ year, while for males $L_{\infty}=405 \mathrm{~mm} L_{\mathrm{F}}, k=0.55$ year $^{-1}$ and $t_{0}=0.02$ year. These results were significantly different between sexes and indicate clear sexual dimorphism. Thus, growth should be modelled separately by sex when examining population parameters or conducting stock assessment modelling. The positive bias in estimates of size at age computed for recreational $v$. fishery-independent samples also has clear implications for stock assessment as growth functions computed with fishery-dependent samples would tend to overestimate stock productivity.


© 2017 The Fisheries Society of the British Isles
Key words: dorsal spines; gear selectivity; sexually dimorphic growth; von Bertalanffy growth function.

## INTRODUCTION

Globally, reef-fish populations are affected by myriad anthropogenic stressors, such as habitat destruction (Coker et al., 2014; Holbrook et al., 2015), invasive species (Green et al., 2012; Johnston \& Purkis, 2016) and overfishing (Hughes, 1994; Friedlander \& De Martini, 2002). With respect to overfishing, quantitative estimates of stock

[^0]productivity, spawning biomass or potential yield are often elusive for many reef-fish fisheries. The lack of data on biological characteristics, landings or other data inputs necessary for quantitative stock assessments is problematic given the requirement of the Magnuson-Stevens Conservation and Management Act (U.S.D.C., 2007) to establish annual catch limits (ACL) for all stocks listed in U.S. fishery management plans (FMP).

Gulf of Mexico (GOM) grey triggerfish Balistes capriscus Gmelin 1789, is an example of a previously data-moderate stock for which extensive research effort has been expended to estimate biological parameters to facilitate stock assessment. This species inhabits tropical and temperate waters from Norway to the north-western coast of Africa in the eastern Atlantic Ocean (Ofori-Danson, 1989) and from Nova Scotia to Argentina in the western Atlantic Ocean, including waters of the GOM and off Bermuda (Briggs, 1958). In the GOM, B. capriscus support important commercial and recreational fisheries, with landings increasing in the 1980s and 1990s, in part due to increased regulations on other reef fishes, such as snappers and groupers (Valle et al., 2001; Bernardes, 2002). Declining landings thereafter were, however, cause for concern given continued high recreational and commercial effort targeting northern GOM reef fishes (SEDAR, 2006). The most recent stock assessment determined that B. capriscus were overfished and in 2013 commercial and recreational catch limits were reduced and a fixed closed season was established (SEDAR, 2015).

Balistes capriscus are managed as a single stock in the U.S. GOM by the Gulf of Mexico Fishery Management Council (GMFMC; https://www.federalregister.gov/ documents/2017/09/15/2017-19644/gulf-of-mexico-fishery-management-council-public-meeting), with early stock assessments employing surplus production modelling (Goodyear \& Thompson, 1993; Valle et al., 2001). The lack of age data, which precluded age-based assessments, was because B. capriscus have small and difficult to extract otoliths. As an alternative ageing structure, validation of annual growth zone formation in B. capriscus dorsal spines (Allman et al., 2016) has enabled those structures to be utilized to compute growth functions and age-length keys required for age-structure assessment models (SEDAR, 2006, 2015). One caveat to this is the microstructure of B. capriscus spine sections can be more difficult to interpret as compared with typical bony fish otoliths, thus there is potential for disagreement in age estimates between readers.

The objective of the current study was to test factors, including between-reader precision, that potentially could affect estimates of size at age, hence growth, in B. capriscus. Differences in estimated size at age were examined between fishery-independent samples and those from fishery landings to examine if fishery selectivity could potentially affect growth estimates. Also, data were tested for sexually dimorphic growth in $B$. capriscus given evidence that males grow faster than females in the South Atlantic Ocean (Kelly-Stormer et al., 2017) and GOM (Ingram, 2001; Simmons \& Szedlmayer, 2012). Results of these analyses are discussed in the context of examining B. capriscus population ecology and potential biases in stock assessments.

## MATERIALS AND METHODS

Balistes capriscus were sampled each month from January 2003 to December 2013 from recreational, commercial and fishery-independent landings. In total, 4687 grey triggerfish were sampled from fishery-independent surveys ( $28 \%$ ) and recreational ( $38 \%$ ) and commercial ( $34 \%$ )

Table I. Number of Balistes capriscus collected from the Gulf of Mexico by year, fishing mode and gear type

| Year | Commercial |  |  | Recreational |  | Fishery-independent |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HL | LL | SP | HL | SP | HL | TP | TWL | SP |  |
| 2003 | 43 | 43 |  | 52 | 2 | 3 | 10 |  |  | 153 |
| 2004 | 24 | 16 |  | 108 |  | 10 | 8 |  | 10 | 176 |
| 2005 | 82 | 55 |  | 65 |  | 14 | 74 |  |  | 290 |
| 2006 | 22 | 52 |  | 83 |  |  | 119 |  |  | 276 |
| 2007 | 18 | 49 |  | 62 |  | 34 | 61 |  |  | 224 |
| 2008 | 9 | 67 |  | 217 | 15 | 13 | 90 | 43 | 1 | 455 |
| 2009 | 30 | 21 |  | 260 | 10 | 26 | 209 | 96 |  | 652 |
| 2010 | 17 | 16 |  | 162 | 3 | 26 | 51 | 73 |  | 348 |
| 2011 | 142 | 53 |  | 104 | 4 | 28 | 61 | 22 |  | 414 |
| 2012 | 291 | 18 |  | 180 | 1 | 122 | 40 | 42 |  | 694 |
| 2013 | 460 | 35 | 14 | 465 |  | 4 | 24 | 3 |  | 1005 |
| Total | 1138 | 425 | 14 | 1758 | 35 | 280 | 747 | 279 | 11 | 4687 |

HL, hook and line; LL, bottom longline; SP, spear; TP, chevron trap; TWL, benthic trawl.

Table II. Number of Balistes capriscus collected from the Gulf of Mexico by fishing mode, gear type and state landed

| Source | Alabama | Florida | Mississippi | Louisiana | Texas | Total |
| :--- | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| Commercial hook and line |  | 532 |  | 605 | 1 | 1138 |
| Commercial longline |  | 425 |  |  |  | 425 |
| Commercial spear | 186 | 1549 |  | 5 | 18 | 1758 |
| Recreational hook and line | 1 | 26 |  | 1 |  | 28 |
| Recreational spear | 4 | 271 |  | 2 | 3 | 280 |
| Fishery-independent hook and line |  | 744 |  | 30 | 75 | 279 |
| Fishery-independent trap | 2 | 172 |  | 30 |  |  |
| Fishery-independent trawl |  | 11 | 7 |  |  | 18 |
| Fishery-independent spear | 193 | 3744 | 7 | 643 | 100 | 4687 |
| Total |  |  |  |  |  |  |

landings (Table I). Fish were collected with hook and line (fishery independent, size $1 / 0$ hooks), bottom longline (generally size 12/0-15/0 hook), spear, chevron trap and benthic-trawl gear. Balistes capriscus were collected throughout the U.S. GOM, but most ( $80 \%$ ) were sampled from the west Florida Shelf (Table II). Recorded capture depths ranged from 6 to $>100 \mathrm{~m}$. Fish were measured to the nearest mm fork length $\left(L_{\mathrm{F}}\right)$ and weighed $(M)$ to the nearest 0.01 kg and their sex determined macroscopically when they were landed whole. Capture depth was recorded from most fishery-independent landings and from a small number of fishery-dependent landings. The first dorsal spine was extracted for age determination by inserting a knife just posterior to the spine and cutting medially $c .2 .5 \mathrm{~cm}$ into the fish. Another identical cut anterior to the spine effectively cut out a notch of flesh that included the entire condyle of the spine. Dorsal spines were prepared for sectioning by boiling in water for 1 min to remove soft tissue and scraping the posterior groove free of tissue. Each spine was glued to cardstock and three transverse sections ( $0.5-0.7 \mathrm{~mm}$ thickness) were cut simultaneously with four 10 cm diamond coated blades on an Isomet low-speed saw (www.buehler.co.uk). Prepared sections were fixed to microscope slides with mounting medium.

Spine sections were viewed with a dissecting microscope under 10-40× magnification with transmitted light and the number of translucent zones present were counted without knowledge of when the fish was sampled or $L_{\mathrm{F}}$. Opaque zones representing faster growth are relatively wide and zones corresponding to slow growth periods are narrow and appear translucent under transmitted light (Lessa \& Duarte-Neto, 2004; Allman et al., 2016). Counts of translucent zones in B. capriscus spine sections represented integer ages in years, given recent annual formation verification and validation reported by Allman et al. (2016). A sub-set of spine sections ( $n=2348$ ) was read independently by a second reader and average per cent error (APE) in translucent zone counts between readers was computed with the method of Beamish \& Fournier (1981): $N^{-1} \sum_{j=1}^{N}\left[R^{-1} \sum_{i=1}^{R}\left(X_{i j}-X_{j}\right) X_{j}^{-1}\right]$, where $N$ is the number of sample ages, $R$ is the number of times fish was aged, $X_{i j}$ is the $i$ th age determination of the $j$ th fish and $X_{j}$ is the average age calculated for the $j$ th fish. Average per cent error also was computed between readers for a reference collection of $B$. capriscus spine sections $(n=115)$ prepared to assess reader agreement and ageing accuracy.

The margin of each spine section was recorded as translucent or opaque by the primary reader and a readability code of good, fair, difficult, poor processing or unreadable was assigned. The number of opaque zones visible including any partial opaque zone on the margin was used to assign a calendar age. Fractional age was determined by calculating fractional year using the equation: absolute value [(capture date - spawning date) $365^{-1}$ ]. The peak spawning date was set at July 1, based on B. capriscus spawning indicators (Ingram, 2001; Kelly-Stormer et al., 2017). Fractional year was added to calendar age if capture date was after July 1 or subtracted if capture date was before.

A three-factor fully-crossed analysis of variance (ANOVA) model was computed to test the effects of sex and sample source (recreational $v$. fishery-independent) on estimated size at age for ages $2-6$ years, the most prevalent age classes present in the data. Recreational samples were chosen for comparison to fishery-independent samples since size distributions were similar between these sources and sex was recorded for these observations. The dependent variable in the model, $L_{\mathrm{F}}$, was $\ln$-transformed to meet parametric assumptions. The three-way interaction term (age $\times$ sex $\times$ source) was sliced by source to test for sex-specific differences in size at age by sample source and was sliced by sex to test for differences between fishery-independent $v$. recreational estimates of size at age by sex. A $\chi^{2}$ goodness-of-fit test was used to determine if sex ratios were significantly different from 1:1.
von Bertalanffy growth functions (VBGF) were fitted to $L_{\mathrm{F}}$ at fractional age data with the method of least squares using the solver function in Microsoft Excel 2010 (Haddon, 2001): $L_{t}=L_{\infty}\left[1-e^{(k(t-t 0)}\right]$, where $L_{t}$ is the $L_{\mathrm{F}}$ at time of capture, $L_{\infty}$ is asymptotic $L_{\mathrm{F}}, k$ Brody's growth coefficient and $t_{0}$ is the hypothetic age at which $L_{\mathrm{F}}=0$. Models were fit for the full data set and for males and females separately. Data from 863 age 0 B. capriscus captured in neuston nets during 2000-2004 were included in a model that contained both sexes to test whether their inclusion significantly affected VBGF fit, which was tested with a likelihood ratio test (Cerrato, 1990). Fractional age for these juveniles was calculated as described above. Sex-specific VBGF models were computed, with both models incorporating the age 0 samples and then a likelihood ratio test was computed to test whether VBGFs were significantly different between sexes.

## RESULTS

Fork length ranged from 65 to 697 mm . Commercial longline samples had the greatest mean $L_{\mathrm{F}}\left(488 \mathrm{~mm} L_{\mathrm{F}}\right)$, followed by commercial hook and line ( $404 \mathrm{~mm} L_{\mathrm{F}}$ ) and recreational hook and line ( $365 \mathrm{~mm} L_{\mathrm{F}}$ ) [Fig. 1(a)]. Fishery-independent gears collected the smallest individuals [mean $L_{\mathrm{F}}$ : hook and line $321 \mathrm{~mm} L_{\mathrm{F}}$; chevron trap $297 \mathrm{~mm} L_{\mathrm{F}}$; benthic trawl $195 \mathrm{~mm} L_{\mathrm{F}} ;$ Fig. 1(b)]. Sex was recorded from $53 \%$ of individuals, nearly all of which were recreational and fishery-independent samples, since commercial landings are typically eviscerated at sea. Females outnumbered males by


FIG. 1. (a) Fishery-dependent ( $\square$, commercial hook and line, $n=1135$; $\boldsymbol{\square}$, commercial longline, $n=425$; $\boldsymbol{\bullet}$, recreational, $n=1758$ ) and (b) fishery-independent ( $\square$, hook and line, $n=278$; $\square$, trap, $n=747$; $\boxtimes$, trawl, $n=279$ ) fork length $\left(L_{\mathrm{F}}\right)$-frequency distribution for Balistes capriscus from the Gulf of Mexico 2003 to 2013.
a ratio of $1 \cdot 6: 1$ for all gear types combined and a $\chi^{2}$ goodness-of-fit test indicate that this ratio was significantly different from a 1:1 ratio ( $\chi^{2}=70 \cdot 4, P<0 \cdot 001$ ).

## AGE

It was possible to estimate age for 4498 ( $96 \%$ ) of the 4687 dorsal spine sections examined. The APE between primary and secondary readers was $10 \cdot 8 \%$, while APE was $9.1 \%$ between both readers and accepted ages for the B. capriscus spine section reference set. Among study samples, estimated age ranged from 0 to 14 years. Differences


FIG. 2. (a) Fishery-dependent ( $\square$, commercial hook and line, $n=1114$; $\boldsymbol{\square}$, commercial longline, $n=414$; $\boldsymbol{\square}$, recreational, $n=1695$ ) and (b) fishery-independent ( $\square$, hook and line, $n=275$; $\square$, trap, $n=710$; $\boldsymbol{\nabla}$, trawl, $n=258$ ) age frequency distribution for Balistes capriscus from the Gulf of Mexico 2003 to 2013.
were noted between fishing modes and gear types with the commercial longline samples having the highest mean age followed by the commercial hook-and-line fishery and recreational fishery [6.5, 5.0 and 4.4 years, respectively; Fig. 2(a)]. Balistes capriscus recruited to the commercial longline fishery by age 6 years, the commercial hook-and-line fishery by age 5 years and the recreational fishery by age 4 years. On average, the youngest fish were collected from fishery-independent surveys, with benthic-trawl samples having the youngest mean age ( 1.8 years), followed by chevron trap ( 3.5 years) and hook and line samples ( 3.8 years). Fish recruited to fishery-independent gears by age 1 year for the benthic trawl and age 3 years for chevron trap and hook and line gear [Fig. 2(b)].

Table III. Analysis of variance table indicating three-way model results testing effects of age, sex and data source (fishery-independent $v$. recreational) on ln-transformed Balistes capriscus fork length

| Source | d.f. | Sum of squares | Mean of squares | $F$ | $P$ |
| :--- | ---: | :---: | :---: | ---: | :---: |
| Age | 4 | 7.909 | 1.977 | 126.0 | $<0.001$ |
| Sex | 1 | 1.320 | 1.320 | 84.1 | $<0.001$ |
| Source | 1 | 4.284 | 4.284 | 273.0 | $<0.001$ |
| Age $\times$ sex | 4 | 0.107 | 0.027 | 1.7 | $>0.05$ |
| Age $\times$ source | 4 | 0.138 | 0.413 | 2.2 | $>0.05$ |
| Sex $\times$ source | 1 | 0.413 | 0.090 | 26.3 | $<0.001$ |
| Age $\times$ sex $\times$ source | 4 | 0.360 | 0.157 | 5.7 |  |
| Residual | 1931 | 30.300 | 1734 |  |  |
| Total | 1950 | 57.255 |  |  |  |

## SIZE AT AGE AND GROWTH

The three-way interaction (age $\times$ sex $\times$ source) in the ANOVA computed to test the effects of sex and sample source on B. capriscus size at age was significant (Table III and Fig. 3). When the three-way interaction was sliced by source, sex was significant for size at age for both fishery-independent (Holm-Sidak $P<0.001$ ) and recreational (Holm-Sidak $P<0 \cdot 001$ ) data sources. On average, males were $11.1 \%$ larger than females for fishery-independent samples and $3 \cdot 1 \%$ larger than females for recreational samples among the five ages examined (Fig. 3). When the age $\times$ sex $\times$ source interaction was sliced by sex, there was a significant difference in size at age for both males and females between fishery-independent and recreational data sources (Holm-Sidak $P<0.001$ ). On average, recreational samples were $17.3 \%$ larger than fishery-independent samples for females and $9.0 \%$ larger than fishery-independent samples for males among the five ages examined (Fig. 3).

There was a significant difference between the VBGF model that included juvenile size-at-age data compared with the model that did not $\left[\chi^{2}=278, P<0 \cdot 001\right.$; Table IV and Fig. 4(a)]. The growth functions for all ages including the juvenile samples had $t_{0}$ estimates that were much closer to the origin $\left(t_{0}=-0 \cdot 06\right) v$. the function that did not include juvenile data ( $t_{0}=-1 \cdot 47$ ) (Table IV). Growth functions including juvenile data differed significantly by sex $\left(\chi^{2}=126, P<0 \cdot 001\right)$, with males having a larger estimated $L_{\infty}$ than females ( 405 v. $387 \mathrm{~mm} L_{\mathrm{F}}$ ) [Fig. 4(b)]. Estimates of $k$ and $t_{0}$ were similar between sexes (Table IV).

## DISCUSSION

Results of this study clearly indicate sexually dimorphic growth in B. capriscus, but whether samples came from fishery-independent surveys or were landed in the recreational fishery also significantly affected estimates of size at age. Not only was a variety of gear types used to sample or capture B. capriscus, but those gears were also deployed in a wide range of depths which probably had some effect on the size and age distributions of samples. Samples of pre-settlement age 0 fish that are typically associated with Sargassum (Wells \& Rooker, 2004) were captured with neuston nets. These


Fig. 3. Mean $\pm 95 \%$ C.I. sex-specific fork length $\left(L_{\mathrm{F}}\right)$ at age for Balistes capriscus sampled on fishery-independent surveys ( $\square$ ) or from recreational landings ( $\square$ ) in the northern Gulf of Mexico. F, female; M, male.
fish ranged in size from 2.7 to $94 \mathrm{~mm} L_{\mathrm{F}}$ and were collected from May to September which is consistent these fish being age 0 juveniles. In addition, these fish were similar in size to Sargassum associated B. capriscus ( $13.2-105.8 \mathrm{~mm} L_{\mathrm{S}}$ ) reported by Wells \& Rooker (2004) that were collected from May to August. Benthic trawls, which were only utilized in fishery-independent sampling, collected the smallest, newly settled individuals. Hook and line (both fishery-independent and fishery-dependent) and trap gears (fishery-independent only) sampled intermediate sizes and longline gear (fishery-dependent only) captured the largest fish. This trend in fish size by gear type might be partly due to ontogenetic shifts in habitat, which is clearly true for the transition between neustonic juvenile and early post-settlement stages. Many marine fishes, however, also transition to deeper habitats as they age (Macpherson \& Duarte, 1991) and all longline-caught $B$. capriscus samples came from $>40 \mathrm{~m}$ depth due to fishery regulations. Among fishery-independent samples, $73 \%$ of trap sets and $84 \%$ of trawls were fished in water $<30 \mathrm{~m}$.

Gear selectivity and minimum size limit regulations also probably affected the differences observed in estimates of size at age between fishery-independent and recreational samples. The fact that per cent difference in male $v$. female $L_{\mathrm{F}}$ was over 3 times greater for recreational samples, supports the inference that selectivity was an important factor in differences in size at age. Data presented here clearly demonstrate that males grow faster than females, thus would recruit to hook-and-line gear, e.g. quicker than females. Therefore, the effect of gear selectivity on estimates of size at age would be greater for slower growing females in that only the fastest growing females would recruit to fishery-dependent gear deploying larger hooks, at young ages.
The influence of gear selectivity on estimates of size at age and growth has important implications for examining the population ecology of B. capriscus, as well as for

Table IV. von Bertalanffy growth parameters for Balistes capriscus from the current study and previous Gulf of Mexico studies

| Study | $n$ | Maximum age (years) | $L_{\infty}(\mathrm{mm})$ | $K\left(\right.$ year $\left.^{-1}\right)$ | $t_{0}$ (years) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Current study |  |  |  |  |  |
| All observations | 4498 | 14 | 589 | $0 \cdot 17$ | -1.47 |
| All observations with juveniles | 5361 | 14 | 484 | $0 \cdot 34$ | -0.06 |
| Males | 1766 | 9 | 405 | 0.55 | 0.02 |
| Females | 2324 | 10 | 387 | 0.52 | 0.004 |
| Johnson \& Saloman (1984) |  |  |  |  |  |
| All observations | 2808 | 13 | 466 | $0 \cdot 38$ | $0 \cdot 19$ |
| Male | 1334 | 9 | 492 | $0 \cdot 38$ | $0 \cdot 23$ |
| Female | 1228 | 12 | 438 | 0.38 | $0 \cdot 15$ |
| Ingram (2001) |  |  |  |  |  |
| All observations | 1625 | 8 | 583 | $0 \cdot 18$ | -1.58 |
| Males | 781 | 8 | 598 | $0 \cdot 2$ | -1.37 |
| Females | 814 | 8 | 514 | $0 \cdot 21$ | -1.61 |
| P. B. Hood \& A. K. Johnson (unpubl. data) |  |  |  |  |  |
| All observations | 626 | 14 | 645 | $0 \cdot 15$ | -1.9 |
| Males | 307 | 14 | 664 | $0 \cdot 16$ | -1.8 |
| Females | 143 | 10 | 421 | 0.33 | -1.2 |

integrated stock assessments in which growth is modelled within the assessment model, most often from a sub-sample of landings that has been aged. Most length-at-age data sets collected for growth analysis are from size-selective capture methods that favour fast-growing individuals (Taylor et al., 2005). Overestimating growth on the order of $10 \%$ is likely to have a substantial effect on estimates of stock productivity. The most recent assessment of B. capriscus was performed with the Stock Synthesis III integrated assessment platform (SEDAR, 2015), thus simulations of overestimating the growth rate should be easy to implement.

Sexually dimorphic growth reported here for B. capriscus clearly also has important implications for estimating population dynamics and productivity. Authors of previous studies of GOM B. capriscus suggested sexually dimorphic growth existed for this species, but that inference was supported by growth functions that often were poorly fitted given the lack of small, young fish in the data (Johnson \& Saloman, 1984; Ingram, 2001; P. B. Hood \& A. K. Johnson, unpubl. data). This is reflected in the large, negative $t_{0}$ parameters (i.e. $<-1.0$ years) of most of these earlier growth functions, which then also resulted in unreliable estimates of $k$ and $L_{\infty}$ and uncertainty about sexually dimorphic growth. Testing differences in size at age by sex in the current study clearly demonstrates that males are larger at age than females. Furthermore, the inclusion of data from age 0 individuals provided a more realistic fit near the origin for the VBGF, resulting in more realistic estimates of $t_{0}$ and overall improved fit to the data. Combining age samples from multiple gear types has been shown to reduce bias and increase precision in VBGF estimation (Wilson et al., 2015). The VBGFs reported by Johnson \& Saloman (1984) also fit well at the origin, but to do so they had to rely on back-calculated length at age for small, young fish and their estimates of $L_{\infty}$ and $k$ were affected by the lack of older fish in their data.

Aspects of B. capriscus reproductive biology and behaviour provide insight into why larger male size may convey fitness in this species. Typically, male size is affected


FIG. 4. Fork length $\left(L_{\mathrm{F}}\right)$-at-fractional-age data for Balistes capriscus from the Gulf of Mexico 2003 to 2013 with fitted von Bertalanffy growth-function curves for: (a) mature males and females, including unknown sex (___) and with juveniles ( $\quad$ _); (b) for males (__), females ( $\quad$ _) including juveniles. $\diamond$, females; $\square$, males; $\Delta$, juveniles; $X$, unknown sex.
by sexual selection in contests for females and spawning opportunities (Parker, 1992) and B. capriscus have distinctive reproductive behaviour that is consistent with selection pressure for larger, faster growing males to ensure reproductive success. For example, Simmons \& Szedlmayer (2012) reported that male B. capriscus exhibit aggressive, territorial behaviour during the spawning season and may guard several females on nests with demersal eggs until hatching. Therefore, not only are larger males more able to compete for territory and females, but larger males also are likely to be more able to effectively guard nests once spawning has occurred. Sex ratios were significantly different than $1: 1$ favouring females. In contrast to present results, P. B. Hood \& A. K. Johnson (unpubl. data) found a ratio of 2•1:1 male to female
for GOM fishery-dependent catches. Kelly-Stormer et al. (2017) and J. L. Moore (unpubl. data) found that overall females were dominant in catches of B. capriscus from the southern U.S. Atlantic Ocean, but that males outnumbered females in larger size classes $\left(>400 \mathrm{~mm} L_{\mathrm{F}}\right)$. In the present study it was found that females consistently outnumbered males in every size class. A sex ratio favouring females may be a successful reproductive strategy given the life history of B. capriscus, with males attracting a harem of females with which to mate (Simmons \& Szedlmayer, 2012).

Clearly, any analysis of factors affecting size at age or growth is contingent upon having reliable age estimates. Annual deposition of translucent zones in B. capriscus spines has been validated via chemical marking (Allman et al., 2016), but difficulty in counting translucent zones in spine sections can lead to inaccurate or imprecise age estimates. The APE reported here between readers of B. capriscus spine sections ( $10 \cdot 8 \%$ ) is higher than the $5 \%$ threshold commonly utilized to assess ageing reliability in moderately long-lived bony fishes (Morison et al., 1998; Campana, 2001). A difference in counts between readers of even a single translucent zone will however, have a much greater effect on APE for fish that are $<10$ years old than older fish. For example, a single zone difference in counts for a 5 year-old fish would yield an APE of 20\%, while the same one zone difference in a 20 year-old fish would produce an APE of 5\%. That said, the greatest contributor to the relatively high APE reported here for B. capriscus spines, both for study samples ( $10.8 \%$ ) and for samples with accepted age estimates in a reference set $(9.1 \%)$, is the difficulty in interpreting and counting translucent zones in spine sections. For example, Kelly-Stormer et al. (2017) reported an APE of $12 \%$ and Burton et al. (2015) reported an APE of $11 \%$ for B. capriscus sampled in the Atlantic Ocean off the south-eastern U.S. In the end, it is assumed that ageing error was randomly distributed among samples and results of hypothesis testing were not affected by systematic bias in ageing.
Overall, results of this study make important contributions to an understanding of $B$. capriscus population dynamics in the GOM. This study provides greater evidence for the efficacy of age estimation based on dorsal spines for B. capriscus and perhaps other marine fishes, despite lower between-reader precision than is typical for bony-fish age estimation utilizing otoliths. This has been particularly important for the transition to age-based integrated stock assessment for this species in the GOM which appears to be superior to the surplus production models historically utilized to assess stock status (SEDAR, 2015). Lastly, present findings highlight potential issues, such as sexual dimorphism and effects of fishery selectivity that may bias estimates of size at age and growth if not accounted for in growth analysis. Future work on B. capriscus should explore the implications of sexual dimorphism and fishery selectivity on estimates of stock productivity and yield for this important fishery species.

[^1]
## References

Allman, R. J., Fioramonti, C. L., Patterson, W. F. III \& Pacicco, A. E. (2016). Validation of annual growth zone formation in grey triggerfish (Balistes capriscus) dorsal spines, fin rays and vertebrae. Gulf of Mexico Science 1, 68-76.

Beamish, R. J. \& Fournier, D. A. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38, 982-983.
Bernardes, R. Á. (2002). Age, growth, longevity of the grey triggerfish, Balistes capriscus (Tetraodontiformes: Balistida), from the southeastern Brazilian coast. Scientia Marina 66, 167-173.
Briggs, J. C. (1958). A list of Florida fishes and their distribution. Bulletin of the Florida State Museum, Biological Sciences 2, 223-318.
Burton, M. L., Potts, J. C., Car, D. R., Cooper, M. \& Lewis, J. (2015). Age, growth and mortality of grey triggerfish (Balistes capriscus) from the southeastern United States. Fishery Bulletin 113, 27-39.
Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197-242.
Cerrato, R. M. (1990). Interpretable statistical tests for growth comparisons using parameters in the von Bertalanffy equation. Canadian Journal of Fisheries and Aquatic Sciences 47, 1416-1414.
Coker, D. J., Wilson, S. K. \& Pratchett, M. S. (2014). Importance of live coral habitat for reef fishes. Reviews in Fish Biology and Fisheries 24, 89-126.
Friedlander, A. \& De Martini, E. E. (2002). Contrasts in density, size and biomass of reef fishes between the northwestern and main Hawaiian Islands: effects of fishing down apex predators. Marine Ecology Progress Series 230, 253-264.
Green, S. J., Akins, J. L., Maljković, A. \& Côté, I. M. (2012). Invasive lionfish drive Atlantic coral reef fish declines. PLoS One 7, e32596. https://doi.org/10.1371/journal.pone . 0032596
Haddon, M. (2001). Modelling and Quantitative Methods in Fisheries. Boca Raton, FL: Chapman \& Hall/CRC.
Holbrook, S. J., Schmitt, R. J., Messmer, V., Brooks, A. J., Srinivasan, M., Munday, P. L. \& Jones, G. P. (2015). Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species. PLoS One 10, e0124054. https://doi.org/10.1371/journal.pone. 0124054
Hughes, T. P. (1994). Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 1547-1551.
Ingram, G. W. Jr. (2001). Stock structure of grey triggerfish, Balistes capriscus, on multiple spatial scales in the Gulf of Mexico. PhD Thesis. The University of South Alabama, Mobile, AL.
Johnson, A. G. \& Saloman, C. H. (1984). Age, growth and mortality of grey triggerfish, Balistes capriscus, from the northeastern Gulf of Mexico. Fishery Bulletin 82, 485-492.
Johnston, M. W. \& Purkis, S. K. (2016). Forecasting the success of invasive marine species; lessons learned from purposeful reef fish releases in the Hawaiian Islands. Fisheries Research 174, 190-200.
Kelly-Stormer, A., Shervette, V., Kolmos, K., Wyanski, D., Smart, T., McDonough, C. \& Reichert, M. J. M. (2017). Grey triggerfish reproductive biology, age and growth off the Atlantic coast of the southeastern USA. Transactions of the American Fisheries Society 146, 523-538.
Lessa, R. \& Duarte-Neto, P. (2004). Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spines. Fisheries Research 69, 157-170.
Macpherson, E. \& Duarte, C. M. (1991). Bathymetric trends in demersal fish size: is there a general relationship? Marine Ecology Progress Series 71, 103-112.
Morison, A. K., Coutin, P. C. \& Robertson, S. G. (1998). Age determination of black bream, Acanthopagrus butcheri (Sparidae), from the Gippsland Lakes of south-eastern Australia indicates slow growth and episodic recruitment. Marine and Freshwater Research 49, 491-498.
Ofori-Danson, P. K. (1989). Growth of grey triggerfish, Balistes capriscus, based upon growth checks of the dorsal spine. FishByte 7, 11-12.
Parker, G. A. (1992). The evolution of sexual size dimorphism in fish. Journal of Fish Biology 41, 1-20.
Simmons, C. M. \& Szedlmayer, S. T. (2012). Territoriality, reproductive behavior and parental care in grey triggerfish, Balistes capriscus, from the northern Gulf of Mexico. Bulletin of Marine Science 88, 197-209.

Taylor, N. G., Walters, C. J. \& Martell, S. J. D. (2005). A new likelihood for simultaneously estimating von Bertalanffy growth parameters, gear selectivity and natural and fishing mortality. Canadian Journal of Fisheries and Aquatic Sciences 62, 215-223.
Wells, R. J. D. \& Rooker, J. R. (2004). Spatial and temporal patterns of habitat use by fishes associated with Sargassum mats in the northwestern Gulf of Mexico. Bulletin of Marine Science 74, 81-99.
Wilson, K. L., Matthias, B. G., Borbour, A. B., Ahrens, R. N. M., Tuten, T. \& Allen, M. S. (2015). Combining samples from multiple gears helps to avoid fishy growth curves. North American Journal of Fisheries Management 35, 1121-1131.

## Electronic References

Goodyear, C. P. \& Thompson, N. B. (1993). An evaluation of data on size and catch limits for grey triggerfish in the Gulf of Mexico. MIA 92/93-70. Miami, FL: NOAA. Available at https://www.sefsc.noaa.gov/P_QryLDS/download/MIA499_MIA-92_93-70.pdf? id=LDS
SEDAR (2006). Stock Assessment Report of SEDAR 9 Gulf of Mexico Grey Triggerfish. Charleston, SC: Southeast Data, Assessment and Review. Available at http://sedarweb .org/docs/sar/SEDAR9_SAR1\%20GOM\%20Grey\%20Triggerfish.pdf
SEDAR (2015). SEDAR 43 Stock Assessment Report Gulf of Mexico Grey Triggerfish. Charleston, SC: Southeast Data, Assessment and Review. Available at http://sedarweb .org/docs/sar/S43_SAR_FINAL.pdf
Valle, M., Legault, C. M. \& Ortiz, M. (2001). A stock assessment for grey triggerfish, Balistes capriscus, in the Gulf of Mexico. SFD-00/01-124. 50 pp. Available at http://sedarweb .org/docs/wsupp/S9RD11_GreyTrig01.pdf
U.S.D.C. (2007). Magnuson-Stevens Fishery Conservation Management Act. Washington, D.C.: U.S. Department of Commerce. Available at http://www.nmfs.noaa.gov/sfa/laws_ policies/msa/documents/msa_amended_2007.pdf


[^0]:    $\dagger$ Author to whom correspondence should be addressed. Tel.: +1 850234 6541; email: robert.allman@noaa.gov

[^1]:    We thank state and federal port agents for sampling grey triggerfish. D. DeVries and C. Gardner provided fishery-independent samples and B. Walling helped process spines. L. Lombardi helped with growth-curve analysis and J. Franks provided data for neuston net collected triggerfish. B. Barnett supplied much appreciated database support.

