# Annual indices of abundance of Gulf of Mexico Spanish Mackerel from Florida commercial trip tickets, 1986-2021 

## Joe O'Hop and Steve Brown

## SEDAR81-WP-08

18 January 2023


This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:
O’Hop, Joe and Steve Brown. 2023. Annual indices of abundance of Gulf of Mexico Spanish Mackerel from Florida commercial trip tickets, 1986-2021. SEDAR81-WP-08. SEDAR, North Charleston, SC. 40 pp.

# Annual indices of abundance of Gulf of Mexico Spanish Mackerel from Florida commercial trip tickets, 1986-2021 

Joe O'Hop ${ }^{1}$ and Steve Brown<br>Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute

## Introduction

Established by the Florida Legislature in Florida Statute (F.S.) 370.026 during 1983, the Florida Marine Fisheries Commission in conjunction with the Department of Natural Resources (DNR) ${ }^{2}$ was charged with conserving and managing Florida's marine fisheries. In late-1984, the DNR implemented the mandatory reporting of detailed trip-level commercial fishery landings data by wholesale and retail seafood dealers using marine fisheries trip tickets. Prior to this time, commercial fisheries data were collected from seafood dealers on a monthly basis by the National Marine Fisheries Service (NMFS). Data were collected by both the NMFS and the DNR trip ticket system during 1985 to enable a comparison of the new data collection system. After determinations that the monthly dealer summaries and the detailed trip ticket information were comparable, the trip ticket system became the official commercial fisheries landings data collection system in Florida.

Wholesale and retail dealers operating in Florida are required to purchase dealer licenses, and wholesale dealers that purchase saltwater products (marine fish, invertebrates, live marine specimens, etc.) from commercial fishermen or wholesale and retail dealers that catch saltwater products themselves for sale in Florida are required to report these amounts on marine fisheries trip tickets to the Florida Fish and Wildlife Conservation Commission. Exceptions to the reporting requirements are: 1) restaurants who harvest their own catch for consumption on their premises; 2) trans-shipments of saltwater products harvested by a U.S. vessel which are landed in a foreign country and purchased by a Florida wholesale dealer. Fishermen who harvest saltwater products commercially are required to purchase Saltwater Products Licenses and sell only to licensed wholesale seafood dealers or sell their catches directly to the public if they have a retail dealer license. Fishermen may also be required to have additional license endorsements and federal permits for the legal harvest and sale of some species (e.g., Spanish Mackerel).

Trip tickets have been used by wholesale and retail seafood dealers for the reporting of fish and invertebrates purchased in Florida from fishermen since the system's inception in 1984.

[^0]There have been revisions to the trip ticket fields and the mandatory nature of some fields over time (Table 1), as well as additions of new species codes, gear codes, and reporting units. Seafood dealers are required to report the preceding month's purchases from fishermen by the tenth day of the month following the transaction. In the case where a species is managed under federal quota like Spanish Mackerel, weekly electronic reporting is required. The time lag for data entry of submitted paper forms is approximately four weeks after forms are received. Once received from the vendor, electronic data are available immediately. Complete editing of computerized data typically takes two to three weeks. Computerized reporting of trip tickets, which eliminates the time lag for data entry, has occurred as early as 1987, and today, about $85 \%$ of all commercial trips in Florida are reported electronically.

## Geographic range

All commercial harvests landed and sold in Florida are required to be reported on Florida marine fisheries trip tickets either electronically or on paper form (Fig. 1). Reports are required to have all mandatory information submitted with the landings data. The area fished information required on trip tickets is based on the NMFS' shrimp grid zones (Fig. 2). Additional areas fished for locations outside of Florida are available and supplied to dealers upon request.

## Assignment of fishing gears to trips:

At the time of applying for or renewing Saltwater Products License (SPL), fishermen were asked to indicate their use of fishing gears for the upcoming license year. Many license holders indicated more than one gear on their annual license application or renewal, and some did not indicate any gear at all. From the inception of the Florida trip ticket program until February of 1990, a "gear fished" field was not on the trip ticket (Table 1) so analysts inferred the gear used by a combination of the reported catch (species, amounts) and the gear fields on a fisherman's SPL license application. Beginning in 1990, the trip ticket was revised to include the gear fished field which consisted of rather generic "check boxes" for gears and a 4-digit gear code if the reporting of a more specific gear was desired (data reported electronically provide the specific 4digit gear code). Old trip tickets were still in use for a couple of years, so not all records from 1990 to 1992 contained gear information. As the old stocks of trip tickets were used up by dealers, the reporting of gear used by trip increased. A push to more electronic reporting with the development of a new application in 2003 along with federal requirements for electronic reporting in 2013 lead to an increase in reporting of more specific 4-digit gear types.

Gear related to trip tickets was retrieved from the Saltwater Products (SPL) license record for the 1986 to 1992 license years during the editing of trip tickets, and this "gear" record was retained in the trip ticket data base. The SPL number was prohibited from being retained on the trip ticket by the Florida legislature when then trip ticket program was initially approved, but later was allowed to be retained in the trip ticket data base in late 1986.

For trip tickets from 1986-1992, gear was assigned from the commercial fishing license application database (which was retained on the edited trip ticket record) based on a species/gear hierarchy from later years where gear was reported by trip. Target species and species groups were identified on trips where gear was reported from 1991-1994. The species-gear associations from these data were ranked from most common to least common and applied to the trip ticket

## SEDAR81-DW-xx

data from 1986-1992. The target species (defined as the species with the highest poundage) and species groups were identified on trips where gear was not reported by trip from 1986-1992. Gear was assigned to each trip based on matching the species-license gear association with the species-ticket gear association from the 1991-1994 data. Gears by trip for these analyses were grouped into gill net, cast net, trawls, hook and line gears, and other. If gears were not determined for a trip (no license-gear information in the 1986-1992 period, or missing from the trip ticket from 1993-2021), the trip ticket was dropped from the analyses. The majority of Spanish Mackerel landings were categorized as one of these gear types, and analyses for gill nets, cast nets, and hook and line gears are provided in this report.

At the SEDAR 28 Data Workshop, the Indices workgroup examined the preliminary results and suggested that the hook-and-line gear assignments for the 1986-1992 period may have included some landings exceeding reasonable limits for trips using this gear. At that time, trips for this period were re-analyzed and landings in excess of the $99^{\text {th }}$ percentile were excluded from the analyses. For the Florida Gulf coast Spanish Mackerel trips, those with landings greater than 1,223 pounds were excluded. This same methodology is also being applied to the SEDAR 81 commercial indices.

## Species and species groups

As in SEDAR 28, trip tickets with Spanish Mackerel ("positive" trips) were selected for analyses. A suitable method for selecting a universe of trips to evaluate (i.e., all trips which could have caught Spanish Mackerel - zeros as well as positives) has not been developed yet, but possibly could be done using clustering techniques (e.g., Shertzer and Williams 2008) or some other type of selection procedure (e.g., Stephens and MacCall 2004). However, the prospects for success in identifying fishing trips on which Spanish Mackerel could have been caught using only trip ticket information is doubtful because no habitat information is gathered on trip tickets and information on discarded or released catches is not required to be reported on trip tickets.

Species were assigned to fishery groups (Table 2) based upon fishery characteristics. The pounds landed by fishery group were summed for a trip ticket. Spanish Mackerel was assigned to its own "group" because this was the species of interest for developing indices. For the purposes of developing the indices, a fishery group was classed as present or absent for the analyses.

## Trip limits

Limits on harvest (pounds) of Spanish Mackerel per trip during specific periods of the year would potentially affect the observed catch per trip, so the trip limits that were in effect during these periods were added to the trip ticket records. The dates for these trip limits for Gulf Group Spanish Mackerel (Table 3) were taken from SEDAR 28 and updated through 2021 with information provided by Christina Wiegand at the South Atlantic Fishery Management Council as well as NOAA Fisheries. Some of the trip limits were based on day of the week. Gill net and cast net trips with trip limits greater than 1,500 pounds and hook and line trips with trip limits greater than 500 pounds were selected for analyses as in SEDAR 28. For Gulf of Mexico Group

## SEDAR81-DW-xx

Spanish Mackerel, all trips were in the unlimited portion of the quota management periods, so trip limits were not a factor in the analyses of the landings.

## Unit measure of abundance:

Pounds (whole weight) of Spanish Mackerel landed on a trip was the response variable for most models (Poisson, gamma, and negative binomial models), and lognormal models used the natural log-transformed $\left(\log _{e}\right)$ pounds of Spanish Mackerel.

## Temporal and spatial resolution:

Quotas for Spanish Mackerel are managed by the NMFS for the South Atlantic Fishery Management Council (SAFMC) and the Gulf of Mexico Fishery Management Council (GMFMC). The boundary separating the SAFMC and GMFMC in Florida for Spanish Mackerel is the line dividing Monroe County (Florida Keys) and Miami-Dade County (Fig. 2). As in SEDAR 28, landings were divided by council jurisdictional boundaries rather than the boundaries used for managing Spanish Mackerel quotas.

The separation of Spanish Mackerel landings to coincide with the council jurisdictions rather than how they are currently managed was approximate. Landings were first assigned to a migratory group based upon the area fished (if present on the trip ticket) or county landed corresponding to the quota management regime (separated at the Monroe County and MiamiDade County boundary) so that any trip limits in effect could be assigned to the records. Once the migratory group was determined, landings were categorized based on the quota management boundaries as either Florida Atlantic Coast or Gulf Coast, and separately by area fished (if present on the trip ticket) and county landed for SEDAR 78 and 81. Gulf group Spanish Mackerel, if reported from areas 748 or 1 (Florida Keys) were classed as Atlantic Coast landings for SEDAR 78, while those in area 2 were considered Gulf Coast landings for SEDAR 81. If area fished was not reported on trip tickets from Monroe County (especially prior to 1992 when the reporting of this field was optional), the landings were considered to belong to the Gulf Coast. [There is a portion of area 2 that is in the GMFMC jurisdiction, but prior to 2008, dividing catches into each council jurisdiction for area 2 is difficult to accomplish unless there are gear restrictions (e.g., SAFMC long line regulations)].

Additionally, the county of landing for Spanish Mackerel was grouped into Florida subregions for these analyses. The subregion groupings were Nassau to Brevard (subregion 5), Indian River to Miami-Dade (subregion 4), Monroe County (subregion 3), Collier-Levy (subregion 2), and Dixie-Escambia (subregion 1). Landings may occur in a county in some years but not in others, and this situation can lead to missing cells in the general models that could result in model instability or inappropriate estimates for class variables. Two subregion groupings were devised. The first was based solely on county landed (corresponding to the usual subdivision of Florida landings in the NMFS commercial landings (Nassau County to MiamiDade County landings are assigned to the Florida Atlantic Coast, and Monroe County to Escambia County are assigned to the Florida Gulf of Mexico Coast). A second subregion grouping modified the subregion based upon area fished (if reported on the trip ticket) as outlined in the preceding paragraph.

## SEDAR81-DW-xx

## Series period:

Florida trip tickets reported for the time period of 1986 to 2021 were used for developing the indices. The hook and line indices were developed over the entire period by coast. Because of the entangling net limitations implemented in Florida on July 1, 1995, trip tickets with the reported or assigned gear of gill nets or cast nets were split into groups before and after this date by coast. The time period from July 1, 1995, to December 31, 1995, was not used for index generation because of low sample sizes for the cast net and gill net gears.

## Indices:

There were four indices for Spanish Mackerel developed from Florida trip tickets: Gulf Coast (GULF) gill nets for 1986-June 30, 1995 (GULF_GN_before), Gulf gill nets for 1996 to 2021 (GULF_GN_after), GULF cast nets for 1996-2021 (GULF_CN), and GULF hook and line gears for 1986-2021 (GULF_HL). Each of the GN and CN indices were analyzed during time periods when trip limits allowed more than 1,500 pounds of Spanish Mackerel to be landed, and each of the HL indices used data for time periods when trip limits allowed greater than 500 pounds of Spanish Mackerel to be landed. The logic behind these choices for trip limits was that landings during these portions of the quota season landings may be more likely to reflect the availability of fish on those trips. Because all trips on the Gulf Coast were in the unlimited portion of the managed quotas, trip limits were not a factor in the analyses of Florida Gulf Coast landings of Spanish Mackerel.

Trips with Spanish Mackerel (pounds whole weight landed) were selected by coast, gear, time period, and trip limit in effect (Table 3). The pounds of other species landed on the same trip ticket were grouped by fishery code (Table 2 ) and converted to ' 1 ' or ' 0 ' to indicate presence or absence from the landings for a trip. Year, month, Florida sub-region (by area fished or county), and fishery codes were the eleven classification variables used to examine for trends in the amount (whole weight in pounds) of Spanish Mackerel landed.

A generalized linear model [McCullagh and Nelder 1989; GENMOD procedure (SAS Institute Inc. 2016)] using a forward stepwise selection technique was used to estimate trends in catch per trip by gear. Four types of model probability distributions were explored: gamma (with a log link function), lognormal, Poisson, and negative binomial. When the lognormal distribution was used, the pounds of Spanish Mackerel landed were natural log-transformed and the model used a normal probability distribution with an identity link function. Variables in the analyses are the response variable (in these analyses, whole weight in pounds of Spanish mackerel landed) and explanatory variables (year, month, etc.) which are called covariates. SAS uses the convention that discrete variables (those that take on discrete values like "presence" or "absence", year, month, Florida sub-region, etc.) are called "class variables" and those which are continuous values are called "covariates." All explanatory variables in these analyses were, using the SAS terminology, "class variables."

The forward selection process analyzes the null model (no class variables or covariates chosen), and then each class variable or covariate added singly in the model. If the GLM

## SEDAR81-DW-xx

successfully converges and a significant $\chi^{2}$ (Chi-square) value is attained, the reduction in deviance from the null model is assessed for each of these candidate models, and the class variable with the largest percentage reduction in deviance than other class variables or covariates is selected for the model. The next series of model runs includes the variable selected in the previous series along with each of the remaining variables (one at a time), and each of the resulting two variable models are assessed for model convergence and significance criteria ( $\chi^{2}$ ), and the largest percentage reduction in deviance from the null model as before. This process continues until, for all candidate variables, the percentage reduction in deviance becomes less than some desired level. For these model runs, a $0.5 \%$ reduction in deviance from the null model was the selected level of acceptance for a suite of class variables or covariates. Alternatively, another series of model runs were conducted in a similar manner to that described above except that the variable with the greatest change in the Akaike Information Criterion (AIC) (a minimum change of at least 2 units for these analyses) is used to select variables for the models. An additional constraint for these candidate variables was that the variable selected achieves at least a $0.5 \%$ reduction in deviance at each step. Using the criteria of percentage reduction in deviance can be thought of as related to model fit with the candidate variables, whereas using AIC is also related to model fit but penalizes class variables for the number of levels that they have in the data set considered. Both methods of model variable selection usually result in a reduced set of variables for the "final" model and are useful ways to include only those variables that contribute more to model fit rather than overfitting with all the candidate variables.

The selection process for models using the negative binomial distribution was similar, though it was modified following a suggestion in Millar (2011; Chapters 7.6-7.7). Because of the extra term in the negative binomial distribution, the selection process was slightly altered by running the "saturated" model (all variables intended for the analyses). If the model converged, the dispersion factor was estimated for the saturated model. The forward selection process (described above) was begun with the dispersion factor fixed at the estimate for the saturated model and proceeded until all variables meeting the criteria were selected. After the final suite of model variables were identified, the model was re-run with the dispersion factor freed for the solution. Unfortunately, at the time of this report, the procedure to estimate the percentage reduction in deviance (a relative measure of fit of the model) is only approximate but this is not an impediment to variable selection, model selection, and evaluating residuals from fits.

If there were cases when the variable of interest (in this case, year was important) failed to be selected, it would be included in the model statement so that a year effect could be estimated. Annual values (and associated standard errors and coefficients of variation) were estimated using the least square means method (SAS Institute Inc. 2016) for the year effect.

## Results

Summaries of the raw catch per trip from the selected data for each gear are shown in Table 4 a-d. Table 5 presents a brief summary of models selected by gear, showing candidate model distribution, selected class variables, numbers of trips selected, number of outliers by model, and the percentage reduction in deviance (a measure of fit to the data). The model results from the forward stepwise selection of variables for the linear models are in Tables $6 \mathrm{a}-\mathrm{h}$, and the

## SEDAR81-DW-xx

diagnostic plots (standardized deviance residuals (McCullagh and Nelder 1989, SAS Institute, Inc. 2016) by year, standardized deviance residuals versus the linear predictor, q-q plot, and histograms of the standardized residuals from the fitted distribution) and scaled index values (index values scaled to their means) over time are in Figs. 3-10. The adjusted average catch rates (pounds per trip), coefficient of variation (as a percentage of the mean), and the scaled index values are in Table $7 \mathrm{a}-\mathrm{b}$. Nominal average catch rates (simple averages) and adjusted averages by gear, and a comparison with SEDAR 28 of the annual scaled index values by gear are shown in Figs. 3, 5, 7, and 9.

The Poisson models all had large numbers of outliers identified using the standardized residuals (Table 5) and were not considered suitable for use in index development and will not be discussed further. The negative binomial models all had low percentage reduction in deviance and showed relatively poor fits ( $\mathrm{q}-\mathrm{q}$ plots) to the negative binomial distribution and will not be discussed further. The models using the gamma and lognormal distributions were considered better candidates for indices in that they had reasonably few outliers (Table 5), reasonable reductions in deviance (Table 5), and better fitting to their underlying distributions (q-q plots; Figs. 4, 6, 8, and 10). Details of the stepwise selection of model variables for the gamma and lognormal models are shown in Table 6 a-h. Candidate index values (index scaled to mean, coefficient of variation, and sample size for the gamma and lognormal models are contained in Table 7. Overall, the lognormal models had better fits of the modeled data to the underlying distribution ( $q-q$ plots) and fewer outliers than the gamma distribution models, thus are better choices for indices (Table 7b) meriting recommendation. Indices produced from both the gamma and lognormal models, when the index is scaled to its mean value, produced reasonably similar trends (Figs. 3d, 5d, 7d, and 9d).

## Potential advantages

The indices produced from the lognormal data had deviance residuals that produced reasonable fits to the lognormal distribution (Fig. 4b, 6b, 8b, and 10b), and fewer outliers (Table 5a) than those from models using the gamma distribution. The periods covered by the indices were relatively long (ten years for gill nets over 1986-1995, twenty-six years for gill nets for 1996-2021, twenty-six years for cast nets over 1996-2021, and thirty-six years for hook and line gears over 1986-2021).

The hook-and-line gears indices may be more reliable indicators of abundance because of selectivity issues that complicate the interpretation of data from trips using gill nets (e.g., deployment methods, mesh sizes, configuration of panels, target species, and changes in state/federal waters restrictions) and cast nets (e.g., configuration, depth, bottom types, target species). The hook-and-line index also had relatively small annual coefficient of variation.

## Potential problems/limitations

Gill net and cast net trips, in general, were problematic. There are different methods to deploy gill nets (which may have different mesh sizes, lengths, and panels) and each method

## SEDAR81-DW-xx

targets and catches fish differently which can affect the amounts of catch. The highest catches on trips were from run-around gill nets, where a school or portion of a school of fish is surrounded by an actively fished gill net and the fish are "startled" into the net by noise (e.g., by jumping on the bottom of the boat or some other method). If the target species was Spanish Mackerel, landings could be in the thousands to tens of thousands of pounds. If the target species was not Spanish Mackerel, there may only be a few pounds (i.e., Spanish Mackerel may have been part of the retained bycatch). Gill nets may also be fished anchored to the bottom (stab nets, anchored gill nets) as a more passively fished gear, or they may be deployed to drift with the current (drift gill nets). There have also been restrictions on the amount of soak time in some years (e.g., to reduce the potential encounter with marine turtles), and on transfers of catch at sea. The specific type of gill net deployment is not often provided on trip tickets. Prior to July 1, 1995, gill nets could be used in state as well as in federal waters. After Florida's net limitations (Article X of the Florida Constitution) went into effect on July 1, 1995, usage of entangling nets was limited to federal waters only, and other nets (seines, trawls, cast nets) usable in state waters were limited to 500 square feet or smaller in mesh area. Changes in the way gears are designed (mesh sizes, panels, depth, etc.), used (deployment method, soak time, etc.), and non-specific gear identification on trip tickets (e.g., "gill nets") make interpretation of patterns observed in the data more complex especially when trying to develop indices of abundance.

In retrospect, there were issues with the choice of the time period analyzed for the gill net indices. Because the two GN indices in the FL Gulf included only a partial year for 1995, the model may not give an appropriate "annual" value for 1995 since it would be based on only 6 months of the year. It may be more appropriate, if these indices are accepted for use, to drop all the 1995 data from the GN indices.

The most important limitation to the indices produced is that they are based solely upon "positive" trips (i.e., trips on which Spanish Mackerel were landed). Ideally, an index of abundance would include a component estimating the probability of encountering the target species on a trip ("zero" trips on which the target species might have been caught but was not, and "positive" trips on which the species was caught) as well as a component estimating the rate of capture on a trip (the number or weight of the target species caught on "positive" trips). Including "zero trips" (trips which could have but did not land Spanish Mackerel) would be a refinement that would enhance an index's potential value as an indicator of abundance.

There may also be alternative ways of analyzing data from "positive only" trips such as restricting analyses to certain portions of the year when Spanish Mackerel are more abundant. Because this species is migratory, it may be difficult to select a time period since oceanic temperatures and circulation to which Spanish Mackerel respond vary spatially and temporally impacting availability to fishery participants.

## SEDAR81-DW-xx

## Literature Cited

McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. Second Edition. Chapman \& Hall/CRC. Boca Raton, FL.
Millar, R. B. 2011. Maximum Likelihood Estimation and Inference: with examples in R, SAS, and ADMB. John Wiley \& Sons, Ltd. West Sussex, UK.

SAS Institute, Inc. 2016. SAS/STAT 14.2 User's Guide: The GENMOD Procedure. Cary, NC: SAS Institute Inc.

Shertzer, K. W. and E. H. Williams. 2008. Fish assemblages and indicator species: reef fishes off the southeastern United States. Fish. Bull. 106: 257-269.
Stephens, A. and A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research 70: 299-310.

## SEDAR81-DW-xx

Table 1. List of data fields on Marine Fisheries Trip Tickets through time. Yellow indicates field was not mandatory. Green indicates field was mandatory. Blanks indicate field was not yet present on trip tickets during that time period. Form type was not designated until June of 1997.

| Field Name | Initiated on Form Type*** | $\begin{gathered} \text { Oct } \\ \text { 1984- } \\ \text { Jun } \\ 1986 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Jul } \\ \text { 1986- } \\ \text { Feb } \\ 1990 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Mar } \\ 1990- \\ \text { Dec } \\ 1994 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Jan } \\ 1995- \\ \text { May } \\ 1997 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Jun } 1997 \\ \text { - Oct } \\ 2000 \text { A2 } \end{gathered}$ | $\begin{gathered} \text { Nov } 2000 \\ \text { - Sep } \\ 2019 \text { A3 } \end{gathered}$ | Oct 2019 present A6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Saltwater Products License | A1 |  |  |  |  |  |  |  |
| Vessel Identification Number | A2 |  |  |  |  |  |  |  |
| Dealer's License Number | A1 |  |  |  |  |  |  |  |
| Number of Crew (includes captain) | A3 |  |  |  |  |  |  |  |
| Trip Start Date | A3 |  |  |  |  |  |  |  |
| Unloading Date | A1 |  |  |  |  |  |  |  |
| Actual Time Fished (hours assumed unless days indicated) | A1 |  |  |  |  |  |  |  |
| Actual Time Fished Units (Hours or Days) | A2 |  |  |  |  |  |  |  |
| Area Fished | A1 |  |  |  |  |  |  |  |
| State of Landing | A3 |  |  |  |  |  |  |  |
| County Landed (special coding for state landed other than Florida) | A1 |  |  |  |  |  |  |  |
| Depth (Avg. depth fished, feet assumed unless fathoms indicated) | A1 |  |  |  |  |  |  |  |
| Depth Units (Feet or Fathoms) | A2 |  |  |  |  |  |  |  |
| Gears Fished: Purse Seine | A1* |  |  |  |  |  |  |  |
| Gears Fished: Beach or Haul Seine | A1* |  |  |  |  |  |  |  |
| Gears Fished: Long Line | A1* |  |  |  |  |  |  |  |
| Gears Fished: Hook \& Line gears | A1* |  |  |  |  |  |  |  |
| Gears Fished: Traps | A1* |  |  |  |  |  |  |  |
| Gears Fished: Trawl | A1* |  |  |  |  |  |  |  |
| Gears Fished: Gill net | A1* |  |  |  |  |  |  |  |
| Gears Fished: Trammel net | A1* |  |  |  |  |  |  |  |
| Gears Fished: Cast net | A2 |  |  |  |  |  |  |  |
| Gears Fished: Bandit rig | A2 |  |  |  |  |  |  |  |
| Gears Fished: 4-digit gear code | A1* |  |  |  |  |  |  |  |
| Number of gear sets | A1 |  |  |  |  |  |  |  |
| Quantity of traps pulled/gear set | A1 |  |  |  |  |  |  |  |
| Soak Time (days assumed) | A1 |  |  |  |  |  |  |  |
| Soak Time Units (Hours or Days) | A2 |  |  |  |  |  |  |  |
| For-Hire Fishery: Head boat | A2 |  |  |  |  |  |  |  |
| For-Hire Fishery: Charter boat | A2 |  |  |  |  |  |  |  |
| For-Hire Fishery: Guide boat | A2 |  |  |  |  |  |  |  |
| Aquaculture | A2 |  |  |  |  |  |  |  |
| Aquaculture Lease Number | A2 |  |  |  |  |  |  |  |
| Trip Ticket Invoice Prefix | A1 |  |  |  |  |  |  |  |
| Trip Ticket Invoice Number | A1 |  |  |  |  |  |  |  |
| Trip Ticket Invoice Continuation Field (split trips, etc.) | A1* |  |  |  |  |  |  |  |
| Species Code | A1 |  |  |  |  |  |  |  |
| Reporting Units | A6** |  |  |  |  |  |  |  |
| Market Size Code | A1* |  |  |  |  |  |  |  |
| Market Grade Code | A3 |  |  |  |  |  |  |  |
| Amount of Catch (orig. units depend on species code used) | A1 |  |  |  |  |  |  |  |
| Unit Price (\$US) | A1 |  |  |  |  |  |  |  |
| Catch Disposition | A3 |  |  |  |  |  |  |  |
| Form Number | A2 |  |  |  |  |  |  |  |

## SEDAR81-DW-xx

* Form numbers were not designated until the A2 trip ticket was released in June 1997. No fields were added to the original trip ticket design (designated 'A1') until the addition of several fields in March of 1990.
** Reporting units (pounds, numbers, gallons, etc.) were originally embedded in the species code which included some size and grade codes for certain species. This resulted in multiple codes used for the same species. We now use a unique code for each species with all reporting units, size, and grade data reported seperately.
*** Form A4 was a change in the list of species codes and descriptions printed on the back of the hard copy paper trip ticket. Form A5 was a restart in the numbering sequence of the paper ticket to retain the same number of digits. There were no changes to the data field sections on these forms.

Table 2. Examples of species reported on trip tickets arranged into 'fishery groups' for these analyses.

| Bait fish BT | Crustacea CR | Inshore Benthic IB | Inshore Pelagics* IP | Offshore Benthic OB | Offshore Pelagics OP | Reef Fish RF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| anchovies | spiny lobster | catfish, hardhead | bluefish | flounders (gulf, southern, summer) | little tunny | greater amberjack |
| bait fish | Spanish lobster | catfish, gafftopsail | blue runner | tilefish (golden) | dolphin | squirrelfish |
| ballyhoo | blue crab | Atlantic croaker | cobia | tilefish, blueline | Mackerel, chub | grouper, black |
| scad, round | stone crab | black drum | crevalle jack | tilefish, anchor | Mackerel, king | gag |
| scad, bigeye | shrimp, pink | grunts | mixed jack | tilefish, blackline | marlin, blue | grouper, Nassau |
| herring, thread | shrimp, white | mullet, striped | other jack | tilefish, goldface | marlin, white | grouper, red |
| herring, round | shrimp, brown | mullet, white | ladyfish | shark, angel | sharks (mixed) | scamp |
| menhaden | shrimp, rock | tilapia | permit | shark, sand tiger | spearfish | grouper, snowy |
| sardines, Spanish | shrimp, royal red | rays and skates | Florida pompano | shark, sandbar | swordfish | warsaw |
| sardines, scaled | shrimp, other | red drum* | Atlantic bumper | brotula | tuna, bigeye | grouper, yellowedge |
| misc. industrial fish | shrimp, bait | sand perch | spadefish | cusk-eel | tuna, bluefin | grouper, yellowfin |
| pinfish |  | weakfish | cero | hake (southern, gulf, spotted) | tuna, albacore | grouper, goliath |
| flyingfish |  | seatrout, sand | Atlantic moonfish | longtail bass | tuna, skipjack | hogfish |
| needlefish |  | seatrout, silver | bar jack | wreckfish | tuna, yellowfin | sea bass |
|  |  | seatrout, spotted | horse-eye jack |  | tuna, mixed | snapper, lane |
|  |  | sheepshead | lookdown |  | wahoo | snapper, grey |
|  |  | spot | yellow jack |  | oilfish | snapper, mutton |
|  |  | kingfish ("whiting") | African pompano |  | escolar | snapper, red |
|  |  | porgy, grass | shark, blacknose |  | opah | snapper, silk |
|  |  | mojarra | Shark, bonnethead |  | cutlassfish | Snapper, vermilion |
|  |  | goatfishes | shark, finetooth |  | banded rudderfish | snapper, yellowtail |
|  |  | searobins |  |  | tripletail | triggerfish |
|  |  |  |  |  | butterfish | surgeonfish |
|  |  |  |  |  | harvestfish | bigeye |
|  |  |  |  |  | barrelfish | porgy, jolthead |
|  |  |  |  |  | shark, blacktip | porgy, littlehead |
|  |  |  |  |  | shark, Atlantic sharpnose | porgy, knobbed |
|  |  |  |  |  | shark, Bignose | porgy, longspine |
|  |  |  |  |  | shark, bull | porgy, red |
|  |  |  |  |  | shark, dusky | scorpionfish |
|  |  |  |  |  | shark, hammerhead | blackbelly rosefish |
|  |  |  |  |  | shark, lemon | margates |
|  |  |  |  |  |  | lesser amberjack |
|  |  |  |  |  |  | many others |

*Spanish Mackerel is typically placed in "inshore pelagics", but in these analyses it is the target species.

Table 3. Trip limits in effect for Eastern Gulf of Mexico migratory group (Spanish Mackerel)

| Fishing Year | Time period | Trip limits (TL) in effect |
| :---: | :---: | :---: |
| 86-87 | 19860401-19870331 | TL unlimited |
| 87-88 | 19870401-19870331 | TL unlimited |
| 88-89 | 19880401-19890331 | TL unlimited |
| 89-90 | 19890401-19900331 | TL unlimited |
| 90-91 | 19900401-19910331 | TL unlimited |
| 91-92 | 19910401-19920331 | TL unlimited |
| 92-93 | 19920401-19920331 | TL=unlimited |
| 93-94 | 19930401-19930331 | TL=unlimited |
| 94-95 | 19940401-19950331 | TL unlimited |
| 95-96 | 19950401-19960331 | TL unlimited |
| 96-97 | 19960401-19960331 | TL unlimited |
| 97-98 | 19970401-19970331 | TL unlimited |
| 98-99 | 19980401-19980331 | TL unlimited |
| 99-00 | 19990401-19990331 | TL=unlimited |
| 00-01 | 20000401-20000331 | TL=unlimited |
| 01-02 | 20010401-20010331 | TL=unlimited |
| 02-03 | 20020401-20020331 | TL=unlimited |
| 03-04 | 20030401-20030331 | TL=unlimited |
| 04-05 | 20040401-20040331 | TL=unlimited |
| 05-06 | 20050401-20060331 | TL unlimited |
| 06-07 | 20060401-20070331 | TL unlimited |
| 07-08 | 20070401-20080331 | TL unlimited |
| 08-09 | 20080401-20090331 | TL unlimited |
| 09-10 | 20090401-20100331 | TL unlimited |
| 10-11 | 20100401-20110331 | TL unlimited |
| 11-12 | 20110401-20120331 | TL unlimited |
| 12-13 | 20120401-20130331 | TL unlimited |
| 13-14 | 20130401-20140331 | TL unlimited |
| 14-15 | 20140401-20150331 | TL unlimited |
| 15-16 | 20150401-20160331 | TL= unlimited |
| 16-17 | 20160401-20170331 | TL= unlimited |
| 17-18 | 20170401-20180331 | TL= unlimited |
| 18-19 | 20180401-20180331 | TL= unlimited |
| 19-20 | 20190401-20200331 | TL= unlimited |
| 20-21 | 20200401-20210331 | TL= unlimited |

Table 4a-d. Florida Gulf of Mexico commercial fishing trips with reported landings of Spanish Mackerel by gear.

4a. FL Gulf Coast Hook and Line commercial landings of Spanish Mackerel, 1986-2021

| Year | Variable | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \end{gathered}$ | Mean weight (pounds/trip) | SE (pounds/trip) | LowerCL (pounds/trip) | UpperCL (pounds/trip) | Weighted Average Relative to Mean | $e^{\left(\log _{\mathrm{e}} \mathrm{means}\right)^{*}}$ | Wtd. avg. of $e^{\text {( } \log _{\mathrm{e}} \text { means) }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | Whole wt. | 1850 | 23.8 | 1.9 | 20.0 | 27.5 | 0.50 | 6.58 | 0.55 |
| 1987 | Whole wt. | 2487 | 17.8 | 1.3 | 15.2 | 20.4 | 0.38 | 5.02 | 0.42 |
| 1988 | Whole wt. | 1284 | 29.6 | 2.9 | 23.9 | 35.4 | 0.63 | 6.06 | 0.51 |
| 1989 | Whole wt. | 931 | 57.5 | 5.0 | 47.8 | 67.3 | 1.21 | 11.56 | 0.97 |
| 1990 | Whole wt. | 1262 | 42.1 | 3.2 | 36.0 | 48.3 | 0.89 | 9.10 | 0.76 |
| 1991 | Whole wt. | 1198 | 49.7 | 3.5 | 42.9 | 56.6 | 1.05 | 10.26 | 0.86 |
| 1992 | Whole wt. | 781 | 40.6 | 4.3 | 32.1 | 49.0 | 0.86 | 8.85 | 0.74 |
| 1993 | Whole wt. | 668 | 21.9 | 2.7 | 16.6 | 27.2 | 0.46 | 6.38 | 0.54 |
| 1994 | Whole wt. | 746 | 44.8 | 5.5 | 34.1 | 55.5 | 0.95 | 7.49 | 0.63 |
| 1995 | Whole wt. | 464 | 38.4 | 4.4 | 29.9 | 47.0 | 0.81 | 9.93 | 0.83 |
| 1996 | Whole wt. | 552 | 24.7 | 2.1 | 20.5 | 28.8 | 0.52 | 7.80 | 0.65 |
| 1997 | Whole wt. | 538 | 27.5 | 2.9 | 21.8 | 33.1 | 0.58 | 9.62 | 0.81 |
| 1998 | Whole wt. | 472 | 34.1 | 3.3 | 27.7 | 40.6 | 0.72 | 12.32 | 1.03 |
| 1999 | Whole wt. | 492 | 35.6 | 3.3 | 29.1 | 42.1 | 0.75 | 12.31 | 1.03 |
| 2000 | Whole wt. | 522 | 27.6 | 3.5 | 20.7 | 34.5 | 0.58 | 8.66 | 0.73 |
| 2001 | Whole wt. | 576 | 56.6 | 4.6 | 47.6 | 65.6 | 1.20 | 14.87 | 1.25 |
| 2002 | Whole wt. | 492 | 36.0 | 3.7 | 28.7 | 43.3 | 0.76 | 10.99 | 0.92 |
| 2003 | Whole wt. | 645 | 50.8 | 3.5 | 43.9 | 57.6 | 1.07 | 18.87 | 1.58 |
| 2004 | Whole wt. | 432 | 67.5 | 5.2 | 57.3 | 77.7 | 1.43 | 22.34 | 1.87 |
| 2005 | Whole wt. | 363 | 42.8 | 5.1 | 32.8 | 52.8 | 0.90 | 13.96 | 1.17 |
| 2006 | Whole wt. | 497 | 61.8 | 5.0 | 52.1 | 71.5 | 1.31 | 19.40 | 1.63 |
| 2007 | Whole wt. | 532 | 43.2 | 3.9 | 35.6 | 50.8 | 0.91 | 14.61 | 1.23 |
| 2008 | Whole wt. | 436 | 48.5 | 5.3 | 38.1 | 58.8 | 1.02 | 12.86 | 1.08 |
| 2009 | Whole wt. | 710 | 51.2 | 4.0 | 43.2 | 59.1 | 1.08 | 12.86 | 1.08 |
| 2010 | Whole wt. | 785 | 56.3 | 3.5 | 49.4 | 63.2 | 1.19 | 16.68 | 1.40 |
| 2011 | Whole wt. | 562 | 52.7 | 4.2 | 44.5 | 60.9 | 1.11 | 16.68 | 1.40 |
| 2012 | Whole wt. | 812 | 58.3 | 4.1 | 50.2 | 66.4 | 1.23 | 16.39 | 1.37 |
| 2013 | Whole wt. | 1176 | 45.1 | 2.8 | 39.5 | 50.6 | 0.95 | 14.47 | 1.21 |
| 2014 | Whole wt. | 873 | 60.8 | 3.8 | 53.3 | 68.4 | 1.29 | 17.52 | 1.47 |
| 2015 | Whole wt. | 1122 | 79.9 | 3.5 | 73.1 | 86.6 | 1.69 | 26.92 | 2.26 |
| 2016 | Whole wt. | 1076 | 91.8 | 4.8 | 82.3 | 101.3 | 1.94 | 22.98 | 1.93 |
| 2017 | Whole wt. | 1279 | 65.3 | 3.6 | 58.3 | 72.3 | 1.38 | 18.33 | 1.54 |
| 2018 | Whole wt. | 762 | 60.8 | 4.0 | 52.9 | 68.6 | 1.28 | 18.27 | 1.53 |
| 2019 | Whole wt. | 1001 | 70.8 | 3.7 | 63.6 | 78.1 | 1.50 | 23.50 | 1.97 |
| 2020 | Whole wt. | 805 | 73.2 | 4.8 | 63.8 | 82.5 | 1.54 | 21.95 | 1.84 |
| 2021 | Whole wt. | 618 | 48.7 | 4.0 | 40.8 | 56.6 | 1.03 | 15.17 | 1.27 |
| $\begin{array}{r} \hline 1986- \\ 2021 \end{array}$ | Total Trips | 29801 |  |  |  |  |  |  |  |
| Wtd. <br> Avg. | Whole wt. |  | 47.3 | 0.6 | 46.1 | 48.6 |  | 11.92 |  |

$* e^{(\log \text { means) }}:$ means of $\log _{\mathrm{e}}$ transformed whole wt. (lbs/trip) were back-transformed to arithmetic scale for plotting purposes.

Table 4a-d. (cont.) Florida Gulf of Mexico commercial fishing trips with reported landings of Spanish Mackerel by gear.

4b. FL Gulf Coast commercial cast net landings of Spanish Mackerel, 1986-2021

| Year | Variable | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \end{gathered}$ | Mean weight (pounds/trip) | $\begin{gathered} \mathrm{SE} \\ \text { (pounds/trip) } \\ \hline \end{gathered}$ | LowerCL (pounds/trip) | UpperCL (pounds/trip) | Weighted <br> Average <br> Relative <br> to Mean | $e^{\left(\log _{\mathrm{e}} \text { means)*}\right.}$ | Wtd. avg. of $e^{\text {(log }}{ }^{\text {means })}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1996 | Whole wt. | 178 | 38.9 | 6.9 | 25.4 | 52.4 | 0.45 | 8.30 | 0.30 |
| 1997 | Whole wt. | 241 | 17.5 | 3.0 | 11.7 | 23.3 | 0.20 | 4.98 | 0.78 |
| 1998 | Whole wt. | 383 | 64.8 | 14.3 | 36.8 | 92.7 | 0.75 | 8.12 | 0.46 |
| 1999 | Whole wt. | 232 | 114.9 | 38.1 | 40.3 | 189.6 | 1.33 | 8.18 | 0.76 |
| 2000 | Whole wt. | 411 | 117.8 | 25.6 | 67.7 | 168.0 | 1.36 | 11.65 | 0.76 |
| 2001 | Whole wt. | 302 | 154.3 | 29.0 | 97.6 | 211.1 | 1.79 | 14.66 | 1.09 |
| 2002 | Whole wt. | 398 | 94.6 | 24.9 | 45.7 | 143.5 | 1.10 | 14.76 | 1.37 |
| 2003 | Whole wt. | 218 | 112.1 | 22.0 | 69.0 | 155.2 | 1.30 | 18.92 | 1.38 |
| 2004 | Whole wt. | 158 | 132.5 | 33.8 | 66.4 | 198.7 | 1.53 | 12.76 | 1.77 |
| 2005 | Whole wt. | 179 | 52.5 | 12.2 | 28.5 | 76.5 | 0.61 | 8.86 | 1.19 |
| 2006 | Whole wt. | 156 | 111.8 | 27.0 | 58.9 | 164.8 | 1.29 | 18.92 | 0.83 |
| 2007 | Whole wt. | 153 | 59.8 | 38.8 | -16.4 | 135.9 | 0.69 | 6.46 | 1.77 |
| 2008 | Whole wt. | 220 | 33.5 | 4.2 | 25.3 | 41.8 | 0.39 | 9.85 | 0.60 |
| 2009 | Whole wt. | 245 | 36.8 | 7.8 | 21.5 | 52.1 | 0.43 | 6.19 | 0.92 |
| 2010 | Whole wt. | 204 | 92.5 | 17.4 | 58.4 | 126.6 | 1.07 | 15.53 | 0.58 |
| 2011 | Whole wt. | 168 | 161.9 | 32.3 | 98.5 | 225.3 | 1.87 | 14.50 | 1.45 |
| 2012 | Whole wt. | 264 | 71.6 | 12.8 | 46.4 | 96.8 | 0.83 | 9.06 | 1.35 |
| 2013 | Whole wt. | 259 | 50.5 | 10.6 | 29.7 | 71.3 | 0.58 | 7.10 | 0.85 |
| 2014 | Whole wt. | 206 | 71.0 | 17.0 | 37.6 | 104.4 | 0.82 | 8.57 | 0.66 |
| 2015 | Whole wt. | 184 | 69.5 | 10.4 | 49.1 | 89.9 | 0.80 | 16.36 | 0.80 |
| 2016 | Whole wt. | 114 | 159.0 | 42.8 | 75.1 | 242.9 | 1.84 | 9.98 | 1.53 |
| 2017 | Whole wt. | 134 | 97.6 | 23.0 | 52.5 | 142.8 | 1.13 | 17.03 | 0.93 |
| 2018 | Whole wt. | 100 | 89.9 | 24.4 | 42.0 | 137.8 | 1.04 | 14.68 | 1.59 |
| 2019 | Whole wt. | 68 | 120.3 | 35.3 | 51.2 | 189.5 | 1.39 | 22.17 | 1.37 |
| 2020 | Whole wt. | 70 | 64.5 | 13.3 | 38.4 | 90.6 | 0.75 | 14.06 | 2.07 |
| 2021 | Whole wt. | 58 | 115.1 | 34.4 | 47.6 | 182.7 | 1.33 | 14.33 | 1.31 |
| $\begin{array}{r} 1996- \\ 2021 \end{array}$ | Total Trips | 5316 |  |  |  |  |  |  |  |
| Wtd. Avg | Whole wt |  | 86.2 | 4.8 | 76.8 | 95.6 |  | 10.71 |  |

* $e^{(\log \text { means) }}:$ means of $\log _{\mathrm{e}}$ transformed whole wt. (lbs/trip) were back-transformed to arithmetic scale for plotting purposes.

Table 4a-d. (cont.) Florida Gulf of Mexico commercial fishing trips with reported landings of Spanish Mackerel by gear.

4c. FL Gulf Coast commercial gill net landings, 1986-June 30, 1995.

| Year | Variable | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \end{gathered}$ | Mean <br> weight (pounds) | $\begin{gathered} \text { SE } \\ \text { (pounds) } \end{gathered}$ | LowerCL <br> (pounds) | UpperCL <br> (pounds) | Weighted Average Relative to Mean | $e^{\left(\log _{\mathrm{e}} \mathrm{means}\right)^{*}}$ | Wtd. avg. of $e^{\left(\log _{\mathrm{e}} \text { means }\right)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | Whole wt. | 3914 | 402.9 | 37.8 | 328.8 | 477.0 | 1.16 | 17.9 | 0.82 |
| 1987 | Whole wt. | 5125 | 328.9 | 26.1 | 277.8 | 380.1 | 0.95 | 13.2 | 0.60 |
| 1988 | Whole wt. | 3835 | 303.8 | 25.2 | 254.5 | 353.2 | 0.88 | 16.3 | 0.75 |
| 1989 | Whole wt. | 4069 | 529.0 | 44.2 | 442.5 | 615.6 | 1.53 | 21.7 | 1.00 |
| 1990 | Whole wt. | 6418 | 306.4 | 20.5 | 266.2 | 346.6 | 0.88 | 19.0 | 0.87 |
| 1991 | Whole wt. | 7765 | 338.7 | 21.7 | 296.1 | 381.3 | 0.98 | 20.2 | 0.93 |
| 1992 | Whole wt. | 7985 | 370.4 | 20.6 | 330.0 | 410.9 | 1.07 | 27.7 | 1.27 |
| 1993 | Whole wt. | 5710 | 369.6 | 22.0 | 326.6 | 412.7 | 1.07 | 24.3 | 1.11 |
| 1994 | Whole wt. | 7063 | 285.3 | 11.1 | 263.6 | 307.0 | 0.82 | 30.1 | 1.38 |
| 1995 | Whole wt. | 3096 | 251.0 | 14.3 | 223.1 | 279.0 | 0.72 | 32.2 | 1.47 |
| $\begin{array}{r} 1986- \\ 1995 \\ \hline \end{array}$ | Total Trips | 54980 |  |  |  |  |  |  |  |
| Wtd. Avg. | Whole wt. |  | 346.26 | 7.68 | 331.21 | 361.32 |  | 21.84 |  |

* $e^{\text {(log means) }}$ : means of $\log _{\mathrm{e}}$ transformed whole wt. (lbs/trip) were back-transformed to arithmetic scale for plotting purposes.

4d. FL Gulf Coast commercial gill net landings, 1996-2021

| Year | Variable | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { weight } \\ \text { (pounds) } \end{gathered}$ | $\begin{gathered} \mathrm{SE} \\ \text { (pounds) } \end{gathered}$ | LowerCL (pounds) | UpperCL <br> (pounds) | Weighted <br> Average <br> Relative <br> to Mean | $e^{\left(\log _{\mathrm{e}} \text { means)*}\right.}$ | Wtd. avg. of $e^{\left(\log _{\mathrm{e}} \text { means }\right)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1995 |  |  |  |  |  |  |  |  |  |
| 1996 | Whole wt. | 254 | 836.8 | 200.9 | 442.8 | 1230.8 | 0.41 | 49.5 | 0.36 |
| 1997 | Whole wt. | 229 | 608.8 | 286.1 | 47.9 | 1169.6 | 0.30 | 18.9 | 0.14 |
| 1998 | Whole wt. | 397 | 305.2 | 57.0 | 193.5 | 416.9 | 0.15 | 16.4 | 0.12 |
| 1999 | Whole wt. | 295 | 1764.0 | 362.4 | 1053.6 | 2474.5 | 0.86 | 51.1 | 0.37 |
| 2000 | Whole wt. | 311 | 1592.6 | 321.7 | 961.9 | 2223.3 | 0.78 | 48.0 | 0.34 |
| 2001 | Whole wt. | 222 | 2626.1 | 449.9 | 1744.1 | 3508.1 | 1.28 | 166.6 | 1.19 |
| 2002 | Whole wt. | 109 | 1001.9 | 172.8 | 663.2 | 1340.6 | 0.49 | 138.4 | 0.99 |
| 2003 | Whole wt. | 128 | 4195.3 | 727.1 | 2769.8 | 5620.8 | 2.04 | 409.5 | 2.93 |
| 2004 | Whole wt. | 58 | 2603.9 | 818.4 | 999.3 | 4208.5 | 1.27 | 378.6 | 2.71 |
| 2005 | Whole wt. | 76 | 9765.0 | 1928.3 | 5984.3 | 13545.6 | 4.76 | 588.4 | 4.22 |
| 2006 | Whole wt. | 63 | 4812.6 | 1322.4 | 2220.0 | 7405.2 | 2.34 | 131.5 | 0.94 |
| 2007 | Whole wt. | 98 | 3247.7 | 573.8 | 2122.7 | 4372.8 | 1.58 | 146.7 | 1.05 |
| 2008 | Whole wt. | 145 | 1968.4 | 415.3 | 1154.1 | 2782.7 | 0.96 | 53.7 | 0.39 |
| 2009 | Whole wt. | 157 | 8248.1 | 825.6 | 6629.4 | 9866.7 | 4.02 | 920.4 | 6.60 |
| 2010 | Whole wt. | 78 | 4130.8 | 979.7 | 2209.9 | 6051.7 | 2.01 | 189.2 | 1.36 |
| 2011 | Whole wt. | 85 | 3790.2 | 1172.6 | 1491.2 | 6089.2 | 1.85 | 1007.3 | 7.22 |
| 2012 | Whole wt. | 51 | 3205.6 | 869.7 | 1500.5 | 4910.7 | 1.56 | 1260.7 | 9.03 |
| 2013 | Whole wt. | 178 | 975.0 | 81.8 | 814.7 | 1135.4 | 0.47 | 646.0 | 4.63 |
| 2014 | Whole wt. | 238 | 1078.6 | 140.0 | 804.2 | 1353.0 | 0.53 | 545.8 | 3.91 |
| 2015 | Whole wt. | 217 | 1382.4 | 171.7 | 1045.8 | 1719.0 | 0.67 | 628.1 | 4.50 |
| 2016 | Whole wt. | 149 | 1348.6 | 153.3 | 1048.1 | 1649.1 | 0.66 | 711.6 | 5.10 |
| 2017 | Whole wt. | 60 | 893.1 | 153.7 | 591.8 | 1194.4 | 0.44 | 374.3 | 2.68 |
| 2018 | Whole wt. | 38 | 670.1 | 106.4 | 461.4 | 878.8 | 0.33 | 348.2 | 2.50 |
| 2019 | Whole wt. | 43 | 492.6 | 125.6 | 246.3 | 738.8 | 0.24 | 173.6 | 1.24 |
| 2020 | Whole wt. | 69 | 1356.8 | 203.7 | 957.5 | 1756.2 | 0.66 | 603.2 | 4.32 |
| 2021 | Whole wt. | 68 | 1298.0 | 134.9 | 1033.6 | 1562.4 | 0.63 | 816.2 | 5.85 |
| $\begin{array}{r} \hline 1996- \\ 2021 \\ \hline \end{array}$ | Total Trips | 3873 |  |  |  |  |  |  |  |
| Wtd. Avg. | Whole wt. |  | 2024.0 | 96.4 | 1835.0 | 2213.1 |  | 139.5 |  |

[^1]
## SEDAR81-DW-xx

Table 5. Summary of model runs by 5a.) percentage reduction in deviance and 5b.) by AIC.
5a.) Covariates (class variables) selected based on \%reduction in deviance of at least $\mathbf{0 . 5 \%}$.

| Gears | Model <br> Distribution | Selected covariates (class variables) | No. of Trips | No. of Trips used $^{\text {a }}$ | Outliers $(\|z\|>=4)$ | deviance reduction (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hook and Line 1986-2021 | Poisson | year rf month FL_reg_area_co op ib | 29801 | 29783 | 20552 | 15.4 |
|  | gamma | year rf month FL_reg_area_co | 29801 | 29786 | 87 | 12.9 |
|  | Lognormal | year ib FL_reg_area_corf month | 29801 | 29783 | 1 | 16.6 |
|  | negative binomial | rf year ${ }^{\text {b }}$ | 29801 | 29786 | 83 | $\sim 1.5$ |
| Cast net 1996-2021 | Poisson | month ip ib year FL_reg_area_co | 5316 | 5316 | 3918 | 28.0 |
|  | gamma | month ib year ip FL_reg_area_co | 5316 | 5316 | 20 | 23.6 |
|  | Lognormal | ib ip month year FL_reg_area_co | 5316 | 5316 | 0 | 17.5 |
|  | negative binomial | month ib year | 5316 | 5316 | 18 | $\sim 3.1$ |
| Gill net (before) 1986-June 30, 1995 | Poisson | FL_reg_area_co ip ib month year | 54980 | 54950 | 45342 | 57.7 |
|  | gamma | month ib FL_reg_area_co ip year ob op | 54980 | 54949 | 131 | 36.7 |
|  | Lognormal | FL_reg_area_co ib month year op ob ip | 54980 | 54949 | 0 | 27.8 |
|  | negative binomial | month ib FL_reg_area_co year ${ }^{\text {b }}$ | 54980 | 54952 | 117 | $\sim 6.3$ |
| Gill net (after) 1996-2021 | Poisson | ip month year FL_reg_area_co | 3873 | 3873 | 3579 | 59.4 |
|  | gamma | month ip year FL_reg_area_co | 3873 | 3873 | 7 | 44.5 |
|  | Lognormal | year ip month FL_reg_area_co | 3873 | 3873 | 0 | 52.8 |
|  | negative binomial | ip month year | 3873 | 3873 | 8 | $\sim 7.3$ |

5b.) Covariates (class variables) selected based on greatest AIC and \%reduction in deviance of at least 0.5\%

| Hook and Line 1986-2021 | Poisson | year rf month FL_reg_area_co ib op | 29801 | 29783 | 20552 | 15.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | gamma | year rf month FL_reg_area_co | 29801 | 29786 | 87 | 12.9 |
|  | Lognormal | year ib FL_reg_area_co rf month | 29801 | 29783 | 1 | 16.6 |
|  | negative binomial | year | 29801 | 29801 | 81 | $\sim 1.5$ |
| Cast net 1996-2021 | Poisson | month ip ib year FL_reg_area_co | 5316 | 5316 | 3918 | 28.0 |
|  | gamma | month ib year ip FL_reg_area_co | 5316 | 5316 | 20 | 23.6 |
|  | Lognormal | ib ip month year FL_reg_area_co | 5316 | 5316 | 0 | 17.5 |
|  | negative binomial | month ib year | 5316 | 5316 | 18 | ~3.1 |
| Gill net (before) <br> 1986-June 30, <br> 1995 | Poisson | FL_reg_area_co ip ib month year | 54980 | 54950 | 45342 | 57.7 |
|  | gamma | month ib FL_reg_area_co ip year ob op | 54980 | 54949 | 131 | 36.7 |
|  | Lognormal | FL_reg_area_co ib month year op ob ip | 54980 | 54949 | 0 | 27.8 |
|  | negative binomial | month ib FL_reg_area_co year ${ }^{\text {b }}$ | 54980 | 54952 | 117 | $\sim 6.3$ |
| Gill net (after) 1996-2021 | Poisson | ip month year FL_reg_area_co | 3873 | 3873 | 3579 | 59.4 |
|  | gamma | ip month year FL_reg_area_co | 3873 | 3873 | 7 | 44.5 |
|  | Lognormal | ip year month FL_reg_area_co | 3873 | 3873 | 0 | 52.8 |
|  | negative binomial | ip month year | 3873 | 3873 | 8 | $\sim 7.3$ |

[^2]
## SEDAR81-DW-xx

Table 6 a-h. Florida Gulf Coast commercial landings of Spanish Mackerel by gear: Stepwise selection of variables to include in estimating the catch per trip of Spanish Mackerel using a GLM based on highest percentage reduction (minimum of $0.5 \%$ )in model deviance. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), percent reduction in mean deviance (\% change in mean dev), full likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the Chi-square (PrChiSq)

6a.) FL Gulf Coast commercial landings of Spanish Mackerel from hook-and-line trips, 1986-2021, gamma distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 29800 | 82201.12 | 2.758 | . | . | -136638 | 157084.63 | . | . |
| 1 | year | 29765 | 76718.55 | 2.577 | 6.56 | 6.56 | -135323 | 2630.03 | 35 | <. 0001 |
| 2 | year rf | 29749 | 74253.58 | 2.496 | 2.95 | 9.51 | -134671 | 1216.95 | 1 | <. 0001 |
| 3 | year rf month | 29738 | 72236.56 | 2.429 | 2.43 | 11.94 | -134152 | 1037.52 | 11 | <. 0001 |
| 4 | year rf month FL_reg_area_co | 29736 | 71443.24 | 2.403 | 0.96 | 12.90 | -133944 | 414.96 | 2 | <. 0001 |

6b.) FL Gulf Coast commercial landings of Spanish Mackerel from hook-and-line trips, 1986-2021, lognormal distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 29800 | 79889.6 | 2.681 | . | . | -56979.2 | 79889.6 | . | . |
| 1 | year | 29765 | 72699.3 | 2.442 | 8.89 | 8.89 | -55573.9 | 2810.7 | 35 | <. 0001 |
| 2 | year ib | 29761 | 70018.2 | 2.353 | 3.35 | 12.24 | -55010.0 | 1111.9 | 1 | <. 0001 |
| 3 | year ib FL_reg_area_co | 29759 | 68583.2 | 2.305 | 1.79 | 14.03 | -54701.4 | 617.0 | 2 | <. 0001 |
| 4 | year ib FL_reg_area_co rf | 29743 | 67459.2 | 2.268 | 1.36 | 15.40 | -54435.3 | 486.8 | 1 | <. 0001 |
| 5 | year ib FL_reg_area_co rf month | 29732 | 66464.3 | 2.235 | 1.22 | 16.62 | -54214.1 | 442.5 | 11 | <. 0001 |

## SEDAR81-DW-xx

Table 6 (cont.) Florida Gulf Coast commercial landings of Spanish Mackerel by gear: Stepwise selection of variables to include in estimating the catch per trip of Spanish Mackerel using a GLM based on highest percentage reduction (minimum of 0.5\%)in model deviance. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), percent reduction in mean deviance (\% change in mean dev), full likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the Chi-square (PrChiSq)

6c.) FL Gulf Coast commercial landings of Spanish Mackerel from cast net trips, 1986-2021, gamma distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 5315 | 22174.50 | 4.172 | . | . | -25255.6 | 86755.0 |  | . |
| 1 | month | 5304 | 19799.4 | 3.733 | 10.53 | 10.53 | -24849.2 | 812.9 | 11 | <. 0001 |
| 2 | month ib | 5303 | 18678.2 | 3.522 | 5.05 | 15.58 | -24642.6 | 413.3 | 1 | <. 0001 |
| 3 | month ib year | 5277 | 17569.0 | 3.329 | 4.62 | 20.20 | -24427.4 | 430.4 | 26 | <. 0001 |
| 4 | month ib year ip | 5276 | 16999.9 | 3.222 | 2.57 | 22.77 | -24312.4 | 230.0 | 1 | <. 0001 |
| 5 | month ib year ip FL_reg_area_co | 5274 | 16806.1 | 3.187 | 0.85 | 23.62 | -24272.5 | 79.8 | 2 | <. 0001 |

6d.) FL Gulf Coast commercial landings of Spanish Mackerel from cast net trips, 1986-2021, lognormal distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 5315 | 18687.7 | 3.516 | . | . | -10884.6 | 18687.7 | . | . |
| 1 | ib | 5314 | 17395.7 | 3.274 | 6.90 | 6.90 | -10694.1 | 380.8 | 1 | <. 0001 |
| 2 | ib ip | 5313 | 16701.4 | 3.144 | 3.70 | 10.60 | -10585.9 | 216.5 | 1 | $<.0001$ |
| 3 | ib ip month | 5302 | 15995.0 | 3.017 | 3.60 | 14.20 | -10471.0 | 229.8 | 11 | $<.0001$ |
| 4 | ib ip month year | 5276 | 15433.6 | 2.925 | 2.60 | 16.80 | -10376.0 | 189.9 | 26 | <. 0001 |
| 5 | ib ip month year FL_reg_area_co | 5274 | 15302.9 | 2.902 | 0.67 | 17.48 | -10353.4 | 45.2 | 2 | <. 0001 |

## SEDAR81-DW-xx

Table 6 (cont.) Florida Gulf Coast commercial landings of Spanish Mackerel by gear: Stepwise selection of variables to include in estimating the catch per trip of Spanish Mackerel using a GLM based on highest percentage reduction (minimum of 0.5\%)in model deviance. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), percent reduction in mean deviance (\% change in mean dev), full likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the Chi-square (PrChiSq)

6e.) FL Gulf Coast commercial landings of Spanish Mackerel from gill net trips, 1986-June 30, 1995, gamma distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 54979 | 303866.1 | 5.527 | . | . | -311131.8 | 1487614.4 | . | . |
| 1 | month | 54968 | 246664.9 | 4.487 | 18.81 | 18.81 | -303135.7 | 15992.2 | 11 | $<.0001$ |
| 2 | month ib | 54939 | 218000.2 | 3.968 | 9.40 | 28.21 | -298327.0 | 9221.5 | 1 | $<.0001$ |
| 3 | month ib FL_reg_area_co | 54937 | 204040.9 | 3.714 | 4.60 | 32.80 | -295882.1 | 4889.8 | 2 | <. 0001 |
| 4 | month ib FL_reg_area_co ip | 54934 | 200265.8 | 3.646 | 1.24 | 34.04 | -295183.7 | 1371.2 | 1 | <. 0001 |
| 5 | month ib FL_reg_area_co ip year | 54925 | 197003.5 | 3.587 | 1.06 | 35.10 | -294582.0 | 1203.4 | 9 | <. 0001 |
| 6 | month ib FL_reg_area_co ip year ob | 54923 | 194328.3 | 3.538 | 0.88 | 35.98 | -294076.2 | 999.6 | 1 | <. 0001 |
| 7 | month ib FL_reg_area_co ip year ob op | 54922 | 192235.1 | 3.500 | 0.69 | 36.67 | -293681.0 | 790.5 | 1 | <. 0001 |

6f.) FL Gulf Coast commercial landings of Spanish Mackerel from gill net trips, 1986-June 30, 1995, lognormal distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change <br> Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 54979 | 273423.0 | 4.973 | . | . | -122108.6 | 273423.0 | . | . |
| 1 | FL_reg_area_co | 54977 | 248523.8 | 4.521 | 9.10 | 9.10 | -119483.8 | 5249.6 | 2 | $<.0001$ |
| 2 | FL_reg_area_co ib | 54948 | 227326.4 | 4.137 | 7.71 | 16.81 | -116987.4 | 4848.5 | 1 | $<.0001$ |
| 3 | FL_reg_area_co ib month | 54937 | 208883.6 | 3.802 | 6.73 | 23.55 | -114662.7 | 4649.5 | 11 | <. 0001 |
| 4 | FL_reg_area_co ib month year | 54928 | 204402.4 | 3.721 | 1.63 | 25.17 | -114066.8 | 1191.7 | 9 | <. 0001 |
| 5 | FL_reg_area_co ib month year op | 54927 | 201615.0 | 3.671 | 1.02 | 26.19 | -113689.6 | 754.5 | 1 | <. 0001 |
| 6 | FL_reg_area_co ib month year op ob | 54925 | 199054.1 | 3.624 | 0.94 | 27.13 | -113336.8 | 702.3 | 1 | <. 0001 |
| 7 | FL_reg_area_co ib month year op ob ip | 54922 | 197341.4 | 3.593 | 0.62 | 27.75 | -113096.2 | 471.0 | 1 | <. 0001 |

## SEDAR81-DW-xx

Table 6 (cont.) Florida Gulf Coast commercial landings of Spanish Mackerel by gear: Stepwise selection of variables to include in estimating the catch per trip of Spanish Mackerel using a GLM based on highest percentage reduction (minimum of $0.5 \%$ )in model deviance. The fields include the variables, the degrees of freedom for that variable (df), the deviance of the model with those variables, the mean deviance (deviance/df), percent reduction in mean deviance (\% change in mean dev), full likelihood, chi-square value, the Chi-square degrees of freedom, the probability of the Chi-square (PrChiSq)

6g.) FL Gulf Coast commercial landings of Spanish Mackerel from gill net trips, 1996-2021, gamma distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 3872 | 20716.6 | 5.350 |  |  | -29010.7 | 34023.0 | . | . |
| 1 | month | 3861 | 15398.9 | 3.988 | 25.46 | 25.46 | -28218.0 | 1585.3 | 11 | <. 0001 |
| 2 | month ip | 3860 | 12909.8 | 3.345 | 12.03 | 37.49 | -27762.3 | 911.4 | 1 | <. 0001 |
| 3 | month ip year | 3834 | 11608.9 | 3.028 | 5.92 | 43.41 | -27493.1 | 538.4 | 26 | <. 0001 |
| 4 | month ip year FL_reg_area_co | 3832 | 11376.1 | 2.969 | 1.11 | 44.51 | -27442.2 | 101.8 | 2 | <. 0001 |

6h.) FL Gulf Coast commercial landings of Spanish Mackerel from gill net trips, 1996-2021, lognormal distribution model.

| Level | Source | DF | Deviance | Mean Dev | \%Change Mean Dev | Cum. \% | Full Like | Chi-Sq | Chi-DF | PrChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Null | Intercept (null model) | 3872 | 28107.4 | 7.259 |  |  | -9333.7 | 28107.4 |  |  |
| 1 | year | 3846 | 20429.2 | 5.312 | 26.83 | 26.83 | -8715.8 | 1235.7 | 26 | <. 0001 |
| 2 | year ip | 3845 | 14738.5 | 3.833 | 20.37 | 47.20 | -8083.6 | 1264.5 | 1 | <. 0001 |
| 3 | year ip month | 3834 | 13467.2 | 3.513 | 4.42 | 51.61 | -7908.9 | 349.4 | 11 | <. 0001 |
| 4 | year ip month FL_reg_area_co | 3832 | 13136.3 | 3.428 | 1.16 | 52.78 | -7860.7 | 96.3 | 2 | <. 0001 |

Table 7a-b. FL Gulf Coast Spanish Mackerel indices relative to their means for various gears, the coefficient of variation (cv), and number of trips. Commercial fishery data reported on Florida trip tickets.

7a.) Florida Gulf Coast Commercial Trip Ticket Indices, gamma distribution models

| Year | Hook and Line Gears |  |  | Cast Nets, 1996-2021 |  |  | Gill Nets, 1986-June 30, 1995 |  |  | Gill Nets, 1996-2021 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \\ \hline \end{gathered}$ | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \end{gathered}$ | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \\ \hline \end{gathered}$ | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \\ \hline \end{gathered}$ |
| 1986 | 0.632 | 0.033 | 1850 |  |  |  | 0.593 | 0.029 | 3914 |  |  |  |
| 1987 | 0.498 | 0.029 | 2487 |  |  |  | 0.644 | 0.027 | 5125 |  |  |  |
| 1988 | 0.769 | 0.040 | 1284 |  |  |  | 0.794 | 0.031 | 3835 |  |  |  |
| 1989 | 1.516 | 0.046 | 931 |  |  |  | 0.774 | 0.029 | 4069 |  |  |  |
| 1990 | 0.944 | 0.040 | 1262 |  |  |  | 0.792 | 0.025 | 6418 |  |  |  |
| 1991 | 1.072 | 0.041 | 1198 |  |  |  | 1.088 | 0.023 | 7765 |  |  |  |
| 1992 | 1.065 | 0.049 | 781 |  |  |  | 1.198 | 0.023 | 7985 |  |  |  |
| 1993 | 0.537 | 0.054 | 668 |  |  |  | 1.265 | 0.026 | 5710 |  |  |  |
| 1994 | 0.965 | 0.052 | 746 |  |  |  | 1.371 | 0.025 | 7063 |  |  |  |
| 1995 | 0.839 | 0.065 | 464 |  |  |  | 1.020 | 0.035 | 3096 |  |  |  |
| 1996 | 0.613 | 0.059 | 552 | 0.746 | 0.333 | 178 |  |  |  | 0.559 | 0.132 | 254 |
| 1997 | 0.639 | 0.061 | 538 | 0.333 | 0.336 | 241 |  |  |  | 0.205 | 0.138 | 229 |
| 1998 | 0.886 | 0.065 | 472 | 0.837 | 0.319 | 383 |  |  |  | 0.280 | 0.126 | 397 |
| 1999 | 0.885 | 0.063 | 492 | 0.990 | 0.329 | 232 |  |  |  | 0.482 | 0.128 | 295 |
| 2000 | 0.637 | 0.061 | 522 | 1.190 | 0.319 | 411 |  |  |  | 0.637 | 0.144 | 311 |
| 2001 | 1.303 | 0.057 | 576 | 1.925 | 0.314 | 302 |  |  |  | 0.915 | 0.142 | 222 |
| 2002 | 0.985 | 0.062 | 492 | 1.422 | 0.320 | 398 |  |  |  | 1.098 | 0.181 | 109 |
| 2003 | 1.162 | 0.055 | 645 | 0.831 | 0.331 | 218 |  |  |  | 0.866 | 0.173 | 128 |
| 2004 | 1.429 | 0.067 | 432 | 0.571 | 0.337 | 158 |  |  |  | 1.261 | 0.230 | 58 |
| 2005 | 1.121 | 0.073 | 363 | 0.573 | 0.320 | 179 |  |  |  | 1.982 | 0.203 | 76 |
| 2006 | 1.331 | 0.064 | 497 | 1.433 | 0.344 | 156 |  |  |  | 0.645 | 0.219 | 63 |
| 2007 | 0.964 | 0.061 | 532 | 0.440 | 0.342 | 153 |  |  |  | 0.677 | 0.191 | 98 |
| 2008 | 0.942 | 0.068 | 436 | 0.590 | 0.328 | 220 |  |  |  | 0.885 | 0.172 | 145 |
| 2009 | 1.215 | 0.052 | 710 | 0.579 | 0.328 | 245 |  |  |  | 1.668 | 0.162 | 157 |
| 2010 | 1.227 | 0.051 | 785 | 2.299 | 0.325 | 204 |  |  |  | 1.187 | 0.202 | 78 |
| 2011 | 1.167 | 0.059 | 562 | 1.097 | 0.337 | 168 |  |  |  | 2.652 | 0.200 | 85 |
| 2012 | 1.128 | 0.050 | 812 | 0.704 | 0.323 | 264 |  |  |  | 2.917 | 0.247 | 51 |
| 2013 | 0.918 | 0.042 | 1176 | 0.747 | 0.321 | 259 |  |  |  | 1.491 | 0.155 | 178 |
| 2014 | 1.104 | 0.048 | 873 | 0.721 | 0.336 | 206 |  |  |  | 1.355 | 0.145 | 238 |
| 2015 | 1.308 | 0.043 | 1122 | 0.809 | 0.342 | 184 |  |  |  | 1.614 | 0.149 | 217 |
| 2016 | 1.551 | 0.045 | 1076 | 2.096 | 0.351 | 114 |  |  |  | 1.767 | 0.164 | 149 |
| 2017 | 1.094 | 0.041 | 1279 | 0.818 | 0.344 | 134 |  |  |  | 0.982 | 0.228 | 60 |
| 2018 | 1.082 | 0.052 | 762 | 1.191 | 0.353 | 100 |  |  |  | 1.179 | 0.282 | 38 |
| 2019 | 1.310 | 0.045 | 1001 | 0.953 | 0.380 | 68 |  |  |  | 0.591 | 0.263 | 43 |
| 2020 | 1.355 | 0.051 | 805 | 0.725 | 0.379 | 70 |  |  |  | 1.644 | 0.220 | 69 |
| 2021 | 0.896 | 0.056 | 618 | 0.934 | 0.391 | 58 |  |  |  | 1.626 | 0.220 | 68 |
| Distribution: |  | gamma |  |  | ma |  |  | ma |  |  | mma |  |

Table 7a-b. FL Gulf Coast Spanish Mackerel indices relative to their means for various gears, the coefficient of variation (cv), and number of trips. Commercial fishery data reported on Florida trip tickets.

7b.) Florida Gulf Coast Commercial Trip Ticket Indices, lognormal distribution models *Recommended Indices*

|  | Hook and Line Gears |  |  | Cast Nets, 1996-2021 |  |  | Gill Nets, 1986-June 30, 1995 |  |  | Gill Nets, 1996-2021 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \\ \hline \end{gathered}$ | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \end{gathered}$ | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \end{gathered}$ | Index scaled to mean | cV | $\begin{gathered} \mathrm{N} \\ \text { (trips) } \\ \hline \end{gathered}$ |
| 1986 | 0.625 | 0.036 | 1850 |  |  |  | 0.515 | 0.034 | 3914 |  |  |  |
| 1987 | 0.502 | 0.032 | 2487 |  |  |  | 0.574 | 0.030 | 5125 |  |  |  |
| 1988 | 0.628 | 0.043 | 1284 |  |  |  | 0.650 | 0.035 | 3835 |  |  |  |
| 1989 | 1.149 | 0.049 | 931 |  |  |  | 0.786 | 0.033 | 4069 |  |  |  |
| 1990 | 0.833 | 0.043 | 1262 |  |  |  | 0.838 | 0.028 | 6418 |  |  |  |
| 1991 | 0.937 | 0.044 | 1198 |  |  |  | 1.049 | 0.027 | 7765 |  |  |  |
| 1992 | 0.807 | 0.053 | 781 |  |  |  | 1.227 | 0.026 | 7985 |  |  |  |
| 1993 | 0.564 | 0.058 | 668 |  |  |  | 1.275 | 0.030 | 5710 |  |  |  |
| 1994 | 0.654 | 0.055 | 746 |  |  |  | 1.415 | 0.029 | 7063 |  |  |  |
| 1995 | 0.811 | 0.070 | 464 |  |  |  | 1.206 | 0.040 | 3096 |  |  |  |
| 1996 | 0.675 | 0.064 | 552 | 0.770 | 0.363 | 178 |  |  |  | 0.232 | 0.157 | 254 |
| 1997 | 0.798 | 0.066 | 538 | 0.474 | 0.366 | 241 |  |  |  | 0.119 | 0.165 | 229 |
| 1998 | 1.138 | 0.070 | 472 | 0.714 | 0.348 | 383 |  |  |  | 0.105 | 0.142 | 397 |
| 1999 | 1.119 | 0.068 | 492 | 0.777 | 0.357 | 232 |  |  |  | 0.237 | 0.146 | 295 |
| 2000 | 0.807 | 0.066 | 522 | 1.080 | 0.348 | 411 |  |  |  | 0.196 | 0.156 | 311 |
| 2001 | 1.257 | 0.062 | 576 | 1.388 | 0.341 | 302 |  |  |  | 0.511 | 0.165 | 222 |
| 2002 | 1.019 | 0.067 | 492 | 1.263 | 0.350 | 398 |  |  |  | 0.631 | 0.213 | 109 |
| 2003 | 1.474 | 0.059 | 645 | 1.241 | 0.363 | 218 |  |  |  | 0.654 | 0.204 | 128 |
| 2004 | 1.747 | 0.072 | 432 | 0.810 | 0.369 | 158 |  |  |  | 1.096 | 0.277 | 58 |
| 2005 | 1.182 | 0.079 | 363 | 0.808 | 0.355 | 179 |  |  |  | 0.912 | 0.239 | 76 |
| 2006 | 1.450 | 0.069 | 497 | 1.494 | 0.377 | 156 |  |  |  | 0.354 | 0.259 | 63 |
| 2007 | 1.103 | 0.066 | 532 | 0.544 | 0.373 | 153 |  |  |  | 0.528 | 0.225 | 98 |
| 2008 | 1.003 | 0.073 | 436 | 0.849 | 0.359 | 220 |  |  |  | 0.280 | 0.192 | 145 |
| 2009 | 1.116 | 0.056 | 710 | 0.714 | 0.359 | 245 |  |  |  | 1.288 | 0.184 | 157 |
| 2010 | 1.298 | 0.055 | 785 | 1.822 | 0.354 | 204 |  |  |  | 0.712 | 0.241 | 78 |
| 2011 | 1.290 | 0.065 | 562 | 1.133 | 0.367 | 168 |  |  |  | 2.833 | 0.235 | 85 |
| 2012 | 1.182 | 0.054 | 812 | 0.904 | 0.352 | 264 |  |  |  | 3.809 | 0.299 | 51 |
| 2013 | 0.905 | 0.046 | 1176 | 0.664 | 0.349 | 259 |  |  |  | 2.278 | 0.182 | 178 |
| 2014 | 1.063 | 0.053 | 873 | 0.799 | 0.366 | 206 |  |  |  | 2.435 | 0.170 | 238 |
| 2015 | 1.508 | 0.047 | 1122 | 1.177 | 0.372 | 184 |  |  |  | 2.058 | 0.174 | 217 |
| 2016 | 1.367 | 0.048 | 1076 | 1.075 | 0.378 | 114 |  |  |  | 2.856 | 0.193 | 149 |
| 2017 | 1.101 | 0.045 | 1279 | 1.313 | 0.376 | 134 |  |  |  | 0.954 | 0.273 | 60 |
| 2018 | 1.138 | 0.056 | 762 | 1.218 | 0.383 | 100 |  |  |  | 1.559 | 0.341 | 38 |
| 2019 | 1.422 | 0.049 | 1001 | 1.460 | 0.414 | 68 |  |  |  | 0.596 | 0.318 | 43 |
| 2020 | 1.375 | 0.056 | 805 | 1.079 | 0.416 | 70 |  |  |  | 1.666 | 0.260 | 69 |
| 2021 | 0.975 | 0.061 | 618 | 1.083 | 0.428 | 58 |  |  |  | 3.478 | 0.263 | 68 |
| Distribution: |  | normal |  |  | ormal |  |  | ormal |  |  | ormal |  |

Figures.
a.)


Florida Trip Ticket System


Number of Unsent Ticket(s) Before 10/24/2021 (to Feds):
14

b)

c)

d)

|  |  |  |  | FLORIDA SEAFOOD, INC. <br> 1234 FRONT ST ANY CITY, FLORIDA 34567 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | VESSEL\# | 10. OF CREW 1-1 DEALER WD 9999 |  |  |  |  |
| START DATEL 1 UNLOAD DATE <br>  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| DEPTH L L Feet - or Fathoms ப GEAR FISHED Purse LHaul Longline - |  |  |  |  |  |  |  |  |
| H\&L L Traps - Traw LGill LTrammel Least LBandit Lather LIU |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| CODE | SIIE | grade | SPECIES NAME | LBNUMBERS | UNITS |  | value | Disp |
| 234 |  |  | TRIGGERFISH |  |  |  |  |  |
| 103 |  |  |  | 1 |  |  |  |  |
| 219 |  |  |  | - |  |  |  |  |
| 165 |  |  | Whikerem Ming | - |  |  |  |  |
| 247 |  |  | PORGY (OTHER), P |  |  |  |  |  |
| 379 |  |  | PORGY, RED |  |  |  |  |  |
|  |  |  | SNAPPER |  |  |  |  |  |
|  |  |  | SNAPPER |  |  |  |  |  |
|  |  |  | SNAPPER |  |  |  |  |  |
|  |  |  | GROUPER |  |  |  |  |  |
|  |  |  | GROUPER |  |  |  |  |  |
|  |  |  | GROUPER |  |  |  |  |  |
|  |  |  | GROUPER |  |  |  |  |  |
|  |  |  | MULLET |  |  |  |  |  |
|  |  |  | FLOUNDER |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  | TOT/ |  |  |  |  |
| FWC \#33-611 |  |  |  |  |  |  |  |  |

Figure 1. a) VESL web-based electronic reporting application, b) Florida Trip Ticket electronic reporting application, c) Florida trip ticket, form 'A3'; b) a "dealer-customized" Florida trip ticket form.
a)


Fish and Wildlife Research Institute Marine Fisheries Trip Ticket Office
100 8th Ave. SE, St. Petersburg, FL 33701-5020
Fax 727/894-6181
TOLL-FREE:
Telephone 866/447-5515 Fax 866/447-5514


## Marine Fisheries Trip Ticket FISHING AREA CODE MAP

Fishery Management Regulations can be found at the following Web sites Federal Waters
South Atlantic Fishery Management Council www.safmc.net/ Gulf of Mexico Fishery Management Council www.gulfcouncil.org/
National Marine Fisheries Service Southeast Regional Office http:/lsero.nmfs.noaa.gov State Waters
Florida Fish and Wildlife Conservation Commission http:/IMyFWC.com Our Website
Fish and Wildlife Research Institute http://MyFWC.com/Research

| FWC FWRI St. Petersburg |  | National Marine Fisheries Service |  |
| :---: | :---: | :---: | :---: |
| Marine Fisheries Trip Ticket Office |  | St. Petersburg-Fisheries Mgmt. | 727/824-5305 |
| Trip Ticket Office Fax | 727/894-6181 | St. Petersburg-Permits | 727/824-5326 |
| Trip Ticket Office Toll-Free Telephone | 866/447-5515 | Miami-Logbooks | 305/361-4581 |
| Trip Ticket Office Toll-Free Fax | 866/447-5514 | Federal Councils |  |
| Fish and Wildlife Research Institute | 727/896-8626 | S. Atlantic Fishery Mgmt. Council | 843/571-4366 |
| FWC Tallahassee |  | Gulf of Mexico Fish. Mgmt. Council | 813/348-1630 |
| Division of Marine Fisheries | 850/487-0554 | Interstate Commissions |  |
| Licenses and Permits Section | 850/488-3641 | Atlantic States Marine Fish. Comm | 703/842-0740 |
| LAW ENFORCEMENT | 850/488-6251 | Gulf States Marine Fish. Comm. | 228/875-5912 |


b)

c)


Figure 2. Area fished maps: a) statewide areas, b) Florida Keys areas, c) Tortugas areas. Red line in the Keys and Tortugas maps is the council boundary.

| a. Number of commercial fishing trips | b. Mean (whole wt./trip) from raw and log-transformed data |
| :---: | :---: |
|  |  |
| c. Standardized means | d. Relative standardized means |
| ....e... S28 std means (gamma) 1986-2010 |  |

Figure 3. Hook-and-line gear trips with landings (whole wt. lbs/trip) of Florida Gulf Coast Spanish Mackerel, 1986-2021.

## SEDAR81-DW-xx

Figure 4a. Commercial landings (whole wt. lbs/trip) for hook-and-line gears 1986-2021. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a gamma distribution.

| a.) Standardized residuals by year. | b.) Q-Q plot <br> c.) Histogram of standardized residuals and fitted distribution. |
| :---: | :---: |
| HL_GULF_pos_span_mack: gamma model, Dataset: pos, std. residuals <br> Std. Residual $=$ stdresdev |   std. Residual = stdresdev |
| d. Std. residuals vs. linear predictor. | e. Index in whole weight (pounds). |
| HL_GULF_pos_span_mack: gamma model, Dataset: pos, std. residuals <br> Std. Residual $=$ stdresdev | HL_GULF_pos_span_mack: gamma model, Dataset pos |


| a.) Standardized residuals by year. | b.) Q-Q plot <br> c.) Histogram of standardized residuals and fitted distribution. |
| :---: | :---: |
|  |  <br> Std. Residual $=$ stdresdev |
| d. Std. residuals vs. linear predictor. | e. Index in whole weight (pounds). |
|  | HL_GULF_pos_span_mack: Lognormal model, Dataset: pos |

Figure 4b. Commercial landings (whole wt. lbs/trip) for hook-and-line gears 1986-2021. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a lognormal distribution.

| a. Number of commercial fishing trips | b. Mean (whole wt./trip) from raw and log-transformed data |
| :---: | :---: |
|  |  |
| c. Standardized means | d. Relative standardized means |
|  |  |

Figure 5. Cast net gear trips with landings (whole wt. lbs/trip) of Florida Gulf Coast Spanish Mackerel, 1986-2021.

| a.) Standardized residuals by year. | b.) Q-Q plot <br> c.) Histogram of standardized residuals and fitted distribution. |
| :---: | :---: |
| CN_GULF_pos_span_mack: gamma model, Dataset: pos, std. residuals <br> Std. Residual $=$ stdresdev |   |
| d. Std. residuals vs. linear predictor. | e. Index in whole weight (pounds). |
| CN_GULF_pos_span_mack: gamma model, Dataset: pos, std. residuals <br> Std. Residual $=$ stdresdev | CN_GULF_pos_span_mack: gamma model, Dataset: pos |

Figure 6a. Commercial landings (whole wt. lbs/trip) for cast net gears 1986-2021. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a gamma distribution.

## SEDAR81-DW-xx

| a.) Standardized residuals by year. | b.) Q-Q plot <br> c.) Histogram of standardized residuals and fitted distribution. |
| :---: | :---: |
|  |   |
| d. Std. residuals vs. linear predictor. | e. Index in whole weight (pounds). |
|  | CN_GULF_pos_span_mack: Lognormal model, Dataset pos |

Figure 6b. Commercial landings (whole wt. lbs/trip) for cast net gears 1986-2021. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a lognormal distribution.

| e. Number of commercial fishing trips | f. Mean (whole wt./trip) from raw and log-transformed data |
| :---: | :---: |
|  |  |
| g. Standardized means | h. Relative standardized means |
|  |  |

Figure 7. Gill net gear trips with landings (whole wt. lbs/trip) of Florida Gulf Coast Spanish Mackerel, 1986-June 30, 1995 (prior to implementation of Florida's State Constitution Amendment X limits on marine net fishing in state waters).

SEDAR81-DW-xx


Figure 8a. Commercial landings (whole wt. lbs/trip) for gill net gears 1986-June 30, 1995. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a gamma distribution.


Figure 8b. Commercial landings (whole wt. lbs/trip) for gill net gears 1986-June 30, 1995. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a lognormal distribution.


Figure 9. Gill net gear trips with landings (whole wt. lbs/trip) of Florida Gulf Coast Spanish Mackerel, 1996-2021 (after implementation of Florida's State Constitution Amendment X limits on marine net fishing in state waters).

| a.) Standardized residuals by year. | b.) Q-Q plot <br> c.) Histogram of standardized residuals and fitted distribution. |
| :---: | :---: |
|  |   |
| d. Std. residuals vs. linear predictor. | e. Index in whole weight (pounds/trip). |
| GNA_GULF_pos_span_mack: gamma model, Dataset: pos, std. residuals | GNA_GULF_pos_span_mack: gamma model, Dataset: pos |

Figure 10a. Commercial landings (whole wt. lbs/trip) for gill net gears 1996-2021. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a gamma distribution.

| a.) Standardized residuals by year. | b.) Q-Q plot <br> c.) Histogram of standardized residuals and fitted distribution. |
| :---: | :---: |
| GNA_GULF_pos_span_mack: Lognormal model, Dataset pos, std. residuals |  <br> GNA_GULF_pos_span_mack: Lognormal model, Dataset pos, std. residuals |
| d. Std. residuals vs. linear predictor. | e. Index in whole weight (pounds/trip). |
| GNA_GULF_pos_span_mack: Lognormal model, Dataset pos, std. residuals <br> Std. Residual $=$ stdresdev | GNA_GULF_pos_span_mack: Lognormal model, Dataset pos |

Figure 10b. Commercial landings (whole wt. lbs/trip) for gill net gears 1996-2021. Diagnostics and scaled index for Florida Gulf Coast Spanish Mackerel using a lognormal distribution.


[^0]:    ${ }^{1}$ Retired.
    ${ }^{2}$ The Department of Natural Resources was established by the Florida Legislature in 1968 and incorporated the Florida Board of Conservation into its structure. Later, in 1993, Governor Lawton Chiles combined the Department of Natural Resources and the Department of Environmental Regulation into a single agency called the Department of Environmental Protection. During the 1998 general election, a majority of Florida voters approved an amendment to the Florida Constitution which combined the Florida Game and Freshwater Fish Commission, the Florida Marine Fisheries Commission, and portions (chiefly, most of the Division of Marine Resources and most of the Florida Marine Patrol) of the Department of Environmental Protection into a single commission. The Florida Legislature, on July 1, 1999, formed the new Florida Fish and Wildlife Conservation Commission in fulfillment of that amendment.

[^1]:    * $e^{(\log \text { means) }}$ : means of $\log _{\mathrm{e}}$ transformed whole wt . (lbs/trip) were back-transformed to arithmetic scale for plotting purposes.

[^2]:    ${ }^{\text {a }}$ No. of Trips used: no. of observations used. Missing or invalid values for some combinations of selected covariates cause this difference. For example, landings reported from inland counties could not always be assigned to the proper coast.
    ${ }^{\mathrm{b}}$ The variable "year" did not meet the selection criteria but was added last in the model variables to produce annual estimates.

