
 
 

Dynamic factor analysis to reconcile conflicting survey indices of 
abundance 

 
 

Cassidy D. Peterson, Michael J. Wilberg, Enric Corte´s, and Robert J. Latour 
 
 
 

SEDAR77-RD53 
 

Received: 5/26/2022 
 

 

 

 

 

 

 

This information is distributed solely for the purpose of pre-dissemination peer review.  It does 
not represent and should not be construed to represent any agency determination or policy. 



Dynamic factor analysis to reconcile conflicting survey indices
of abundance

Cassidy D. Peterson 1,*†, Michael J. Wilberg 2, Enric Cortés3, and Robert J. Latour1

1Virginia Institute of Marine Science, William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA
2Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, PO Box 38, Solomons, MD 20688, USA
3Southeast Fisheries Science Center, National Marine Fisheries Service, 3500 Delwood Beach Rd, Panama City, FL 32408, USA

*Corresponding author: tel: þ1 252 838 0885; e-mail: cassidy.peterson@noaa.gov.
†Present address: Southeast Fisheries Science Center, National Marine Fisheries Service, 101 Pivers Island Road, Beaufort, NC 28516, USA.

Peterson, C. D., Wilberg, M. J., Cortés, E., and Latour, R. J. Dynamic factor analysis to reconcile conflicting survey indices of abundance. –
ICES Journal of Marine Science,

Received 31 August 2020; revised 2 March 2021; accepted 3 March 2021;

Stock-wide trends in fish relative abundance are challenging to obtain when a single, comprehensive survey is unavailable, and multiple,
spatially, and/or temporally fragmented surveys must be relied upon instead. Indices of abundance from multiple surveys frequently have
differing trends, resulting in obscured true abundance patterns of the resource. We use an age-structured simulation model of two coastal shark
species in the southeast United States to explore the performance of dynamic factor analysis (DFA) for reconciling multiple indices of abundance
that are in conflict. Survey-specific time-variation in catchability was induced to generate conflicting indices of abundance. Key simulation sensi-
tivities included survey variability, abundance pattern in the resource, and missing years of survey data. We caution against using DFA when there
is no contrast in the underlying stock abundance or when trends in catchability in all surveys result in no survey that is representative of stock
abundance. When multiple representative surveys were available, DFA proved useful across species in estimating stock-wide trends from conflict-
ing survey indices with different selectivities, catchabilities, variances, and, to a lesser extent, with missing data. Our results suggest that resolving
contrasting patterns among multiple time-series of relative abundance can improve understanding of the temporal trend in stock abundance.
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Introduction
Fishery-independent trends in relative abundance generated from

scientific surveys are one of the most important inputs to a stock

assessment, as they theoretically represent changes in stock size

through the assumption that the resulting indices are propor-

tional to total abundance (Hilborn and Walters, 1992; Francis,

2011). However, for spatially wide-ranging species or species that

cross domestic and international management boundaries, com-

prehensive population-wide surveys are rarely available. As a re-

sult, fisheries scientists frequently rely on data collected from

several independent and spatially fragmented survey programmes

to estimate the patterns of abundance of migratory or transboun-

dary species. Operationally, multiple survey indices of relative

abundance are frequently input into a single stock assessment

model, under the assumption that each survey index provides

representative information about the underlying abundance of

the stock (Conn, 2010a; Cortés, 2011; Cortés et al., 2015).

Given the underlying complexities in fish habitat utilization

and movement, including seasonal, ontogenetic, and sex-specific

variation, each spatially restricted survey may not provide a rep-

resentative signal of temporal trends in stock size (Conn, 2010a;

Francis, 2011). Relatively spatially narrow surveys can indicate

trends in local relative abundance that are not representative of

the total stock (Maunder et al., 2006; Wilberg et al., 2009), and

inherently low encounter rates can lead to difficulties measuring

relative abundance (Cook, 2010). Surveys that encounter target
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species along migratory routes must ensure a spatio-temporal

match between sampling and availability of the resource to ensure

adequate characterization of relative abundance. Furthermore,

surveys that only sample a particular portion of the life cycle (e.g.

nurseries, migratory gravid females) or with a limited selectivity

are unlikely to reflect trends in total abundance (Maunder et al.,

2006; Conn, 2010a).

Despite sampling the same population, relative abundance

trends derived from small-scale surveys frequently conflict, ob-

scuring identification of the true trend in stock abundance and

hindering interpretation and assessment performance (Francis,

2011; Cortés et al., 2015; Maunder and Piner, 2017). In the con-

text of conflicting survey indices, it is likely that one or more in-

dices are not representative of the underlying pattern in stock

abundance and should not be considered with the same weight as

more representative indices (Schnute and Hilborn, 1993; Conn,

2010b). Hence, a more reliable way to assess and interpret wide-

scale abundance of highly migratory and transboundary species is

needed (Conn, 2010a).

Coastal sharks along the southeast coast of the United States

are an example of migratory species that are challenging to moni-

tor and assess due to their large home ranges and complex migra-

tory and habitat utilization patterns (Pilling et al., 2008; Cortés,

2011). Given their low economic value, resources supporting

broad-scale shark surveys are not prioritized and are sometimes

logistically infeasible (Stevens et al., 2000; Field et al., 2009;

Cortés et al., 2015). Consequently, many shark surveys in the

United States are constrained within state boundaries, resulting

in survey index trends that reflect measures of localized relative

abundance across spatial ranges much smaller than the actual dis-

tributions of the target population. For example, in the southeast-

ern United States, shark-directed surveys sample only a few fixed

stations or exclusively sample nursery areas, necessitating addi-

tional reliance on non-directed surveys of various gear types to

supplement abundance information. The spatial sparseness of

these data does not allow detailed spatial analyses for the full

range of most stocks. Including many disagreeing survey indices

that are each representative of local abundance in a stock assess-

ment model violates the assumption that indices of abundance

are proportional to total stock abundance. Relative abundance

from shark surveys also typically includes impossibly large inter-

annual variability given the shark’s life history strategy (Cortés

et al., 2015). Time-series of shark relative abundance often con-

flict, likely due to inherent noise (annual variability and/or obser-

vation error; Cortés et al., 2015) and complex life cycles (i.e.

multi-year reproductive periodicity and accompanying move-

ment patterns, ontogenetic and sex-specific habitat utilization,

etc.; Ellis et al., 2008; Grubbs, 2010; Conrath and Musick, 2012;

Simpfendorfer and Heupel, 2012), compounded by a variable

spatiotemporal mismatch between annual movement and sam-

pling (Conn, 2010a). Due to lagging life history, movement, and

comprehensive abundance data, coastal sharks are routinely con-

sidered data-limited species.

Dynamic factor analysis (DFA) is a multivariate dimension re-

duction technique designed to detect common, latent trends

from a collection of time-series. The approach can accommodate

data frequently encountered in ecology, including short, non-

stationary, covarying time-series with missing years of data (Zuur

et al., 2003a; Holmes et al., 2014). The application of DFA has

increased in the marine ecological and fisheries literature

(e.g. Colton et al., 2014; Stachura et al., 2014; Buchheister et al.,

2016; Jorgensen et al., 2016; Ouellet et al., 2016; Latour et al.,

2017), and DFA has frequently been used to analyse multiple

noisy indices of relative abundance (e.g. Zuur et al., 2003b; Zuur

and Pierce, 2004; Chen et al., 2006; Azevedo et al., 2008; Peterson

et al., 2017a).

Through simulation analyses, we tested DFA as a method to

reconcile conflicting indices of abundance and thereby clarify

abundance trends of a stock under a variety of scenarios using

two representative coastal sharks off the southeast United States:

the large coastal sandbar shark (Carcharhinus plumbeus) and the

small coastal Atlantic sharpnose shark (Rhizoprionodon terraeno-

vae). These two species were selected because they are the most

data-rich species of their respective management units. Survey in-

dices were simulated to be in conflict by inducing time-varying

patterns in the catchability coefficient (q or the proportionality

constant between survey catch and abundance), thereby violating

the implicit assumption of constant proportionality in survey

programmes. The applicability of DFA to reconcile survey indices

was also simulated under variable fishing mortality patterns,

numbers of surveys, survey index variability, and with missing

years of survey data. Based on our simulations, we present recom-

mendations for using DFA as a method of reconciling conflicting

survey indices.

Methods
Modelled species
Female Atlantic sharpnose sharks reach median sexual maturity

at 1.6 years (Loefer and Sedberry, 2003), have a maximum lon-

gevity of 23 years (Frazier et al., 2014), reproduce annually, and

have an average of 4–5 pups per litter (Castro, 2009). Atlantic

sharpnose sharks off the US Atlantic coast and within the Gulf of

Mexico were most recently assessed as a single stock in SouthEast

Data, Assessment, and Review (SEDAR) 34 (SEDAR, 2013) using

a single-sex, state-space, age-structured production model.

Genetic evaluation has since revealed Atlantic sharpnose shark

stock structure between the Gulf of Mexico and Atlantic Ocean

(Davis et al., 2019). Single-sex life history parameters used in our

simulation were based on individuals from the Atlantic Ocean

(SEDAR, 2013; Supplementary Tables S1 and S2).

Female sandbar sharks reach sexual maturity at a median age

of 14 years (Baremore and Hale, 2012), longevity is estimated to

be 31 years (SEDAR, 2017), average fecundity is eight pups

(Baremore and Hale, 2012), and the reproductive cycle has been

proposed to be two or three years (Baremore and Hale, 2012) and

is, therefore, modelled as 2.5 years (SEDAR, 2011). Sandbar

sharks comprise a single genetic stock in the Atlantic Ocean and

within the Gulf of Mexico (Heist et al., 1995). The most recent as-

sessment of the sandbar shark was conducted using Stock

Synthesis (SEDAR, 2017), representing a pseudo-update from

SEDAR 21 (SEDAR, 2011). Sex-specific life history parameters

used for our simulations were obtained from SEDAR 54 (SEDAR,

2017; Supplementary Tables S3 and S4).

Operating model
Two separate operating models (OMs) were developed, one for

each species of interest. Due to a lack of sex-specific information

for the Atlantic sharpnose shark, a one-sex OM was created for

this species to reflect our limited understanding of sex-specific

C. D. Peterson et al.1712
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dynamics within the stock. A single fishery was simulated where

the selectivity was defined as the average selectivity over the four

fisheries from SEDAR (2013), and either three or four surveys

were implemented. The sandbar shark OM was a two-sex model,

with four fisheries and seven surveys (SEDAR, 2017), due to the

availability of additional biological and fishery information.

The OM for both species was developed using an age-

structured model:

Ns;a;yþ1 ¼
Rs;yþ1 a ¼ 1

Ns;a�1;y e�Zs;a;y 1 < a < A

Ns;A�1;y e�Zs;A�1;y
� �

þ Ns;A;y e�Zs;A;y
� �

a ¼ A
;

8<:
(1)

where Ns,a,y represents abundance of individuals of sex s at age a

and year y, Rs,y is recruitment, Zs,a,y is sex-, age-, and year-specific

total mortality, the age at recruitment is 1, and A is the age of the

plus group (A¼ 18 for Atlantic sharpnose shark, A¼ 31 for sand-

bar shark). In these simulated populations, fishing mortality

occurs simultaneously with natural mortality, and catch is equal

to landings, which functionally assumes no discarding.

Sex-specific annual recruitment (Rs,y) was calculated as the

number of pups (Npups) produced adjusted by the annual age-0

survival:

Rs;yþ1 ¼ Npupsy � e�M0; y : (2)

In the two-sex sandbar shark model, we assumed a 1:1 male:

female ratio at birth (SEDAR, 2017) and that the age-0 survival

rate was equal for males and females.

Density dependence was implemented through age-0 instanta-

neous natural mortality,

M0;y � N 1� Npupsy

Npups0

� �b

� Zmin � Z0ð Þ þ Z0

" #
;rM

( )
; (3)

following the low-fecundity, survival-based recruitment function

(LFSR) of Taylor et al. (2013), with added process uncertainty (ar-

bitrarily defined rM ¼ 0.1) and where Npupsy is the yearly spawn-

ing output (in number of embryos), Npups0 is the spawning

output (number of embryos produced) at virgin conditions, b is a

shaping parameter controlling the density-dependent survival of

prerecruits (Npups), Zmin is the instantaneous total mortality that

corresponds to maximum survival of prerecruits (Npups), and Z0

is the instantaneous total mortality of prerecruits at virgin condi-

tions. The number of pups produced each year can be determined

by multiplying yearly abundance of mature females-at-age by their

age-specific fecundity summed across all ages:

Npupsy ¼
X

a

Nf ;a;y �
1

RP
� pf ;a � fa;

pf ;a � Nðpavgf ;a
; pavgf ;a

� CVpÞ;
fa � Nðfavga

; favga
� CVf Þ;

(4)

where RP represents the reproductive periodicity (RP ¼1 for

Atlantic sharpnose sharks and RP ¼2.5 for sandbar sharks), pf,a
represents the proportion of mature females-at-age, and fa repre-

sents the fecundity-at-age, with associated process error, while

pavg,f,a and favg,a are static average maturity-at-age and fecundity-

at-age vectors. Additional uncertainty in maturity- and

fecundity-at-age was based on arbitrarily defined coefficients of

variation ðCV ¼ r=l), where the added uncertainty was selected

to generally remain equivalent to or smaller than the differences

in maturity and fecundity between ages (CVp ¼ 0.01, CVf ¼ 0.1).

(See Supplementary material for more information on parame-

terizing the spawner–recruit function.)

Sex-specific catch-at-age (Cs,a,y,i) in each year was calculated

across all fleets (i):

Cs;a;y;i ¼ Ns;a;y �
Fs;a;y;i

Zs;a;y
� 1� e�Zs;a;yð Þ; (5)

where Fs,a,y,i is instantaneous fishing mortality-at-sex, -age, -year,

and -fleet and Zs,a,y represents sex-specific total instantaneous

mortality-at-age and -year. Sex- and age-specific annual instanta-

neous fishing mortality for each fleet was calculated as:

Fs;a;y;i ¼ sels;a;i � Fy � qi; (6)

where qi represents proportion of fishing mortality attributed to

fleet i. Fleet selectivity-at-sex and -age (sels,a,i) and qi were con-

stant over time.

Total sex-specific instantaneous mortality-at-age and -year was

calculated by summing fishing mortality over fleets and natural

instantaneous mortality-at-age:

Zs;a;y ¼
X
8i

Fs;a;y;i þMs;a;

Ms;a � NðMavg s;a; Mavg s;a � 0:01Þ;
(7)

where sex-specific instantaneous natural mortality-at-age (Ms,a)

was stochastically implemented based on the time-invariant, aver-

age mortality-at-age vector Mavg_s,a.

Selectivity-at-age for the Atlantic sharpnose shark was

obtained from SEDAR (2013). Fishery selectivity was dome-

shaped, while selectivity for each survey followed a logistic curve.

Sex-specific, length-based selectivity of sandbar sharks was avail-

able in SEDAR (2017). Length-based selectivity was converted to

selectivity-at-age by converting length bins to age using sex-

specific von Bertalanffy growth parameters, then fitting

selectivity-at-age using Stock Synthesis selectivity helper Excel

spreadsheets (available via https://vlab.ncep.noaa.gov/web/stock-

synthesis/document-library, accessed June 2020). All sandbar

shark fisheries and surveys followed double-normal or logistic se-

lectivity, and the structural form of the selectivity curve was pre-

served through the conversion to selectivity-at-age. Indices of

relative abundance for each sex, age, year, and survey (Is,a,y,j) were

assumed to be related to abundance via:

Is;a;y;j ¼ qy;jvs;a;jNs;a;y � exp �s;a;y;j �
r2

s;a;y;j

2

� �
;

�s;a;y;i � Nð0; rs;a;y;jÞ;
rs;a;y;j ¼ qy;jvs;a;jNs;a;y CVj ;

CVj � UðCVavgj
� 0:1; CVavgj

þ 0:1Þ;

(8)

where qy,j represents survey-specific catchability coefficient in

each year, vs,a,j is sex-, age-, and survey-specific selectivity-at-age

that was assumed to be constant over time, and standard devia-

tion, rs,a,y,j, is defined in terms of the survey-specific CVj. Survey

uncertainty was implemented with a CVj for each survey j that

varies uniformly around a survey-specific average CV (CVavg_j 6
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0.1). Sex-specific indices were summed across age to produce the

final annual index for each survey:

Iy;j ¼
X
8a

If ;a;y;j þ Im;a;y;j ; (9)

where subscripts f and m indicate female and male indices, re-

spectively. Note that the Atlantic sharpnose shark scenario was a

female-only model.

Models were provided an arbitrary starting population size of

recruits (in relative units of number of individuals), propagated

to numbers-at-age using age-specific Ma. The deterministic form

of the simulation was run for 1000 years in the absence of fishing

mortality, ensuring that the population was equilibrated with re-

spect to the LFSR parameters at virgin conditions. This determin-

istically derived abundance-at-age vector was used as equilibrium

conditions for all subsequent fishing scenarios.

Simulated trials
Including two species in our study allowed us to demonstrate

how successfully DFA reconciled conflicting survey indices across

life history strategies and with variable data availability. Within

the Atlantic sharpnose shark simulation, we explored how DFA

performance was affected by (1) underlying stock abundance

through altered patterns in fishing mortality, (2) survey variabil-

ity via altered index CV, (3) number of surveys by adding a par-

tial, fourth survey, and (4) the presence of disagreeing surveys,

generated by inducing knife-edged and gradual shifts in survey

catchability (Table 1 and Figure 1).

The additional complexity of the sandbar shark OM enabled

more intricate exploration of the effects of conflicting indices on

the performance of DFA. Within the sandbar shark DFA simula-

tion, we more comprehensively explored (4) the effects of chang-

ing survey catchability patterns, as well as (5) the effects of

missing years of survey data. Variable combinations of the num-

ber of surveys that underwent changes in q (i.e. 0–3 surveys) and

the directionality of the change in q (i.e. increasing q or decreas-

ing q) were considered (Table 2 and Figure 1). Note that missing

data were based on observed survey indices within SEDAR (2017)

and included indices with missing years and surveys that only

span a fraction of the total simulated time-span (Figure 1). To

demonstrate how DFA performs when all survey data have trends

in catchability (i.e. all surveys undergo shifts in survey catchabil-

ity, with no surveys proportional to abundance), we simulated

four additional (6) “all time-varying catchability” scenarios for

the sandbar shark. In each “all time-varying catchability” sce-

nario, five surveys had trends in survey catchability in one direc-

tion and the remaining two surveys trended in the opposite

direction. “All time-varying catchability” scenarios were simu-

lated with and without missing data (Table 1).

Simulations spanned 65 or 90 years for the Atlantic sharpnose

and sandbar sharks, respectively. Each trial was simulated 100

times to account for variable combinations of uncertainty, and

the number of simulations was kept relatively small due to the

complexities of the DFA rescaling approach (detailed below) and

to allow for more in-depth analysis of each trial. Subsequent anal-

yses were based on simulated years 40–65 for the Atlantic sharp-

nose shark and 51–90 for the sandbar shark (Figure 1), allowing

for a “burn in” period to enable equilibration to the fishing mor-

tality scenarios (outlined in Table 1) consistent with the intrinsic

population growth rate and representing a more realistic time-

series duration for each species considered.

Atlantic sharpnose shark shifts in survey catchability were ei-

ther knife-edged (happening in year 50) or gradual (linear ramp

over 10–15 years starting in year 50), and survey catchability

shifted from 0.00025 to 0.001 (q1) or 0.003 to 0.004 (q3).

Sandbar shark patterns in survey catchability ranged from

0.01 to 0.045 or 0.045 to 0.01from years 51–90 in either a jittered

linear or stepwise (change of 0.005 every five years) manner

(Figure 1). In the “all time-varying catchability” sandbar

shark scenarios, four survey catchability patterns experienced

random noise superimposed on the linear trend for added

variability.

Induced shifts and patterns in survey catchability were gener-

ally sufficiently large in magnitude to generate survey indices that

displayed clearly observable contrast within our simulated scenar-

ios. Though alternate models for generating time-varying survey

catchability were considered, including those produced via ran-

dom walks, they resulted in indices with greater agreement.

Consequently, these scenarios were designed to include substan-

tial directional changes that have been shown to cause bias in

age-structured stock assessment models (Wilberg and Bence,

2006).

DFA
The general form of a DFA model can be written as follows,

adopting the notation of Zuur et al. (2003a):

yt ¼ Cat þ et ; where et � MVNð0;HÞ;
at ¼ at�1 þ gt ; where gt � MVNð0; QÞ; (10)

where yt is a vector of n standardized (Z-scored) time-series at

each time t, and at is a vector of m common trends (where m< n)

that are modelled as a random walk with associated error (gt;

Zuur et al., 2003a, b; Holmes et al., 2014), C is an n �m matrix

containing factor loadings, which indicate how strongly each

resulting trend influences each time-series (Zuur et al., 2003a, b;

Holmes et al., 2014). Factor loadings greater than or equal to j0:2j
indicate that the resulting DFA trend strongly describes the

corresponding input time-series (Zuur et al., 2003b; Tam et al.,

2013). Both observation and process error terms, et and gt,

assume a multivariate normal distribution with mean 0 and

covariance matrices H and Q, respectively. To ensure that the

model is identifiable, Q is set equal to the identity matrix I,

while H is free to take on various forms (Holmes et al., 2014).

All factor loadings, common trends, and fitted values are unitless

(Zuur et al., 2003b).

In the current study, diagonal elements of the H matrix (obser-

vation variances) were defined as the average survey CV, and the

off-diagonal elements were set to zero, functionally assuming that

each time-series was independent (no covariance between survey

indices). We elected to use survey CV in place of survey variances

in the H matrix, because CVs are adjusted for the magnitude of

the index; furthermore, in practice, using survey variances in

the H matrix can result in overfitting or inflated uncertainty

(C. Peterson, unpublished data). Though this was a simplifying

assumption made in the current analyses, alternative assumptions

could be made in practice, including allowing the model to

estimate observation variance and covariance (e.g. Peterson et al.,

2017a). By defining the elements of the H matrix, we are

C. D. Peterson et al.1714
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accounting for known uncertainty as calculated from survey in-

dex standardization. Explanatory variables were not considered.

While the number of common trends produced by the model

can vary (where m< n), we defined m¼ 1, because we were

only interested in obtaining a single trend representative of the

underlying trend in the population.

The fundamental assumptions of a DFA model are equivalent

to those of a linear regression, thereby including normality, inde-

pendent error, and homogeneity of residuals (Zuur et al., 2003b).

Models were fitted using the state-space multivariate autoregres-

sive modelling package “MARSS” in R (Holmes et al., 2018).

Rescaling approach
It is generally recommended that time-series be detrended and

standardized (z-scored) prior to conducting a DFA, which often

includes log-transformation of time-series with lognormal error

(e.g. survey indices; Zuur et al., 2003a, b; Holmes et al., 2014).

Subsequently, the resulting DFA trend, which is often the solu-

tion we are most interested in for stock assessment purposes, is

generated in log-space, on a unitless scale that spans positive

and negative values. Under this conventional approach to data

manipulation in preparation for DFA, we are unable to back-

transform resulting DFA trends out of an abstract, log- and

unitless-space for successive analyses and interpretation.

We developed a unique approach to rescale the input survey

indices in a manner consistent with the requirements of DFA (z-

score), while simultaneously preserving the error structure and

the relative scale of the survey indices, and allowing backtransfor-

mation of the resulting DFA index out of detrended, log-scale.

The rescaling approach is as follows: (1) each survey index (Ij)

was multiplied by a constant (cj, see following paragraph), (2) all

Table 1. List of trials simulated for the Atlantic sharpnose shark.

Figure 4
plotting
labels

Trial name
(3 surveys) Fa I1 CV I2 CV I3 CV I1 qb I2 q I3 qb I4 CV I4 q

Trial name
(4 surveys)c

Figure 4
plotting

labels

ConstF 3S ConstF_const_1 Const F (F¼ 0.2) 0.5 0.5 0.5 const q const q const q 0.5 const q ConstF_const_1_4 ConstF 4S
ConstF_const_2 Const F (F¼ 0.2) 0.3 0.5 0.7 const q const q const q 0.5 const q ConstF_const_2_4
ConstF_const_3 Const F (F¼ 0.2) 0.7 0.5 0.3 const q const q const q 0.5 const q ConstF_const_3_4

ConstF 3S-Dq ConstF_knife_1 Const F (F¼ 0.2) 0.5 0.5 0.5 knife "q const q knife #q 0.5 const q ConstF_knife_1_4 ConstF 4S-Dq
ConstF_knife_2 Const F (F¼ 0.2) 0.3 0.5 0.7 knife "q const q knife #q 0.5 const q ConstF_knife_2_4
ConstF_knife_3 Const F (F¼ 0.2) 0.7 0.5 0.3 knife "q const q knife #q 0.5 const q ConstF_knife_3_4
ConstF_grad_1 Const F (F¼ 0.2) 0.5 0.5 0.5 grad "q const q grad #q 0.5 const q ConstF_grad_1_4
ConstF_grad_2 Const F (F¼ 0.2) 0.3 0.5 0.7 grad "q const q grad #q 0.5 const q ConstF_grad_2_4
ConstF_grad_3 Const F (F¼ 0.2) 0.7 0.5 0.3 grad "q const q grad #q 0.5 const q ConstF_grad_3_4

IncF 3S IncF_const_1 "F (F¼ 0/0.4) 0.5 0.5 0.5 const q const q const q 0.5 const q IncF_const_1_4 IncF 4S
IncF_const_2 "F (F¼ 0/0.4) 0.3 0.5 0.7 const q const q const q 0.5 const q IncF_const_2_4
IncF_const_3 "F (F¼ 0/0.4) 0.7 0.5 0.3 const q const q const q 0.5 const q IncF_const_3_4

IncF 3S-Dq IncF_knife_1 "F (F¼ 0/0.4) 0.5 0.5 0.5 knife "q const q knife #q 0.5 const q IncF_knife_1_4 IncF 4S-Dq
IncF_knife_2 "F (F¼ 0/0.4) 0.3 0.5 0.7 knife "q const q knife #q 0.5 const q IncF_knife_2_4
IncF_knife_3 "F (F¼ 0/0.4) 0.7 0.5 0.3 knife "q const q knife #q 0.5 const q IncF_knife_3_4
IncF_grad_1 "F (F¼ 0/0.4) 0.5 0.5 0.5 grad "q const q grad #q 0.5 const q IncF_grad_1_4
IncF_grad_2 "F (F¼ 0/0.4) 0.3 0.5 0.7 grad "q const q grad #q 0.5 const q IncF_grad_2_4
IncF_grad_3 "F (F¼ 0/0.4) 0.7 0.5 0.3 grad "q const q grad #q 0.5 const q IncF_grad_3_4

DecF 3S DecF_const_1 #F (F¼ 0.4/0) 0.5 0.5 0.5 const q const q const q 0.5 const q DecF_const_1_4 DecF 4S
DecF_const_2 #F (F¼ 0.4/0) 0.3 0.5 0.7 const q const q const q 0.5 const q DecF_const_2_4
DecF_const_3 #F (F¼ 0.4/0) 0.7 0.5 0.3 const q const q const q 0.5 const q DecF_const_3_4

DecF 3S-Dq DecF_knife_1 #F (F¼ 0.4/0) 0.5 0.5 0.5 knife "q const q knife #q 0.5 const q DecF_knife_1_4 Dec 4S-Dq
DecF_knife_2 #F (F¼ 0.4/0) 0.3 0.5 0.7 knife "q const q knife #q 0.5 const q DecF_knife_2_4
DecF_knife_3 #F (F¼ 0.4/0) 0.7 0.5 0.3 knife "q const q knife #q 0.5 const q DecF_knife_3_4
DecF_grad_1 #F (F¼ 0.4/0) 0.5 0.5 0.5 grad "q const q grad #q 0.5 const q DecF_grad_1_4
DecF_grad_2 #F (F¼ 0.4/0) 0.3 0.5 0.7 grad "q const q grad #q 0.5 const q DecF_grad_2_4
DecF_grad_3 #F (F¼ 0.4/0) 0.7 0.5 0.3 grad "q const q grad #q 0.5 const q DecF_grad_3_4

UF 3S UF_const_1 UF (F¼ 0/0.4/0.2/0.05) 0.5 0.5 0.5 const q const q const q 0.5 const q UF_const_1_4 UF 4S
UF_const_2 UF (F¼ 0/0.4/0.2/0.05) 0.3 0.5 0.7 const q const q const q 0.5 const q UF_const_2_4
UF_const_3 UF (F¼ 0/0.4/0.2/0.05) 0.7 0.5 0.3 const q const q const q 0.5 const q UF_const_3_4

UF 3S-Dq UF_knife_1 UF (F¼ 0/0.4/0.2/0.05) 0.5 0.5 0.5 knife "q const q knife #q 0.5 const q UF_knife_1_4 UF 4S-Dq
UF_knife_2 UF (F¼ 0/0.4/0.2/0.05) 0.3 0.5 0.7 knife "q const q knife #q 0.5 const q UF_knife_2_4
UF_knife_3 UF (F¼ 0/0.4/0.2/0.05) 0.7 0.5 0.3 knife "q const q knife #q 0.5 const q UF_knife_3_4
UF_grad_1 UF (F¼ 0/0.4/0.2/0.05) 0.5 0.5 0.5 grad "q const q grad #q 0.5 const q UF_grad_1_4
UF_grad_2 UF (F¼ 0/0.4/0.2/0.05) 0.3 0.5 0.7 grad "q const q grad #q 0.5 const q UF_grad_2_4
UF_grad_3 UF (F¼ 0/0.4/0.2/0.05) 0.7 0.5 0.3 grad "q const q grad #q 0.5 const q UF_grad_3_4

F is instantaneous fishing mortality pattern, I represents index of relative abundance indexed by survey (S) number, CV is coefficient of variation, and q is
catchability coefficient. The trial name is given by three values: F [constant, increasing, decreasing, or U-shaped (increasing then decreasing)], q (constant,
knife-edged, or gradual), and survey number (1, 2, or 3). " represents increasing patterns in q or F while # represents decreasing patterns in q or F.
aShifts in F for "F and #F occurred in year 51, and shifts in UF occurred at years 41, 51, and 56.
bAll knife-edged shifts in q occurred at year 51; gradual shifts in q1 and q3 spanned 15 and 10 years, respectively, starting at year 51.
cWhen present, fourth index started at year 55.
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indices from step 1 were log-transformed, thereby normalizing

survey error, (3) each log-transformed survey index from step 2

was centred and demeaned by subtracting and dividing each in-

dex by the survey-specific mean, (4) the global standard deviation

(GSD) was estimated for all demeaned survey indices, collectively

(from step 3), (5) each demeaned index was divided by the GSD,

comparable to z-scoring the index, (6) the DFA model was fitted,

and (7) the resulting DFA-predicted trend was back-transformed

by first multiplying by the GSD and then exponentiating with

bias correction exp GSD � at þ GSD�SE2
t

2

� �h in o
: Annual standard

errors estimated by the DFA model were multiplied by the GSD

(following the transformation of variance rule:

SD aXð Þ ¼ a � SDðXÞ, where a is a constant), representing log-

normal error of the DFA trend.

Prior to log-transforming, each index was multiplied by a con-

stant cj. The choice of cj for each survey was determined itera-

tively by arbitrarily defining a vector of all constants for each

survey, c ¼ [c1, . . ., cn] for all indices j¼ 1 to n, and adjusting

each cj until the following conditions (a–d) were met within the

steps of the rescaling approach outlined above:

(a) The mean of each log-transformed survey index was >0. Note

that if the logged survey-specific mean is close to 0, then the

rescaling approach would not work because we would essen-

tially be dividing by 0 in step 3. Furthermore, if a survey in-

dex is relatively small, then the mean of the log-transformed

index may be negative, and dividing by a negative can reverse

the trend of the index. In practice, cjs that resulted in log-

transformed survey index means �2.5, when possible, pro-

duced the best results.

(b) The resulting GSD was small (GSD�1). When the GSD is

>1, the scale of the back-transformed DFA-predicted trend

is affected, resulting in unrealistic predicted changes in

abundance.

(c) Most importantly, the standard deviation of each resulting

transformed index (step 5) was ffi1. This ensures that the for-

mat of the input survey index most appropriately approxi-

mates a z-scored index, with a mean of 0 and a standard

deviation of 1, as recommended in DFA applications

(Holmes et al., 2014). When c was chosen so that the stan-

dard deviation of an input index was >1, the resulting DFA-

predicted trend overfitted the corresponding survey and fit

more poorly to the remaining surveys.

(d) The resulting back-transformed trend should follow changes in

magnitude consistent with those of the survey inputs. Multiple

combinations of c can meet the above requirements, particu-

larly when there are few input time-series, and unfortunately,

the choice of c impacts the resulting DFA trend. The effect of

the parameterization of c is greatest in one-way trips,

whereas more complex patterns in underlying abundance are

less affected. As such, constants should be chosen to preserve

the relative trend of the input surveys. For example, if the

starting and ending points of a (or multiple) largely reliable

input survey(s) change by an order of magnitude of �2, then

the resulting back-transformed trend may not be appropriate

if it changes by an order of 0.5 or 4. Maintenance of a

Figure 1. Alternate simulation scenarios for the Atlantic sharpnose shark (left) and sandbar shark (right) including various time-varying
survey catchability configurations (top row), fishing mortality patterns for Atlantic sharpnose shark simulations (bottom left), and available
years of survey data in the “Missing data” scenario for the sandbar shark simulation for each survey (S; bottom right).

C. D. Peterson et al.1716
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consistent and reliable trend that follows the raw survey indi-

ces is important. This is obviously challenging if the analyst

is unsure which survey inputs are reliable, and the analyst

may have to rely on best judgement (e.g. compare percent

change in the backtransformed DFA predicted trend to the

median percent change in all input survey indices). Note

that this recommendation is not important if the magnitude

of change in the resulting DFA index is not of interest.

The general pattern of each survey index should remain similar

across each step of the rescaling protocol, and resulting DFA

trends should look comparable to those generated from a tradi-

tionally scaled (survey indices are log-transformed then z-scored)

DFA model. We also recommend ensuring that the mean fit ratio

is low (where fit ratioj ¼ Rtyjt
2/Rtejt

2 for each survey index j and

the mean fit ratio is the average fit ratio across all surveys; see

Supplementary material), as the mean fit ratio will appreciably in-

crease with a less ideal vector of constants c.

We emphasize that this rescaling approach is merely a substi-

tute for z-scoring indices prior to implementation of the DFA.

This approach preserves the features of a z-scored time-series (i.e.

mean of 0 and standard deviation equal to 1) and ensures that the

data transformation is equivalent for each input survey index

such that the resulting DFA trend can be backtransformed. This

rescaling process does not impact the DFA model itself but is in-

stead an alternative form of data preparation.

Table 2. Trials simulated for the sandbar shark simulation.

Figure 6 plotting
labels

Figure 7 plotting
labels Trial

Missing
data? Fa q pattern Trial

Missing
data? Fa q pattern

No change No change SB1 Yes SB_F const SB101 No SB_F const
Change 1 q I SB2 Yes SB_F "q S1 SB102 No SB_F "q S1

SB3 Yes SB_F "q S2 SB103 No SB_F "q S2
SB4 Yes SB_F "q S3 SB104 No SB_F "q S3
SB5 Yes SB_F "q S4 SB105 No SB_F "q S4
SB6 Yes SB_F "q S5 SB106 No SB_F "q S5
SB7 Yes SB_F "q S6 SB107 No SB_F "q S6
SB8 Yes SB_F "q S7 SB108 No SB_F "q S7

D SB9 Yes SB_F #q S1 SB109 No SB_F #q S1
SB10 Yes SB_F #q S2 SB110 No SB_F #q S2
SB11 Yes SB_F #q S3 SB111 No SB_F #q S3
SB12 Yes SB_F #q S4 SB112 No SB_F #q S4
SB13 Yes SB_F #q S5 SB113 No SB_F #q S5
SB14 Yes SB_F #q S6 SB114 No SB_F #q S6
SB15 Yes SB_F #q S7 SB115 No SB_F #q S7

Change 2 q I-I SB16 Yes SB_F "q S1-S3 SB116 No SB_F "q S1-S3
SB17 Yes SB_F "q S3-S5 SB117 No SB_F "q S3-S5
SB18 Yes SB_F "q S5-S7 SB118 No SB_F "q S5-S7

D-D SB19 Yes SB_F #q S1-S3 SB119 No SB_F #q S1-S3
SB20 Yes SB_F #q S3-S5 SB120 No SB_F #q S3-S5
SB21 Yes SB_F #q S5-S7 SB121 No SB_F #q S5-S7

I-D SB22 Yes SB_F "q S1,#q S3 SB122 No SB_F "q S1,#q S3
SB23 Yes SB_F "q S3,#q S5 SB123 No SB_F "q S3,#q S5
SB24 Yes SB_F "q S5,#q S7 SB124 No SB_F "q S5,#q S7

D-I SB25 Yes SB_F #q S1,"q S3 SB125 No SB_F #q S1,"q S3
SB26 Yes SB_F #q S3,"q S5 SB126 No SB_F #q S3,"q S5
SB27 Yes SB_F #q S5,"q S7 SB127 No SB_F #q S5,"q S7

Change 3 q I-I-I SB28 Yes SB_F "q S1-S3-S5 SB128 No SB_F "q S1-S3-S5
SB29 Yes SB_F "q S2-S4-S6 SB129 No SB_F "q S2-S4-S6
SB30 Yes SB_F "q S3-S5-S7 SB130 No SB_F "q S3-S5-S7

D-D-D SB31 Yes SB_F #q S1-S3-S5 SB131 No SB_F #q S1-S3-S5
SB32 Yes SB_F #q S2-S4-S6 SB132 No SB_F #q S2-S4-S6
SB33 Yes SB_F #q S3-S5-S7 SB133 No SB_F #q S3-S5-S7

I-D-I SB34 Yes SB_F "q S1, #q S3-S5 SB134 No SB_F "q S1, #q S3-S5
SB35 Yes SB_F "q S2, #q S4-S6 SB135 No SB_F "q S2, #q S4-S6
SB36 Yes SB_F "q S3, #q S5-S7 SB136 No SB_F "q S3, #q S5-S7

D-I-D SB37 Yes SB_F #q S1, "q S3-S5 SB137 No SB_F #q S1, "q S3-S5
SB38 Yes SB_F #q S2, "q S4-S6 SB138 No SB_F #q S2, "q S4-S6
SB39 Yes SB_F #q S3, "q S5-S7 SB139 No SB_F #q S3, "q S5-S7

Change 7 q 5I-2D SB40 Yes SB_F "q S1-S3-S5-S6-S7, # q S2-S4 SB140 No SB_F "q S1-S3-S5-S6-S7, #q S2-S4
5D-2I SB41 Yes SB_F #q S1-S3-S5-S6-S7, "q S2-S4 SB141 No SB_F #q S1-S3-S5-S6-S7, "q S2-S4

“Missing Data?” indicates whether survey indices were complete or whether missing values were included to more accurately represent available information
for the sandbar shark, q indicates catchability coefficient, and only one instantaneous fishing mortality (F) scenario was explored. I or " represents increasing
patterns in q, while D or # represents decreasing patterns in q. CV1 ¼ 0.38, CV2 ¼ 0.48, CV3 ¼ 0.65, CV4 ¼ 0.24, CV5 ¼ 0.30, CV6 ¼ 0.36, and CV7 ¼ 0.40.
aSB F¼ 0 in years 1–45, 0.1 in years 46–55, 0.3 in years 56–65, 0.2 in years 66–75, and 0.05 in years 76–100.
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Note that given the time-consuming, iterative process of iden-

tifying a vector of constants (c) by which to multiply each survey

index in our rescaling approach, we could not estimate a unique c

for each iteration of every trial. Consequently, we estimated c for

the first iteration of each scenario, and assumed that as a single

vector for the entire scenario. Based on the simulation results of

each iteration assuming the fixed c, we went back to modify con-

spicuously incorrect vectors of cs, as observed by obviously over-

fitted DFA trends (e.g. very jagged DFA trends that closely track

the interannual variability in one survey but are poorly fitted to

others) and very high SDs from step (c) above.

Analysing results
Comparison between simulated abundance trends and DFA-

estimated trends required transformation due to the

different scales of each trend. Consequently, we compared

standardized back-transformed DFA-predicted trends to stan-

dardized total abundance using annual relative error

relative errory ¼ dNstd;y � Nstd;y ; 8y; where Nstd;y ¼ Ny�Ny

SD Nyð Þ

h i
and

root-mean-squared-error (RMSE) for each trial (e.g. Conn,

2010a, b). Because each trend was standardized, annual relative er-

ror is centred on 0, and thus a wider spread in annual relative er-

ror is indicative of a more poorly fitted model. RMSE was

calculated across years and each value was representative of a sin-

gle simulation iteration. All analyses were conducted in R (version

3.6.2; R Core Team, 2019).

Results
We present the effects of (1) underlying pattern of population

abundance, (2) survey variability, (3) the number of surveys, and

(4) the presence of conflicting survey indices on the ability of

DFA to reconcile disagreeing survey indices of relative abundance

and thereby approximate population trends within the Atlantic

sharpnose shark (SN) simulation (Table 1). The sandbar shark

(SB) simulation allowed us to expand on the effect of the number

of survey indices (3) and the presence of conflicting indices (4),

as well as explore the effects of (5) missing data on DFA’s ability

to reconcile conflicting indices of relative abundance (Table 2).

We also present DFA results from (6) the “all time-varying

catchability” scenarios where all surveys experience survey catch-

ability trends over time. Note that throughout the results section,

when referring to DFA performance, we are referring to the abil-

ity of the DFA model to predict a resulting common trend that

follows the same trend as the underlying population as measured

by annual relative error and RMSE of the DFA-predicted trend

compared to the simulated trend in abundance. Overall, DFA was

generally able to successfully reconcile multiple survey indices,

even when those indices were in conflict, and DFA performance

was not affected by species’ life history strategy (Figures 2 and 3).

Underlying pattern of population abundance
DFA performance was most affected by the underlying trend in

population abundance in the Atlantic sharpnose shark simulation

(Figure 4). When there was little contrast in population abun-

dance (ConstF), DFA did not perform well, as demonstrated by

high spread in annual relative error and high RMSE. When there

was a one-way trip in the simulated population (i.e. IncF and

DecF), DFA performed extremely well even across variable survey

CVs, shifts in the survey catchability coefficient (q), and the

number of surveys. When the population pattern was more com-

plex (UF), DFA performance was good overall. However, perfor-

mance declined in trials where surveys were simulated under

certain combinations of survey uncertainty and shifts in the

catchability coefficient (see next section; Figure 5 and

Supplementary Figures S1 and S2).

Survey variability
The variability of each survey index was manipulated by altering

survey-specific CVs in alternate Atlantic sharpnose shark simu-

lation scenarios. Because we specified observation error within

the DFA model (i.e. propagating known observation error), re-

duced survey CV functionally increased the weight of that sur-

vey on the resulting DFA trend, as observed by greater factor

loadings. Overall, the effect of survey variability had relatively

little impact on DFA performance on its own. However, the

effects of survey CV became problematic when combined with

shifts in survey catchability (Figure 5 and Supplementary

Figures S1 and S2). For example, under a fishing mortality sce-

nario in which there was little underlying contrast in the data

(ConstF), when a given survey underwent a shift in survey

catchability and the CV of that survey was smaller, the resulting

DFA trend had a tendency to more closely follow the shifted

trend in the survey as opposed to the true underlying constant

population abundance trend. This tendency was also observed

in more complex fishing mortality scenarios (UF_knife_2,

UF_grad_2; SB129, SB135; Figure 5 and Supplementary Figures

S1–S4) and exacerbated in examples with fewer surveys, result-

ing in increased annual relative error and RMSE (Figure 4 and

Supplementary Figures S1 and S2).

Number of surveys
The addition of surveys improved DFA performance. Though

the addition of an incomplete, fourth survey (with constant

catchability) in the Atlantic sharpnose shark simulation did

not have a particularly noticeable effect under many fishing

mortality scenarios (i.e. ConstF and DecF), it improved

DFA performance under the more complex fishing mortality

scenario (UF where two surveys conflicted due to shifts in catch-

ability coefficients; Figure 4 and Supplementary Figures S1

and S2).

Under similar population abundance trends and survey spe-

cific shifts in survey catchability, the spread in annual relative er-

ror and RMSE was slightly lower for the sandbar shark

simulation compared to the Atlantic sharpnose shark simulation.

Despite differences in the complexities of each simulation, this

improvement in DFA performance was likely due to the greater

number of surveys in the sandbar shark simulation (seven) com-

pared to the Atlantic sharpnose shark simulation (three or four;

Figure 6).

Presence of conflicting survey indices
Conflicting survey indices were generated by introducing time-

varying patterns in the catchability coefficient q for selected sur-

veys in both the Atlantic sharpnose and sandbar shark simula-

tions (Tables 1 and 2). When all survey indices agreed (i.e. no

change in survey catchability), DFA performed very well, though

performance declined in the absence of contrast in the underlying

stock abundance.

C. D. Peterson et al.1718
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In scenarios where DFA performed well in the absence of

conflicting survey indices, overall performance remained rela-

tively strong when conflicting indices were introduced. For ex-

ample, in the Atlantic sharpnose shark simulation, DFA

performed well when there was contrast in the underlying stock

abundance (IncF and DecF). When conflicting surveys were in-

troduced, though performance declined, DFA was still capable

of accurately approximating the latent population trend from

conflicting survey indices (Figures 3 and 4 and Supplementary

Figures S1 and S2). Likewise, in the sandbar shark simulation,

DFA performance remained relatively similar when up to three

out of seven surveys experienced time-varying survey catchabil-

ity (Figure 6 and Supplementary Figures S3 and S4).

There were, however, scenarios in which DFA performance

broke down when conflicting indices were introduced. In the

Atlantic sharpnose shark simulation, when there was no under-

lying contrast in the population size (ConstF), DFA perfor-

mance declined considerably after the addition of survey

conflict. In these instances, including a shift in survey catch-

ability created a trend in the survey index that was not present

in the population, and the DFA model could not decipher

whether the signal was real or an artefact of the sampling.

When the population trend was more complex (UF), conflict-

ing indices hindered the ability of the DFA model to approxi-

mate the trend when three surveys were simulated, particularly

when the surveys that underwent the shift had smaller CVs.

When an incomplete, fourth survey was added (that did not ex-

perience a shift in the catchability coefficient), DFA perfor-

mance improved marginally (Figure 4 and Supplementary

Figures S1 and S2).

Figure 2. Example DFA model run for the first iteration of Atlantic sharpnose shark Trial UF_grad_1, including (a) input data as shown as
mean-standardized survey indices, (b) corresponding factor loadings, denoting the strength of influence of the resulting DFA-predicted trend
on each survey, (c) resulting DFA-predicted trend with 95% confidence intervals (CIs) in log space and the “true” simulated abundance trend
log-transformed and rescaled superimposed, and (d) the backtransformed DFA trend with 95% CIs and the rescaled simulated abundance
superimposed. Note that out of three input survey indices, two undergo shifts in catchability in opposing directions (black and red indices),
while one survey experiences constant catchability (blue index).

Reconciling conflicting survey indices 1719
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Moreover, for both species, the direction of the shift in survey

catchability relative to the direction of the population abundance

change affected the ability of DFA to estimate an accurate trend.

Consider the notable reduction in DFA performance within SN

Trial UF_grad_2 (Figure 5). In this example, two of the three sur-

veys underwent shifts in survey catchability. Survey 1 (S1) experi-

enced a gradual increasing shift in q, while survey 3 (S3)

underwent a gradual decreasing shift in q. The predominant trend

of the underlying simulated population was decreasing, such that

the shift in q for S1 was in the opposite direction of the popula-

tion. Because the variability of S1 was smaller (CV1 ¼ 0.3) com-

pared to S3 (CV3 ¼ 0.7), S1 was more heavily weighted in the

DFA model. Thus, the DFA model placed a higher weight on an

index that directly contradicted the latent population trend,

resulting in poorer DFA model performance. Comparing this

response of SN Trial UF_grad_2 to that of SN Trial UF_grad_3,

the more heavily weighted survey experienced a shift in q that was

in the same direction as the underlying population trend, and the

resulting DFA predicted trend was more accurate (Figure 5).

In the sandbar shark simulation, where changes in survey

catchability were explored in greater detail, DFA model perfor-

mance was not greatly affected by increasing or decreasing pat-

terns in catchability coefficient. However, the greatest reduction

in DFA performance under the complete survey index scenario

was observed when the survey with the smallest CV (S4, CV4 ¼
0.3) was simulated under increasing q with two other surveys that

experienced time-varying increases or decreases in q (Trials

SB129 and SB138; Figure 7). Similar effects of equivalent magni-

tude were not observed when S4’s q was altered in the same direc-

tion as the simulated population (e.g. compare Trials SB129 and

Figure 3. Example DFA model run for the first iteration of sandbar shark Trial SB128, including (a) input data as shown as mean-
standardized survey indices with a zoomed inset, (b) corresponding factor loadings, denoting the strength of influence of the resulting DFA-
predicted trend on each survey, (c) resulting DFA-predicted trend with 95% confidence intervals (CIs) in log space with the “true” simulated
abundance trend log-transformed and rescaled superimposed, and (d) the backtransformed DFA trend with 95% CIs and the rescaled
simulated abundance superimposed. Note that out of seven input survey indices, four do not undergo shift in catchability, while three
experience increases in catchability (denoted by dashed lines).
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SB138 to Trials SB132 and SB135, respectively; Figure 7). This re-

sponse was also not distinguishable when surveys experienced

missing years of data (see section “Missing data”; Figure 7).

We explored variable patterns of shifting survey catchability,

either via knife-edged shifts, gradual shifts (Atlantic sharpnose

simulation), or by maintaining consistent, time-varying increases

or decreases of q throughout the simulated time-series (sandbar

simulation). We found that in the Atlantic sharpnose shark simu-

lation, the DFA model was generally able to more accurately pre-

dict the population trend when the shift in survey catchability

was gradual compared to when it was knife-edged

(Supplementary Figures S1 and S2).

Missing data
To more realistically approximate the quantity of data available

in the sandbar shark simulation, we included the scenario in

which several surveys were shorter than the full simulated time-

series or had missing years of data, as emulated from the available

information for the most recent sandbar shark assessment

(Figure 1; SEDAR, 2017). The absence of complete survey data

significantly reduced DFA performance (Figure 6). As expected,

DFA was less capable of accurately estimating the trend of the un-

derlying population when there was less (or no) information

available to inform that year (early years in sandbar simulation).

Consequently, the standard errors around the predicted DFA

trend were much greater in earlier years when less information

was available. The resulting DFA predicted trends generated un-

der the same circumstances from missing data compared to com-

plete data scenarios followed similar patterns, though the

predictions from the missing data scenarios persistently underes-

timated early abundance, and were generally noisier than their

smoother, complete data counterparts.

Figure 4. All simulation results for Atlantic sharpnose shark grouped by fishing mortality scenario, number of simulated surveys, and
whether catchability was time-varying. Annual relative error and RMSE obtained by comparing standardized (z-scored) backtransformed DFA
predicted trend to standardized, simulated abundance as applied to the Atlantic sharpnose shark. Spread in relative error should be narrow
and RMSE should be low when DFA application was successful. All simulation results are grouped over survey CV and knife-edged or gradual
shift in q (see Supplementary Figures S1 and S2 for results separated into one violin for each simulation scenario). See Table 1 for detailed
description of each trial and for plotted scenario labels. Simulations in which three surveys were simulated are plotted in the left column,
while simulations with four surveys are plotted in the right column. Violins are colour-coded into four categories (four violins per category),
where each category represents a unique underlying population trend, as caused by variable fishing mortality (F) patterns: (1) constant F—
constant population size, green; (2) increasing F—decreasing population size, blue; (3) decreasing F—increasing population size, orange; and
(4) increasing then decreasing F—decreasing then increasing population size, purple. The first (lighter shaded) violins of each F scenario
represent simulations for which no survey experienced a shift in catchability while the second (darker shaded) violins of each F scenario
represent simulations for which two surveys experienced a shift in catchability. For full scenario-specific results, see the Supplementary figures.
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The effect of conflicting indices on DFA performance in the

case of missing data was greater than when data were complete.

Predictably, when the most complete surveys (S1) underwent

shifts in survey catchability, DFA performed more poorly than

when the surveys with the fewest years of data (S7) underwent

similar shifts (e.g. compare Trials SB28, 31, 34, and 37 to SB30,

33, 36, and 39 in Figure 7 and Supplementary Figure S4). The ef-

fect of the most complete survey (S1) undergoing shifts in q out-

weighed the effects of survey CV and directionality in the shift in

q (Figure 7).

“All time-varying catchability” scenarios
As expected, when all surveys included a trend in catchability, the

DFA was generally unable to recover the underlying stock abun-

dance trend (Figures 6 and 7 and Supplementary Figures S3 and

S4). In these scenarios, the DFA trend followed the shifting survey

catchability signal rather than the desired signal of change in

stock size. Nevertheless, the overall direction (increasing/decreas-

ing) of the resulting DFA trend matched that of the stock abun-

dance in the majority of simulated iterations. The DFA trends

decreased over time, following the overall decreasing trend in

stock size, in 84% of the “all time-varying catchability” scenario

iterations.

The interaction between survey variability and the directional-

ity of survey catchability trend was the main driver of the overall

directionality of the DFA trend. When the survey with the small-

est CV (S4) experienced increasing survey catchability, even when

the majority of the surveys underwent decreasing survey catch-

ability, the resulting DFA trend increased in 24.5% of iterations;

this proportion was amplified in the missing data scenarios (44%

DFA trends were increasing) compared to the complete data sce-

narios (5% DFA trends were increasing). On the other hand,

when five surveys underwent an increase in survey catchability

and two surveys (including S4) underwent a decrease in survey

catchability, the resulting DFA trend followed the decreasing

trend in the stock in 92.5% of iterations.

Discussion
Conflicting indices of abundance present a substantial challenge

when trying to ascertain the true population trend over time. Not

only do conflicting survey indices create confusion regarding

trends in stock abundance, but also contradictory information is

often passed to stock assessment models (Cortés et al., 2015).

Ultimately, the effect of conflicting survey indices in assessment

models leads to uncertainty in the status of the stock (e.g.

SEDAR, 2017) and has been deemed the “area of greatest con-

cern” in a previous sandbar shark stock assessment (Hall, 2011;

SEDAR, 2011).

When conflicts in indices of abundance are present, the dis-

agreeing indices cannot all be simultaneously representative of to-

tal stock abundance (Schnute and Hilborn, 1993; Francis, 2017).

Thus, we must interpret conflicting data in the context of sam-

pling/observation and process error (Conn, 2010a, b; Maunder

and Piner, 2017). Survey variability can be accounted for through

sampling/observation error, while some variation in catchability

and spatial distribution can be attributed to process error

(Wilberg and Bence, 2006; Wilberg et al., 2009; Conn, 2010a).

DFA is a modified state-space approach, which explicitly consid-

ers observation and process uncertainty and is designed to ac-

commodate short, nonstationary time-series (Zuur et al., 2003b).

Given the goal of accounting for and propagating uncertainty in

fisheries science (e.g. Maunder, 2001; Maunder and Punt, 2013),

DFA represents a practical approach to quantify known

observation error (as calculated from CPUE standardization

approaches; Maunder and Punt, 2004) and estimate additional

Figure 5. Scenario-specific Atlantic sharpnose shark simulation results for scenarios with three surveys simulated under the UF fishing
mortality scenario. Annual relative error and RMSE obtained by comparing standardized (z-scored) backtransformed DFA predicted trend to
standardized, simulated abundance as applied to the Atlantic sharpnose shark. Simulation results are presented for each simulation. Spread in
relative error should be narrow and RMSE should be low when DFA application was successful. See Table 1 for more details on each scenario.
For full scenario-specific results, see Supplementary figures.
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process error among survey indices outside the context of a stock

assessment.

In our study, alterations in survey CVs resulted in slightly dif-

ferent estimated parameter variance, lending support to the prop-

osition that DFA is properly tracking and propagating survey

uncertainty. We chose CVs as the proxy for variance to reduce

the impacts of index magnitude on input variance, though CV

may not be appropriate for fishery-dependent indices that often

have smaller CVs than surveys. When surveys with smaller CVs

contradicted the underlying pattern in stock abundance, DFA

performance decreased by more heavily weighting survey indices

that experienced time-varying survey catchability. This result of

unequal weighting could be potentially alleviated by allowing the

DFA to internally estimate the parameters of the covariance ma-

trix with a structure that assumes each survey variance is equal

(thereby weighted equally). Alternatively, index-specific variances

can also be estimated within the DFA model (Holmes et al.,

2014). The form of the factor loadings matrix can also be

Figure 6. All simulation results for sandbar shark presented by the number of surveys with time-varying catchability and whether survey
data were complete or contained missing years. Annual relative error and RMSE was obtained by comparing standardized (z-scored)
backtransformed DFA predicted trend to standardized, simulated abundance as applied to the sandbar shark. Spread in relative error should
be narrow and RMSE should be low when DFA application was successful. Results are presented for all trials grouped over directionality of
shifting catchability. See Table 2 for detailed description of each trial and for respective plotting labels. Violins are paired; note a darker
shaded violin is followed by a lighter shaded violin. The darker violin indicates simulation scenarios for which each survey had complete
survey data, and lighter violins indicate simulation scenarios where all surveys experienced years of missing data. Violins are colour-coded
based on the numbers of surveys that underwent a shift in catchability coefficient, q: (1) zero surveys, indicated by “No change”, grey; (2) one
survey, green; (3) two surveys, blue; (4) three surveys, purple; and (5) seven surveys, orange. For full scenario-specific simulation results, see
Supplementary figures.
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modified to explicitly impose alternative weighting of input time-

series (Holmes et al., 2014). Other forms of index weighting by al-

ternate measures (e.g. by spatial area covered, gear type, magni-

tude of catch) could be considered, and we suggest this as an area

of further research.

We sought to explore the feasibility of using DFA as a tool

to reconcile conflicting indices of relative abundance, while ac-

counting for uncertainty, and thereby addressing concerns re-

lated to conflicts in survey abundance index trends. We chose

to expand our simulation scenarios with the sandbar shark

given the exploratory conceptual finding that after a series of

survey indices were generated, life history strategy no longer

influenced DFA’s ability to reconcile time-series. Rather than

repeating the same experiment with a different set of relative

abundance indices, we expanded our simulation scenarios to

more wholly characterize DFA performance in reconciling con-

flicting survey indices. We found that, in general, DFA per-

formed fairly well as a method to reconcile conflicting indices

across two species with unique life histories, data availability,

variable survey selectivity, survey variability, and in the face of

conflicting survey indices as simulated by changing survey

catchability.

Given the results of the current simulation study, we compile

our findings into the following list of recommendations when

Figure 7. Scenario-specific sandbar shark simulation results for scenarios where three surveys underwent time-varying catchability. RMSE was
obtained by comparing standardized (z-scored) backtransformed DFA predicted trend to standardized, simulated abundance as applied to
the sandbar shark. Simulation results are presented for each simulation. Spread in RMSE should be low when DFA application was successful.
Note the variable y-axes. Simulation scenarios are colour-coded based on the direction of the shift in catchability for each survey, where I
indicates that the survey underwent an increase in the catchability coefficient and D signifies a decrease in the catchability coefficient (i.e. I-
D-I, or pink-shaded violins, had the first and last time-varying surveys experience an increase in catchability coefficient, while the middle time-
varying survey underwent a decrease in catchability coefficient). See Table 2 for more details on each scenario. For full scenario-specific
results, see Supplementary figures.
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using DFA as a method of reconciling conflicting indices of rela-

tive abundance:

1. Avoid using DFA when there is a lack of contrast in the
underlying population abundance trend
As observed in the Atlantic sharpnose shark simulation, particu-

larly in the presence of conflicting indices, DFA cannot accurately

predict the underlying abundance trend when there is a lack of

contrast in the stock size. Further, if there is a lack of contrast in

all indices, then aggregating indices that are in agreement is less

important. However, DFA performed well when the stock abun-

dance was not constant over the analysed time-frame, even when

indices were in conflict. If a DFA model produces a flat common

trend and factor loadings close to or equal to 0, that does not nec-

essarily mean that the DFA model did not work, but rather that

the DFA model did not find a trend in the input time-series.

2. Use as many meaningful survey indices as possible
Our simulation results indicate that, despite the presence of con-

flicting survey indices, DFA performs better with additional sur-

vey inputs. While “no amount of statistical wizardry will remedy

problems with poorly collected data” (Conn, 2010a, p. 118), it is

challenging to determine which survey index or indices may be

inappropriate and, therefore, should be excluded from analyses

when limited data are available (Cortés, 2011). Likewise, identify-

ing surveys that are representative of stock abundance and do not

experience changing survey catchability a priori without expert

knowledge of the system may also be impractical. DFA represents

a tool to simplify discordant time-series and assess the relative

importance of each input. Furthermore, DFA-estimated factor

loadings indicate which survey indices most closely agree, which

indices predominantly describe the resulting trend and, therefore,

which indices may be considered less representative of stock-wide

abundance.

Ultimately, because DFA is an averaging approach, it is clear

that when all available indices are non-representative of the un-

derlying stock abundance, the resulting DFA trend will not be ac-

curate. Consider the “all time-varying catchability” scenarios in

which all surveys conflicted to an unequal degree (i.e. five surveys

experienced increasing/decreasing survey catchability, while the

remaining two experienced decreasing/increasing survey catch-

ability; Figures 6 and 7). Intuitively, if no survey index is a mean-

ingful representation of stock abundance, then DFA is not to

yield a trend that is reflective of stock abundance.

3. Use complete time-series, where possible
In the realistic scenario in which several indices are incomplete

and contain missing values, DFA performance declines markedly.

Accordingly, poorly informed years (early years in the sandbar

shark simulation) are accompanied by substantial increases in un-

certainty and relative error. Thus, under circumstances where

missing data cannot be avoided, we encourage cautious interpre-

tation of results. When input survey indices contain many

missing values, interpreting small-scale noise is not advisable,

particularly in years where fewer data are present. However, ex-

amining the broader tendency in the DFA trend may still prove

useful for interpretation purposes (e.g. overall increasing or de-

creasing trend). Although rare, there were cases (�9/3600, ex-

cluding “all time-varying catchability” scenarios) in the missing

data sandbar shark simulations in which the overall DFA

predicted trend was increasing, in direct contrast with the de-

creasing trend of the simulated population. Analyses such as mag-

nitudes or rates of decrease/increase may be inaccurate under

DFA analyses in which there were many missing data points.

4. Carefully consider index transformations and error
structure
Most survey indices are assumed to have a lognormal, multiplica-

tive error structure, which is not consistent with the assumption

of multivariate normal error assumed in the DFA model. While

the assumption of normality is not of fundamental importance

(Zuur et al., 2003b; Zuur and Pierce, 2004), we demonstrate a

technique of rescaling that includes the proper treatment of error.

Multiplying each index by a vector of appropriately defined con-

stants ensures that the properties of the time-series inputted into

the DFA are consistent with those of a z-scored time-series (i.e.

mean of 0 and standard deviation of 1). By log-transforming the

indices of abundance, we transformed the lognormal error into a

normal error structure, and by standardizing using the global

standard deviation of the demeaned, descaled survey indices, we

allowed for a way of back-transforming the resulting DFA trend

out of log- and z-space. This process creates a single DFA pre-

dicted trend in abundance in arithmetic space with lognormal er-

ror. Note that the results from our rescaled approach are

consistent with trends produced via a standard DFA model (log-

transformed and z-scored indices prior to model run). Our

rescaling protocol is not strictly necessary for the interpretation

of conflicting survey indices but becomes more important when

considering future analyses using the DFA-predicted trend.

Multiplying survey indices of relative abundance by a constant

is comparable to redefining effort, such that the scale of the index

increases or decreases. Failure to multiply each survey index by

an appropriate vector of constants (c) results in inappropriately

fitted and likely incorrect DFA results. We recommend ensuring

that the raw survey index follows the same general pattern across

each step of the rescaling process, and that the resulting trend is

realistic given the input data. In our application, the pattern of

the DFA trend estimated from our rescaling approach was very

similar to the DFA trend estimated from a log-transformed, then

traditionally z-scored survey index (although, in a traditionally

run DFA, we cannot back transform the resulting DFA trend out

of log-space). In our simulation, we were unable to identify a

proper c vector for each iteration. Therefore, DFA performance

would likely improve if a more appropriate c was adopted for

each individual iteration.

5. Compare with other knowledge of stock trends
If the results of a DFA model suggest trends that are inconsistent

with other pieces of available information and/or do not match

prior understanding of the status of the population, then the

results should be questioned.

Non-constant catchability
Although several factors that affect the catchability coefficient can

be accounted for via CPUE standardization approaches (e.g. boat

effect, fishing methodology, station/area effects; Maunder and

Punt, 2004; Peterson et al., 2017b), there are likely drivers of

changes in catchability that cannot be explained in practice

(Maunder et al., 2006; Wilberg et al., 2009). For example, it is

likely that catchability is or will be changing in the future as a
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result of climate-induced shifts in species distribution (e.g. a

range expansion may result in increased availability of a target

species to a survey, consequently increasing catchability or vice

versa) and migratory timing (Karp et al., 2019; Townhill et al.,

2019; O’Leary et al., 2020). Physiological and behavioural

responses to a dynamic biotic and abiotic environment will likely

alter availability and encounter rate (Cheung et al., 2012;

Wittmann and Pörtner, 2013; Kotwicki et al., 2015), potentially

in unexpected ways. For example, under ocean acidification con-

ditions, shark olfactory capacity will be impaired (Dixson et al.,

2015), which may reduce the attracting properties of a baited

gear. Altered fisher behaviour in response to ecosystem and man-

agement changes compounded by fish behavioural changes (e.g.

density-dependent and effort-dependent catchability; Hilborn

and Walters, 1992; Wilberg et al., 2009) have been shown to vio-

late the assumption of constant catchability. Learning and behav-

iour alteration (Mitchell et al., 2020) may further influence

fishing dynamics over time (Guttridge et al., 2009). We empha-

size that whenever possible, factors that affect catchability should

be accounted for within the CPUE standardization (Hilborn and

Walters, 1992).

The ever-evolving nature of a nonstationary ecosystem may in-

herently influence catchability dynamics. As such, it is likely that

catchability will change over time in most surveys, though the

magnitude and/or directionality and pattern of time-varying

catchability is particularly challenging to predict. For instance, it

may be reasonable to assume that catchability varies around a

constant coefficient, in which case we may assume that catchabil-

ity is constant and allow the error term to capture the annual

deviations from the mean catchability coefficient. In our simula-

tion, we included more than fourfold changes in catchability in

distinctive patterns to generate indices that conflicted throughout

the simulation period. These shifts are consistent with the range

of those estimated for other stocks (e.g. Wilberg et al., 2009 and

references therein). Whether all surveys are expected to undergo

catchability shifts of equivalent magnitude in practice remains

unclear and surely depends on the real-world system to which

DFA would be applied. For example, in a system with two survey

locations, catchability could increase in one location and decrease

in the other if the population centre moved from the second loca-

tion to the first. Situations like these may be expected for surveys

with small spatial footprints under climate-change scenarios.

Nevertheless, given the multitude of, and complex interactions

between, biological drivers of changing catchability, the goals of

this study were not to hypothesize potential realistic scenarios or

make inferences on which scenarios are more probable. Instead,

we generated many abstract scenarios with realistic amounts of

change in catchability to understand how DFA performs more

conceptually. However, caution should be used in applying DFA

to reconcile indices of abundance in situations with changes in

catchability greater than we simulated. Further development of

methods to detect large changes in catchability remains a high

priority because many changes may be undetected with only con-

ventional survey data (Wilberg et al., 2009).

DFA approach
DFA is a consensus-type approach to data reconciliation.

Alternative methods using spatio-temporal approaches (e.g.

Thorson et al., 2015a; Grüss and Thorson, 2019; Perretti and

Thorson, 2019; O’Leary et al., 2020; Thorson et al., 2020) may be

more appropriate when sufficient spatial data are available. If

catchability changes are largely due to changes caused by avail-

ability of the stock to the survey, then spatial approaches have the

benefit of mechanistically describing the cause of changing catch-

ability. While DFA may not be the optimal statistical approach

for identifying the underlying causes of conflicting indices of

abundance in more data-rich stocks, environmental, climatic,

and anthropogenic covariates can be included in a DFA model to

infer potential causal factors (e.g. Buchheister et al., 2016;

Peterson et al., 2017a). In addition, DFA can be used without

specifying the mechanism for catchability change, which is both

beneficial and a potential limitation.

DFA is a flexible approach with extensive options beyond those

that we explored in the current study. For example, within the

DFA modelling approach, users have the flexibility to account for

covariation between survey indices by altering the structure of the

observation error covariance matrix (e.g. Bers et al., 2013; Colton

et al., 2014; Stachura et al., 2014; Jorgensen et al., 2016), incorpo-

rate broad-scale drivers of abundance in the form of covariates

(e.g. Katara et al., 2011; Bers et al., 2013; Stachura et al., 2014),

and multiple common trends can be estimated (e.g. Bers et al.,

2013; Colton et al., 2014; Jorgensen et al., 2016), among other

possibilities. Weights of input survey indices can be manually des-

ignated by fixing elements of the factor loadings matrix (Holmes

et al., 2014). Tools for the application of DFA within a Bayesian

context (nwfsc-timeseries.github.io), as well as a spatial DFA vari-

ant (Thorson et al., 2015b), have also been developed. Although

we did not include all of these options (e.g. alternative forms of

index weighting, survey covariability, spatial structure, or broad-

scale climatic, environmental, or anthropogenic drivers) in the

current study due to a simplified simulation framework, we high-

light their presence to demonstrate the flexibility of DFA that

may be required for various real-world implementation scenarios.

Study extensions
Azevedo et al. (2008) proposed utilization of DFA trends as an in-

dex of abundance within stock assessments. In unpublished com-

panion research, we used the current simulation framework to

explicitly test stock assessment performance with multiple con-

flicting survey indices vs. performance with a DFA trend inputted

as relative abundance information. In this extension study, length

composition data in the DFA assessment were weighted by DFA

factor loadings and selectivity was estimated using more flexible,

time-varying patterns (e.g. random-walk age-based selectivity

with time-blocks). Though there is a general consensus that data

be manipulated as little as possible (Maunder, 2001; Maunder

and Punt, 2013; Methot and Wetzel, 2013), we consider the logi-

cal consistency of ensuring that survey indices are fulfilling their

role within an assessment framework by acting as a representative

measure of relative abundance.

Conclusion
We have shown that DFA can serve as a valuable tool for under-

standing and assessing the patterns of abundance of several fishes

with many indices of relative abundance. However, DFA perfor-

mance was relatively poor when no survey index is representative

of stock abundance. Under such conditions, DFA was unable to

provide accurate trends in abundance, as noted in our “all time-

varying catchability” scenarios. Though this study focused on

coastal sharks in the United States as catalyzed by the sandbar
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shark stock assessment recommendations (Conn, 2010b; Cook,

2010; Hall, 2011; SEDAR, 2011, 2017), we found that the results

were robust to the differences in life history strategy and data

availability between a small coastal and a large coastal shark spe-

cies. Consequently, this approach can be used for any fish stock

that can be adequately surveyed with multiple indices of relative

abundance, even across multiple selectivity patterns and when the

assumption that indices are proportional to total abundance is vi-

olated in some cases. Fishes constantly cross geopolitical bound-

aries, resulting in multiple survey indices, and given relatively

large observation and process errors, trends in those survey indi-

ces typically conflict. This study serves to provide guidance on

use of DFA as an appropriate method to reconcile and interpret

trends in fish abundance.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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