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Modelling the population dynamics of fish complexes is challenging, and many species have been assessed and managed as a complex
that was treated as a single species. Two Bayesian state-space surplus production models with multilevel priors (hierarchical models)
were developed to simulate variability in population growth rates of species in a complex, using the hammerhead shark complex
(Sphyrna spp.) of the Atlantic and Gulf of Mexico coasts of the US as an example. The complex consists of three species: scalloped
(Sphyrna lewini), great (Sphyrna mokarran), and smooth hammerhead (Sphyrna zygaena). Bayesian state-space surplus production
models with multilevel priors fitted the hammerhead data better than a model based on single-level priors. The hierarchical
Bayesian approach represents an intermediate strategy between traditional models that do not include variability among species,
and highly parameterized models that assign an estimate of parameters to each species. By ignoring the variability among species,
confidence intervals of the estimates of stock status indicators can be unrealistically narrow, possibly leading to high-risk management
strategies being adopted. Use of multilevel priors in a hierarchical Bayesian approach is suggested for future hammerhead shark stock
assessments and for modelling fish complexes lacking species-specific data.
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Introduction
A lack of data and an inability to identify individual species easily
often preclude the development of species-specific assessments of
fish stocks. It is therefore widely recognized that completion of
species-specific assessments for many taxa will take time. Because
of these difficulties, fish stock assessments have often had to focus
on species aggregates, such as the large and small coastal shark com-
plexes in the USA (Cortés, 2002a; SAFMC, 2006). Complex-based
assessments, however, need to be improved before single-species
stock assessments can be conducted, for the hammerhead
complex and for other fisheries, such as those for the snapper–
grouper complex in the US South Atlantic and Gulf of Mexico.

The current population dynamics models used for shark com-
plexes are necessarily based on surplus production theory (e.g.
SAFMC, 2006). Population growth rates of hammerhead sharks,
for example, likely vary interspecifically as a result of different life-
history traits or intraspecifically as a result of natural variability or
methodological issues (Smith et al., 1998; Cortés, 2002b; Figure 1).
Incorporating variability in productivity among species in a
complex is problematic when using surplus production models.
Here, we use a multilevel prior in a hierarchical approach to
address the problem of simulating population growth rates and
their associated uncertainty when multiple species are present and
exhibit variability in productivity, yet that productivity cannot be
assigned to a particular species. Models with multilevel priors are
called hierarchical models even when the data are not hierarchically

structured (Andrews et al., 1993; Roberts and Rosenthal, 2001;
Gelman et al., 2004). Hence, we refer here to state-space surplus pro-
duction models with multilevel priors to represent a situation
without hierarchical data, but in which the model applied can be
considered hierarchical. Multilevel priors have been used to represent
species or group differences even when the data are not hierarchical
and proven to be more robust than single-level priors (Andrews et al.,
1993; Roberts and Rosenthal, 2001; Clark, 2003). In contrast to a
model that is highly parameterized and that assigns a different par-
ameter value to each species in a complex to capture changes in
the population growth rate, hierarchical models accommodate
species or group differences but assume that these differences
derive from an underlying distribution (Clark, 2003; Wikle, 2003).

Hammerhead sharks (Sphyrna spp.) along the Atlantic and
Gulf of Mexico coasts of the USA are managed as part of the
large coastal shark complex and are used here as an example.
Hammerhead sharks can also be considered as a complex of
three species: scalloped (Sphyrna lewini), great (Sphyrna mokar-
ran), and smooth hammerheads (Sphyrna zygaena). The current
status of hammerhead sharks is of concern (Baum et al., 2003;
Myers et al., 2007; Hayes, 2008). The scalloped hammerhead has
been classified recently as globally endangered in the IUCN Red
List, the smooth hammerhead as near threatened, and the
great hammerhead as data deficient (IUCN, 2006). There are
no estimates of population growth rates for great or smooth
hammerheads, but they can be very different.
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The hierarchically structured models were implemented in a
Bayesian framework and analysed using Markov Chain Monte
Carlo (MCMC) simulation. Bayesian approaches are used increas-
ingly in assessing and managing fisheries stocks because of their
flexibility in incorporating data from different sources, their
ability to provide results for risk analyses of alternative manage-
ment strategies, and because they incorporate prior knowledge
of the fisheries into the assessment process.

Hammerhead data are limited because of their relatively low
density in the ocean and because there is limited effort allocated
to collecting data from both fishery-dependent and -independent
sources. Demographic data help one understand the basis of popu-
lation dynamics even when time-series of abundance or relative
abundance exist and are especially useful when the populations
are too sparse to assess (Kieth and Windberg, 1978; Krebs et al.,
2001). The use of demographic information to estimate popu-
lation growth rates to be used as prior knowledge in a hierarchical
framework helps us simulate the population dynamics of hammer-
head sharks. Here, we used Bayesian models to address the varia-
bility among species through multilevel hierarchical priors and a
time-varying, Bayesian hierarchically structured model to
address the temporal variation in population growth rates
caused by changes in species composition of the complex
(Roberts and Rosenthal, 2001; Clark, 2003; Gelman et al., 2004).
The goodness-of-fit of the Bayesian hierarchical surplus pro-
duction models is compared with that of the more classical
Bayesian non-hierarchical surplus production model used, for
example, for the large coastal shark complex stock assessment
(SAFMC, 2006).

Methods
Data sources
Detailed descriptions of the data sources are available in
Beerkircher et al. (2002), Cortés and Neer (2005a, b), Cortés

et al. (2005), Ingram et al. (2005), and NMFS (2006) but a
summary is given here.

Commercial landings data were obtained from two data-
collection programmes run by the National Marine Fisheries
Service (NMFS) that gather data directly from seafood dealers
located in states on the US east coast and Gulf of Mexico.
Estimates of dead hammerhead sharks discarded by pelagic long-
line fisheries targeting tuna and tuna-like species were obtained
from the logbooks completed by pelagic longline and other
vessels (the NMFS Pelagic Longline Logbook programme, PLL)
and observer reports from the same fisheries (the NMFS Pelagic
Longline Observer Programme, PLLOP). Recreational catch esti-
mates were obtained from three data-collection programmes: the
Marine Recreational Fishery Statistics Survey (MRFSS) and the
Headboat Survey, both operated by NMFS, and the Texas Parks
and Wildlife Department (TPWD) Recreational Fishing Survey,
operated by the state of Texas. The MRFSS has been sampling
private boat owners and charterboats operating in all coastal US
states since 1981. Catch estimates used in our analyses included
total catch (A þ B1, where A is the fish brought ashore and avail-
able for identification to interviewers, and B1 is the fish not
brought ashore whole but used as bait or discarded dead). The
Headboat Survey samples headboats from North Carolina to
Louisiana, and catch estimates for sharks are available since
1986. Catch estimates from the TPWD Survey, which samples
private boats and charterboats in Texas, are available from 1986
(Figure 2).

Time-series of relative abundance were available from four
sources: the NMFS Mississippi Laboratories bottom-longline shark
survey (NMFS-SE), PLL, PLLOP, and the directed shark fishery
bottom-longline observer programme (BLLOP). Since 1995,

Figure 1. Three normal probability density functions (pdf) defined
by means and variances from studies of the population growth rates
(r) of scalloped hammerhead shark in the hammerhead shark
complex. 1, Pacific scalloped hammerhead (30% of the CV is used
here based on the mean value from Smith et al., 1998); 2, Gulf of
Mexico scalloped hammerhead (Cortés, 2002b); 3, Western Pacific
scalloped hammerhead (Cortés, 2002a, b). There are no published
studies on population growth rates of smooth or great
hammerheads.

Figure 2. Summary of hammerhead shark complex fishery data. Top
panel, catch composition; bottom panel, relative abundance indices.
NMFS-SE, NMFS Mississippi Laboratories bottom-longline shark
survey; PLL, NMFS pelagic longline logbook programme; PLLOP,
NMFS pelagic longline observer programme; BLLOP, directed shark
fishery bottom-longline observer programme.
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the NMFS-SE survey has used a stratified random sampling design
to monitor the distribution and abundance of coastal sharks
throughout the Gulf of Mexico, the Caribbean, and the western
North Atlantic. The PLL collects information through mandatory
logbooks completed by longline and other fishing vessels landing
swordfish in the US Atlantic, the Gulf of Mexico, and the
Caribbean. Set-specific catch and effort data were available for
the period 1986–2005. The PLLOP, in operation since 1992,
covers approximately the same geographic area as the PLL, and
5% observer coverage of pelagic surface longline vessels was man-
dated in 1992, rising to 8% in 2002. Sharks represent �25% of the
catch. The BLLOP places scientific observers aboard vessels of the
directed shark fishery. Initiated in 1994 on a voluntary basis, it
became mandatory for vessels with directed shark fishing permits
in 2002 (Figure 2).

The four time-series of relative abundance were standardized
using a generalized linear modelling approach derived from Lo
et al. (1992), which assumes a delta lognormal model distribution.
A binomial error distribution was first used to model the pro-
portion of positive sets with a logit link function, then a lognormal
error distribution was used to model the catch rates of positive
(successful) sets (see Cortés et al., 2007, for a full description).

Hierarchically structured Bayesian surplus
production models
Because the data available on hammerhead sharks were not size-,
age-, or stage-structured, we used a state-space surplus production
model as the basic model structure:

EðNtþ1Þ ¼ Nt þ Gt � Ct;

EðIi;tÞ ¼ qiNt ; ð1Þ

where Nt is the population abundance in year t, Gt the production
function of the population in year t, Ct the total catch in year t, and
qi the catchability coefficient for the ith type of relative abundance
index Ii. Here, we used the Schaefer model Gt ¼ rNt (1 2 Nt/K) as
the production function; it is used widely in fisheries and ecology
(May et al., 1979; Hilborn and Walters, 1992). In the Schaefer
model, r is the population growth rate and K the carrying capacity.
Instead of assuming a constant population growth rate in the
Schaefer model, a hierarchically structured prior was used to
model the population growth rate:

Gt ¼ rNt 1�
Nt

K

� �

r � Nð�r;s1
2Þ ð2Þ

�r � Nða;s2
2Þ

K � Uða1; a2Þ:

This was done to incorporate possible differences among, or
hierarchy of, the population growth rates of the three species in
the complex, as well as potential intraspecific variability. The hier-
archical population structure is implied in the model through a
multilevel prior of r. First, the intrinsic rate of population growth,
r, of the species complex was assumed to follow a normal distri-
bution, with mean �r and variance s1

2. The first-level prior takes
into account the randomness caused by intraspecific variability,
but the data collected are assumed to derive from a single popu-
lation or species because of the lack of species-specific data.

However, r can also vary among species or populations, so we intro-
duce the hyperparameters �r and s1

2, where �r can be considered the
“mean” growth rate across different species or populations of the
hammerhead complex and is assumed to follow a normal distri-
bution with mean a ¼ 0.0661 and standard deviation s2 ¼

0.0996. These values are based on summarized information on the
population growth rate of 80 species or populations of shark
(Hoenig and Gruber, 1990; Cailliet et al., 1992; Sminkey and
Musick, 1995; Smith et al., 1998; Cortés, 2002b; Mollet and
Cailliet, 2002; SAFMC, 2006). The carrying capacity of the
complex, K, was assumed to follow a uniform distribution, with
lower bound a1 and upper bound a2. The maximum observed
catch was used as the value of a1, and the estimated carrying capacity
of the large coastal shark complex, 35 677 000 sharks, was used as
the upper bound, a2 (SAFMC 2006).

From an evolutionary perspective, the species used in this study
may derive from a common ancestor and have similarities
in population growth rates. We would therefore expect the
parameters associated with each species or population to be
similar to each other, allowing us to “borrow strength” from
other species or populations to estimate r for the hammerhead
shark complex.

We also developed a time-varying, hierarchical state-space
surplus production model:

Gt ¼ rNt 1�
Nt

K

� �

rt � Nð�r;s1
2Þ ð3Þ

�r � Nða;s2
2Þ

K � Uða1; a2Þ:

Here, the population growth rate of the species complex was
allowed to vary annually, i.e. the annual data on population
growth rate were treated as hierarchical (Jiao et al., in press).
Potential variation in population growth rates among the three
species can be represented as overall variation in the population
growth rate over time as a consequence of temporal changes in
species composition.

We used the observation-process error estimator, which con-
siders both the process error in the function of population size
and the observation error in the function of abundance indices
(Millar and Meyer, 2000). The process error associated with
the production and population dynamics equations is critical,
especially for modelling the complex, which likely has more-
complicated population dynamics characteristics than the
individual species. Recent research comparing the observation-
error estimator and the observation-process-error estimator also
suggests the importance of using the observation-process-error
estimator (De Valpine and Hasting, 2002).

Both lognormal and gamma error structures were investigated.
If a lognormal error structure was used for both process and obser-
vation errors, the log-transformed population abundance ln(Nt)
followed a normal distribution, with mean ln(Nt þ Gt 2 Ct) and
variance sN

2, and the log-transformed relative population abun-
dance ln(Ii,t) followed a normal distribution with mean ln(qiNt)
and variance sIi

2. The time-series of stock abundance is estimated
by projecting the abundance forward from the start of the catch
series (1981) with the history of annual catches, the abundance
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at the beginning of the fishery, N1981, and r, �r, s1, K, qi, sN, and sIi

as parameters (Quinn and Deriso, 1999).
If a gamma error structure was used for both process and

observation errors, population abundance Nt followed a gamma
distribution G(aN, bN), with mean Nt þ Gt 2 Ct¼ aNbN and
variance aNbN

2 , relative population abundance Ii,t followed a
gamma distribution with mean qiNt¼ aIibIi and variance aIibIi

2.
To further examine the results from different models and error
distributions, the expected and observed relative abundance indices
were compared.

Under the assumption of logistic population growth, NMSY¼ rK/4
and FMSY ¼ r/2, where NMSY is the abundance at maximum
sustainable yield (MSY) from a production model, and FMSY is
the rate of fishing mortality at MSY. The estimated rate of fishing
mortality F relative to FMSY, F/FMSY, the population size relative
to NMSY, N/NMSY, and depletion, the most recent year’s population
size relative to K, were also compared among different models. The
probability of F being greater than FMSY, i.e. P(F . FMSY), was used
to define the risk of overfishing, and the probability of N being
smaller than NMSY, i.e. P(N , NMSY), was used to define the risk
of a population being overfished. P(F . FMSY) and P(N , NMSY)
were estimated as the number of iterations where the posterior
value of F . FMSY, and the number of iterations where the posterior
value of N , NMSY in a Bayesian approach (see explanation of the
Bayesian approach below).

Bayesian approach and priors
Currently only Bayesian methods are computationally possible for
a process–observation error model, and traditional maximum
likelihood methods cannot solve it unless some assumptions are
made for the process error (De Valpine and Hasting, 2002). The
Bayesian approach uses a probability rule (Bayes’ theorem) to cal-
culate a posterior distribution from the observed data and a prior
distribution, which summarizes the prior knowledge of the para-
meters (Berger, 1985; McAllister and Kirkwood, 1998; Gelman
et al., 2004). The Bayesian approach was used to estimate both
the uncertainty in parameter estimates and population abundance.
A non-hierarchical Bayesian model describes a posterior density

for parameters (p(ujIi)) using Bayes’ theorem as

pðujIiÞ ¼

Qn
t¼1 f ðNt juÞ

Qn
t¼1 f ðIi;t juÞpðuÞÐþ1

�1

Qn
t¼1 f ðNt juÞ

Qn
t¼1 f ðIi;t juÞpðuÞdðuÞ

; ð4Þ

whereas the hierarchical Bayesian method assigns priors of
hyperparameters to yield the joint posterior

pðu0 ¼ u; �r;s1jIiÞ

¼

Qn
t¼1 f ðNt ju

0Þf ðIi;t ju
0Þpðu 0j�r;s1Þuð�rÞvðs1ÞÐþ1

�1

Qn
t¼1 f ðNt ju

0Þf ðIi;t ju
0Þpðu 0j�r;s1Þuð�rÞvðs1Þdðu

0Þ
:

ð5Þ

In the equations above, f(Ntju) is the probability density function
of Nt given parameter vector u, f(Ii,tju) is the probability density
function of Ii,t given parameter vector u, and uð�rÞ and v(s1) are
the probability density functions of �r and s1.

Bayesians believe that model parameters are random and that
uncertainties in parameter estimation reflect the likelihood of a
hypothesis that a parameter has a certain value (Hilborn et al.,
1993). We used WinBUGS software, a numerically intensive
software package that implements general Bayesian models
using “Metropolis–Hastings within Gibbs sampling” (Gilks,
1996; Spiegelhalter et al., 2004). A detailed description of the
“Metropolis–Hastings within Gibbs sampling” algorithm for the
state-space surplus production model can be found in Millar
and Meyer (2000).

Bayesian implementation of these models requires specification
of prior distributions on all unobserved quantities. In general,
non-informative priors (here, wide uniform distributions) were
used for variances s1

2, sN
2 , and sIi

2 . The prior for N1981 followed
a uniform distribution with the lower bound equal to 1% of K,
and the upper bound equal to K.

A critical issue in using MCMC methods is how to determine
when random draws have converged to the posterior distribution.
Here, three methods were considered: monitoring the trace for
key parameters, diagnosing the autocorrelation plot for key



















Table 1. Estimates of key parameters under three sensitivity scenarios for (top panel) Bayesian state-space surplus production models with
a multilevel prior and (bottom panel) Bayesian state-space surplus production models.

Parameters S1 S2 S3

Indices: NMFS-SE 1 PLL 1 BLLOP Indices: NMFS-SE 1 PLLOP 1 BLLOP Indices: NMFS-SE 1 PLL 1 BLLOP
Prior of �r � N (0.0661, 0.0996) Prior of �r � N (0.0661, 0.0996) Prior of �r � N (0.0661, 5 3 0.0996)

r 0.32, 0.30, (20.02, 0.79) 0.33, 0.31, (20.02, 0.81) 0.34, 0.32, (20.02, 0.81)

�r 0.13, 0.14, (20.42, 0.68) 0.13, 0.14, (20.43, 0.67) 0.22, 0.23, (20.76, 1.16)

K 424, 352, (180, 1 083) 390, 331, (172, 924) 405, 341, (177, 1 062)

N1981 334, 282, (120, 852) 299, 256, (99, 724) 322, 276, (115, 826)

F2005/FMSY 1.62, 1.35, (0.44, 4.85) 1.33, 1.11, (0.25, 4.04) 1.57, 1.32, (0.42, 4.46)

N2005/NMSY 0.15, 0.14, (0.06, 0.32) 0.20, 0.17, (0.07, 0.56) 0.15, 0.14, (0.06, 0.32)

Prior of r � N (0.0661, 0.0996) Prior of r � N (0.0661, 0.0996) Prior of r � N (0.0661, 5 3 0.0996)

r 0.25, 0.25, (20.01, 0.55) 0.28, 0.27, (0.01, 0.58) 0.31, 0.30, (0.02, 0.64)

K 485, 394, (216, 1 388) 417, 352, (197, 987) 402, 360, (202, 837)

N1981 375, 316, (146, 1 016) 302, 267, (117, 685) 315, 285, (133, 667)

F2005/FMSY 1.29, 1.20, (25.07, 7.94) 1.24, 1.14, (25.78, 7.42) 1.32, 1.77, (24.89, 6.95)

N2005/NMSY 0.14, 0.13, (0.06, 0.26) 0.15, 0.14, (0.06, 0.32) 0.14, 0.13, (0.07, 0.27)

Results are based on the assumption of lognormal error structures. Mean, median, and 2.5% and 97.5% percentiles are given in parenthesis.
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parameters, and using the Gelman and Rubin statistic (Gelman
and Rubin, 1992; Spiegelhalter et al., 2004). A detailed description
of the use of these methods in fisheries can be found in Su et al.
(2001). We used three Markov chains. The three chains converged
after 50 000 iterations with a thinning interval of 5, based on the
convergence criteria, and were discarded. A thinning interval of
5 was subsequently used to avoid parameter autocorrelation.
Another 20 000 iterations were used to generate the posterior dis-
tributions. The posterior distributions of the key parameters were
obtained through a kernel smooth approach (Bowman and
Azzalini, 1997). The computing code is available upon request
or online at http://filebox.vt.edu/users/ yjiao/complexcodes.

Sensitivity analysis
Because of uncertainty in the various sources of relative abundance
data used, the sensitivity of model outcomes, the robustness of the
results to the data sources, was tested through different combi-
nations (scenarios) of the relative abundance sources. The PLL
and PLLOP are from the same fishery; although it is generally
believed that data collected by observer programmes are more
reliable than those from logbooks, the PLLOP series was shorter
than, and showed some discrepancies with respect to, the PLL
series. We therefore compared results from including either the
PLL (scenario S1) or the PLLOP (scenario S2) series in the analysis
(Table 1). To test the sensitivity of results to the hyperpriors, we
extended the variance of hyperprior s1 to be 5� that in scenario
1 (scenario S3; Table 1).

The sensitivity of the model outcomes to the specified priors
was tested through a comparison of the informative prior of �r in
the hierarchical models and the r in the non-hierarchical models
(Tables 1 and 2).

Model goodness-of-fit
The goodness-of-fit of the Bayesian hierarchical surplus
production model was compared with the classically used
non-hierarchical surplus production model based on the estimates
of the deviance information criterion (DIC):

DIC ¼ 2 �D� D̂ or �Dþ pD

Dðy; uÞ ¼ �2 log LikelihoodðyjuÞ ð6Þ

pD ¼ �D� D̂;

where D is deviance, a measurement of prediction goodness for
our models, pD the effective number of parameters in a Bayesian

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . .

Table 2. Goodness-of-fit of the time-varying hierarchical Bayesian
state-space surplus production model, the Bayesian state-space
surplus production model with a multilevel prior, and the Bayesian
state-space (SS) surplus production model for hammerhead shark
complex data.

Models DIC

Lognormal errors Gamma errors

S1 S2 S3 S1 S2 S3

Time-varying
hierarchical state-space
surplus production

18.85 13.93 18.41 26.03 29.58 25.58

State-space surplus
production with
multilevel prior

27.52 36.38 28.28 34.84 37.24 34.65

State-space surplus
production

43.59 45.33 43.41 34.73 40.99 34.69

Priors for r when non-hierarchical state-space surplus production models
were used were N (0.0661, 0.0996) in S1 and S2, and N (0.0661, 5 � 0.0996)
in S3. See Table 1 for a description of the scenarios.

Figure 3. Probability density functions (pdf) of key parameters from the Bayesian state-space surplus production model with a multilevel
prior of population growth rate (�r). Solid line, scenario S1; dotted line, S2; dashed line, S3. K and B0 are in thousands of individuals.
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model, �D the posterior mean of the deviance, and D̂ the deviance
of the posterior mean. The DIC is a hierarchical modelling
generalization of the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC, also known as
the Schwarz criterion). It is particularly useful in Bayesian
model selection problems, where the posterior distributions
of the models have been obtained by MCMC simulation.
Like AIC and BIC, it is an asymptotic approximation as the
sample size becomes large. It is only valid when the posterior
distribution is approximately multivariate normal (Spiegelhalter
et al., 2002, 2004).

Results
Use of a hierarchically structured model generally resulted in
parameter estimates with a wider credible interval than using a
non-hierarchical model (Table 1). The credible intervals of r, K,
and N1981 were considerably wider when the hierarchical model
was used than with the non-hierarchical state-space surplus
production model.

Using a lognormal error structure generally resulted in smaller
DIC values than a gamma error structure (Table 2), so we present
results for models with lognormal error structures for both process
and observation errors. Compared with the non-hierarchical

Figure 4. Population abundance trajectories (in thousands of individuals) from (a) the state-space surplus production model with a multilevel
prior of population growth rate, and (b) the time-varying hierarchical state-space surplus production model. Shown from top to bottom in
each multi-panel are the results for scenarios S1, S2, and S3. Continuous lines over years denote the mean, and dotted lines the 95% probability
intervals of population abundance.
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state-space surplus production model, the hierarchical approaches
used here fitted the data considerably better. The DIC values were
�27–36 for the models with a multilevel prior of population
growth rate, compared with �43–45 for the non-hierarchical
models (Table 2). The DIC values were �14–19 for the
time-varying hierarchical models, compared with �43–45 for the
non-hierarchical models (Table 2). DIC values and parameter esti-
mates were also influenced by the choice of priors (Tables 1 and 2).

Results from scenarios 1 and 3 showed that the posteriors of r,
K, and N1981 were stable when the multilevel prior of r was used
and when the variance of the hyperparameters was increased by
a factor of 5, whereas results from the non-hierarchical model
were more sensitive to changes in the priors (Table 1). The pos-
terior distribution of �r changed substantially when the variance
of the hyperprior was expanded, which is predictable because
the distribution of �r was strongly influenced by the hyperpriors,
the mean and variance of �r. The results from scenarios 1 and 2
showed that the posteriors of r, K, and N1981 were stable when

the multilevel prior of r and the PLL or PLLOP index were used,
whereas results from the non-hierarchical model were more sensi-
tive to the catch-rate index (Table 1).

Results from the Bayesian state-space surplus production
model with the multilevel prior of r were therefore rather consist-
ent across the scenarios considered (Table 1, Figures 3, 4a, and 5a).
The posterior distribution of �r followed a wide normal distri-
bution, implying a wide range of population growth rates
among species. The population growth rate, r, was slightly lower
in scenario 1 (median ¼ 0.30) than in scenarios 2 and 3
(mean¼ 0.31 or 0.32; Table 1, Figure 3). Population abundance in
1981, N1981, was smaller in scenario 2 than in scenarios 1 and 3,
and population abundances after 1990 were higher in scenario 2
than in scenarios 1 and 3. Depletion estimated in scenario 2 was
larger than in scenarios 1 and 3. In general, the differences in
estimated parameters among scenarios were not large.

Results from the time-varying Bayesian hierarchical state-space
surplus production model were fairly consistent across the

Figure 5. The probability of fishing mortality being larger than FMSY and of population size being smaller than NMSY from (a) the hierarchical
state-space surplus production model with a multilevel prior of population growth rate, and (b) the time-varying hierarchical state-space
surplus production model. Solid line, scenario S1; dotted line, S2; dashed line, S3.
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scenarios considered (Figures 4b, 5b, and 6). The posterior distri-
bution of �r followed a wide normal distribution, implying a wide
range of population growth rates among species. The population
growth rate, rt, showed more variation after the mid-1990s, with
mean values fluctuating between 0.10 and 0.40 (Figure 6).

The Bayesian state-space surplus production models with the
multilevel prior of r and the time-varying Bayesian hierarchical
state-space surplus production model both fitted the data well
(Figure 7a and b). The fit was influenced more by the PLL and
PLLOP relative abundance series than by the shorter NMFS-SE
and BLLOP series.

The population abundance estimates from the three scenarios
in the two hierarchically structured models showed that popu-
lation size has decreased since 1981, especially after 1990.
Abundance was relatively stable after 1995, when mean values
were in the range 25 000–30 000 sharks in scenarios 1 and 3,
and 35 000–45 000 sharks in scenario 2 (Figure 4). Both hierarchi-
cally structured models showed similar results. There was an
increase in abundance from 1989 to 1993 in scenario 2 that
made the overall population trajectory pattern different from
those in scenarios 1 and 3, which increase in 1988. These results
were probably driven by the PLL time-series in 1988, which
showed a marked peak. In contrast, scenario 2 used the PLLOP
time-series, which resulted in a smoother trajectory of population
size around 1988 (the first year of relative abundance data was
1992 in this scenario).

The population became overfished after 1993 and overfishing
occurred from 1982 to 1985 and from 1991 to 1997; the risk of

overfishing was intermediate in recent years (between 55 and
65%; Figure 5a and b). Both hierarchically structured models
showed similar results.

Discussion
In this study, the hierarchical Bayesian models (with a multilevel
prior of r or with a time-varying r through a hierarchical prior)
consistently fitted the hammerhead complex data better than the
non-hierarchical models, a statement supported by the results of
the sensitivity analyses. This suggests that a hierarchical Bayesian
model or the use of multilevel priors is mathematically viable
and valuable in modelling the hammerhead complex and poten-
tially other fish complexes. However, this study also revealed
that informative priors influence the results of both model par-
ameters and DIC values. The use of informative priors and
model choice may also need to be justified based on an under-
standing of the biology of each species or complex. Here, both
the model goodness-of-fit and the fact that the ability to incorpor-
ate the growth-rate variation among species in the complex suggest
that the hierarchical state-space surplus production model is a
better choice.

Multilevel priors are robust priors because of the stability of
model results (Roberts and Rosenthal, 2001). Our study has
shown consistent results across three scenarios with a multilevel
prior. Compared with the commonly used priors, multilevel
priors may therefore be better choices as robust priors. The
number of levels of priors will depend on the parameters of interest.
For example, here we were interested in the population growth rate

Figure 6. Estimates of the time-varying population growth rate and probability density functions (pdf) of key parameters from the
time-varying hierarchical state-space surplus production model (continuous lines over years denote the mean, and dotted lines 95%
probability interval). Solid line, scenario S1; dotted line, S2; dashed line, S3. K is in thousands of individuals.
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r rather than the hyperparameter �r, so we had two levels of
hyperparameter, which resulted in a stable distribution of r.

Our results suggest that the status of the hammerhead shark
complex along the US Atlantic and Gulf of Mexico coasts is as
found by Baum et al. (2003), but not as depleted as found by
Myers et al. (2007). However, our study was based on a
complex, and current stock status (for 2005) is still overfished,
and the probability of overfishing occurring is still considerable.
Our results can be used to formulate further hypotheses about
the status of the complex, which need to be tested by gathering

more empirical data. The study also suggests that it may be necess-
ary to decrease fishing mortality to decrease the risk of overfishing
(P(F . FMSY)). A proposed quota reduction for all large coastal
sharks in US waters would undoubtedly help hammerhead
stocks to rebuild more quickly (NMFS, 2006).

Although there have been few studies on the biology of great
and smooth hammerheads, it is likely that the two species have
population growth rates that differ substantially from those of scal-
loped hammerheads (EC, unpublished data). Even intraspecifically,
variability among populations may well exist because of different

Figure 7. Model fits to catch-rate data from (a) the hierarchical state-space surplus production model with a multilevel prior of population
growth rate, and (b) the time-varying hierarchical state-space surplus production model.
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habitat or other environmental conditions (Clark, 2003). Because
the species in the complex likely have different population
growth rates, the average growth rate of the complex may vary
over time as a result of varying fishing pressure on the individual
species. Species with fast population growth rates are therefore
likely exposed to less exploitation risk than their counterparts with
slower population growth rates under the current management
strategy. These are reasons that motivate the use of hierarchical
modelling.

There is evidence that even intraspecific population growth rate
can vary over time as a consequence of climate variation, for
example (Beamish et al., 1999; Peterman et al., 2003), and that
population growth rate tends to be autocorrelated over time
(Halley and Kunin, 1999; Morales, 1999; Schwager et al., 2006).
The hierarchical time-varying population growth model can simu-
late population growth rate variation caused by the hierarchy of
growth rates, which has been related to regime shifts, and
changes in productivity regimes (Beamish et al., 1999; Clark,
2003). Models such as the residual autoregressive model
(where residuals of the exponential growth model are assumed
to be autocorrelated; Morales, 1999; Schwager et al., 2006), the
population growth autoregressive model (population growth
rates are assumed to be autocorrelated to simulate the coloured
environmental noise; Morales, 1999; Schwager et al., 2006), and
the population growth random-walk model (a special case of the
auto-regressive model with fewer parameters; Peterman et al.,
2003) may be considered in future.

The reasons for the discrepancy in relative abundance trends
between the pelagic and bottom longline fisheries and the
NMFS-SE survey data are not immediately apparent. Possible
reasons could be that the bottom longline fishery observer
programme was only voluntary until 2001 and that the
NMFS-SE survey, although fishery-independent, has a small
sample size.

The Bayesian hierarchical approach demonstrated here rep-
resents an intermediate strategy between traditional models that
does not allow for variability in the productivity of different
species or species complexes and highly parameterized models
that assign an estimate to each species. Hierarchical models are
more flexible than non-hierarchical methods, because they allow
one to consider variation in the modelling objective that can be
caused by natural variation between different species, in fishing
pressure, and in environmental changes (Gelfand and Smith,
1990; Zeger and Karim, 1991; Clark, 2003).

Non-hierarchical models treat population growth rates as fixed
constants, and it is difficult to allow for variability (Clark, 2003).
By ignoring variability among species, confidence intervals of
the estimates can be unrealistically narrow, possibly leading to
adoption of high-risk management strategies. A hierarchical
Bayesian approach is instead recommended when modelling fish
complexes, as applied here. The approach improves the model
goodness-of-fit, allows incorporation of variability among
species, and generally provides better inferences.
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