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Abstract. Appropriate inference for stocks or species with low-quality data (poor data) or
limited data (data poor) is extremely important. Hierarchical Bayesian methods are especially
applicable to small-area, small-sample-size estimation problems because they allow poor-data
species to borrow strength from species with good-quality data. We used a hammerhead shark
complex as an example to investigate the advantages of using hierarchical Bayesian models in
assessing the status of poor-data and data-poor exploited species. The hammerhead shark
complex (Sphyrna spp.) along the Atlantic and Gulf of Mexico coasts of the United States is
composed of three species: the scalloped hammerhead (S. lewini ), the great hammerhead (S.
mokarran), and the smooth hammerhead (S. zygaena) sharks. The scalloped hammerhead
comprises 70–80% of the catch and has catch and relative abundance data of good quality,
whereas great and smooth hammerheads have relative abundance indices that are both limited
and of low quality presumably because of low stock density and limited sampling. Four
hierarchical Bayesian state-space surplus production models were developed to simulate
variability in population growth rates, carrying capacity, and catchability of the species. The
results from the hierarchical Bayesian models were considerably more robust than those of the
nonhierarchical models. The hierarchical Bayesian approach represents an intermediate
strategy between traditional models that assume different population parameters for each
species and those that assume all species share identical parameters. Use of the hierarchical
Bayesian approach is suggested for future hammerhead shark stock assessments and for
modeling fish complexes with species-specific data, because the poor-data species can borrow
strength from the species with good data, making the estimation more stable and robust.

Key words: Bayesian hierarchical model; data-poor assessment; hammerhead shark; fish complex;
population dynamics; small sample size.

INTRODUCTION

It is widely recognized by analysts that population

assessments of species that have poor data (where

quality is poor) or are data poor (where data are limited

in quantity) are very challenging. Because of this dual

limitation, assessments of the status of exploited

populations are often highly uncertain. Assessments of

poor-data and data-poor species are thus often based on

life history information (e.g., matrix models and per-

recruit analysis; Mace and Sissenwine 1993, Fujiwara

and Caswell 2001, Cortés 2002a) or abundance indices

or catch histories (e.g., an index method; NEFSC 2008a,

MacCall 2009, Northeast Data Poor Stocks Working

Group 2009). Methods that can generally improve the

reliability of stock assessments in poor-data and data-

poor situations are thus urgently needed.

Hierarchical Bayesian methods are especially applica-

ble to small-area and small-sample-size estimation

problems because they allow poor-data species to

borrow strength from species with good-quality data

(Berger 1985, He and Sun 1998, 2000, Su et al. 2001,

Gelman et al. 2004). Many hierarchical modeling

analyses based on empirical data and simulations reveal

the need for multilevel analysis of multilevel data

(He and Sun 2000, Osborne 2000, Su et al. 2001).

Hierarchical and multilevel models are the same in

concept but different terminology is used according to

the discipline. Additionally, hierarchical modeling anal-

yses provide other benefits, such as easy modeling of

cross-level interactions. This often allows for more

interesting questions to be asked of the data, such as

estimating parameters or variables of interest across

experiments, locations, and times (Osborne 2000). With

nested and hierarchical data being common in the social

and other sciences, recent developments in Bayesian

approaches, and the availability of high-performance

computers that make hierarchical models solvable and
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accessible, it is important for fisheries researchers to

become more acquainted with the application of

Bayesian hierarchical techniques to assess the status of

data-poor and poor-data species.

In this study, we used a hammerhead shark complex

as an example to demonstrate the advantages of using

hierarchical Bayesian models in assessing the status of

poor-data and data-poor species. The hammerhead

shark complex (Sphyrna spp.) along the Atlantic and

Gulf of Mexico coasts of the USA is composed of three

species: the scalloped hammerhead (S. lewini ), the great

hammerhead (S. mokarran), and the smooth hammer-

head (S. zygaena) sharks. Stock assessments of sharks

often have had to focus on complexes, such as the large

and small coastal sharks in the USA, because of the lack

of species-specific data (Cortés 2002b, NMFS 2006). It is

common to find that there are species with good data

available and other species with only poor data in a fish

complex (NMFS 2006, NEFSC 2008a, b). This is also

true for other fisheries, such as those for the snapper-

grouper complex in the U.S. South Atlantic and Gulf of

Mexico and some ground fishes in the U.S. North

Atlantic (Polovina and Ralston 1987). The approach of

hierarchical modeling for fish complexes used by Jiao et

al. (2009a) was recently endorsed by the U.S. National

Research Council and by a recent independent review

for NOAA of the Hawaiian bottomfish fishery (NMFS

2009, NRC 2010). We further developed this study to

deal with data-poor species in fish complexes.

In the examples used here, great and smooth

hammerheads have relative abundance data that are

both limited in quantity and of low quality, presumably

because of low population densities and limited sam-

pling (Hayes 2008). However, within the complex, the

scalloped hammerhead shark comprises 70–80% of the

catch and several series of relative abundance of fairly

high quality are available, in contrast to the data for

great and smooth hammerhead sharks. The three species

are distributed in the same geographical areas and are

exploited by the same fisheries. Because of the relatively

low density of these sharks in the ocean and because of

the limited efforts allocated to collecting data from both

fishery-dependent and fishery-independent sources, the

status of great and smooth hammerheads is largely

unknown and the paucity of data led to inconclusive

results (IUCN 2006, Hayes 2008). This situation, with

one species having data of good quality and two species

having limited, low-quality data, provides a good

example to illustrate how hierarchical Bayesian models

can improve assessment of the species with poor data by

allowing them to borrow strength from the species with

good-quality data (He and Sun 1998, Su et al. 2001,

Gelman et al. 2004).

Population dynamics models that have been used for

shark complexes are based on surplus production theory

(see, e.g., NMFS 2006). In this study, variability among

species is modeled with a hierarchical approach to

address the problem of simulating population growth

rates assigned to a particular species. In contrast to an

overfitted model that would assign a different parameter
value to each species, hierarchical models accommodate

species or group differences but assume these differences
are derived from an underlying distribution through

hierarchical prior distributions (Wikle 2003, Gelman et
al. 2004).

The hierarchical model was implemented in a Bayesian
framework. Bayesian approaches commonly have been
used in solving hierarchical models because of their

flexibility in incorporating multiple levels of randomness
and information from different sources. They are

increasingly being used in fisheries stock assessment
because of their ability to provide results for risk analyses

of alternative management strategies and to incorporate
prior knowledge of the fisheries into the assessment

process (Berger 1985, McAllister and Kirkwood 1998,
Gelman et al. 2004). Hierarchical Bayesian models have

also shown robustness to prior specification and data
uncertainty (Roberts and Rosenthal 2001).

Demographic data help us understand the basis of
population dynamics and are especially useful when the

populations are too sparse to assess (Kieth and
Windberg 1978, Krebs et al. 2001). Population growth

rate estimates based on demographic information can be
used as prior knowledge in a hierarchical framework

and help us to better simulate the population dynamics
(Jiao et al. 2008, 2009a). In this example, demographic

information of hammerhead sharks and other shark
species is synthesized and used as prior information
(Jiao et al. 2009a).

The goodness of fits of the Bayesian hierarchically
structured surplus production models were compared

with that of the traditional nonhierarchical surplus
production model for each species using the deviance

information criterion (DIC; Spiegelhalter et al. 2004).
Robustness of the model fit was also used to compare

models (Roberts and Rosenthal 2001). Our ultimate
goal was to evaluate the Bayesian hierarchical model as

an appropriate method to assess the population
dynamics of data-poor and poor-data species. The

framework developed here can be used to assess other
species with similar data shortcomings.

METHODS

Data sources

Data on hammerhead sharks were collected and

summarized from several National Marine Fisheries
Service (NMFS) sources (Beerkircher et al. 2002,

Cortés et al. 2005, Cortés and Neer 2005, NMFS
2006, Hayes 2008; see Plate 1). Catch time series

included recreational catches, commercial landings, and
pelagic longline discards (Fig. 1). Relative abundance

time series included the NMFS Mississippi bottom-
longline shark survey (NMFS-LL-SE, in number of

sharks per 10 000 hook hours; Ingram et al. 2005), the
NMFS Panama City gillnet shark survey (PCGN, in

number of sharks per net per hour; Carlson and Bethea
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2005), the University of North Carolina longline survey

(NCLL, in number of sharks per hook; Schwartz et al.

2007), the commercial shark fishery observer program

(CSFOP, in number of sharks per 100 hooks per hour;

Cortés et al. 2005), the shark drift gillnet observer

program (GNOP in number of sharks per 107 m2 per

hour); Carlson et al. 2005), and the pelagic longline

observer program (PLLOP, in number of sharks per

1000 hooks; Beerkircher et al. 2002; Fig. 2). Not all

series have catch-per-unit-effort (CPUE) information

for each species. Six series (NMFS-LL-SE, PCGN,

NCLL, CSFOP, GNOP, and PLLOP) were available

for scalloped hammerhead sharks because of the high

portion of the hammerhead shark complex catch that

this species represents, but only two relative abundance

indices were available for great hammerhead (NMFS-

LL-SE and CSFOP) and one for smooth hammerhead

sharks (PLLOP).

To compare the Bayesian hierarchically structured

surplus production model to the traditional nonhierar-

chical surplus production model for each species, we first

described the nonhierarchical surplus production model,

followed by the hierarchical surplus production model

with species-specific data. We named the nonhierarchical

model M1. This model (M1) consisted of three models

with the same structure, but was fitted to three different

species, i.e., one model for each species. Four hierarchi-

cal models were developed in this study: the first model

had population growth rate hierarchically structured

(M2); the second one had population growth rate and
carrying capacity hierarchically structured (M3); the

third one set population growth rate and catchability to
be hierarchically structured (M4); whereas the fifth one

(M5) set population growth rate, carrying capacity and
catchability all to be hierarchically structured.

Bayesian state-space surplus production model
for each species

Because the data available on hammerhead sharks

were not size, age, or stage structured and process error
is often very important, we used a state-space surplus

production model as the basic model structure (M1):

EðNk;tÞ ¼ Nk;t�1 þ Gk;t�1 � Ck;t�1

EðIi;k;tÞ ¼ qi;kNk;t ð1Þ

where k indicates the species (here k¼ 1 means scalloped
hammerhead shark, k ¼ 2 means great hammerhead

shark, and k¼ 3 means smooth hammerhead shark); i is

the ith type of relative abundance index (here i ranges
from 1 to 6 and represents relative abundance indices

from surveys of NMFS-LL-SE, PCGN, NCLL,
CSFOP, GNOP, and PLLOP, separately); Nk,t is the

abundance (in 1000 sharks) of species k in year t; Gk,t is
the production function of species k in year t; Ck,t is the

total catch (in 1000 sharks) of species k in year t; and qi,k

FIG. 1. Summarized catches (in numbers) of hammerhead sharks by species.
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is the catchability coefficient for the ith type of relative

abundance index Ii,k of species k. Because the units of Ii,k
are different (see Data Sources), the units of qi,k are

different for different i. The unit of I1,k is per 10 million

hook hour; the unit of I2,k is per thousand net per hour;

the unit of I3,k is per thousand hooks; the unit of I4,k is

per 100 thousand hooks per hour; the unit of I5,k is per

10 billion m2 per hour; and the unit of I6,k is per million

hooks. Here we used the Schaefer model, Gk,t¼ rkNk,t(1

� Nk,t / Kk), as the production function, which is widely

used in fisheries and ecology (May et al. 1979, Hilborn

and Walters 1992), where rk is the population growth

rate of species k and Kk is the carrying capacity of

species k. Parameter rk was assumed to follow a normal

distribution with mean a1 ¼ 0.0661 and variance a2 ¼
0.0996. The values 0.0661 and 0.0996 are based on

summarized information on the population growth rate

of 80 shark species and stocks (Hoenig and Gruber

1990, Cailliet et al. 1992, Sminkey and Musick 1995,

Smith et al. 1998, Cortés 2002a, Mollet and Cailliet

2002). The carrying capacity of each species, Kk, was

assumed to follow a uniform distribution (U) with lower

bound Kmin,k and upper bound Kmax,k. Maximum

observed catch of species k was used as the value of

Kmin,k. The upper bound Kmax was assumed to be the

estimated carrying capacity of large coastal sharks

(35 677 000 sharks; NMFS 2006). The prior for N1981,

the abundance in the first year of our model, followed a

lognormal distribution. We further assigned a uniform

distribution between 1% and 100% of K for the median

of the prior for N1981. The sensitivities of model results

to these priors were explored (see Sensitivity analysis and

Table 1).

The hierarchical Bayesian surplus production model

with species-specific data

When the species-specific data were treated as

hierarchically structured, instead of assessing each

species separately, the three species were assessed

together through a Bayesian hierarchical model. In the

FIG. 2. Indices of relative abundance for hammerhead sharks by species. See Methods: Data sources for a description of the
acronyms in the legend and the units.
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first hierarchical model, only r was modeled to be

hierarchically structured (M2)

Gk;t ¼ rkNk;tð1� Nk;t=KkÞ

rk ; N ðr̄; ½CV1 3 r̄�2Þ

r̄ ; N ða1; a2Þ

CV1 ; Uðb1; b2Þ

Kk ; UðKmin;k; KmaxÞ: ð2Þ

Model M2 was used to simulate possible differences of

the population growth rates of the three species in the

complex via a hierarchical specification. The intrinsic

rate of population growth,rk, was assumed to follow a

normal distribution with mean r̄ and variance (CV1 3

r̄)2. However, mean r̄ and coefficient of variation CV1

are hyperparameters. The parameter r̄ itself was

assumed to follow a normal distribution with mean a1
¼ 0.0661 and variance a2¼ 0.0996. The carrying capacity

of each species, Kk, was assumed to follow a uniform

distribution with lower bound Kmin,k and upper bound

Kmax. Maximum observed catch of species k was used as

the value of Kmin,k. However, the upper bound Kmax is

TABLE 1. Prior specification in seven scenarios used in sensitivity analyses.

Scenarios
and models Priors in the models

S1
M1 r ; N(0.061, 0.0996); Kk ; U(max[catchk], 35677); qi,k ; U(0.0001, 3); r2

k;N and r2
i;k;I ; U(0.00001, 1)

M2 r̄ ; N(0.061, 0.0996); Kk ; U(max[catchk], 35677); CVi ; U(20%, 40%); qi,k ; U(0.0001,3); r2
k;N and r2

i;k;I
; U(0.00001, 1)

M3 r̄ ; N(0.061, 0.0996); K̄max ; U(max[catch], 35677); CVi ; U(20%, 40%); qi,k ; U(0.0001, 3); r2
k;N and r2

i;k;I
; U(0.00001, 1)

M4 r̄ ; N(0.061, 0.0996); Kk ; U(max[catchk], 35677); CVi ; U(20%, 40%); q̄i,k ; U(0.0001, 3); qi¼2,3,5,k¼1
; U(0.0001, 3); r2

k;N and r2
i;k;I ; U(0.00001, 1)

M5 r̄ ; N(0.061, 0.0996); K̄max ; U(max[catch], 35677); CVi ; U(20%, 40%); q̄i,k ; U(0.0001, 3); qi¼2,3,5,k¼1
; U(0.0001, 3); r2

k;N and r2
i;k;I ; U(0.00001, 1)

S2
M1 r ; N(0.061, 5 3 0.0996); others same as S1
M2 r̄ ; N(0.061, 5 3 0.0996); others same as S1
M3 r̄ ; N(0.061, 5 3 0.0996); others same as S1
M4 r̄ ; N(0.061, 5 3 0.0996); others same as S1
M5 r̄ ; N(0.061, 5 3 0.0996); others same as S1

S3
M1 r ; U(�0.2, 1); others same as S1
M2 r̄ ; U(�0.2, 1); others same as S1
M3 r̄ ; U(�0.2, 1); others same as S1
M4 r̄ ; U(�0.2, 1); others same as S1
M5 r̄ ; U(�0.2, 1); others same as S1

S4
M1 Kk ; U(max[catchk], 35677 3 10); others same as S1
M2 Kk ; U(max[catchk], 35677 3 10); others same as S1
M3 K̄k ; U(max[catch], 35677 3 10); others same as S1
M4 Kk ; U(max[catchk], 35677 3 10); others same as S1
M5 K̄k ; U(max[catch], 35677 3 10); others same as S1

S5
M1 r ; N(0.061, 5 3 0.0996); Kk ; U(max[catchk], 35677 3 10); others same as S1
M2 r̄ ; N(0.061, 5 3 0.0996); Kk ; U(max[catchk], 35677 3 10); others same as S1
M3 r̄ ; N(0.061, 5 3 0.0996); K̄max ; U(max[catch], 35677 3 10); others same as S1
M4 r̄ ; N(0.061, 5 3 0.0996); Kk ; U(max[catchk], 35677 3 10); others same as S1
M5 r̄ ; N(0.061, 5 3 0.0996); K̄max ; U(max[catch], 35677 3 10); others same as S1

S6
M1 r2

k;N and r2
i;k;I ; U(0.000001, 2); others same as S1

M2 CVi ; U(10%, 60%); r2
k;N and r2

i;k;I ; U(0.000001, 2); others same as S1

M3 CVi ; U(10%, 60%); r2
k;N and r2

i;k;I ; U(0.000001, 2); others same as S1

M4 CVi ; U(10%, 60%); r2
k;N and r2

i;k;I ; U(0.000001, 2); others same as S1

M5 CVi ; U(10%, 60%); r2
k;N and r2

i;k;I ; U(0.000001, 2); others same as S1
S7
M1 qi,k ; U(0.00001, 10); others same as S1
M2 qi,k ; U(0.00001, 10); others same as S1
M3 qi,k ; U(0.00001, 10); others same as S1
M4 q̄i,k ; U(0.00001, 10); qi¼2,3,5,k¼1 ; U(0.00001, 10); others same as S1
M5 q̄i,k ; U(0.00001, 10); qi¼2,3,5,k¼1 ; U(0.00001, 10); others same as S1

Notes: Each scenario included five models: M1, nonhierarchical priors; M2, hierarchical prior of growth rate, r; M3, hierarchical
priors of r and carrying capacity, K; M4, hierarchical priors of r and catchability coefficient, q; M5, hierarchical priors of r, K, and
q. K values are in thousands. The subscript k indicates the species; i is the ith type of relative abundance index, I; N is the
abundance. U(max[catch]) is the uniform distribution of the maximum observed catch.
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the estimated carrying capacity of large coastal sharks

(35 677 000 sharks; NMFS 2006). Sensitivity of model

results to these values and the hierarchical structure of r

was explored (see Sensitivity analysis). Values of CV of

20–40% have been treated as a reasonable range for

fisheries data (Walters 1998); thus in the base scenario

(S1), CV1 and CV2 were assumed to range between 20%

and 40%. We nevertheless tested the sensitivity of this

assumption by extending the range to 10–60% in the

sensitivity analysis.

In the second hierarchical model, both r and K were

assumed to be with hierarchically structured priors (M3)

Gk;t ¼ rkNk;tð1� Nk;t=KkÞ

rk ; N ðr̄; ½CV1 3 r̄�2Þ

r̄ ; N ða1; a2Þ

CV1 ; Uðb1; b2Þ

Kk ; UðKmin;k; Kmax;kÞ

Kmax;k ; NðK̄max; ½CV2 3 K̄max�2Þ

K̄max ; Uðc1; c2Þ

CV2 ; Uðd1; d2Þ: ð3Þ

In this model, the carrying capacity of each species,

Kk, was assumed to follow a uniform distribution with

lower bound Kmin,k and upper bound Kmax,k. Maximum

observed catch of species k was used as the value of

Kmin,k. However, the upper bound Kmax,k itself followed

a two-level distribution with mean K̄max, and variance,

(CV2 3 K̄max)
2. The parameter K̄max was assumed to

follow a uniform distribution with lower bound c1, the

maximum observed catch of large coastal sharks

(1 200 000 sharks) and upper bound, c2, the estimated

carrying capacity of large coastal sharks (35 677 000

sharks; NMFS 2006). The use of Kmax,k ; N(K̄max, [CV2

3 K̄max]
2) incorporated uncertainty in the estimated

carrying capacity of large coastal sharks into the prior

information, compared with using an arbitrarily inflated

prior for Kmax. Sensitivity of model results to these

values and the hierarchical structure of r, K, CV1, and

CV2 were explored (see Sensitivity analysis).

The surveys for relative abundance indices for great

and smooth hammerheads were also available for

scalloped hammerheads. In the fourth model (M4),

both r and qi,k was hierarchically structured to

incorporate the potential similarity and relationship

among catchability of the species (qi,k) if they appear in

the same survey. According to the surveys and the

species available in each survey, we can write the

distributions of qi,k as follows:

qi¼1;4;k¼1;2 ; N ðq̄i; ½q̄i 3 CV3�2Þ

qi¼6;k¼1;3 ; Nðq̄i; ½q̄i 3 CV3�2Þ

qi¼2;3;5;k¼1 ; Uðci;1; ci;2Þ

q̄i ; Uðci;1; ci;2Þ

CV3 ; Uðe1; e2Þ; ð4Þ

where ci,1 and ci,2, the lower and upper bounds of q̄i, are
assumed to be 0.0001 and 3; CV3 is the CV of qi,k and is

assumed to vary between 20–40% (i.e., limit e1¼ 20%, e2
¼ 40%). It also implied that for surveys in which only

one species was observed (i.e., i ¼ 2, 3, 5), a

nonhierarchical model was used, i.e., qi¼2,3,5,k¼1 follows

a uniform distribution with lower and upper bounds ci,1
and ci,2. Sensitivities to these prior values were tested

(see Sensitivity analysis).

We also developed a model to allow r, K, and q to be

all hierarchically structured (M5), i.e., a hybrid of M3

and M4. Priors used in M3 and M4 were used in this

model also. Sensitivities to these prior values were

tested.

The observation-process-error estimator, which con-

siders both the process error in the function of

population size and the observation error in the function

of abundance indices, was used in this study (Millar and

Meyer 2000, de Valpine and Hastings 2002). Process

error associated with the production and population

dynamics equations is critically important given the

simplicity of the production equation and potentially

chaotic environmental changes. Recent research on

comparison of the observation-error estimator and the

observation-process-error estimator also suggests the

importance of using the observation-process-error esti-

mator (de Valpine and Hastings 2002, Calder et al.

2003).

A lognormal error structure was used for both the

process and observation errors, i.e., the log-transformed

population abundance ln(Nk,t) followed a normal

distribution with mean ln(Nk,t�1 þ Gk,t�1 � Ck,t�1) and

variance r2
k;N ; the log-transformed relative population

abundance ln(Ii,k,t) followed a normal distribution with

mean ln(qi,kNk,t) and variance r2
i;k;I . Priors for r2

k;N and

r2
i;k;I were assumed to be uniform distributions between

0.00001 and 1. To test the influence of these priors,

U(0.000001, 2) was used in a sensitivity analysis.

Bayesian approach and priors

Presently only Bayesian methods are computationally

possible for a hierarchically structured process-observa-

tion error model, and the traditional maximum likeli-

hood methods cannot solve it unless some assumptions

are made for the process error (de Valpine and Hastings

2002). The Bayesian approach uses a probability rule

(Bayes’ theorem) to calculate a ‘‘posterior distribution’’

YAN JIAO ET AL.2696 Ecological Applications
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from the observed data and a ‘‘prior distribution,’’

which summarizes the prior knowledge of the parame-

ters (Berger 1985, Gelman et al. 2004). The Bayesian

approach was used to estimate both the uncertainty in

parameter estimates and population abundance. A

nonhierarchical Bayesian model for each species speci-

fies a posterior density for parameters ( p(hjI )) using

Bayes’ theorem. When species k is considered, the

posterior probability of all the parameters, represented

by hk, given observation of Ik can be written as

pkðhkjIkÞ} LðIkjNk; qk; rk;IÞpðNkjrk; Kk; rk;NÞ

3 pðqk; rk;IÞpðrk; Kk; rk;NÞ ð5Þ

where L(IkjNk, qk, rk,I) is the likelihood function of Ik (all

the available relative abundance indices for species k) and

it is calculated as L(IkjNk, qk, rk,I) ¼
Q

i

Q
t g(Ii,k,tjNk,t,

qi,k, ri,k,I). The expression p(Nkjrk, Kk, rk,N) is the joint

distribution for (Nk,t, t¼1981, . . . , 2005) and p(Nkjrk, Kk,

rk,N)¼
Q

t f (Nk,t�2jNk,t�1, rk, Kk, rk,N)p(Nk,1). In Eq. 5,

p(qk, rk,I)¼
Q

i p(qi,k, ri,k,I).

Nk,1 is assumed to follow a uniform distribution

between 1% to 100% of K; The priors for rk, Kk, qi,k,

rk,N, ri,k,I, Nk,1 are assumed to be independent. Here,

scalloped hammerhead shark (k¼ 1) has six indices (i¼
1, . . . , 6); great hammerhead shark (k ¼ 2) has two

indices (i ¼ 1, 4); and smooth hammerhead shark has

only one index (k ¼ 3 and i ¼ 6).

A hierarchical Bayesian method assigns priors of

hyperparameters to yield the joint posterior:

pðh 0jIi¼1...6;k¼1...3Þ

}
Y

k

LðIkjNk; qk; rk;IÞpðNkjrk; Kk; rk;NÞ
�

3 hðNk;1jN̄k;1; rk;NÞpðrkjr̄; CV1ÞpðKkjKmax;kÞ

3 pðKmax;kjK̄max;CV2Þpðqi;kjq̄i; CV3Þ

3 pðr̄ÞpðK̄maxÞpðCV1ÞpðCV2ÞpðCV3Þpðq̄iÞ

3 pðrk;NÞpðri;k;IÞpðN̄k;1Þg: ð6Þ

In the above equations, h0 ¼ rk, Kk, rk,N, ri,k,I, N̄k,1, r̄,
K̄max,k, Kmax, qi,k, q̄i, CV1, CV2, CV3, and k ranges from

one to three species, and i ranges from one to six relative

abundance indices. N̄k,1 is the median expectation of Nk,1

and is assumed to follow a uniform distribution between

1% to 100% of Kk. The term f (Nk,tjNk,t�1, rk, Kk, rk,N) is

the probability density function (pdf ) of Nk,t given

Nk,t�1 and parameters rk, Kk, rk,N; g(Ii,k,tjNk,t, qi,k, ri,k,I)

is the pdf of Ii,k,t given variable Nk,t and parameters

qi,k, ri,k,I; p(rkjr̄, CV1) is the pdf of rk given r̄ and CV1;

p(KkjKmax,k) is the pdf of Kk given Kmax,k;

p(Kmax,kjK̄max, CV2) is the pdf of Kmax,k given K̄max,

CV2; p(r̄) and p(K̄max) are the pdf’s of r̄ and K̄max; p(q̄i ),
p(CV1), p(CV2), p(CV3), p(rk,N), p(rk,I), and p(N̄k,1) are

the pdf’s of q̄i and CVs(s¼ 1, 2, 3), rk,N, ri,k,I, and N̄k,1.

We used WinBUGS, a numerically intensive software

package that implements general Bayesian models using

Markov chain Monte Carlo (MCMC) for model fitting

(Gilks 1996, Millar and Meyer 2000, Spiegelhalter et al.

2004). The computing code is available in the

Supplement.

A critical issue in using MCMC methods is how to

determine when random draws have converged to the

posterior distribution. Here, three methods were used:

monitoring the trace for key parameters, diagnosing the

autocorrelation plot for key parameters, and using the

Gelman and Rubin statistic (Gelman and Rubin 1992,

Spiegelhalter et al. 2004). A detailed description of the

use of these methods in fisheries can be found in Su et al.

(2001). In this study, three chains were used. The three

chains converged after 50 000 iterations with a thinning

interval of 5 based on the convergence criteria and were

discarded. A thinning interval of 5 was then used to

avoid parameter autocorrelation and another 20 000

iterations were run to generate the posterior distribu-

tions. The posterior distributions of the key parameters

were obtained through a kernel smoothing approach

available in MATLAB (Bowman and Azzalini 1997,

MathWorks 2010).

Sensitivity analysis

The sensitivity of the model outcomes to the specified

priors was tested through a comparison of the informa-

tive prior of r̄ in the hierarchical models (M2 and M3)

and the r in the nonhierarchical models (M1; Tables 1

and 2). In scenario 1 of the hierarchical models, the

TABLE 2. Goodness-of-fit for the five models expressed as
deviance information criterion (DIC).

Scenario Species M1 M2 M3 M4 M5

S1 all 117.47 113.99 111.15 122.33 120.69
scalloped 76.80
great 35.86
smooth 4.81

S2 all 117.74 112.09 113.40 121.00 121.09
scalloped 76.89
great 37.02
smooth 3.83

S3 all 117.21 112.26 112.27 121.81 121.61
scalloped 75.96
great 36.92
smooth 4.33

S4 all 115.94 108.73 109.56 120.95 120.80
scalloped 76.38
great 35.30
smooth 4.26

S5 all 121.67 115.07 110.41 120.52 122.65
scalloped 77.23
great 38.81
smooth 5.63

S6 all 118.64 116.74 116.05 122.81 122.16
scalloped 76.31
great 37.81
smooth 4.52

S7 all 117.47 114.87 109.53 120.96 120.94
scalloped 76.80
great 35.86
smooth 4.81

Note: Both total and species-specific DIC values are given
for M1.
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hyperprior distribution of r̄ was from the meta-analysis

of 80 shark species and stocks; in scenario 2, the

hyperparameter of variance in the hyperprior distribu-

tion was five times that from the meta-analysis (r̄ ;

N(a1, 5 3 a2)); in scenario 3, r̄ was assumed to be

between �0.2 and 1. The fourth scenario consisted of

increasing the upper bound of K̄max to 356 770 000, i.e.,

10 times the estimated carrying capacity of large coastal

sharks. Our fifth scenario was to increase the variance of

r̄ five times and the upper bound of K̄max to 356 770 000.

Our sixth scenario involved widening CVs, rk,N, and

ri,k,I, and the seventh scenario was to widen q̄i in the

hierarchical Bayesian models to a uniform distribution

U(0.00001, 10), or qi if qi is not hierarchically structured

to U(0.00001, 10).

Model goodness-of-fit and model selection

The goodness-of-fit of each of the Bayesian hierar-

chical surplus production models was compared to that

of the traditional nonhierarchical surplus production

model based on the values of the DIC:

DIC ¼ 2D̄� D̂ ¼ D̄þ pD

Dðy; hÞ ¼ �2 log likelihoodðyjhÞ

pD ¼ D̄� D̂ ð7Þ

where D is deviance, a measurement of prediction

goodness for our models, pD is the effective number of

parameters in a Bayesian model, D̄ is the posterior mean

of the deviance, and D̂ is the deviance of the posterior

mean. Here, y is Ii,k and h includes all the parameters in

the corresponding models. The DIC is a hierarchical

modeling generalization of the AIC (Akaike information

criterion) and BIC (Bayesian information criterion, also

known as the Schwarz criterion). It is particularly useful

in Bayesian model selection problems, where the

posterior distributions of the models have been obtained

by MCMC simulation (Spiegelhalter et al. 2002, 2004).

The DIC values for the nonhierarchical models (M1)

were computed as the sum of the DIC values from each

individual species-specific model.

TABLE 3. Posterior estimates of r and K under seven scenarios for each of five Bayesian state-space surplus production models and
hammerhead shark species.

Model and species S1 S2 S3 S4

M1

Scalloped r(0.10, 0.34, 0.68) r(0.15, 0.43, 0.88) r(0.14, 0.46, 0.93) r(0.10, 0.33, 0.66)
K(99, 215, 1136) K(83, 179, 597) K(81, 159, 578) K(101, 233, 1177)

Great r(�0.06, 0.17, 0.56) r(�0.05, 0.22, 0.79) r(�0.04, 0.24, 0.84) r(�0.05, 0.18, 0.57)
K(187, 487, 3155) K(171, 435, 2820) K(161, 416, 3137) K(187, 486, 2821)

Smooth r(�0.11, 0.15, 0.56) r(�0.10, 0.20, 0.70) r(�0.11, 0.18, 0.83) r(�0.11, 0.15, 0.56)
K(28, 89, 677) K(26, 82, 352) K(23, 90, 663) K(30, 89, 457)

M2

Scalloped r(0.07, 0.24, 0.53) r(0.01, 0.24, 0.58) r(0.09, 0.25, 0.54) r(0.08, 0.24, 0.49)
K(111, 246, 1150) K(110, 251, 1145) K(110, 238,1363) K(109, 202, 977)

Great r(0.05, 0.19, 0.47) r(0.01, 0.19, 0.51) r(0.05, 0.20, 0.51) r(0.06, 0.19, 0.45)
K(194, 374, 1533) K(187, 364, 2318) K(195, 381, 2113) K(199, 394, 2341)

Smooth r(0.05, 0.20, 0.47) r(0.01, 0.20, 0.51) r(0.06, 0.21, 0.52) r(0.05, 0.20, 0.44)
K(28, 57, 224) K(27, 58, 301) K(28, 61, 254) K(29, 60, 274)

M3

Scalloped r(0.08, 0.24, 0.51) r(0.08, 0.26, 0.53) r(0.07, 0.27, 0.57) r(0.07, 0.24, 0.50)
K(112, 227, 1010) K(111, 214, 1036) K(108, 203, 962) K(119, 245, 1204)

Great r(0.05, 0.19, 0.46) r(0.06, 0.21, 0.50) r(0.05, 0.21, 0.53) r(0.05, 0.18, 0.46)
K(199, 409, 1575) K(195, 356, 1268) K(183, 382, 1402) K(200, 428, 1855)

Smooth r(0.06, 0.19, 0.49) r(0.06, 0.20, 0.48) r(0.05, 0.21, 0.50) r(0.05, 0.20, 0.46)
K(28, 62, 231) K(28, 57, 229) K(28, 62, 246) K(29, 62, 251)

M4

Scalloped r(0.05, 0.20, 0.43) r(0.05, 0.20, 0.42) r(0.03, 0.19, 0.44) r(0.05, 0.18, 0.39)
K(123, 247, 1418) K(130, 242, 769) K(118, 252, 1141) K(130, 285, 1303)

Great r(0.04, 0.17, 0.41) r(0.04, 0.16, 0.44) r(0.03, 0.16, 0.42) r(0.04, 0.16, 0.38)
K(112, 236, 1299) K(112, 253, 1786) K(116, 250, 1194) K(120, 265, 1135)

Smooth r(0.03, 0.15, 0.39) r(0.03, 0.14, 0.40) r(0.02, 0.14, 0.37) r(0.02, 0.14, 0.35)
K(34, 74, 339) K(33, 80, 534) K(35, 86, 323) K(35, 90, 423)

M5

Scalloped r(0.06, 0.20, 0.41) r(0.06, 0.20, 0.44) r(0.06, 0.20, 0.44) r(0.05, 0.18, 0.42)
K(123, 250, 1062) K(128, 263, 886) K(124, 303, 1400) K(125, 265, 1320)

Great r(0.04, 0.16, 0.40) r(0.05, 0.16, 0.40) r(0.05, 0.16, 0.40) r(0.04, 0.16, 0.40)
K(116, 256, 1472) K(117, 250, 1174) K(118, 267, 1470) K(110, 243, 1379)

Smooth r(0.04, 0.14, 0.33) r(0.03, 0.15, 0.38) r(0.03, 0.15, 0.38) r(0.03, 0.14, 0.36)
K(37, 86, 378) K(37, 88, 507) K(35, 75, 276) K(36, 89, 421)

Notes: Values in parentheses are the 2.5% percentile, median, and 97.5% percentile. K values are in thousands.
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Model robustness is also often considered when

comparing hierarchical and nonhierarchical models

(Roberts and Rosenthal 2001) because model selection

based on fit can only be inconclusive, especially when

differences in DIC values are less than 5 (Spiegelhalter et

al. 2002, Jiao et al. 2008, 2009b). We considered both

model robustness and fit in our study because of the

limited number of groups in the hierarchical model (3).

Under the assumption of a Schaefer population

growth model, Nmsy ¼ rK/4 is the abundance at

maximum sustainable yield (msy) and Fmsy ¼ r/2 is the

rate of fishing mortality at msy. The estimated rate of

fishing mortality F relative to Fmsy, F/Fmsy, and

population size relative to Nmsy, N/Nmsy, were also

compared among different models. The probability of F

being larger than Fmsy, i.e., P(F . Fmsy) was used to

define the risk of overfishing. It indicates the exploita-

tion status of the population. The probability of N being

smaller than Nmsy, i.e., P(N , Nmsy) was used to define

the risk of a population being overfished. It is a measure

of the depletion level of the population and its present

status in terms of abundance.

RESULTS

Hierarchical models with a two-level prior of r (M2)
and two-level priors of r and K (M3) yielded smaller

DIC values (108–116) than nonhierarchical models (M1;
115–122; Table 2). However, hierarchical models with r

and q (M4) or r, K, and q hierarchically structured (M5)
resulted in larger DIC values (120–123) than for M1,

M2, and M3 (Table 2), thus consistently yielding the
worst fit of the five models tested. The DIC values and

parameter estimates can be influenced by the choice of
priors as reflected by their variation among sensitivity

scenarios (Tables 2 and 3). Although there were
differences among DICs the differences were limited

between M2 and M3.
The hierarchical models were very robust to the

hyperparameters. Parameters r and K varied very little
when the variance of the hyperparameter of r was

multiplied by factors of 5 (scenario 2) with respect to
that used in scenario 1. The nonhierarchical models were
less robust than the hierarchical models (Fig. 3). Similar

results were found when the distribution of r̄ was less
informative, with a wide uniform distribution (scenario 3)

and when both the variance of the hyperparameter of r
and the upper bound of K̄max were increased by a factor of

5 and 10, respectively (scenario 5). Results seemed less
sensitive to changes in the upper bound of K̄max(scenarios

2, 4 and 5). Results from scenario 4 were close to those of
scenario 1 even though the upper bound of the prior K̄max

increased by a factor of 10 (Table 3 and Fig. 3).
When model M1 was used, a less informative

distribution of r resulted in higher posterior values of r
and lower posterior values of K (scenarios 2, 3, and 5;

Table 3; Fig. 3). Less informative prior distributions of K
(scenarios 4 and 5), or qi (scenario 7), did not

substantially influence results. However, all of the
hierarchical models were very robust to the less informa-
tive distributions of both r and K (Table 3; Fig. 3).

Models M2 and M3 resulted in similar results in both
parameters and population size estimation; while models

M4 and M5 resulted in similar results but the results
were somewhat different compared to these from M2

and M3 (Figs. 3 and 4). Models M2 and M3 resulted in
higher posterior r values for these three species than

when using M4 or M5 (Table 3; Fig. 3A). The posterior
of K for great hammerhead was noticeably lower for M4

and M5 than for M1 to M3 (Table 3; Fig. 3B). The
posterior population size estimates for great hammer-

head shark were lower when M4 and M5 were used than
when M2 and M3 were used (Fig. 4).

When Kk was not hierarchically structured (M2), the
resulting DIC values were close to those for the

hierarchical structured Kk (M3), and model results were
very similar. Increasing the upper bound of Kk, i.e.,

Kmax,k from c2 to 10 times the value of c2 did not change
appreciably the estimates of r or K. This indicated that
the estimated carrying capacity of large coastal sharks

(NMFS 2006) is a large enough quantity to be the upper
bound of Kk.

TABLE 3. Extended.

S5 S6 S7

r(0.13, 0.42, 0.88) r(0.11, 0.37, 0.71) r(0.10, 0.34, 0.68)
K(86, 165, 580) K(92, 176, 668) K(99, 215, 1136)
r(�0.04, 0.23, 0.79) r(�0.05, 0.18, 0.56) r(�0.05, 0.17, 0.56)
K(167, 396, 2024) K(190, 480, 2596) K(187, 487, 3155)
r(�0.11, 0.17, 0.69) r(�0.11, 0.15, 0.55) r(�0.11, 0.15, 0.56)
K(26, 96, 555) K(29, 97, 532) K(28, 89, 677)

r(0.07, 0.26, 0.60) r(0.08, 0.25, 0.51) r(0.07, 0.24, 0.53)
K(109, 212, 772) K(114, 212, 879) K(111, 246, 1150)
r(0.05, 0.20, 0.50) r(0.04, 0.19, 0.44) r(0.05, 0.19, 0.47)
K(191, 365, 1541) K(199, 376, 1754) K(194, 374, 1533)
r(0.05, 0.21, 0.51) r(0.03, 0.18, 0.44) r(0.05, 0.20, 0.47)
K(28, 58, 276) K(30, 62, 262) K(28, 57, 224)

r(0.09, 0.26, 0.57) r(0.04, 0.22, 0.52) r(0.08, 0.24, 0.51)
K(109, 224, 894) K(123, 260, 1409) K(112, 227, 1010)
r(0.06, 0.21, 0.1) r(0.02, 0.18, 0.46) r(0.05, 0.19, 0.46)
K(192, 375, 1366) K(195, 372, 1277) K(199, 409, 1575)
r(0.06, 0.21, 0.51) r(0.01, 0.19, 0.46) r(0.06, 0.19, 0.49)
K(29, 57, 234) K(29, 61, 256) K(28, 62, 231)

r(0.05, 0.21, 0.47) r(0.04, 0.20, 0.46) r(0.05, 0.18, 0.40)
K(118, 249, 1066) K(118, 259, 1032) K(132, 268, 1117)
r(0.04, 0.17, 046) r(0.03, 0.17, 0.48) r(0.04, 0.16, 0.40)
K(107, 237, 1340) K(105, 237, 2222) K(116, 250, 16 923)
r(0.03, 0.16, 0.39) r(0.00, 0.13, 0.37) r(0.03, 0.14, 0.36)
K(35, 74, 319) K(36, 86, 378) K(36, 84, 439)

r(0.05, 0.19, 0.40) r(0.05, 0.18, 0.39) r(0.05, 0.18, 0.40)
K(132, 260, 1340) K(122, 255, 1189) K(128, 265, 1213)
r(0.04, 0.16, 0.38) r(0.04, 0.15, 0.43) r(0.04, 0.15, 0.40)
K(115, 256, 1207) K(114, 245, 1160) K(115, 254, 1453)
r(0.03, 0.14, 0.36) r(0.03, 0.14, 0.36) r(0.03, 0.14, 0.35)
K(35, 82, 390) K(36, 87, 397) K(38, 78, 350)
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The three methods we used failed to show evidence

against convergence of the MCMC algorithm. The

Gelman and Rubin statistic for all parameters, including

all variance terms, ranged from 0.95 to 1.01, indicating

convergence of the Markov chains. The autocorrelation

function plot indicated a thinning interval of 5, which

was large enough to address potential autocorrelation in

the MCMC runs (figures are not shown). We also

visually observed the trace plots of the major parame-

ters, which showed good mixing of the three chains, also

indicative of convergence of the MCMC chains.

The Bayesian hierarchical state-space surplus produc-

tion models, M2 to M4, fitted the data reasonably well

(Fig. 5). The population of scalloped hammerhead likely

FIG. 3. Probability density functions (pdf’s) of (A) growth rate (r) and (B) carrying capacity (K ) from the five models under
seven scenarios (S1–S7) for the three hammerhead shark species.
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became overfished from the early 1980s and overfishing

occurred periodically from 1983 to 2005; the risk of

overfishing was still high in recent years (Fig. 6). The

population of great hammerhead likely became over-

fished in the mid-1980s and overfishing occurred

periodically from 1983 to 1997; the risk of overfishing

was very low after 2001 (Fig. 6). The population of

smooth hammerhead likely become overfished since

mid-1980s but the degree of overfishing was not as high

that for scalloped hammerhead sharks until the mid-

1990s and overfishing occurred continuously in 1994–

1998, but the risk of overfishing was generally very low

after 2001 (Fig. 6).

DISCUSSION

The goodness of fit (DIC values) of the hierarchical

models M2 to M3 were the lowest and the differences

between them were very limited. The DICs of M4 and

M5 were higher than that of the nonhierarchical model

(M1) for all three species considered, likely because of

the limited number of species (three) hierarchically

structured in our study. The limited differences in DIC

values between M2 and M3, and between M4 and M5,

prescribed the need for using multiple criteria to

compare model performance instead of using informa-

tion-based criteria only. Use of less informative priors

FIG. 3. Continued.
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for the means of r, K, or q and associated variances

consistently yielded robust results with the hierarchical

models. The robustness of the results indicated that even

when using uninformative priors with a limited number

of species, the hierarchical models were still useful and

are a convenient approach for data-poor species to

borrow strength from more data-rich species. A recent

study on protein interactions based on a likelihood

approach and three species also indicated the advantag-

es of using multiple organisms and hierarchical models

(Liu et al. 2005).

The sensitivity analyses conducted showed that

hierarchical Bayesian models (with a multilevel prior

of r, r and q, r and K, or r, K, and q) provided a more

robust fit to the hammerhead data than nonhierarchical

models. This suggests that a hierarchical Bayesian

model or the use of multilevel priors is mathematically

viable and valuable in modeling these three hammer-

head shark populations and potentially other fish

complexes for which species-specific data are available.

However, this study also revealed that informative

priors influence the results of both model parameters

FIG. 4. Population abundance trajectories (in thousands of fish) for scalloped, great, and smooth hammerhead sharks. Solid
lines denote the posterior mean of population abundance; dotted lines denote 95% credible intervals of population abundance.
Different scenarios are denoted by different colors, which have the same meaning as in Fig. 3.
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and model fit (DIC values). The use of informative

priors and model choice may also need to be justified

based on an understanding of the biology of each

species in the fish complex. In all, both the model

goodness-of-fit and the fact that the Bayesian hierar-

chical model with a multilevel prior of r (M2) resulted

in robust results for all three species in the complex

suggest that this model is a better choice.

Although the results from M4 and M5 with r and q

or r, K, and q hierarchically structured were also robust

to prior specification, the DIC values were higher than

those of the nonhierarchical models (M1). This suggests

that M4 and M5 were not as good a choice as M2,

possibly because of lack of informative priors on qi.

However, although DIC values of M4 an M5 were

larger, the pdf profiles were narrower and modeling

results for great and smooth hammerheads tended to be

more biologically reasonable, with M4 and M5

estimating smaller population growth rates than M2

and M3. Although there have been few studies on the

biology of great and smooth hammerheads, it is likely

that the two species have population growth rates that

differ substantially from those of scalloped hammer-

heads (E. Cortés, unpublished data). Future studies that

allow specification of informative priors are thus

recommended. In addition to gaining a better under-

standing of the biology of these three species and

specifying more informative priors on catchability (q),

Bayesian model averaging could be used as an

alternative method that would allow model M4 and

M5 to still be considered given that it was robust and

the DIC values were not much larger than that of the

nonhierarchical model (M1) (Spiegelhalter et al. 2002,

Jiao et al. 2008, 2009b).

Multilevel priors are robust priors given the stability

of the model results (Roberts and Rosenthal 2001).

Our study showed consistent results across seven

scenarios with multilevel priors. Compared with the

commonly used priors, multilevel priors therefore may

be better choices as robust priors. The number of

levels of priors will depend on the parameters of

interest and biological reality. For example, here we

were interested in the population growth rate r rather

than hyperparameter r̄; hence we had two levels of

hyperparameters, which resulted in a stable distribu-

tion of r. We were also aware that the mean of rk can

be different among species. Thus, a multilevel prior of

r reflects the biology of the fish species and allows the

data-poor species to borrow strength from data-rich

species. The resulting distributions of rk for both data-

rich and data-poor species were more stable and

showed uncertainty reduction when hierarchical mod-

FIG. 5. Model fits to the logarithm of relative abundance indices from the five models under scenario 1. See Methods: Bayesian
state-space surplus production model for each species for description of indices Ii,k.
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els were used. This indicated that the hierarchical
models benefit not just the data-poor species but also
the data-rich species.

It is a common perception that MCMC output should
be thinned to reduce autocorrelation (Gelman et al.

2004, Spiegelhalter et al. 2004). However, to estimate

posterior quantities, it has been proven that thinning is
suboptimal (MacEachern and Berliner 1994). We reran
the models and scenarios with a thinning interval of 2

and 0, respectively, but the results were the same as with
a thinning interval of 5. Although most Bayesian

analyses still use thinning in MCMC to eliminate

FIG. 6. (A) Probability of fishing mortality, F, being larger than Fmsy and (B) probability of population size, N, being smaller
than Nmsy for the three hammerhead shark species under seven scenarios, where the subscript msy denotes the value at maximum
sustainable yield. Different scenarios are denoted by different colors, which are the same as in Fig. 3.
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autocorrelation of the Markov chains, whether thinning

should be used or not was beyond the scope of our

study.

The DIC is widely used to compare hierarchical

models (Spiegelhalter et al. 2002, 2004, Jiao et al.

2009b). However, other criteria, such as the posterior

likelihood ratio and posterior predictive p values have

also been proposed for model checking and/or com-

parison (Meng 1994, Aitken et al. 2005). These other

criteria have been found to provide conclusions that are

consistent with those derived by frequentist theory.

Application of these alternative Bayesian criteria in

applied ecological modeling should be further investi-

gated.

The hierarchical population growth model can

simulate population growth rate variation caused by

the hierarchy of growth rates, which has been related to

regime shifts and changes in productivity regimes in

some cases (Beamish et al. 1999, Clark 2003). There is

evidence that even intraspecific population growth rates,

rk, can vary over time as a consequence of climate

variation, for example (Beamish et al. 1999, Peterman et

al. 2003, Jiao et al. 2008). Although variation of the

intraspecific population growth rate was not the main

reason for using hierarchical models in our case, the

FIG. 6. Continued.
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stability and more reasonable biological results for the

scalloped hammerhead shark population may be a

reflection of using hierarchical models.

Traditionally used likelihood or frequentist methods

often require prior knowledge on the process and/or

observation errors or the ratio of process to observation

error. However, in this study we used the Bayesian

approach, which does not necessarily need prior knowl-

edge on the variances (Millar and Meyer 2000, Calder et

al. 2003, Carroll et al. 2006). The Bayesian approach has

been found to be very efficient in identifying the

variances in state-space models. Simulations would

further help identify the ability of this approach to

accurately estimate process error and observation error.

A recent simulation study (He 2010) found that state-

space models with both process and observation error

considered provided the best estimates (in terms of

accuracy and precision) of the key parameters of the

models and the population sizes.

We emphasize that the purpose of our study was to

present a new approach for assessing data-poor and

poor-data stocks. The results of the hammerhead shark

stock assessment that we present as an example should

thus be viewed as illustrative rather than as conclusive

evidence of their present status. To that end, a more

systematic study investigating a variety of data and

analytical issues should be conducted.

Hierarchical Bayesian models allow poor-data species

to borrow strength from species with good-quality data

and have been applied to small-area, small-sample size

estimation problems (Berger 1985, He and Sun 1998,

2000, Su et al. 2001, Gelman et al. 2004). Many

hierarchical modeling analyses based on empirical data

showed the advantages of using multilevel analysis

because it allows years and/or locations with poor data

to borrow strength from years and/or locations with

better data (He and Sun 2000, Su et al. 2001, Gelman et

al. 2004). It is thus important for researchers in the field

of fisheries to become more acquainted with the

application of Bayesian hierarchical models for data-

poor and poor-data species.
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