An Updated Literature Review of Post-Release Live-Discard Mortality Rate Estimates in Sharks for use in SEDAR 77

Dean Courtney, Alyssa Mathers, and Andrea Kroetz

SEDAR77-DW26

Received: 12/13/2021

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Courtney, Dean, Alyssa Mathers, and Andrea Kroetz. 2021. An Updated Literature Review of Post-Release Live-Discard Mortality Rate Estimates in Sharks for use in SEDAR 77. SEDAR77-DW25. SEDAR, North Charleston, SC. 47 pp.

An Updated Literature Review of Post-Release Live-Discard Mortality Rate Estimates in Sharks for use in SEDAR 77

Dean Courtney¹, Alyssa Mathers², and Andrea Kroetz³

¹NOAA Fisheries Southeast Fisheries Science Center 3500 Delwood Beach Road Panama City, FL

²A.I.S. Inc., in support of NOAA Fisheries Southeast Fisheries Science Center 3500 Delwood Beach Road Panama City, FL

³Cooperative Institute for Marine and Atmospheric Studies Rosenstiel School for Marine and Atmospheric Science University of Miami in support of NOAA Fisheries Southeast Fisheries Science Center 3500 Delwood Beach Road Panama City, FL

December 2021

SUMMARY

This working paper summarizes a literature database reviewed for post-release live-discard mortality (PRLDM) rates in sharks. The literature database was reviewed for estimates of delayed discard-mortality rates (M_D) and immediate (i.e. at-vessel or acute) discard-mortality rates (M_A) for hammerhead sharks (Sphyrnidae). Previous SEDAR Assessment Process (AP) and Data Workshop (DW) PRLDM rate decisions for sharks were also summarized.

Methods

A literature database of post-release live-discard mortality (PRLDM) rates in sharks (Courtney and Mathers 2019; 91 existing records and 20 new records) was searched for hammerhead sharks (Sphyrnidae): Scalloped Hammerhead (*Sphyrna lewini*), Great Hammerhead (*Sphyrna mokarran*), Smooth Hammerhead (*Sphyrna zygaena*), and Carolina Hammerhead (*Sphyrna gilberti*). Some PRLDM rates identified for Bonnethead (*Sphyrna tiburo*) were also identified and summarized.

There were few direct estimates of delayed discard-mortality rates (M_D) available for hammerhead sharks. Consequently, indirect estimates of M_D obtained from meta-analysis were also reviewed and summarized for comparison with direct M_D estimates available for hammerhead sharks.

Hammerheads appear to be vulnerable to the effects of capture in commercial gears (e.g., Gallagher et al 2014a; Ellis et al 2017). Consequently, selected immediate (i.e. at-vessel or acute) discard-mortality rates (M_A) were also reviewed and summarized for comparison direct M_D estimates available for hammerhead sharks.

Previous SEDAR AP panels (NMFS 2012, 2013a, 2013b, 2018, 2020) emphasized that PRLDM rates are only applied to live discards, and used an equation from Hueter and Manire (1994) to describe the relationship between total discard mortality and PRLDM:

(1) Total discard mortality rate = (Dead-discard rate) + (PRLDM) * (Live-discard rate).

The same approach was used here. However, in order to be consistent with more recent literature, as described below, the following definitions were also used interchangeably with equation (1): MT = MA + MD *SA, where MT = Total discard-mortality rate, defined as the immediate plus delayed discard-mortality rate resulting from the fishing event; MA = Immediate (i.e., at-vessel or acute) discard-mortality rate resulting from the fishing event; MD = PRLDM = Delayed discard-mortality rate resulting from the fishing event; MD = PRLDM = Delayed discard-mortality rate resulting from the fishing event, defined as the proportion released alive that die as a result of the fishing event; and SA = Acute survival rate (i.e., the proportion released alive).

Results

Table 1 provides a summary of delayed discard-mortality rate, M_D, estimates obtained for hammerhead sharks from the literature review.

Table 2 provides a summary of delayed discard-mortality rates, M_D, obtained for pelagic sharks from meta-analyses (Musyl and Gilman 2019). Musyl and Gilman (2019) used random-effects meta-analysis to synthesize post-release live-discard mortality (PRLDM) rate estimates available from 33 previous studies of seven pelagic shark species captured, tagged and released with 401 pop-up satellite archival tags for three gear types (longline, purse-seine, rod & reel).

Table 3 provides a summary of predicted mean total discard mortality (TDM) obtained from meta-analysis of obligate ram-ventilating and stationary respiring elasmobranchs (Dapp et al.

2016c). Dapp et al. (2016c) used meta-analysis of immediate mortality (IM; 83 species) and post-release mortality (PM; 40 species) to synthesize TDM of obligate ram-ventilating elasmobranchs and stationary respiring elasmobranchs caught in longline, gillnet and trawl gear types using Bayesian models (immediate mortality) and non-parametric tests (gillnet post-release mortality). Dapp et al. (2016c) obtained PM as the arithmetic average PM by gear except for three approximation scenarios of post-release mortality for trawl caught obligate ram-ventilating species, which were underrepresented in the analysis.

Table 4 provides a summary of previous SEDAR shark post-release live-discard mortality, PRLDM, rate decisions from recent SEDAR domestic shark stock assessments.

Table A.1 provides a summary of the literature database reviewed for post-release live-discard mortality, PRLDM, rate estimates available for sharks. Records identified with a study species were further examined to determine if the record provided estimates of delayed discard-mortality rates, M_D, immediate (i.e. at-vessel or acute) discard-mortality rates, M_A, or the species name appeared in some other context (e.g., physiological stress response to capture, meta-analysis, etc.).

Table A.2 provides a summary of delayed discard-mortality rates, M_D, in sharks by gear type obtained from the literature search.

Table A.3 provides a summary of immediate (i.e. at-vessel or acute) discard-mortality rates, M_A , in sharks by gear type obtained from the literature search.

Table A.4 provides a summary of at vessel mortality (AVM %) and post-release mortality (PRM %) in sharks from a recent literature review (Ellis et al. 2017).

Table B.1 provides a summary of post-release live-discard mortality, PRLDM, rate decisions from the recent SEDAR 65 Atlantic blacktip domestic shark stock assessment.

Discussion

For comparison, a summary of post-release live-discard mortality, PRLDM, rate decisions from the recent SEDAR 65 Atlantic blacktip domestic shark stock assessment is provided in Appendix B (Courtney and Mathers 2019). Previous PRLDM reviews available for use in previous SEDAR domestic shark assessments are provided in Courtney (2012, 2014, and 2018).

References

- Afonso, A. S., and F. H. V. Hazin. 2014. Post-release survival and behavior and exposure to fisheries in juvenile tiger sharks, *Galeocerdo cuvier*, from the South Atlantic. Journal of Experimental Marine Biology and Ecology 454:55–62.
- Afonso, A. S., Hazin, F. H. V., Carvalho, F., Pacheco, J. C., Hazin, H., Kerstetter, D.W., Murie, D., and G. H. Burgess. 2011. Fishing gear modifications to reduce elasmobranch mortality in pelagic and bottom longline fisheries off Northeast Brazil. Fisheries Research 108:336–343. https://doi.org/10.1016/j.fishres.2011.01.007
- Afonso, A. S., Santiago, R., Hazin, H., and F. H. V. Hazin. 2012. Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. Fisheries Research 131–133:9-14. https://doi.org/10.1016/j.fishres.2012.07.001
- Barham, W. T., and F. J. Schwartz. 1992. Physiological responses of newborn smooth dogfish, *Mustelus canis*, during and following temperature and exercise stress. The Journal of the Elisha Mitchell Scientific Society 108:64–69.
- Beerkircher, L. R., Cortés, E. and M. Shivji. 2004. Characteristics of shark by-catch observed on pelagic longlines off the southeastern United States, 1992–2000. Marine Fisheries Review 64, 40–49.
- Bell, J. D. and J. M. Lyle. 2016. Post-capture survival and implications for by-catch in a multispecies coastal gillnet fishery. PLoS One 11(11): e0166632. doi:10.1371/journal.pone.0166632.
- Braccini, M., Van Rijn, J., and L. Frick. 2012. High post-capture survival for sharks, rays and chimaeras discarded in the main shark fishery of Australia? PloS One 7:e32547 (9 pages). doi:10.1371/journal.pone.0032547.
- Bromhead, D., Clarke, S., Hoyle, S., Muller, B., Sharples, P., and S. Harley. 2012. Identification of factors influencing shark catch and mortality in the Marshall Islands tuna longline fishery and management implications. Journal of Fish Biology 80:1870–1894.
- Brooks, E. J., Brooks, A. M. L., Williams, S., Jordan, L. K. B., Abercrombie, D., Chapman, D. D., Howey-Jordan, L. A., and R. D. Grubbs. 2015. First description of deep-water elasmobranch assemblages in the Exuma Sound, The Bahamas. Deep Sea Research Part II: Topical Studies in Oceanography 115: 81–91.
- Brooks, E. J., Mandelman, J. W., Sloman, K. A., Liss, S., Danylchuk, A. J., Cooke, S. J., Skomal, G. B., Philipp, D. P., Sims, D. W., and C. D. Suski. 2012. The physiological response of the Caribbean reef shark (*Carcharhinus perezi*) to longline capture. Comparative Biochemistry and Physiology, Part A 162:94–100.
- Brooks, E. J., Sloman, K. A., Liss, S., Hassan-Hassanein, L., Danylchuk, A. J., Cooke, S. J.,
 Mandelman, J. W., Skomal, G. B., Sims, D. W., and C. D. Suski. 2011. The stress physiology of extended duration tonic immobility in the juvenile lemon shark, *Negaprion brevirostris* (Poey 1868). Journal of Experimental Marine Biology and Ecology 409:351–360.
- Butcher, P. A., Peddemors, V. M., Mandelman, J. W., McGrath, S. P., and B. R. Cullis. 2015. At-vessel mortality and blood biochemical status of elasmobranchs caught in an Australian commercial longline fishery. Global Ecology and Conservation 3:878-889.
- Cain, D. K., Harms, C. A., and A. Segars. 2004. Plasma biochemistry reference values of wildcaught southern stingrays (*Dasyatis americana*). Journal of Zoo and Wildlife Medicine 35:471–476.

- Campana, S. E., Brading, J., and W. Joyce. 2011. Estimation of pelagic shark bycatch and associated mortality in Canadian Atlantic fisheries. DFO Canadian Science Advisory Secretariat (CSAS) Research Document 2011/067: vi + 19p. Available: http://www.dfompo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2011/2011_067-eng.html (September, 2019).
- Campana, S. E., Joyce, W., Fowler, M., and M. Showell. 2016. Discards, hooking, and postrelease mortality of porbeagle (*Lamna nasus*), shortfin mako (*Isurus oxyrinchus*), and blue shark (*Prionace glauca*) in the Canadian pelagic longline fishery. ICES Journal of Marine Science 73:520–528.
- Campana, S. E., Joyce, W., Francis, M. P., and M. J. Manning. 2009a. Comparability of blue shark mortality estimates for the Atlantic and Pacific longline fisheries. Marine Ecology-Progress Series 396:161–164.
- Campana, S. E., Joyce, W., and M. J. Manning. 2009b. Bycatch and discard mortality in commercially caught blue sharks *Prionace glauca* assessed using archival satellite popup tags. Marine Ecology-Progress Series 387:241–253.
- Chisholm, J. H. 2003. Survival of discard spiny dogfish (*Squalus acanthias* L.) in the Massachusetts trawl fishery. Master's thesis. University of Massachusetts, Dartmouth.
- Cicia, A. M., Schlenker, L. S., Sulikowski, J. A., and J. W. Mandelman. 2012. Seasonal variations in the physiological stress response to discrete bouts of aerial exposure in the little skate, *Leucoraja erinacea*. Comparative Biochemistry and Physiology, Part A 162:130–138.
- Clarke, S. 2011. A status snapshot of key shark species in the Western and Central Pacific and potential management options. Oceanic Fisheries Programme, Secretariat of the Pacific Community. WCPFC-SC7-2011/EB-WP-04, 36p.
- Clarke, S. C., Francis, M. P., and L. H. Griggs. 2013. Review of shark meat markets, discard mortality and pelagic shark data availability, and a proposal for a shark indicator analysis. Ministry for Primary Industries. New Zealand Fisheries Assessment Report 2013/65, 74p.
- Cliff, G., and G. D. Thurman. 1984. Pathological and physiological effects of stress during capture and transport in the juvenile dusky shark, *Carcharhinus obscurus*. Comparative Biochemistry and Physiology, Part A 78:167–173.
- Coelho, R. Fernandez-Carvalho, J., Lino, P. G., and M. N. Santos. 2012. An overview of the hooking mortality of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquatic Living Resources. 25:311–319.
- Coelho, R., Infante, P., and M. N. Santos. 2013. Application of Generalized Linear Models and Generalized Estimation Equations to model at-haulback mortality of blue sharks captured in a pelagic longline fishery in the Atlantic Ocean. Fisheries Research 145:66–75.
- Coelho, R., Lino, P. G. and M. N. Santos. 2011. At-haulback mortality of elasmobranchs caught on the Portuguese longline swordfish fishery in the Indian Ocean. IOTC–2011– WPEB07–31. Available https://iotc.org/sites/default/files/documents/proceedings/2011/wpeb/IOTC-2011-

WPEB07-31.pdf (Accessed 10/29/2021).

- Cosandey-Godin, A. and A. Morgan. 2011. Fisheries bycatch of sharks: Options for mitigation. Ocean Science Division, Pew Environment Group, Washington, DC.
- Courtney, D. 2012. A preliminary review of post-release live-discard mortality estimates for sharks. SEDAR29-WP-17, March 2012. Southeast Data Assessment and Review (SEDAR), 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405, 16 pp.

Available: https://sedarweb.org/s29wp17-preliminary-review-post-release-live-discard-mortality-estimates-sharks (December, 2021).

- Courtney, D. 2013. A preliminary review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 34. SEDAR34-WP-08, June 2013. Southeast Data Assessment and Review (SEDAR), 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405, 20 pp. Available: https://sedarweb.org/s34wp08-preliminary-review-post-release-livediscard-mortality-rate-estimates-sharks-use-sedar-34 (December, 2021).
- Courtney, D. 2014. A preliminary review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 39. SEDAR39-DW-21, May 2014. Southeast Data Assessment and Review (SEDAR), 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405, 28 pp. Available: https://sedarweb.org/sedar-39-dw-21-preliminary-review-post-release-live-discard-mortality-rate-estimates-sharks-use (December, 2021).
- Courtney, D. 2018. Updated post-release live-discard mortality rate and range of uncertainty developed for blacktip sharks captured in hook and line recreational fisheries for use in the SEDAR29-Update. SFD Contribution PCB-18-15, July 2018. NOAA Fisheries, Southeast Fisheries Science Center, Panama City Laboratory, 3500 Delwood Beach Drive, Panama City, FL 32408, USA, 7 pp.
- Courtney, D., and A. Mathers. 2019. An updated literature review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 65, SEDAR65-DW20. Southeast Data Assessment and Review (SEDAR), 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405. 20 pp. Available: http://sedarweb.org/sedar-65-dw20-updated-literature-review-post-release-live-discard-mortality-rate-estimates-sedar-65 (December, 2021).
- Danylchuk, A. J., Suski, C. D., Mandelman, J. W., Murchie, K. J., Haak, C. R., Brooks, A. M. L., and S. J. Cooke. 2014. Hooking injury, physiological status and short-term mortality of juvenile lemon sharks (*Negaprion bevirostris*) following catch-and-release recreational angling. Conservation Physiology 2(1). doi: 10.1093/conphys/cot036
- Dapp, D. R., Huveneers, C., Walker, T. I., Drew, M., and R. D. Reina. 2016a. Moving from measuring to predicting bycatch mortality: Predicting the capture condition of a longlinecaught pelagic shark. Frontiers in Marine Science 2:126, doi: 10.3389/fmars.2015.00126
- Dapp, D. R., Huveneers, C., Walker, T. I., Mandelman, J., Kerstetter, D. W., and R. D. Reina. 2016b. Using logbook data to determine the immediate mortality of blue sharks (*Prionace glauca*) and tiger sharks (*Galeocerdo cuvier*) caught in the commercial U.S. pelagic longline fishery. Fishery Bulletin, 115: 27-41.
- Dapp, D. R., Walker, T. I., Huveneers, C., and R. D. Reina. 2016c. Respiratory mode and gear type are important determinants of elasmobranch immediate and post-release mortality. Fish and Fisheries 17:507–524.
- Diaz, G. A. 2011. A simulation study of the results of using different levels of observer coverage to estimate dead discards for the U.S. pelagic longline fleet in the Gulf of Mexico. Collect. Vol. Sci. Pap. ICCAT, SCRS/2010/058, 2206–2212p. Available: https://www.iccat.int/en/pubs_CVSP.html (September, 2019).
- Drymon, J. M., and R. J. D. Wells. 2017. Double tagging clarifies post-release fate of great hammerheads (*Sphyrna mokarran*). Animal Biotelemetry 5:28. https://doi.org/10.1186/s40317-017-0143-x

- Eddy, C., Brill, R., and D. Bernal. 2016. Rates of at-vessel mortality and post-release survival of pelagic sharks captured with tuna purse seines around drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean. Fisheries Research 174:109–117.
- Ellis, J. R., McCully Phillips, S. R., and F. Poisson. 2017. A review of capture and post-release mortality of elasmobranchs. Journal of Fish Biology 90:653–722.
- Fennessy, S. T. 1994. Incidental capture of elasmobranchs by commercial prawn trawlers on the Tugela Bank, Natal, South Africa. South African Journal of Marine Science 14:287–296.
- Fernandez-Carvalho, J., Coelho, R., Santos, M. N., and S. Amorim. 2015. Effects of hook and bait in a tropical northeast Atlantic pelagic longline fishery: part II target, by-catch and discard fishes. Fisheries Research 164:312–321.
- Francis M. P. 1989. Exploitation rates of rig (*Mustelus lenticulatus*) around the South Island of New Zealand. New Zealand Journal of Marine and Freshwater Research 23:239–245.
- French, R. P., Lyle, J., Tracey, S., Currie, S., and J. M. Semmens. 2015. High survivorship after catch-and-release fishing suggests physiological resilience in the endothermic shortfin mako shark (*Isurus oxyrinchus*). Conservation Physiology 3. doi:10.1093/conphys/cov044
- Frick, L. H., Reina, R. D., and T. I. Walker. 2009. The physiological response of Port Jackson sharks and Australian swellsharks to sedation, gill-net capture, and repeated sampling in captivity. North American Journal of Fisheries Management 29:127–139.
- Frick, L. H., Reina, R. D., and T. I. Walker. 2010a. Stress related physiological changes and post-release survival of Port Jackson sharks (*Heterodontus portusjacksoni*) and gummy sharks (*Mustelus antarcticus*) following gill-net and longline capture in captivity. Journal of Experimental Marine Biology and Ecology 385:29–37.
- Frick, L. H., Walker, T. I., and R. D. Reina. 2010b. Trawl capture of Port Jackson sharks, *Heterodontus portusjacksoni*, and gummy sharks, *Mustelus antarcticus*, in a controlled setting: effects of tow duration, air exposure and crowding. Fisheries Research 106:344– 350.
- Frick, L. H., Walker, T. I. and R. D. Reina. 2012. Immediate and delayed effects of gill-net capture on acid-base balance and intramuscular lactate concentration of gummy sharks, *Mustelus antarcticus*. Comparative Biochemistry and Physiology, Part A 162:88–93.
- Gallagher, A. J., Orbesen, E. S., Hammerschlag, N., and J. E. Serafy. 2014a. Vulnerability of oceanic sharks as pelagic longline bycatch. Global Ecology and Conservation 1:50–59.
- Gallagher, A. J., Serafy, J. E., Cooke, S. J. and N. Hammerschlag. 2014b. Physiological stress response, reflex impairment, and survival of five sympatric shark species following experimental capture and release. Marine Ecology Progress Series 496:207–218.
- Gallagher, A. J., Staaterman, E. R., Cooke, S. J., and N. Hammerschlag. 2017. Behavioural responses to fisheries capture among sharks caught using experimental fishery gear. Canadian Journal of Fisheries and Aquatic Sciences 74:1–7. doi:10.1139/cjfas-2016-0165.
- Godin, A. C., Carlson, J. K. and V. Burgener. 2012. The effect of circle hooks on shark catchability and at-vessel mortality rates in longlines fisheries. Bulletin of Marine Science 88:469–483.
- Goodyear, C. P. 2002. Factors affecting robust estimates of the catch-and-release mortality using pop-off tag technology. *In* Lucy J. A., and Studholme A. L., eds, Catch and release in marine recreational fisheries. American Fisheries Society, Bethesda, MD, USA, pp 172– 179. doi: https://doi.org/10.47886/9781888569308.

- Gulak, S. J. B., de Ron Santiago, A. J., and J. K. Carlson. 2015. Hooking mortality of scalloped hammerhead *Sphyrna lewini* and great hammerhead *Sphyrna mokarran* sharks caught on bottom longlines. African Journal of Marine Science 37:267-273.
- Gurshin, C. W. D., and S. T. Szedlmayer. 2004. Short-term survival and movements of Atlantic sharpnose sharks captured by hook-and-line in the north-east Gulf of Mexico. Journal of Fish Biology 65:973–986.
- Hammerschlag, N., Gallagher, A. J., and D. M. Lazarre. 2011. A review of shark satellite tagging studies. Journal of Experimental Marine Biology and Ecology 398:1–8. https://doi.org/10.1016/j.jembe.2010.12.012
- Heberer, C., Aalbers, S. A., Bernal, D., Kohin, S., DiFiore, B., Sepulveda, C. A. 2010. Insights into catch-and-release survivorship and stress-induced blood biochemistry of common thresher sharks (*Alopias vulpinus*) captured in the southern California recreational fishery. Fisheries Research 106:495–500.
- Heupel, M. R., and C. A. Simpfendorfer. 2002. Estimation of mortality of juvenile blacktip sharks, *Carcharhinus limbatus*, within a nursery area using telemetry data. Canadian Journal of Fisheries and Aquatic Sciences 59:624–632.
- Hight, B. V., Holts, D., Graham, J. B., Kennedy, B. P., Taylor, V., Sepulveda, C. A., Bernal, D., Ramon, D., Rasmussen, R., and N. C. Lai. 2007. Plasma catecholamine levels as indicators of the post-release survivorship of juvenile pelagic sharks caught on experimental drift longlines in the Southern California Bight. Marine and Freshwater Research 58:145–151.
- Hoffmayer, E. R., Hendon, J. M., and G. R. Parsons. 2012. Seasonal modulation in the secondary stress response of a carcharhinid shark, *Rhizoprionodon terraenovae*. Comparative Biochemistry and Physiology, Part A 162:81–87.
- Hoffmayer, E. R., and G. R. Parsons. 2001. The physiological response to capture and handling stress in the Atlantic sharpnose shark, *Rhizoprionodon terraenovae*. Fish Physiology and Biochemistry 25:277–285.
- Holland, K. N., Wetherbee, B. M., Lowe, C. G., and C. G. Meyer. 1999. Movements of tiger sharks (*Galeocerdo cuvier*) in coastal Hawaiian waters. Marine Biology 134:665–673.
- Holts, D. B., and D. W. Bedford. 1993. Horizontal and vertical movements of the shortfin mako shark, *Isurus oxyrinchus*, in the Southern California bight. Australian Journal of Marine and Freshwater Research 44:901–909.
- Hueter, R. E., and C. A. Manire. 1994. Bycatch and catch-release mortality of small sharks in the Gulf coast nursery grounds of Tampa Bay and Charlotte Harbor. Technical Report No. 368 (Final report to NOAA/NMFS, MARFIN Project NA17FF0378-01), 183 pp. Available from Mote Marine Laboratory.
- Hueter, R. E., Manire, C. A., Tyminski, J. P., Hoenig, J. M., and D. A. Hepworth. 2006. Assessing mortality of released or discarded fish using a logistic model of relative survival derived from tagging data. Transactions of the American Fisheries Society 135:500–508.
- Hutchinson, M. R., Itano, D. G., Muir, J. A., and K. N. Holland, 2015. Post-release survival of juvenile silky sharks captured in a tropical tuna purse seine fishery. Marine Ecology Progress Series 521:143–154.
- Hyatt, M. W., Anderson, P. A., and P. M. O'Donnell. 2016. Behavioral release condition score of bull and bonnethead sharks as a coarse indicator of stress. Journal of Coastal Research: 1464–1472.

- Hyatt, M. W., Anderson, P. A., O'Donnell, P. M., and I. K. Berzins. 2012. Assessment of acidbase derangements among bonnethead (*Sphyrna tiburo*), bull (*Carcharhinus leucas*), and lemon (*Negaprion brevirostris*) sharks from gillnet and longline capture and handling methods. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 162(2):113–120.
- Jerome, J. M., Gallagher, A. J., Cooke, S. J., and N. Hammerschlag. 2018. Integrating reflexes with physiological measures to evaluate coastal shark stress response to capture. ICES Journal of Marine Science 75:796–804. https://doi.org/10.1093/icesjms/fsx191
- Kerstetter, D. W., and J. E. Graves. 2006. Survival of white marlin (*Tetrapturus albidus*) released from commercial pelagic longline gear in the western North Atlantic. Fish Bull 104:434–444.
- Lowe, C. G. 2001. Metabolic rates of juvenile scalloped hammerhead sharks (*Sphyrna lewini*). Marine Biology 139:447–453.
- Mandelman, J. W., and M. A. Farrington. 2007a. The estimated short-term discard mortality of a trawled elasmobranch, the spiny dogfish (*Squalus acanthias*). Fisheries Research 83:238–245.
- Mandelman, J. W., and M. A. Farrington. 2007b. The physiological status and mortality associated with otter-trawl capture, transport, and captivity of an exploited elasmobranch, *Squalus acanthias*. ICES Journal of Marine Science 64:122–130.
- Mandelman, J. W., and G. B. Skomal. 2009. Differential sensitivity to capture stress assessed by blood acid-base status in five carcharhinid sharks. Journal of Comparative Physiology, Part B 179:267–277.
- Manire, C., Hueter, R., Hull, E., and R. Spieler. 2001. Serological changes associated with gillnet capture and restraint in three species of sharks. Transactions of the American Fisheries Society 130:1038–1048.
- Marshall, H., Field, L., Afiadata, A., Sepulveda, C., Skomal, G., and D. Bernal. 2012. Hematological indicators of stress in longline-captured sharks. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 162:121–129.
- Marshall, H., Skomal, G., Ross, P. G., and D. Bernal. 2015. At-vessel and post-release mortality of the dusky (*Carcharhinus obscurus*) and sandbar (*C. plumbeus*) sharks after longline capture. Fisheries Research 172:373–384.
- McLoughlin, K., and G. Eliason. 2008. Review of information on cryptic mortality and survival of sharks and rays released by recreational fishers, Australian Government Bureau of Rural Resources, GPO Box 858, Canberra ACT 2601, Australia, 22 p.
- Morgan, A., and G. H. Burgess. 2007. At-vessel fishing mortality for six species of sharks caught in the northwest Atlantic and Gulf of Mexico. Gulf and Caribbean Research 19:123–129.
- Morgan, A., Carlson, J., Ford, T., Siceloff, L., Hale, L., Allen, M. S., and G. Burgess. 2010. Temporal and spatial distribution of finfish bycatch in the U.S. Atlantic bottom longline shark fishery. Marine Fisheries Review 72:34–38.
- Morgan, A., and J. K. Carlson. 2010. Capture time, size and hooking mortality of bottom longline-caught sharks. Fisheries Research 101:32–37.
- Morgan, A., Cooper, P. W., Curtis, T. H., and G. H. Burgess. 2009. Overview of the U.S. east coast bottom longline shark fishery, 1994–2003. Marine Fisheries Review 71:23–38.
- Moyes, C. D., Fragoso, N., Musyl, M. K., and R. W. Brill. 2006. Predicting postrelease survival in large pelagic fish. Transactions of the American Fisheries Society 135:1389–1397.

- Musyl, M. and E. L. Gilman. 2019. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks. Fish and Fisheries, doi:10.1111/faf.12358.
- Musyl, M. K., Brill, R. W., Curran, D. S., Fragoso, N. M., McNaughton, L. M., Nielsen, A., Kikkawa, B. S., and C. D. Moyes. 2011. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fishery Bulletin 109:341–368.
- Musyl, M. K., Moyes, C. D., Brill, R. W., and N. M. Fragoso. 2009. Factors influencing mortality estimates in post-release survival studies. Marine Ecology Progress Series 396:157–159.
- NEFSC (Northeast Fisheries Science Center). 2006. Report of the 43rd Northeast Regional Stock Assessment Workshop (43rd SAW), Stock Assessment Review Committee (SARC) consensus summary of assessments. NEFSC Ref. Doc. 06-25. Available: http://nefsc.noaa.gov/publications/crd/crd0625/ (Oct 2019).
- NMFS (National Marine Fisheries Service). 2011a. Southeast Data Assessment and Review (SEDAR) 21 stock assessment report; Highly Migratory Species (HMS) Atlantic blacknose shark. October, 2011. DOC/NOAA/NMFS, Highly Migratory Species Management Division, 1315 East-West Highway, Silver Spring, Maryland 20910. Available: https://sedarweb.org/sedar-21 (October, 2019).
- NMFS (National Marine Fisheries Service). 2011b. Southeast Data Assessment and Review (SEDAR) 21 stock assessment report; Highly Migratory Species (HMS) dusky shark. October, 2011. DOC/NOAA/NMFS, Highly Migratory Species Management Division, 1315 East-West Highway, Silver Spring, Maryland 20910. Available: https://sedarweb.org/sedar-21 (October, 2019).
- NMFS (National Marine Fisheries Service). 2011c. Southeast Data Assessment and Review (SEDAR) 21 stock assessment report; Highly Migratory Species (HMS) Gulf of Mexico blacknose shark. October, 2011. DOC/NOAA/NMFS, Highly Migratory Species Management Division, 1315 East-West Highway, Silver Spring, Maryland 20910. Available: https://sedarweb.org/sedar-21 (October, 2019).
- NMFS (National Marine Fisheries Service). 2011d. Southeast Data Assessment and Review (SEDAR) 21 stock assessment report; Highly Migratory Species (HMS) sandbar shark. October, 2011. DOC/NOAA/NMFS, Highly Migratory Species Management Division, 1315 East-West Highway, Silver Spring, Maryland 20910. Available: https://sedarweb.org/sedar-21 (October, 2019).
- NMFS (National Marine Fisheries Service). 2012. Southeast Data Assessment and Review (SEDAR) 29 stock assessment report: Highly Migratory Species (HMS) Gulf of Mexico blacktip shark. July, 2012. DOC/NOAA/NMFS SEDAR, 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405. Available: https://sedarweb.org/sedar-29 (October, 2019).
- NMFS (National Marine Fisheries Service). 2013a. Southeast Data Assessment and Review (SEDAR) 34 stock assessment report: Highly Migratory Species (HMS) Atlantic sharpnose shark. September, 2013. DOC/NOAA/NMFS SEDAR, 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405. Available: https://sedarweb.org/sedar-34 (October, 2019).
- NMFS (National Marine Fisheries Service). 2013b. Southeast Data Assessment and Review (SEDAR) 34 stock assessment report: Highly Migratory Species (HMS) bonnethead shark. September, 2013. DOC/NOAA/NMFS SEDAR, 4055 Faber Place Drive, Suite

201, North Charleston, SC 29405. Available: https://sedarweb.org/sedar-34 (October, 2019).

- NMFS (National Marine Fisheries Service). 2018. Update assessment to SEDAR 29 HMS Gulf of Mexico blacktip shark. DOC/NOAA/NMFS SEDAR, 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405. 99 pp. Available: http://sedarweb.org/2018-updatesedar-29-hms-gulf-mexico-blacktip-shark (October, 2019).
- NMFS (National Marine Fisheries Service). 2020. Southeast Data Assessment and Review (SEDAR) 65 Atlantic blacktip shark stock assessment report: Highly Migratory Species (HMS) Gulf of Mexico blacktip shark. December, 2020. DOC/NOAA/NMFS SEDAR, 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405. Available: http://sedarweb.org/sedar-65 (December, 2021).
- Oliver, S., Braccini, M., Newman, S. J., and E. S. Harvey. 2015. Global patterns in the bycatch of sharks and rays. Marine Policy 54:86-97.
- Poisson, F., Crespo, F. A., Ellis, J. R., Chavance, P., Pascal, B., Santos, M. N., Séret, B., Korta, M., Coelho, R, Ariz, J., and H. Murua. 2016. Technical mitigation measures for sharks and rays in fisheries for tuna and tuna-like species: turning possibility into reality. Aquatic Living Resources 29:402, doi:10.1051/alr/2016030.
- Poisson, F., Filmalter, J. D., Vernet, A.-L., and L. Dagorn. 2014. Mortality rate of silky sharks (*Carcharhinus falciformis*) caught in the tropical tuna purse seine fishery in the Indian Ocean. Canadian Journal of Fisheries and Aquatic Sciences 71:795–798.
- Raby, G. D., Packer, J. R., Danylchuk, A. J. and S. J. Cooke. 2013. The understudied and underappreciated role of predation in the mortality of fish released from fishing gears. Fish and Fisheries, doi:10.1111/faf.12033.
- Reid, D. D., and M. Krogh. 1992. Assessment of catches from protective shark meshing off NSW beaches between 1950 and 1990. Marine and Freshwater Research 43:283–296.
- Renshaw, G. M. C., Kutek, A. K., Grant, G. D., and S. Anoopkumar-Dukie. 2012. Forecasting elasmobranch survival following exposure to severe stressors. Comparative Biochemistry and Physiology, Part A 162:101–112.
- Rogers, P. J., Knuckey, I., Hudson, R. J., Lowther, A. D., and L. Guida. 2017. Post-release survival, movement, and habitat use of school shark *Galeorhinus galeus* in the Great Australian Bight, southern Australia. Fisheries Research 187:188–198.
- Rulifson, R. A. 2007. Spiny dogfish mortality induced by gill-net and trawl capture and tag and release. North American Journal of Fisheries Management 27:279-285.
- Scarponi, V., Gennari, E., and W. Hughes. 2021. Physiological response to capture stress in endemic Southern African catsharks (family Scyliorhinidae). Journal of Fish Biology 99: 186–196. https://doi.org/10.1111/jfb.14710
- Scott-Denton, E., Cryer, P. F., Gocke, J. P., Harrelson, M. R., Kinsella, D. L., Pulver, J. R., Smith, R. C., and Williams J. A. 2011. Descriptions of the US Gulf of Mexico reef fish bottom longline and vertical line fisheries based on observer data. Marine Fisheries Review 73:1–26.
- Sepulveda, C. A., Heberer, C., Aalbers, S. A., Spear, N., Kinney, M., Bernal, D., and S. Kohin. 2015. Post-release survivorship studies on common thresher sharks (*Alopias vulpinus*) captured in the southern California recreational fishery. Fisheries Research 161:102–108.
- Serafy, J. E., Orbesen, E. O., Snodgrass, D. J. G., Beerkircher, L. R., and J. F. Walter. 2012. Hooking survival of fishes captured by the United States Atlantic pelagic longline

fishery: impact of the 2004 circle hook rule. Bulletin of Marine Science 88:605–621. http://dx.doi.org/10.5343/bms.2011.1080

- Skomal, G. B. 2007. Evaluating the physiological and physical consequences of capture on postrelease survivorship in large pelagic fishes. Fisheries Management and Ecology 14:81– 89.
- Skomal, G. B., and J. W. Mandelman. 2012. The physiological response to anthropogenic stressors in marine elasmobranch fishes: A review with a focus on the secondary response. Comparative Biochemistry and Physiology, Part A 162:146–155.
- Stobutzki, I. C., Miller, M. J., Heales, D. S., and D. T. Brewer. 2002. Sustainability of elasmobranchs caught as bycatch in a tropical prawn (shrimp) trawl fishery. Fishery Bulletin 100:800–821.
- Thorpe, T., and D. Frierson. 2009. Bycatch mitigation assessment for sharks caught in coastal anchored gillnets. Fisheries Research 98:102–112.
- Walker, T.I., Hudson, R.J. and A. S. Gason. 2005. Catch evaluation of target, by-product and bycatch species taken by gillnets and longlines in the shark fishery of south-eastern Australia. Journal of Northwest Atlantic Fishery Science 35:505–530.
- Whitney, N. M., Lear, K. O., Morris, J. J., Hueter, R. E., Carlson, J. K., and H. M. Marshall. 2021. Connecting post-release mortality to the physiological stress response of large coastal sharks in a commercial longline fishery. PLoS ONE 16(9): e0255673. https://doi.org/10.1371/journal.pone.0255673
- Whitney, N. M., White, C. F., Anderson, P. A., Hueter, R. E., and G. B. Skomal. 2017. The physiological stress response, postrelease behavior, and mortality of blacktip sharks (*Carcharhinus limbatus*) caught on circle and J-hooks in the Florida recreational fishery. Fishery Bulletin 115:532-543.
- Whitney, N. M., White, C. F., Gleiss, A. C., Schwieterman, G. D., Anderson, P., Hueter, R. E., and G. B. Skomal. 2016. A novel method for determining post-release mortality, behavior, and recovery period using acceleration data loggers. Fisheries Research, 183: 210-221.
- Worm, B., Davis, B., Kettemer, L., Ward-Paige, C. A., Chapman, D., Heithaus, M. R., Kessel, S. T. and S. H. Gruber. 2013. Global catches, exploitation rates, and rebuilding options for sharks. Marine Policy 40:194–204.

Table 1. Delayed discard-mortality rate, M_D, estimates obtained for hammerhead sharks from the literature review.

Gear/Source	Hammer- head(s)	Scientific name	Delayed discard mortality rate (M_D)	Notes
Longline (pelagic)				
NA (see Meta-analysis)				
L				
Longline (demersal)				The manufactor of devilate the design of the
Drymon and Wells (2017)	Great hammerhead	Sphyrna mokarran	0% (Satellite tag; n = 3) 187-250 cm STL	number of days at liberty measured by the sPAT tags was 24 days (ranging from 20 to 30 days). Fishery-independent bottom longline sampling in the northern Gulf of Mexico set for 1 h. Double tagging [n = 3; with electronic tags] to distinguish satellite tag failure from animal mortality. Tagged great hammerheads were deemed to be in good condition (i.e., active and responsive, little or no visible external damage).
Gallagher et al. (2014b)	Great hammerhead	Sphyrna mokarran	46.4% (Satellite tag; n = 28) 101-345 cm TL; 289.8 ± 30.6 (mean ± SD)	Percentage of satellite tagged sharks reporting after four weeks (53.6%, n = 28). Fishery independent baited drumline (n = 10) soaked for at least one hour. All satellite-tagged animals swam away in
				good condition (strong tail beat and swimming behavior).
Hook and line				
NA (see Meta-analysis)				
Gillnet				
Braccini et al. (2012)	Smooth hammerhead	Sphyrna zygaena	43.2% (Based on an assessment of at-vessel condition; n = 122)	The average risk of delayed post-capture survival (PCS) in a southern Australia commercial gillnet shark fishery was estimated based on an assessment of at-vessel condition. For <i>S. zygaena</i> , delayed survival (S_D = 56.8%, n = 122; 89% at-vessel mortality rate) was obtained from Braccini et al. (2012 their Table 2); PRLDM was then calculated as M_D = (1- S_D) = 43.2%.
Hueter et al. (2006)	Bonnethead	Sphyrna tiburo	40% (30%LCI, 55% UCI) Estimate based on relative numerical tag and recapture events assuming that sharks in the best condition survived to the same degree as sharks that were not captured	Juvenile and small adult sharks captured with research gillnets in Florida estuaries. For S. tiburo, delayed survival (M_D = 40%) from the stress of gill-net capture, tagging, and release was obtained from Hueter et al. (2006; n tagged = 4,352, n recovered = 155). The 95% LCI and UCI were calculated in MS Excel following Hueter et al 2006, their equations 10 and 11, with data provided in their tables 3 and 4.

		r		
Trawl				
NA				
1121				
Purse seine				
Eddy et al. (2016)	Scalloped hammerhead	Sphyrna lewini	100% (PSAT, n = 3)	At-vessel mortality and post-release survival of pelagic sharks captured with tuna purse seines in the equatorial Eastern Pacific Ocean associated drifting fish aggregating devices (FADs) Three scalloped hammerhead (100%) showed evidence of post-release mortality.
D ·				
Keviews				
NA				
Moto analyzas				
<u>Meta-analyses</u>				Description of the second montality (TDM) attained from
Dapp et al. (2016c)	Elasmobranchs	(Obligate ram- ventilators)	Gillnet (35.9%) Longline (19.51%) Trawl – Scenario 1 (22.12%) Trawl – Scenario 2 (54.42%) Trawl – Scenario 3 (58.02%)	reducted mean total discard mortality (1DM) obtained from immediate mortality (IM; 83 species) and post-release mortality (PM; 40 species) of obligate ram-ventilating elasmobranchs caught in longline, gillnet and trawl gear types using Bayesian models (immediate mortality), non-parametric tests (gillnet post- release mortality), arithmetic average (longline post-release mortality) and three approximation scenarios (trawl post- release mortality). Studies limited to N ≥ 15.
Musyl and Gilman (2019)	Scalloped hammerhead Pelagic sharks	Sphyrna lewini	87.5% (26.6% LCI, 99.3% UCI) One study (Eddy et al (2016, Purse-seine): Dead=3, Tagged = 3. 26.8% (19.3% LCI, 36.0% UCI) 33 studies (longline, purse-seine, rod & reel): Dead=95, Tagged = 401	Random-effects meta-analysis synthesized M_D in seven pelagic shark species captured, tagged and released with 401 pop-up satellite archival tags compiled from 33 studies and three gears (longline, purse-seine, rod & reel). See Table X for breakdown by species

Table 2. Delayed discard-mortality rates, M_D, obtained for pelagic sharks from meta-analyses (Musyl and Gilman 2019 their Figures 3 and 6).).

Species	Gear or disposition	Estimate	LCI	UCI	Mortality	Ν
Blue (9 studies)		0.17	0.107	0.259	28	158
Silky (8 studies)	Purse-seine	0.475	0.31	0.645	29	63
Silky (3 studies)	Longline	0.164	0.008	0.819	7	45
Common Thresher (3 studies)		0.353	0.072	0.793	12	35
Shortfin Mako (5 studies)		0.254	0.137	0.42	15	67
Oceanic White-tip (2 studies)		0.163	0.008	0.831	1	15
Bigeye Thresher (2 studies)		0.225	0.081	0.49	3	15
Scalloped Hammerhead (1 study) ¹		0.875	0.266	0.993	3	3
Overall		0.268	0.193	0.36	95	401
Pelagic sharks	Healthy (27 studies) ²	0.199	0.148	0.263	59	346
Pelagic sharks	Unhealthy (6 studies)	0.647	0.507	0.763	36	55

¹ Scalloped Hammerhead sharks were captured in tuna purse seine sets around FADs (Eddy et. al 2016).
 ² Scalloped Hammerhead sharks were included in the healthy pelagic shark grouping.

Table 3. Predicted mean total discard mortality (TDM) obtained from meta-analysis of immediate mortality (IM; 83 species) and post-release mortality (PM; 40 species) obligate ram-ventilating (Panel A) and stationary respiring (Panel B) elasmobranchs (adapted from Dapp et al. 2016c, their Table 2).

А

Gear type	Respiratory mode	IM (%)	PM (%)	TDM (%)
Gillnet	Obligate ram-ventilating	67.3	35.9	79
Longline	Obligate ram-ventilating	37.6	19.51	49.8
Trawl – Scenario 1	Obligate ram-ventilating	62.5	22.12	70.8
Trawl – Scenario 2	Obligate ram-ventilating	62.5	54.42	82.9
Trawl – Scenario 3	Obligate ram-ventilating	62.5	58.02	84.2

 $TDM = [1-(1-IM/100)\times(1-PM/100)]\times 100.$

Sample size $n \ge 15$ in each study.

Immediate mortality studies comprised primarily pelagic longline (83% of studies), benthic gillnet (64%), and benthic trawls (100%).

Post-release mortality studies comprised a greater proportion of species capable of stationary respiration 76% (24 of 33 data points) compared to the immediate mortality analysis 55% (61 of 111 data points).

Post-release mortality of obligate ram ventilating species was under-represented in trawls and, consequently, was estimated from other sources based on three scenarios:

Trawl – Scenario 1 "[A]ssumed that respiratory mode did not affect post-release mortality and we used the mean post-release mortality percentage of stationary-respiring species to model the post-release mortality percentage of obligate ram ventilating species."

Trawl – Scenario 2 "[A]ssumed that changes in immediate mortality percentages caused by respiratory mode would be similar to changes in post-release mortality percentages caused by respiratory mode in trawl-caught species."

Trawl – Scenario 3 "[A]ssumed that the impact of respiratory mode on post-release mortality percentages of trawl-caught species was similar to the impact of respiratory mode on post-release mortality percentages of gillnet-caught elasmobranchs."

. 1	
	_
	_

Gear type	Respiratory mode	IM (%)	PM (%)	TDM (%)
Gillnet	Stationary respiring	13.4	13.7	25.3
Longline	Stationary respiring	4.6	2.71	7.2
Trawl	Stationary respiring	25.4	22.1	41.9

16

	Discard mor	tality rates by gear type		
Working group	Longline	Hook and line	Gillnet	Trawl
	A. S	EDAR 21 ¹		
	S	andhar shark		
LH WG	38.24%	3.25%	NA	NA
Catch WG	2% (Pelagic longline); 5% (Bottom longline)	NA	5%	NA
DW*	28.5% (Pelagic longline); 28.5 - 38.0% (Bottom longline)	3.2%	5 - 10%	NA
	Bl	acknose shark		
LH WG	71.18%	6.6%	NA	67.0%
Catch WG	50% (Bottom longline)	NA	50% (Drift gillnet); 5% (Strike gillnet); 25% (Sink gillnet)	NA
DW*	50 – 71% (Bottom longline)	6.6%	Same as Catch WG	67.0%
	Т	Ducky chark		
LH WG	65.17%	6.0%	NA	NA
Catch WG	5% (Pelagic longline);	NA	50%	NA
DW*	44.2% (Pelagic longline); 44.2 – 65% (Bottom longline)	6.0%	50%	NA
	Gulf of Mex	ico blacktip shark	Γ	1
AP *	31% (Base) 19 – 73% (Range)	10% (Base) 5 – 15% (Range)	31% (Base)	NA
	C. SI	EDAR 34 ³		
	Atlantic s	harpnose shark		
AP *	35% (Base) 19 – 82% (Range)	10% (Base) 5 – 15% (Range)	58.5% (Base) 35 – 82% (Range)	NA
	Bonne	thead shark		
AP *	40% (Base)	10% (Base)	65.5% (Base)	NΔ
	19–91% (Range)	5 – 15% (Range)	40 – 91% (Range)	11/1
	D. SEDA	AR 29 Update ⁴		
	Gulf of Mex	ico blacktip shark		
AP *	31% (Base)	9.7% (Base)	31% (Base)	NA
AP *	NA	10 - 19% (Range)	NA	NA
(See Appendix B fo	E. Sl or a summary decisions from the recent Atlantic	EDAR 65 ⁵ SEDAR 65 Atlantic blackti blacktip shark	ip domestic shark stock as	sessment)
DIVIT	44.2% (Base, Bottom longline)	18.5% (Base)	31% (Base)	NA
DW*	34.0–54.8% (Range)	10.8–28.7% (Range)	8.7-44.4% (Range)	NA
*Final decisions ad	opted for stock assessment.			•

Table 4. Previous SEDAR domestic shark post-release live-discard mortality (PRLDM) rate decisions from recent stock assessments.

Table 4. Continued.

Footnotes:

¹SEDAR 21 life history (LH) working group (WG) decisions adopted by NMFS (2011a, 2011b, 2011c, 2011d their sections II Data Workshop Report, sub-section 2.5 Discard Mortality); SEDAR 21 catch WG and final data workshop (DW) panel decisions adopted by NMFS (2011a, 2011b, 2011c, 2011d their sections II Data Workshop Report, sub-section 3.4.2. Post Release Mortality); ²SEDAR 29 assessment process (AP) decisions adopted by NMFS (2012 their sections 2.2.2.3—Commercial Discards Datasets—and 2.2.2.5—Recreational Discards Datasets and Decisions); ³SEDAR 34 assessment process (AP) decisions adopted by NMFS (2013a, 2013b their sections 2.2.2.3 and 2.2.2.4); ⁴SEDAR 29 update assessment process (AP) decisions adopted by NMFS (2013a, 2013b their sections 2.2.2.3 and 2.2.2.4); ⁴SEDAR 29 update assessment process (AP) decisions adopted by NMFS (2012)

Appendix A. Literature database search for post-release live-discard mortality (PRLDM) rates in sharks.

Primary Literature		Species	l	Gear ty	pe			5	Study type	-		Notes
	Hammer- head(s)	Other	Pelagic longline	Demersal longline	Hook and Line	Gillnet	Trawl	Physi- ological or behavioral	Electronic tagging	Lab.	Other	
<u>Longline</u> (pelagic)												
Afonso et al. (2011)	Х	Pelagic sharks	Х								Experimental pelagic longline sets	At-vessel mortality
Afonso et al. (2012)	Х	Pelagic sharks	Х								Experimental pelagic longline sets	At-vessel mortality
Beerkircher et al. (2004)	Х	Pelagic sharks	Х								Commercial fisheries	Catch disposition
Bromhead et al. (2012)	х	Pelagic sharks - Tropical Pacific	Х								Commercial fisheries research	At-vessel mortality
Campana et al. (2016)		Blue, porbeagle, shortfin mako	Х						Х		Observer data	At-vessel mortality and PRLDM
Campana et al. (2009a, 2009b)		Blue	Х						Х			PRLDM
Coelho et al. (2011)	Х	Pelagic sharks - Atlantic and Indian Ocean	Х								Observer data	At-vessel mortality
Coelho et al. (2012)	Х	Pelagic sharks - Atlantic	Х								Observer data	At-vessel mortality
Coelho et al. (2013)		Blue	Х								Observer data	At-vessel mortality rate models GLM and GEE
Dapp et al. (2016a)		Bonze whaler	Х	Х				Х			Research longline	At-vessel mortality
Dapp et al. (2016b)		Blue, tiger, oceanic whitetip, and porbeagle	Х								Commercial logbook	At-vessel mortality
Diaz (2011)		Many	Х								Observer data	At-vessel mortality
Fernandez-	Х	Many	Х								Experimental	At-vessel

|--|

Carvalho, J., et al. (2015)						pelagic longline sets	mortality
Gallagher et al. (2014a)	Х	Pelagic sharks - Atlantic	Х			Observer data	At-vessel mortality - logistic regression integrated with reproductive potential
Moyes et al. (2006)		Blue	Х	Х	Х		PRLDM
Musyl et al. (2009)		Blue	Х	Х	Х		PRLDM
Musyl et al. (2011)		Blue, mako, others	Х		Х	Meta-analysis	PRLDM
Serafy et al. (2012)		Blue, silky	Х			Observer data	At-vessel mortality - logistic regression, comparing circle and j- hook
<u>Longline</u> (demersal)							
Afonso and Hazin (2014)		Tiger	Х		Х		PRLDM
Brooks et al. (2015)		Deep-water elasmobranch assemblage - Bahamas	Х		Х	Research longline	At-vessel mortality and PRLDM
Butcher et al. (2015)	Х	Coastal sharks	Х	х		Commercial fisheries research	At-vessel mortality, stress response
Drymon and Wells (2017)	Х		Х		Х	Research longline	PRLDM
Gallagher et al. (2014b)	Х	Coastal sharks	Х	Х	Х	Drum-line	PRLDM, stress response Behavioral
Gallagher et al. (2017)	X	Blacktip, nurse, tiger, and great hammerhead	Х	x	х	Drum-line	response to capture measured with accelerometers attached to the fishing gear
Gulak et al. (2015)	Х	Coastal sharks	Х			Commercial fisheries research	At-vessel mortality
Marshall et al.		Dusky,	Х		Х	Commercial	At-vessel

(2015)		sandbar						fisheries research	mortality, PRLDM
Morgan and Burges (2007)	Х	Coastal sharks	Х					Observer data	At-vessel mortality
Morgan and Carlson (2010)		Many	Х					Research/ commercial longline	At-vessel mortality
Morgan et al. (2009)	Х	Many	Х					Observer data	At-vessel mortality Spatial and
Morgan et al. (2010)		Many	Х					Observer data	temporal bycatch distribution
Rogers et al. (2017)		School shark	Х				Х	PAT	PRLDM
Scott-Denton et al. (2011)	Х	Many	Х					Observer data	Bycatch disposition
Whitney et al. (2021)		Large coastal sharks	Х			Х	Х	Research/ commercial longline	PRLDM and At-vessel mortality
Hook and line									Post-release
Bullock et al. (2015)		Lemon		Х			х	Net pen	behavior of tagged sharks in net pens and in situ
Danylchuk et al. (2014)		Lemon (majority neonate)		Х		Х	Х	Reflex indices	how sharks were tracked
(2015) Gurshin and		mako		Х		Х	Х	sPAT	PRLDM
Szedlmayer (2004) Heberer et al		Atlantic sharpnose Common		Х			Х		PRLDM
(2010) Heupel and		thresher		Х		Х	Х	PSAT	PRLDM
(2002) Holland et al.		Blacktip		Х			Х		PRLDM Movement
(1999) Holts and Bedford		Tiger Shortfin		Х			Х		rates Movement
(1993) Mandelman and		mako		Х			Х	Captured and	rates
(2007a)		Spiny dogfish		Х	Х			pen (72 hrs)	PRLDM
Sepulveda et al. (2015)		Common thresher		Х				PSAT	PRLDM

Whitney et al.								
(2016) Whiteau et al		Blacktip	Х			Х		PRLDM
(2017) (2017)		Blacktip	Х			Х		PRLDM
Gillnet								
Bell and Lyle (2016)		Australian swellshark	Х				Tank trials	PRLDM
Braccini et al. (2012)	Х	Many species	Х				Risk assessment	At-vessel mortality and post capture survival based on an
Francis (1989)			Х	х			Large scale	assessment of at-vessel condition Noted that recapture rates were lower for
							tagging study	trawl than set- net
Hueter and Manire (1994)		Many	Х			Х	Tagging study	PRLDM
Hueter et al. (2006)	Х	Bonnethead and Blacktip	Х				2	PRLDM
Reid and Krogh (1992)	Х	Many	Х				Protective shark meshing	At-net mortality
Rulifson (2007)		Spiny dogfish	Х	Х			Captured and held in net- pen (48 hrs)	PRLDM
Thorpe and Frierson (2009)	Х	Many species	Х				Bycatch mitigation	At-vessel mortality
<u>Trawl</u>							a	
Fennessy (1994)	Х	Many species		Х			Commercial prawn trawl fisheries	Bycatch disposition
Stobutzki et al. (2002)		Many species		Х			lisiteries	At-vessel mortality
Purse seine							Ŧ	
Eddy et al. (2016)	Х	Silky shark				Х	seine around FAD	At-vessel mortality, PRLDM
Hutchinson et al. (2015)		Silky			Х	Х	Tuna purse seine	At-vessel mortality, PRLDM
Poisson et al.		Silky				Х	Tuna purse	At-vessel

(2014)										seine	mortality, PRLDM
Physiology Barham and Schwartz (1992)									Х		
Brooks et al. (2011)	Lemon						Х		Х		
Brooks et al. (2012)	Caribbean reef		mid- water longlines				Х				
Cain et al. (2004)	Southern stingray		C			Х	х				
Cicia et al. (2012)	Skates						Х		Х		Aerial exposure and acute thermal
Cliff and Thurman (1984)	Dusky			Х			х				511055
Frick et al. (2009)	Benthic				Х		х		Х		
Frick et al.	Benthic		х		х		х		Х		
Frick et al.	Benthic					Х	х		Х		
(20100) Frick et al. (2012)	Benthic				х		х		Х		
Gallagher et al. (2014b)	Five species of coastal X sharks						Х	Х		Drum-line	PRLDM, stress response
Gallagher et al. (2017)	Blacktip, nurse, tiger, great hammerhead		Х				x	Х		Drum-line	Behavioral response to capture measured with accelerometers attached to the
	X Pelagic										fishing gear
Hight et al. (2007) Hoffmayer and	sharks	Х		Х			Х				
Parsons (2001) Hoffmayer et al.	sharpnose			Х			X				Seasonal
(2012)	sharpnose			Х			Х				component
Hyatt et al. (2016)	Bonnethead, bull X				Х		Х				release condition score (BRCS)
Hyatt et al. (2012)	Bonnethead, X bull lemon				х		х				Stress
Jerome et al.	X Coastal		Х				Х				Stress

(2018)		sharks									response
Lowe 2001	х	Juv. scalloped hammerhead						х		Х	Metabolic rate
Mandelman and Farrington		Spiny dogfish					Х	х			
(2007b) Mandelman and Skomal (2009)		Carcharhinid sharks		Х				х			Stress response
Manire et al. (2001)	х	Bonnethead, blacktip, bull				Х		х			Behavioral and serological response
Marshall et al. (2012)		Eleven pelagic and coastal	Х	Х				Х			Stress response
Scarponi et al (2021)		species African catsharks			Х			х			Stress response
Skomal (2007)		pelagic species						Х	Х	Review article	
Skomal and Mandelman (2012)		Many species						Х		Review article	
General review											
Dapp et al. (2016c)	Х	Many	Х	Х		х	Х			Meta-analysis	Review of PRLDM and at-vessel- mortality
Ellis et al. (2017)	Х	Many	Х	Х		Х	Х			Review article	Review of PRLDM and at-vessel- mortality meta-analysis
Godin et al. (2012)	Х	Pelagic and coastal sharks	Х	Х						Review	and analysis of covariance to test the effects of circle hooks on catchability and at-vessel
Hammerschlag (2011)	Х	Many							Х	Review - tag failure	mortality rates A review of shark satellite tagging studies
Musyl and Gilman	Х	Pelagic sharks	Х		х					Meta-analysis	PRLDM
(2019) Oliver et al.		Many								Review	Reviews

(2015)						article	published results of PRLDM and at-vessel-
Poisson et al. (2016) Raby et al. (2013)	Х	Many	Х			Review article Review	mortality bycatch- mitigation
Renshaw et al. (2012)	Х	Many species			Х	Review article	Biochemistry
Worm et al. (2013)			Х			Review	PRLDM pelagic longline
<u>Government</u>							
<u>report</u>		Blue,					Estimation of bycatch
Campana et al. (2011)		porbeagle, shortfin mako	Х			Review	mortality in Canadian pelagic longline
Clarke (2011)	Х	Pelagic sharks				Review report	Status of sharks WCPFC
McLoughlin and Eliason (2008)		Many species		Х		Review report	
<u>Non-</u> governmental agency(NGO) report							
Clarke et al. (2013)	Х	Many species				Review report	Studies of mortality to Sharks
Cosandey-Godin and Morgan (2011)		Many species				Review report	Fisheries bycatch of sharks

* Previous SEDAR AP panels considered the delayed discard mortality rate estimates, M_D, provided by Campana et al. (2009b) and by Gurshin and Szedlmayer (2004) to be the best available estimates for post-release live-discard mortality, PRLDM, in pelagic longlines and hook and line, respectively, because both studies included injured as well as healthy animals (NMFS 2012, 2013a, 2013b).

Table A.2. Summary of delayed discard-mortality rates, MD, in sharks by gear type obtained from the literature search (Table A.1).

* Previous SEDAR AP panels considered the delayed discard mortality rate estimates, M_D, provided by Campana et al. (2009b) and by Gurshin and Szedlmayer (2004) to be the best available estimates for post-release live-discard mortality, PRLDM, in pelagic longlines and hook and line, respectively, because both studies included injured as well as healthy animals (NMFS 2012, 2013a, 2013b).

Gear/Source	Hammer- head(s)	Scientific name	Other species	Delayed discard mortality rate (M D)	Notes
Longline (nelagic)				· · · · · · · · · · · · · · · · · · ·	
Campana et al. (2016)			Blue, porbeagle, shortfin mako sharks	9.8% (s.e. = 4.7%); 27.2% (s.e. = 12%); 31.3% (s.e. = 18%)	Tagged injured and healthy animals with PRLDM expanded by the proportion of each category observed in the fishery. Authors indicate that the blue shark estimate is likely a minimum estimate.
Campana et al. (2011)			Blue shark	19%	Estimation of blue shark total bycatch mortality in pelagic longline fisheries based on PRLDM of 19% citing Campana et al. (2009b)
Campana et al. (2009b)			Blue shark	19%* (10 – 29%)	Tagged both injured and healthy animals; Range is 95% confidence interval.
Musyl et al. (2011)			Blue shark	15% (8.5 – 25.1%)	Meta-analysis; Range is 95% confidence interval.
Worm et al. (2013)			All sharks	15%	Assumed 15% post- release mortality of all sharks released alive based on PRLDM of pelagic sharks from Campana et al. (2011) and Musyl et al. (2011).
Longline (demersal)					
Brooks et al. (2015)			Deep-water elasmobranch assemblage - Bahamas	NA	16 PSATs deployed, only two reported via the Argos system. Consequently, the exact proportion of PRLDM by species is unknown.

Afonso and Hazin (2014)			Tiger shark	0%	Tiger sharks (19) captured with demersal longline, tagged with PSAT, and tracked for up to 30 days
Drymon and Wells (2017)	Great hammerhead	Sphyrna mokarran		0%	Fishery-independent bottom longline sampling in the northern Gulf of Mexico set for 1 h. Double tagging [n = 3; with electronic tags] to distinguish satellite tag failure from animal mortality
Frick et al. (2010a)			Mustelus sp	Average within captive lab study of 8%	The average delayed mortality (MD, up to 72 hr. after treatment) for M. antarcticus captured in longlines under laboratory conditions (8.3%) was calculated here from simulated longline fishing under laboratory conditions for 30 min (MD = 12.5%), 120 min (MD = 12.5%), and 360 min (MD = 0.0%); May not reflect commercial fishery.
Gallagher et al. (2014b)	Great hammerhead	Sphyrna mokarran	Five species of coastal sharks	Tiger (3.6%), bull (25.9%), and great hammerhead (46.4%)	Percentage of satellite tagged sharks reporting after four weeks. Gallagher et al. (2014b) noted that the use of research drum-lines with long gangions (23m) may have allowed for a higher potential for ram- ventilating than in other studies (citing Brooks et al. 2012).
Marshall et al. (2015)			Dusky, sandbar sharks	29% (Dusky) 20% (Sandbar)	Dusky sharks exhibited 29% (n = 6) post-release mortality, with 11% of sharks dying after time-on-the- line ≤3-hours and 42% >3-hours; Sandbar

Regers et al. (2017)School sharkOpisHarr's extinded JPs (1) a low the longing, but showing mortalities at -7-8 h.Writney et al. (2017)School sharkOpisSchool sharkOpisAll (10) satellite tags at -7-8 h.Writney et al. (2017)School sharkOpisSchool sharkOpisSchool sharkOpisWritney et al. (2017)School sharkOpisSchool sharkOpisSchool sharkOpisWritney et al. (2017)School sharkOpisSchool sharkOpisSchool sharkOpisWritney et al. (2017)School sharkOpisStart School sharkOpisSchool sharkOpisWritney et al. (2017)School sharkSandbar 3 Si + 2.5, n. 10School sharkSandbar 3 Si + 2.5, n. 10Epseminal britten origined sharksSandbar 3 Si + 2.5, n. 10School sharkSandbar 3 Si + 2.5, n. 10School sharkSchool sharkSandbar 3 Si + 2.5, n. 10School sharkSandbar 3 Si + 2.5, n. 10School sharkSchool sharkSchool sharkSchool shark					1 1 1 1 1 4 1 2004 / /
Rogers et al. (2017)Image: Constant of the longiture of the longit					snarks exhibited 20% (n -2) post release
Rogers et al. (2017)All (10) stellite tage released performance and tage released performance solution cancel form taged tages and tage released performance solution cancel form taged tages and tage released performance solution cancel form taged tages and tage released performance taged tages and tage release tages and tage released performance tages and tage and tage release tages and tage <br< td=""><td></td><td></td><td></td><td></td><td>= 2) post-release</td></br<>					= 2) post-release
Rogers et al. (2017)Image: Constraint Con					mortality, with 100%
Rogers et al. (2017)Image: Constraint of the constraint of					survival il captured up
Image: sea of the second sec					to 3 h on the longline,
Rogers et al. (2017) And (10) satellite tage released prematurely and tage released prematurely released prematurely and tage released prematurely released prematurely and tage released prematurely released prematurely and tage released tage relet tage released tage release tage release tage release t					but showing mortalities
Rogers et al. (2017)And (10) attentic tags (released premutury) and tag released premutury) and tag release premutury					$at \sim /-8 h.$
Rogers et al. (2017)Image: Constant of the second sharkImage: Constant of the second shark sharkImage: Constant of the second shark					All (10) satellite tags
Rogers et al. (2017) Image: Constraint of the second shark Image					released prematurely
Rogers et al. (2017) School shark 0% Petention periods ranged between 5 and 44 days (average = 24 = 13.7 d). Tags were delived on uningred sharks. Whiney et al. (2021) Large coastal sharks Sandbar 3.1% ± 2.5, n = 130 Blacktip 41.9% = 7.9, n = 105 Signine 7.14% ± 19.9, n = -52 Signine 7					and tag
Whitney et al. (2021) Sandbar 3.1% ± 2.5, n 130 between 5 and 44 days (areage = 2.4 ± 137.0). Tags were deployed on uninjured barke, 130 Experimental bottom longline; Sharke were eaught on standard bottom longline; Sharke in net pers and in situ. Pour-elease behavior of longline; sharke in e	Rogers et al. (2017)		School shark	0%	retention periods ranged
Whitney et al. (2021)Image: Sharks were adapted on the shark were the shark were the shark were adapted on the shark were the shark were adapted to the shark were the shark were the	8			-	between 5 and 44 days
Image: constant of the second starksTage were deployed on on injury of sharks on on on injury of sharks on on injury of sharks on on on injury of sharks on on injury of sharks on on on injury of					$(average = 24 \pm 13.7 d).$
Image: constant sharksImage: constant sharksImage: constant sharksImage: constant sharksImage: constant sharksImage: constant sharksWhitney et al. (2021)Image: constant sharksImage: constant sharksImage: constant sharksImage: constant sharksImage: constant sharksImage: constant sharksWhitney et al. (2021)Image: constant sharksImage: constant sharkImage: constant sharksImage: constant sharksImage: constant sharksImage: constant sharksImage: constant sharkImage: constant sharkImage: constant sharkImage: constant sharksImage: constant sharksImage: constant sharkImage: constant sharkImage: constant sharksImage: constant sharksImage: constant sharksImage: constant sharkImage: constant sharkImage: constant sharkImage: constant shar					Tags were deployed on
Whitney et al. (2021)Sandbar 3.1% ± 2.5, ne 130Experimental bottom standard 130Experimental bottom 130Experimental bottom 130Experimental bottom 130Experimental bottom 130Experimental bottom 130Experimental bott					uninjured sharks.
Whitney et al. (2021)Sandbar 5, 1%, 12, 5, n = 1 (ang)t on standard bottom longline gear, osat times ranged from 2-18 h ± 95% spinner 71.4% ± 19, n = 14 alculated using equation soutined by alculated using equations outlined by 2-18 h ± 95% confidence intervals, calculated using equations outlined by 0-18 h ± 95% confidence intervals, calculated using equations outlined by Descriptions outlined by to alculated using equations outlined by Descriptions outlined by to alculated using equations outlined by Descriptions outlined by to alculated using equations outlined by to alculate using equations outlined by to alculate using equations outlined by to alculate using equations outlined by to alculate using equations outlined by to alculated using <b< td=""><td></td><td></td><td></td><td></td><td>Experimental bottom</td></b<>					Experimental bottom
Whitney et al. (2021)Image: base of the second				Sandbar $3.1\% \pm 2.5$, n =	longline; Sharks were
Whitney et al. (2021)Blacktip 41.9% a^{+} /3, n = 105 Tiger 1.9% b^{+} /3, n = 52 Spinner 71.4% b^{+} /19, n = 14 Bull 7.1% a^{+} /13, n = 19, n = 14 Bull 7.1% a^{+} /13, n = 19 Blacknose 100%, n = 1Bottom longtime gears, Soak times ranged from calculated using equations outlined by Goodygear (2002). M_D was consistently higher than M A.Hook and line $$				130	caught on standard
Whitney et al. (2021)Soak times ranged from rige 1.9% ± 31, 1, n = 52 Spinner 71.4% ± 19, n = 14 Bull 7.1% ± 11,3, n = 14 Blacknose 100%, n = 1Soak times ranged from soak times ranged from equations outlined by Goodycar (2002). M. D Blacknose 100%, n = 1Soak times ranged from soak times ranged from equations outlined by Goodycar (2002). M. D Blacknose 100%, n = 1Soak times ranged from equations outlined by Goodycar (2002). M. D Blacknose 100%, n = 1Soak times ranged from equations outlined by Goodycar (2002). M. D Blacknose 100%, n = 1Soak times ranged from equations outlined by Goodycar (2002). M. D Was consistently higher than M A.Hook and lineImage from taged sharks in net pers and in situ.Image from taged sharks in net pers and in situ.Bullock et al. (2015)Lemon shark (majority neonate)0%Post-release behavior of taged sharks in net pers and in situ.Danylchuk et al. (2014)Lemon shark (majority neonate)12.5%Four sharks (12.5%) did following release droing the simin tracking period following catch-and release angling. Not clear how sharks were tracked.French et al. (2015)Shortfin mako shark10% (3 - 20%)Three mortalities (10%) were observed after 30 ods ys tiberty. All mortalities occurred observed after 30 ods ys tiberty. All mortalities occurred observed after 30 ods ys tiberty. All mortalities occurred observed after 30 ods ys tiberty. All mortalities decurred observed after 30 ods ys tiberty. All mortalities decurred observed after 30 ods ys tiberty. All mortalities decurred observed after 30 ods ys tiberty. All mortalities decurre				Blacktip 41.9% \pm 7.9, n	bottom longline gear;
Whitney et al. (2021)Large coastal sharksliger 1.9% + 3.1, n = 32 Spiner 71.4% ± 19.9, n = 14 Bull 7.1% ± 11.3, n = equations outlined by Goodyear (2002). M D Blacknose 100%, n = 12 - 18 h = 93% equations outlined by Goodyear (2002). M D was consistently higher than M A.Hook and line				= 105	Soak times ranged from
Bailer of the construction of the c	Whitney et al. (2021)		Large coastal sharks	Tiger $1.9\% \pm 3.1$, n = 52	$2-18 h \pm 95\%$
Image: Second				Spinner 71.4% \pm 19.9, n	confidence intervals,
Hok and lineBull 7.1% ± 11.3, n = 14 Blacknose 100%, n = 1equations outlined by Goudyear (2002). No was consistently higher than M. A.Hook and linePost-release behavior of tagged sharks in net pens and in situ.Bullock et al. (2015)Lemon shark (majority neonate)0%Danylchuk et al. (2014)Lemon shark (majority neonate)12.5%French et al. (2015)Shortfin mako shark10% (3 - 20%)				= 14	calculated using
Image: constraint of the second sec				Bull 7.1% \pm 11.3, n =	equations outlined by
Hok and line Image: Shortfin mako shark Blacknose 100%, n = 1 was consistently hgher than M_A. Hok and line Image: Shortfin mako shark Max consistently hgher than M_A. Hok and line Image: Shortfin mako shark Max consistently hgher than M_A. Bullock et al. (2015) Image: Shortfin mako shark Max consistently hgher than M_A. Danylchuk et al. (2014) Image: Shortfin mako shark Image: Shortfin mako shark Image: Shortfin mako shark French et al. (2015) Shortfin mako shark Image: Shortfin mako shark Image: Shortfin mako shark Image: Shortfin mako shark				14	Goodyear (2002). M_D
Hook and lineImage: Constraint of the second se				Blacknose 100%, $n = 1$	was consistently higher
Hook and lineImage: shark in retPost-release behavior of tagged shark in net opens and in situ.Bullock et al. (2015)Lemon shark0%Post-release behavior of tagged shark in net opens and in situ.Danylchuk et al. (2014)Lemon shark (12.5%)Lemon shark (12.5%)Post-release behavior of tagged shark in net opens and in situ.Danylchuk et al. (2014)Lemon shark (12.5%)Post-release behavior of tagged shark in net opens and in situ.French et al. (2015)Shortfin mako shark12.5%Four sharks (10%) vere observed after 30 of all shortfin mako sharkFrench et al. (2015)Shortfin mako shark10% (3 - 20%)Three mortalities (10%) were observed after 30 of all short in the obtained from the obtained from the obtained from the					than M_A.
Bullock et al. (2015) Lemon shark 0% Post-release behavior of tagged sharks in net pens and in situ. Danylchuk et al. (2014) Lemon shark (majority neonate) 12.5% Four sharks (12.5%) died following release during the 15 min tracking period following catch-and release angling. Not clear tracked. French et al. (2015) Shortfin mako shark 10% (3 - 20%) Three mortalities (10%) were observed after 30 days at liberty. All mortalities occurred within 24 h of release. Range is 95% confidence interval obtained from the	Hook and line				
Bullock et al. (2015) Lemon shark 0% Itaged sharks in net pens and in situ. Danylchuk et al. (2014) Lemon shark Four sharks (12.5%) Four sharks (12.5%) Danylchuk et al. (2014) Lemon shark 12.5% Four sharks (12.5%) French et al. (2015) Shortfin mako shark 10% Three mortalities (10%) French et al. (2015) Shortfin mako shark 10% Three mortalities (10%)					Post-release behavior of
Danylchuk et al. (2014) Image: Short fin mako shark Image: Short fin mako shark Four sharks (12.5%) French et al. (2015) Image: Short fin mako shark Image: Short fin mako shark Image: Short fin mako shark	Bullock et al. (2015)		Lemon shark	0%	tagged sharks in net
Danylchuk et al. (2014) Four sharks (12.5%) Four sharks (12.5%) Danylchuk et al. (2014) Lemon shark (majority neonate) 12.5% Four sharks (12.5%) French et al. (2015) Shortfin mako shark 10% (3 - 20%) Three mortalities occurred within 24 h of release. Range is 95% confidence interval obtained from the Three mortalities occurred within 24 h of release. Range is 95%	Duilotii (2010)			0,0	pens and in situ
Danylchuk et al. (2014)Lemon shark (majority neonate)12.5%Iteration (1-30) died following release during the 15 min tracking period following catch-and release angling. Not clear how sharks were tracked.French et al. (2015)French et al. (2015)Shortfin mako shark10% (3 - 20%)Three mortalities (10%) were observed after 30 days at liberty. All mortalities ocurred.					Four sharks (12.5%)
Danylchuk et al. (2014)Lemon shark (majority neonate)12.5%during the 15 min tracking period following catch-and release angling. Not clear how sharks were tracked.French et al. (2015)French et al. (2015)Shortfin mako shark10% (3 - 20%)Three mortalities (10%) were observed after 30 days at liberty. All mortalities occurred within 24 h of release. Range is 95% confidence interval obtained from the					died following release
Danylchuk et al. (2014)Lemon shark (majority neonate)12.5%Tracking period following catch-and release angling. Not clear how sharks were tracked.French et al. (2015)French et al. (2015)Image: Comparison of the compariso					during the 15 min
Danylchuk et al. (2014)12.5%International (majority neonate)Danylchuk et al. (2014)(majority neonate)12.5%following catch-and release angling. Not clear how sharks were tracked.French et al. (2015)French et al. (2015)Shortfin mako shark10% (3 - 20%)Three mortalities (10%) were observed after 30 days at liberty. All mortalities occurred within 24 h of release. Range is 95% confidence interval obtained from the			Lemon shark		tracking period
French et al. (2015) Shortfin mako shark 10% (14) Giving ettent. Not clear how sharks were tracked. French et al. (2015) Shortfin mako shark 10% (3 - 20%)	Danylchuk et al. (2014)		(majority neonate)	12.5%	following catch-and
French et al. (2015) Shortfin mako shark 10% Three mortalities (10%) Within 24 h of release. Range is 95% Confidence interval Obtained from the Obtained from the Obtained from the			(indjointy neonate)		release angling Not
French et al. (2015)Shortfin mako shark10% (3 - 20%)Three mortalities (10%) were observed after 30 days at liberty. All mortalities occurred within 24 h of release. Range is 95% confidence interval obtained from the					clear how sharks were
French et al. (2015)Shortfin mako shark10% (3 - 20%)Three mortalities (10%) were observed after 30 days at liberty. All mortalities occurred within 24 h of release. Range is 95% confidence interval obtained from the					tracked.
French et al. (2015) French et					Three mortalities (10%)
French et al. (2015) French et					were observed after 30
French et al. (2015) Shortfin mako shark 10% (3 - 20%) Range is 95% confidence interval obtained from the					days at liberty. All
French et al. (2015) Shortfin mako shark 10% (3 – 20%) Within 24 h of release. Range is 95% confidence interval obtained from the					mortalities occurred
(3 - 20%) (3 - 2	French et al. (2015)		Shortfin mako shark	10%	within 24 h of release
confidence interval obtained from the	2010)		Shortini nako shurk	(3 – 20%)	Range is 95%
obtained from the					confidence interval
					obtained from the
program Release					program Release

				Mortality version 1.1.0 developed by Goodyear (2002) as described by Kerstetter and Graves (2006).
Gurshin and Szedlmayer (2004)		Atlantic sharpnose shark	10%*	Tagged both injured and healthy animals (n = 10).
Heberer et al. (2010)		Common thresher shark	26%	Five mortalities (26%) were observed over 10 day PSAT deployment.
Heupel and Simpfendorfer (2002)		Blacktip shark (juvenile)	About 5%	Five of 92 sharks died within 24 hrs of release; May reflect stress from anesthetic, tagging and resuscitation, as well as hook and line capture.
Holts and Bedford (1993)		Shortfin mako shark	0%	Tagged large healthy sharks $(n = 3)$.
Mandelman and Farrington (2007a)		Spiny dogfish shark	24 ± 6% (mean ± S.D.)	Five squid-baited standard circle hooks hung in the water- column and retrieved in 3 min; Mandelman and Farrington (2007a) concluded that the MD estimate reflected both the stress of hook and line capture plus the additional stress of being held in a net-pen after capture (72 hrs.).
Sepulveda et al. (2015)		Common thresher shark	78% (with trailing tail hook gear) 0% (with mouth hook and release)	Six mortalities within 5 days and one mortality after 81 days (78%) with trailing tail hook gear. No mouth-hooked mortalities (n=7) within 10 days.
Whitney et al. (2016 and 2017)		Blacktip shark	9.7%	Acceleration data loggers (ADLs, n=31) attached to blacktip sharks captured on rod and reel by recreational fishermen. Mortalities (n=3; 9.7%) all occurred within 2 h after release.
			1	1

Gillnet					
Bell and Lyle (2016)			Australian swellshark (Cephaloscyllium laticeps)	0%	Tank trial mortality up to 3 days post capture (n = 39 condition 1 and n = 32 condition 2)
Braccini et al. (2012)	Smooth hammerhead	Sphyrna zygaena	Many	43.2% (Based on an assessment of at-vessel condition; n = 122)	The average risk of delayed post-capture survival (PCS) in a southern Australia commercial gillnet shark fishery was estimated based on an assessment of at-vessel condition. For <i>S. zygaena</i> , delayed survival (S_D = 56.8%, n = 122; 89% at-vessel mortality rate) was obtained from Braccini et al. (2012 their Table 2); PRLDM was then calculated as M_D = (1- S_D) = 43.2%.
Frick et al. (2010a)			Mustelus antarcticus	Average within captive lab study of 31%	The average delayed mortality (MD, up to 72 hr. after treatment) for M. antarcticus captured in gillnets under laboratory conditions (30.7%) was calculated here from gillnet fishing under laboratory conditions for 30 min (MD = 70%), 120 min (MD = 0%), and 180 min (MD = 22%); May not reflect commercial fishery.
Frick (2012)			Mustelus antarcticus	Average within captive lab study of 6.5% (2/31 = 0.065)	The average delayed mortality (MD, up to 72 hr. after treatment) for M. antarcticus captured in gillnets under laboratory conditions was calculated here from simulated gillnet fishing under laboratory conditions for 60 min; May not reflect

-	 	•	
			commercial fishery.
			Tag return data was used to estimate delayed
			mortality for all iuvenile
		24.00/	and small adult sharks,
Hueter and Manire (1994)	Coastal sharks	34.8%	combined, captured with
			research gillnets in
			Florida Gulf Coast
			estuaries.
			Juvenile and small adult
Hueter et al. (2006)	Blacktin and bonnethead sharks	31% (blacktip);	sharks captured with
11actor of an (2000)	Distance and connected charins	40% (bonnethead)	research gillnets in
			Florida estuaries.
D 116 (2007)		220/	Held in net-pen after
Ruliison (2007)	Spiny dogfish shark	33%	capture (48 hrs, North
		-	Carolina)
Trawl			
			Francis (1989) noted
			that reported recapture
			rates of trawl-tagged rig,
			M. lenticulatus, were
			lower than those of set-
Francis (1989)	Mustelus lenticulatus	NA	net tagged M.
			lenticulatus, suggesting
			that delayed mortality of
			M. lenticulatus was
			higher in trawls than set-
			nets.
			mortality (MD) up to 72
			hr after treatment) for
			M antarcticus cantured
			in trawl-nets under
			laboratory conditions
			(26.9%) was calculated
			here from simulated
		Average within captive	trawl-net fishing under
Frick et al. (2010b)	Mustelus antarcticus	lab study of 27%	laboratory conditions for
		5	$30 \min(MD = 37.5\%),$
			$60 \min (MD = 0.0\%),$
			$120 \min(MD = 85.7\%),$
			60 min + air (MD =
			0.0%), and 60 min +
			crowding (MD =
			11.1%); May not reflect
			commercial fishery.
Mandelman and Farrington (2007a)	Spiny doutish shark	$29 \pm 12\%$ (mean \pm SD)	Mandelman and
Manuellian and Farmigion (2007a)	Spiny dogrish shark	27 ± 1270 (mean $\pm 3D$)	Farrington (2007a)

					concluded that post- release mortality was
					significantly affected by
					catch and also likely
					reflected both the stress
					of trawl capture plus the
					additional stress of
					being held in a net-pen
					after capture (/2 hrs.).
					capture (48 hrs.)
					Rulifson (2007) noted
					that the research trawl
Rulifson (2007)			Spiny dogfish shark	0%	used in this study were
					probably not comparable
					to commercial trawls –
					England travel goor
					Eligiand trawi gear.
Purse seine					
					At-vessel mortality and post-release survival of
					pelagic sharks captured
					with tuna purse seines
					in the equatorial Eastern
					drifting fish aggregating
					devices (FADs)
Eddy et al. (2016)	Scalloped hammerhead	Sphyrna lewini	Scalloped hammerhead	100% (PSAT, n = 3)	
			1		Three scalloped
					showed evidence of
			Silky shark	62% (PSAT, n = 13)	post-release mortality.
					F
					Eight silky sharks (62%)
					showed evidence of
					post-release mortality.
					tagged sharks that died
					after being released
					alive (tag deployment
					$\geq 10 \text{ d}, n = 9)$ and those
Hutchinson et al. (2015)			Silky shark	36%	that died post release
					(0-9 d, n = 5). However,
					nus live post release)
					was much higher
					(84.2%).
Poisson et al. (2014)			Silky shark	48% (brailed)	Percentage of satellite

				0% (entangled)	tagged sharks that died after being released alive. However, total mortality (at-vessel plus live post release) was much higher (81%).
Reviews					
Dapp et al. (2016c)			Many	Table S2. Contains published results of at- vessel capture mortality studies on elasmobranchs. Table S3. Contains published results of post-release and total discard mortality studies on elasmobranchs.	Model predicted mean total discard mortality as combined immediate and post-release mortality to obtain percentages of obligate ram-ventilating elasmobranchs caught in longline, gillnet and trawl gear types as 49.8, 79.0 and 84.2%, respectively, and total discard mortality percentages of stationary-respiring species as 7.2, 25.3, and 41.9%, respectively.
Ellis et al. (2017)			Many	e.g., Blacktip Gillnet PRLDM 31% Hueter et al. (2006)	Review published results of PRLDM and at-vessel-mortality
Oliver et al. (2015)			Many		Develop global shark bycatch estimates from a literature review of shark bycatch and estimates of post-release mortality
Poisson et al. (2016)			Many		Review shark bycatch mitigation measures in pelagic tuna fisheries
Meta-analyses					
Musyl and Gilman (2019)	Scalloped hammerhead	Sphyrna Iewini	Pelagic sharks	87.5% (26.6% LCI, 99.3% UCI) One study (Eddy et al (2016, Purse-seine): Dead=3, Tagged = 3. 26.8% (19.3% LCI, 36.0% UCI) 33 studies (longline, purse-seine, rod & reel):	Random-effects meta- analysis synthesized M_D in seven pelagic shark species captured, tagged and released with 401 pop-up satellite archival tags compiled from 33 studies and three

		Dead=95, Tagged = 401	gears
			rod & reel).

Table A	A.3. Summar	y of immediate (i	.e. at-vessel	or acute)	discard-mortality	y rates (N	M _A) by gear	type obtained	from the litera	ture
search (Table A.1).									

Gear/Source	Hammer- head(s)	Scientific name	Immediate (i.e. at-vessel or acute) discard-mortality rates (M _A)	Notes
Longline (pelagic)				
Afonso et al. (2011)	Scalloped hammerhead	S. lewini	33.3 - 87.5% (N=11)	Fishing mortality at haulback (33.3 and 87.5%) by hook type (circle and "J", respectively; N = 11 total catch). Experimental pelagic longline fisheries with circle and "J" hooks off Northeast Brazil.
Afonso et al. (2012)	Hammerheads	Sphyrna spp.	100.00%	Fishing mortality at haulback (100%; dead individuals/N; N = 3, absolute frequency). Experimental pelagic longline fisheries with circle and "J" hooks in the southwestern equatorial Atlantic.
Beerkircher et al. (2004)	Scalloped hammerhead	S. lewini	NA	Catch disposition of elasmobranchs observed in the pelagic longline fishery off the southeastern U.S. 1992-2000. 51.8% Dead discard, 34.2% released alive, and 14.1% retained.
Bromhead et al. (2012)	Scalloped hammerhead Great hammerhead	S. lewini S. mokarran	60% (n = 5) 100% (n = 3)	Descriptive statistics of elasmobranchs caught and analyzed for this study. The percent of sharks caught which were judged to be dead (at haulback) or unlikely to survive after release. Marshall Islands tuna longline fishery.
Coelho et al. (2011)	Smooth hammerhead	S. zygaena	84% (n = 25, IO) 70.1% (n = 338, AO)	At-haulback mortality of elasmobranchs caught by commercial longline vessels in the Indian Ocean (IO) and Atlantic Ocean (AO).
Coelho et al. (2012)	Scalloped hammerhead Great hammerhead Smooth hammerhead	S. lewini S. mokarran S. zygaena	57.1% (n = 21) 0.0% (n = 3) 71.0% (n = 372)	Descriptive statistics of elasmobranchs caught and analyzed for this study. Data were collected by fishery observers onboard commercial longline vessels in the Atlantic Ocean and used for GAM and GLM analyses of at-vessel mortality rates.
Fernandez-Carvalho, J., et al. (2015)	Smooth hammerhead	S. Zygaena	62.03 % (N=79, J-hook) 62.86 % (N=70, Circle hook - no offset) 62.96 % (N=54, Circle hook - offset)	202 experimental pelagic longline sets carried out in the Tropical Northeast Atlantic Ocean.

			61.54% (N=117, Squid) 64.95% (N=86, Mackerel)	
Gallagher et al. (2014a)	Scalloped hammerhead	S. lewini	54.1% (Model based mean survival rate)	Least square mean survival (45.9%) obtained from logistic regression of at-vessel survival rates recorded by observers averaged over variables, which would likely affect catch/survival. U.S. pelagic longline fishery 1995 to 2012 omitting sets made prior to 2005 that used J hooks.
Gear/Source	Hammer- head(s)	Scientific name	Immediate (i.e. at-vessel or acute) discard-mortality rates (M _A)	Notes
Longline (demersal)				
Butcher et al. (2015)	Scalloped hammerhead Great hammerhead Smooth hammerhead	S. lewini S. mokarran S. zygaena	88.8% (Captured, n = 52) 100% (Captured, n = 11) 100% (Captured, n = 2)	Experimental fishing with hook- timers in a southern Australia commercial demersal longline fishery. Average percent survival for S. lewini (S_A = 11.2%, n = 52) was obtained as the average of 7 hr and 14 hr deployments obtained from Butcher et al. (2015 their Table 2); M_A = (1 - S_A) = 88.8%. Percent survival at haulback was 0% for S. mokarran and S. zygaena. The model based probability of mortality obtained with GLMM in all hammerhead sharks combined at the genus level (Sphyrna spp) was estimated at close to 100% across all capture depths.
Gulak et al. (2015)	Scalloped hammerhead Great hammerhead	S. lewini S. mokarran	62.9% (Captured on hook timers, n = 164) 56% (Captured on hook timers, n = 71)	Experimental fishing with hook timers and temperature–depth recorders deployed on bottom- longline gear to assess factors related to at-vessel mortality. Contracted commercial vessels in the US Highly Migratory Species Shark Research Fishery fishing.
Morgan and Burges (2007)	Scalloped hammerhead Great hammerhead	S. lewini S. mokarran	91.4% (Observed, n =455) 93.8% (Observed, n = 178)	At-vessel fishing mortality rates recorded by fishery observers in the U.S. East Coast and Gulf of Mexico bottom longline commercial shark fishery, 1994–2005.
Morgan et al. (2009)	Scalloped hammerhead	S. lewini	92.0%	At-vessel fishing mortality rates

	Great hammerhead	S. mokarran	95.8%	recorded by fishery observers in the U.S. East Coast and Gulf of Mexico bottom longline commercial shark fishery, 1994–2003. Also quantified the percentage of dead sharks observed after soak times broken down into 4 h bins, ranging from 0 to >24 h. Scalloped hammerhead 60.0% (0-4h) to 100% (>24 h). Great hammerhead 90.9% (4-8 h) to 100% (0.4h, 20-24h, and >24h).
Scott-Denton et al. (2011)	Scalloped hammerhead	S. lewini	NA	Catch disposition of the U.S. Gulf of Mexico reef fish bottom longline and vertical line fisheries based on observer data 2006-2009. Number, condition, and fate of fish (including scalloped hammerhead) species with n>25 caught. Most hammerheads captured with longline. Descriptive statistics of at-vessel mortality for species caught and analyzed for this study were not provided.
Hook and line				
NA				
Gillnet				
Braccini et al. (2012)	Smooth hammerhead	S. zygaena	89.3% (n =122)	Assessment of at-vessel mortality (and condition) in a southern Australia commercial gillnet shark fishery. E.g., for S. zygaena (SA = 10.7%, n = 122) was obtained from Braccini et al. (2012 their Table 2); M_a was then calculated as M_A = (1 - S_A) = 89.3%.
Reid and Krogh (1992)	Hammerheads	Sphyrna spp.	98.3% (n = 2031)	Protective mesh netting of beaches along the more populous sections of the NSW coast Australia for the protection of swimmers and surfers against shark attack
Thorpe and Frierson (2009)	Bonnethead shark	S. tiburo	71.5%	Experimental fishing with modified gillnets in coastal waters (0–5 km) off North Carolina, USA. Mean capture mortality rate for Atlantic sharpnose sharks (80.4%), bonnethead sharks (71.5%), blacknose sharks (81.3%) and

				blacktip sharks (90.5%)
Trawl				
Fennessy (1994)	Scalloped hammerhead	S. lewini	NA	Catch disposition (numbers of mortalities and survivors of elasmobranchs recorded) from South Africa commercial prawn trawl fisheries Number dead = 165 Number dead = 165 Number alive = 4 Percent mortality 97.6%
Purse seine				
Eddy et al. (2016)	Scalloped hammerhead	S. lewini	0% (n=6)	At-vessel mortality and post-release survival of pelagic sharks captured with tuna purse seines in the equatorial Eastern Pacific Ocean associated drifting fish aggregating devices (FADs)
Reviews				
NA				
Meta-analyses				
NA				

Table A.4. Ellis et al. (2017)* at vessel mortality (AVM %; Panel A) and post-release mortality (PRM%; Panel B) fishery and species (adapted from Ellis et al. 2017, their Table 2).

*Ellis et al. (2017): "CARCHARHINIFORMES: FAMILY SPHYRNIDAE Hammerhead sharks *Sphyrna* spp. appear to be particularly vulnerable to the effects of capture in commercial gears. High AVM for *Sphyrna* spp. has been reported in trawls (97·6%; Fennessy, 1994), protective nets (98·3%; Reid & Krogh, 1992) and commercial gillnets (71·5–89·3%; Thorpe & Frierson, 2009; Braccini *et al.*, 2012). Even capture in gillnets set for short periods (\leq 1 h) during scientific studies can result in an AVM of 31–37% (Manire *et al.*, 2001; Hueter *et al.*, 2006). Furthermore, estimates of overall mortality in the latter study, using mark–recapture data from fishes at different categories of vitality, suggested mortality of 62%. Within commercial longline fisheries, although some studies have indicated AVM of 54–71% (Beerkircher *et al.*, 2004; Coelho *et al.*, 2012; Gallagher *et al.*, 2014a; Fernandez-Carvalho *et al.*, 2012; Butcher *et al.*, 2015). Afonso *et al.* (2011) noted a higher mortality when *Sphyrna* spp. Gallagher *et al.* (2014b) noted that 43% of *S. mokarran* tagged were thought to have died within 2weeks of release, despite the comparatively benign capture technique (baited drum lines, 17–131 min fight times). Eddy *et al.* (2016) reported full PRM of *S. lewini* released after capture in tuna purse scine, but this was only based on tagging three specimens."

Fishery	Approach	Details	Family	Species	AVM (%)	Key findings
Trawl						
Trawl (excluding beam trawl); Indian Ocean; Natal (Fennessy, 1994); Commercial prawn trawl (otter trawl, 38mm stretched mesh codend, 3.7–5.6 kmh–1 trawl speed; fishing depths of 20–45m)	AVM		Sphyrnidae	Sphyrna lewini (n=169)	97.6	
Cillest						
Gillnet and tangle net Australia; New South Wales (Reid & Krogh, 1992); Protective nets set off beaches. Soak times generally 12–48 h	AVM	Information on the percentage alive recorded, but no specific information in relation to soak time	Sphyrnidae	Sphyrna spp. (n=2031)	98.3	Values relate to the percentage recovered dead from protective shark nets, which is analogous to AVM
South Australia (Walker et al., 2005); Commercial gillnets 6–6.5" (150–160 mm) mesh; mean soak time of 8.2 h; Fishing depths of 17–130m (mostly <80 m)	AVM	AVM recorded for two fishing grounds (Bass Strait and South Australia)	Sphymidae	Sphyrna zygaena (n=77)	3	
SE Australia (Braccini et al., 2012); Gillnet fishery (2.4–20.6 h soak times)	AVM		Sphyrnidae	Sphyrna zygaena (n=122)	89.3	

A.

A. Continued						
Fishery	Approach	Details	Family	Species	AVM (%)	Key findings
Longline	ļ					
NW Atlantic Ocean; south- eastern coast of the U.S.A. (Beerkircher et al., 2004); Pelagic longline fishery (hooks of 7/0 to 11/0; Hook depths usually 35-60m)	AVM	Condition of captured sharks recorded by observers	Sphyrnidae	Sphyrna lewini (n=199)	61	
NW Atlantic Ocean; Gulf of Mexico (Morgan & Burgess, 2007); Commercial longline fisheries with observer coverage	AVM	AVM assessed visually (alive-dead)	Sphyrnidae	Sphyrna lewini (n=455)	91.4	
	AVM	AVM assessed visually (alive-dead)	Sphyrnidae	Sphyrna mokarran (n=178)	93.8	
SW Atlantic Ocean; Brazil (Afonso et al., 2011); Research longline (pelagic) with 18/0 circle hooks and 9/0 J-hooks	AVM	Catch rates and AVM compared between hook types	Sphymidae	Sphyrna lewini (n=11)	33.3-87.5	Lower AVM reported for circle hooks (33.3%) than J- hooks (87.5%)
Atlantic & Indian Oceans (Coelho et al., 2011); Commercial longliners targeting swordfish	AVM	AVM recorded	Sphyrnidae	Sphyrna zygaena	70.1–84.0	AVM ranged from 70.1% (n=338; Atlantic) to 84.0% (n=25; Indian Ocean)
Gulf of Mexico (Scott-Denton et al., 2011); Bottom longline fishery for reef fish. Average fishing depth=94 m; Most hooks were 13/0 but ranged from 12/0 to 15/0. Mean soak time was 5.1 h (range=0.9–32.2h)	AVM	Condition and fate recorded by observers, (but data lacking for some specimens and estimates of AVM are given here)	Sphymidae	Sphyrna lewini (n=73)	19.2	

Table A.4. Continued (adapted from Ellis et al. 2017, their Table 2). A Continued

A. Continued.						
Fishery	Approach	Details	Family	Species	AVM (%)	Key findings
SW Atlantic Ocean; Brazil (Afonso et al., 2012); Research fishing from a commercial longline vessel (pelagic), with combinations of wire and monofilament leaders, and circle and J-hooks	AVM	AVM recorded; catch rates and bite-offs recorded	Sphyrnidae	Sphyrna spp. (n=3)	100	
Pacific Ocean (Bromhead et al., 2012) Commercial longline fishery	AVM	AVM recorded from observer coverage	Sphymidae	Sphyrna lewini (n=5) and S. mokarran (n=3)	75	Although data were limited, AVM was 75% for this genus
Atlantic Ocean (Coelho et al., 2012) Pelagic longline	AVM	AVM recorded by observers on commercial vessels	Sphyrnidae	Sphyrna lewini (n=21) Sphyrna mokarran (n=3) Sphyrna zygaena (n=372)	57.1 (0) 71	Whilst no AVM was observed for <i>S.</i> <i>mokarran</i> , this was based on a small sample size
Tropical NE Atlantic Ocean (Fernandez- Carvalho et al., 2015) Pelagic longline	AVM	Fate recorded for sharks taken on different hook types (J, circle and offset circle hooks) and baits (squid and mackerel)	Sphymidae	Sphyrna zygaena (n=203)	62.0–62.9	AVM was higher for this species (62.0– 62.9% for the three hook types)

Table A.4. Continued (adapted from Ellis et al. 2017, their Table 2).A. Continued.

Fishery	Approach	Details	Family	Species	AVM (%)	Key findings
NW Atlantic Ocean (Gallagher et al., 2014a) Pelagic longline (targeting tuna or swordfish)	AVM	AVM data collected by observers (1995– 2012). Data used for fish classed as alive and dead (those reported as damaged were excluded from analysis). Mean survival given for tuna and swordfish longline fisheries	Sphymidae	Sphyrna lewini (n=727)	54.1	
Australia; New South Wales (Butcher et al., 2015) Demersal longline with nylon trace and 16/0 non-offset circle hook (water depths 50–100 m; 7–14 h soak times; hook timers used)	AVM and blood sampling	Survival and condition examined in relation to hooking time. Blood samples also collected	Sphyrnidae	Sphyrna lewini (n=52) Sphyrna zygaena (n=2) (100) Sphyrna mokarran (n=11) 100	87.5–90.1 100 100	Higher AVM with longer soak time (lewini)
Pacific Ocean; Palau (Gilman et al., 2015) Pelagic longline fishery for tuna	AVM	AVM data collected by observers	Sphyrnidae	Sphyrna mokarran (n=1) and S. lewini (n=1)	100	Data limited, but AVM=100%
NE Atlantic Ocean and Gulf of Mexico; North Carolina to Louisiana (Gulak et al., 2015) Bottom longlines deployed from chartered fishing vessels (soak times of 1.5–22.6 h; 16/0, 18/0, 20/0 circle hooks and 12/0 J hooks)	AVM	AVM data recorded; hook timers deployed	Sphymidae	Sphyrna lewini (n=175) 62.9 Sphyrna mokarran (n=75) 56	62.9 56.0	

Table A.4. Continued (adapted from Ellis et al. 2017, their Table 2).A. Continued.

			В.			
Fishery	Approach	Details	Family	Species	PRM (%)	Key findings
NW Atlantic Ocean; Florida (Gallagher et al., 2014b); Experimental drumline, (soak time of 1 h, circle hooks)	PRM and blood sampling	Satellite tags used to examine PRM Blood chemistry examined	Sphymidae	Sphyrna mokarran (n=28)	43	Based on data from satellite tags, 43% were thought to have died within 2 weeks of release
Eastern Pacific Ocean (Eddy et al., 2016) Tuna purse seine fishery. Work undertaken on commercial fishing vessel, fishing operations of 1–2 h and catch brailed on board	AVM and PRM	Vitality (1– 5 scale) and AVM data recorded; PRM assessed with PSATs	Sphyrnidae	Sphyrna spp. (n=3)	100	Three specimens were tagged with PSATs, showing 100% post-release mortality

Table A.4. Continued (adapted from Ellis et al. 2017, their Table 2).B

Appendix B. Post-release live-discard mortality (PRLDM) rate decisions from the recent SEDAR 65 Atlantic blacktip domestic shark stock assessment.

Table B.1. SEDAR 65 Atlantic blacktip shark post-release live-discard mortality (PRLDM) rate decisions.

SEDAR 65 ¹							
	Atlantic bl	acktip shark					
Working group	Longline	Hook and line	Gillnet	Trawl			
DW/*	44.2% (Base, Bottom longline)	18.5%(Base)	31% (Base)	NA			
Dw*	34.0-54.8%(Range)	10.8-28.7%(Range)	8.7-44.4% (Range)	NA			

*Final decisions adopted for stock assessment.

¹ SEDAR 65 data workshop (DW) decisions adopted by NMFS (2020)

Gillnet post-release live discard mortality (NMFS 2020, their Section II pp 24-26):

"Previous SEDAR panels (SEDAR29) adopted 31% as the best estimate of the post-release livediscard mortality rate for Gulf of Mexico blacktip sharks captured in gillnet fisheries (SEDAR65-DW20, their Table 4) obtained from juvenile blacktip sharks captured with research gillnets (Hueter *et al.* 2006). The same approach was adopted by the Panel here. In addition, 95% CIs for gillnet fisheries were calculated by the Panel using methods and data available in Hueter *et al.* (2006). Release and recapture data for blacktip sharks captured in research gillnets and summarized by their condition at release was obtained from Hueter *et al.* (2006, their Table 3):

Condition	Tagged	Recaptured	Ratio
1	928	58	0.0625
2	939	39	0.0415
3	666	24	0.0360
4	365	4	0.0110

The relative survival (Beta^{\land}) of tagged blacktip sharks released in conditions 2–4 was estimated relative to that of blacktip sharks released in condition 1 as the ratio of recapture rates using equation (10) in Hueter et al (2006); lower and upper 95% CIs were obtained using equation (11) in Hueter *et al.* (2006) adapted from Hueter *et al.* (2006, their Table 4):

	()		
	Beta^	LCI	UCI
Ratio of ratios (condition 2:			
condition 1)	0.6645	0.4474	0.9870
Ratio of ratios (condition 3:			
condition 1)	0.5766	0.3621	0.9181
Ratio of ratios (condition 4:			
condition 1)	0.1753	0.0641	0.4795

Hueter *et al.* (2006) obtained estimates of absolute post-release mortality by assuming all sharks in condition 1 survived the catch–tag–release event. Using this approach 31% (898 of 2,898) of blacktip sharks released from gillnets are estimated to have died (adapted from Hueter *et al.* (2006, their Table 5):

	Number	Survival	Death	Number	Percent dying
Condition	tagged	rate	rate	dying	(PRLDM)
1	928	1	0	0	
2	939	0.66	0.34	319.26	
3	666	0.58	0.42	279.72	
4	365	0.18	0.82	299.30	
Total	2898			898.28	31%

Lower and upper 95% CIs (alpha = 0.05) for cryptic post-release mortality of blacktip sharks released from gill nets were calculated by the Panel using the same approach (Adapted from Hueter *et al.* 2006, their Tables 4, and 5):

	Number	Survival	Death	Number	Percent dying UCI
Condition	tagged	rate LCI	rate UCI	dying UCI	(PRLDM)
1	928	1	0	0	
2	939	0.45	0.55	516.45	
3	666	0.36	0.64	426.24	
4	365	0.06	0.94	343.1	
Total	2898			1285.79	44.4%

	Number	Survival	Death	Number	Percent dying LCI
Condition	tagged	rate UCI	rate LCI	dying LCI	(PRLDM)
1	928	1	0	0	
2	939	0.99	0.01	9.39	
3	666	0.92	0.08	53.28	
4	365	0.48	0.52	189.80	
Total	2898			252.47	8.7%

Because all sharks in condition 1 are assumed to survive (death rate =0), this approach may underestimate the total post-release mortality. Similarly, a previous literature review developed for Gulf of Mexico blacktip sharks during SEDAR 29 (Courtney 2012) suggested that the best estimate of the post-release live-discard mortality rate of blacktip sharks captured in gillnets, 31%, obtained from juvenile blacktip sharks captured with research gillnets Hueter *et al.* (2006), may need to be adjusted upward to reflect the relative difference in the at-vessel gillnet mortality rate observed for juvenile blacktips captured with research gillnets (38%) (Hueter and Manire, 1994) relative to that of sub-adult blacktips captured in scientifically monitored commercial gillnets (90%) (Thorpe and Frierson, 2009). However, the Panel discussed that the new approach developed here to calculate 95% CIs was the preferred approach for developing the range of uncertainty for blacktip shark postrelease mortality in gillnet fisheries because it was based on data available from the original publication, which resulted in a relatively wide range of uncertainty."

Bottom longline post-release live discard mortality (NMFS 2020, their Section II pp 26-27):

"A new estimate of acute post-release mortality rates for coastal sharks caught in the Florida commercial shark demersal longline fishery, $44.2\% \pm 8.3\%$ ($\pm 95\%$ CI), was presented and discussed by the Panel for use in SEDAR 65 demersal longline fisheries (SEDAR65-RD06). The estimate was based on a large sample size (N = 95) of physically recovered acceleration data loggers (ADLs) released on blacktip sharks captured near Madeira Beach, FL, and Key West, FL. At both study sites, specific fishing locations and practices were directed by commercial longline captains to ensure methods were consistent with typical commercial fishing practices. Post-release mortality rates were calculated as the percentage of blacktip sharks that died post-release out of the number of tags recovered. Mortality was identified from recovered tag data as a lack of movement and a constant depth, assumed to be associated with a negatively buoyant shark on the bottom. Accelerometer deployments, all shark species tagged in the study, lasted between 0.7 and 205 h (mean 20.9 ± 18.7 h). Ninety one % of mortalities, all tagged sharks in the study, occurred within 5 h of release, and all mortalities occurred within 12 h of release.

The 95% confidence interval obtained for post-release mortality estimates in demersal longlines (SEDAR65-RD06) was based on methods in Goodyear (2002) which was not available for the Panel to review. Consequently, the Panel re-calculated 95% CIs for demersal longlines during the meeting using a binomial distribution with 95 releases and 42 mortalities, and obtained a slightly wider range of uncertainty (34.0 % to 54.8%). The binomial 95% CI calculations were later verified in R version 3.3.2 (R Development Core Team, 2016) using the library "binom" (Dorai-Raj 2014): binom.confint(x = 42, n = 95, method = "exact")."

Recreational post-release live discard mortality (NMFS 2020, their Section II pp 29-30):

"Based on document SEDAR65-DW-18, a post-release mortality rate of 18.5% was proposed (average of 17.1% for shore-based fishing and 20.0% for charter boats). This more recent rate was considered to have improved previous research and was therefore adopted. The need to provide estimates of uncertainty for these estimates was also noted and a proposal to use a binomial distribution to generate them presented and approved.

Post release mortality (PRM) rates were estimated for blacktip sharks captured and released alive on rod-and-reel by shore-based (n = 41) and charter boat-based (n=40) fishermen using acoustic transmitters (total n = 81). Blacktip sharks were caught with rod-and-reel by participating recreational anglers from the shore (i.e. beach) and onboard charter fishing boats in the coastal waters of South Carolina and Florida. All fishing from charter boats was conducted by the clients who hired the charter, and thus a wide range of angler experience was sampled. Anglers used their personal fishing equipment, which varied in size and strength, and no input was provided by the authors on the fishing equipment (e.g. rod and reel type/size, hook type/size) or capture techniques. Survivorship was assessed by passively monitoring sharks following release and examining movements of sharks among fixed acoustic receivers deployed along the eastern coast of the U.S. as part of both the Atlantic Cooperative Telemetry (ACT) and the Florida Atlantic Coast Telemetry (FACT) Networks. Sharks that were detected multiple times by an acoustic receiver more than 10 days post-release were considered to have survived the capture event (and any associated tag ingestion during predation events, typically regurgitated within around 5 days of ingestion). Additionally, a subset of acoustically tagged individuals from shore-based (n = 12) and charter boatbased (n = 12) fishing were double-tagged with pop-off satellite archival tags (PSATs, total n = 24)

to validate the survivorship results obtained from the acoustic transmitters. The survivorship results inferred from acoustic transmitters were consistent with results inferred from PSATs, Fifteen sharks (n = 7 shore-based; n = 8 charter boat-based) died within 10 days of being released by recreational anglers, resulting in post-release mortality rates of 17.1% (shore-based) and 20.0% (charter boat-based).

The Panel calculated 95% CIs for the recreational fishery during the meeting using a binomial distribution with 81 releases and 15 mortalities, and obtained a PRM rate for recreational fisheries of 18.5 and a range of uncertainty from 10.8 % to 28.7%. The binomial 95% CI calculations were later verified in R version 3.3.2 (R Development Core Team, 2016) using the library "binom" (Dorai-Raj 2014): binom.confint(x = 15, n = 81, method = "exact").

The new estimate of post-release mortality obtained for blacktip sharks captured in recreational fisheries in the coastal waters of South Carolina and Florida is consistent with an updated estimate from the Gulf of Mexico recreational fisheries where 22 tags with conclusive data resulted in 5 mortalities and a PRM estimate of 22.7% with a 95% binomial CI of 7.8-45.4% (pers. comm. John Mohan; also see SEDAR65-RD04, their Appendix B).

Using the new estimate of post-release mortality of 18.5% resulted in almost a doubling (90% increase) of animals released alive assumed to have died compared to the numbers obtained using the previous estimate of 9.7%. In absolute terms, this translated to an increase from 991,810 mortalities to 1,891,596 mortalities during the entire time series (1981-2018)."

References

Dorai-Raj, S. 2014. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom.

NMFS (National Marine Fisheries Service). 2020. Southeast Data Assessment and Review (SEDAR) 65 Atlantic blacktip shark stock assessment report: Highly Migratory Species (HMS) Gulf of Mexico blacktip shark. December, 2020. DOC/NOAA/NMFS SEDAR, 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405. Available: http://sedarweb.org/sedar-65 (December, 2021).