

SEDAR

Southeast Data, Assessment, and Review

SEDAR 77

HMS Hammerhead Sharks

Data Workshop Final Report

April 2022

SEDAR 4055 Faber Place Drive, Suite 201 North Charleston, SC 29405

Table of Contents

1.	Introd	luction	3
	1.1	Workshop Time and Place	3
	1.2	Terms of Reference	3
	1.3	List of Participants	5
	1.4	Document List	7
2.	Life H	listory	16
	2.1	Summary of Life History Documents	16
	2.2	Life History Information Summary and Consensus	19
	2.3	2.2.1 Age and Growth Datasets and Decisions2.2.2 Reproduction Datasets and DecisionsResearch recommendations:	21
	2.4	Tables	27
3.	Catche	es	35
	3.1	Data Review - Catch Statistics	
	3.2	 3.1.1 Commercial catches	44 59 70
	3.3	Literature Cited	72
	3.4	Tables	75
	3.5	Figures	108
4.	Indice	es of Population Abundance	159
	4.1	Overview	159
	4.2	Review Of Indices –Scalloped Hammerhead-	160
	4.3	 4.2.1 Fishery-Dependent Indices 4.2.2 Scientific Survey Indices 4.2.3 Summary-Scalloped Hammerhead Review Of Indices –Great Hammerhead 	163 170
	4.4	 4.3.1 Fishery-Dependent Indices 4.3.2 Scientific Survey Indices 4.3.3 Summary-Great Hammerhead Review Of Indices –Smooth Hammerhead 	172 175
	4.5	Review Of Indices –Carolina Hammerhead	176
	4.6	Research Recommendations	176

	4.7	Literature Cited
	4.8	Tables
	4.9	Figures
	4.10	Length Frequency
5.	Ecolog	ical Factors204
	5.1	Habitat
	5.2	Environmental envelopes
	5.3	Diet
	5.4	Factors with potential to affect ecology and population dynamics of hammerheads205
	5.5	Research recommendations
	5.6	Figures
	5.7	Tables
6.	Length	Composition Section
	6.1	Length Composition Submitted For Use In The Assessment Workshop217
	6.2	Fishery-Dependent Data Sources
	6.3	Fishery-Independent Data Sources
	6.4	Summary
	6.5	Tables
	6.6	Figures

1. Introduction

1.1 Workshop Time and Place

The SEDAR 77 Data Workshop meeting was held December 13-17, 2021 via webinar. Three data webinars were held prior to the workshop on September 23, October 20th and November 9th, 2021. Two additional webinars were held post the Data workshop on January 13 and January 31, 2022.

1.2 Terms of Reference

- 1. Definition of assessment unit stock will be developed through the Hammerhead Sharks Stock ID process and will be added to TORs once that process is complete.
- 2. Review, discuss, and tabulate available life history information for each stock being assessed.
 - a. Evaluate age, growth, natural mortality, and reproductive characteristics
 - b. Provide appropriate models to describe population- and area-specific (if warranted) growth, maturation, and fecundity by age, sex, or length as applicable.
 - c. Evaluate the adequacy of available life history information for conducting stock assessments and recommend life history information for use in population modeling.
 - d. Evaluate and discuss the sources of uncertainty and error and data limitations (such as temporal and spatial coverage) for each data source. Provide estimates or ranges of uncertainty for all life history information, where applicable.
- 3. Provide measures of population relative abundance that are appropriate for these stock assessments.
 - a. Consider all available and relevant fishery-dependent and fishery-independent data sources
 - b. Document all programs evaluated; address program objectives, methods, coverage, sampling intensity, and other relevant characteristics.
 - c. Provide maps of fishery-dependent and fishery independent survey coverage.
 - d. Develop fishery and survey CPUE indices by appropriate strata (e.g., age, size, area, and fishery) and include measures of precision and accuracy.
 - e. Document pros and cons of available indices regarding their ability to represent abundance.
 - i. Consider potential species identification issues between hammerhead shark species and, if present, whether the issue was adequately addressed during index development.
 - *f*. Categorize the available indices into Recommended and Not Recommended; provide justifications for the categorization.
 - g. For recommended indices, document any known or suspected spatial or temporal patterns not accounted for by standardization.
 - h. Provide appropriate measures of uncertainty for the abundance indices to be used in stock assessment models.
- 4. Provide commercial catch statistics for each stock being assessed, including landings, dead discards, live discards, and potential post-release mortality in both weight and number. Consider species identification issues between hammerhead shark species and correct for these instances as appropriate.
 - a. Evaluate and discuss the adequacy of available data for accurately characterizing

landings and discards by fishery sector or gear.

- b. Provide length and age distributions for both landings and discards if feasible.
- c. Provide maps of fishery effort and harvest by fishery sector or gear.
- d. Provide estimates of uncertainty around each set of commercial landings (if possible) and discard estimates.
- e. Provide estimates of discard mortality rate by gear.
- 5. Provide recreational catch statistics for each stock being assessed, including landings, dead discards, live discards, and potential post-release mortality in both weight and number. Consider species identification issues between hammerhead shark species and correct for these instances as appropriate.
 - a. Evaluate and discuss the adequacy of available data for accurately characterizing landings and discards by fishery sector or gear.
 - b. Provide length and age distributions for both landings and discards if feasible.
 - c. Provide maps of fishery effort and harvest by fishery sector or gear.
 - d. Provide estimates of uncertainty around each set of recreational landings and discard estimates.
 - e. Provide estimates of discard mortality rate by gear.
- 6. Identify and describe ecosystem, climate, species interactions, habitat considerations, and/or episodic events that would be reasonably expected to affect population dynamics.
 - a. Report and summarize species that frequently co-occur or are associated with hammerhead sharks from survey data, if possible.
 - b. Report and summarize species envelopes used for CPUE standardization, i.e. minimum and maximum values of environmental boundaries (e.g. depth, temperature, substrate, relief).
 - c. Review and summarize available diet composition with respect to ontogeny, seasonality, and habitat, where available.
- 7. Provide recommendations for future research in areas such as sampling, fishery monitoring, and stock assessment. Include specific guidance on sampling intensity (number of length samples) and appropriate strata and coverage.
- 8. Prepare a Data Workshop report providing complete documentation of workshop actions and decisions in accordance with project schedule deadlines.

1.3 List of Participants

Ря	rtic	ing	ants
1 a	1 111	11/6	ints

Participants	Affiliation			
Assessment Development Team (ADT)				
Rob Latour	Virginia Institute of Marine Science College of William and Mary			
Beth Babcock	RSMAS U. Of Miami			
John Carlson	HMS			
Trey Driggers	SEFSC Mississippi Laboratory			
Panelists				
Eric Hoffmayer	SEFSC Mississippi laboratory			
Enric Cortes	SEFSC Panama City laboratory			
Xinsheng Zhang	SEFSC Panama City laboratory			
Dean Courtney	SEFSC Panama City laboratory			
Xinsheng Zhang	SEFSC Panama City laboratory			
Heather Baertlein	HMS			
Alyssa Mathers	SEFSC Panama City laboratory			
Andrea Kroetz	SEFSC Panama City laboratory			
Cliff Hutt	HMS			
Adam Pollack	SEFSC Mississippi laboratory			
Cami McCandless	NEFSC Narragansett Laboratory			
Heather Moncrief-Cox	SEFSC Panama City Laboratory			
Michelle Passerotti	NEFSC Narragansett Laboratory			
David Wells	Department of Biology Texas A&M University			
David Portnoy	Department of Biology Texas A&M University			
Bryan Frazier	SC Department of Natural Resources			
R. Dean Grubbs	Florida State University Coastal and Marine Laboratory			
Marcus Drymon	Mississippi State			
Bradley Wetherbee	University of Rhode Island			
Mahmood Shivji	NOVA Southeastern University - Halmos College of Natural			
	Sciences and Oceanography			
Russell Hudson	Directed Shark Fisheries, Inc.			
Neil Hammerschlag	RSMAS U. Of Miami			
Juan Carlos Perez-Jimenez	El Colegio de la Frontera Sur (ECOSUR)			
Demian Chapman	Florida International University			
James Gelsleichter	University of North Florida Recreational fisherman			
Mark Sampson	Recreational Insperman			

STAFF

Kathleen Howington	SEDAR
Cindy Chaya	SAFMC
Julie Neer	SEDAR
Suzanna Thomas	SAFMC
Karyl Brewster-Geisz	HMS Management

Margaret Miller	NMFS
Adam Brame	NMFS
Appointed Data providers Vivian Matter	SEFSC Miami
Kevin McCarthy	SEFSC Miami
Larry Beerkircher	SEFSC Miami
Graciela Garcia-Moliner	CMFC
Hannah Medd	Shark conservancy
Jayne Gardiner	New College
Max lee	MOTE
Other	
Simon Gulak	Sea Leucas LLC
Bradley Smith	NMFS
Carole Neidig	MOTE
Cassandra Scott	
Chip Collier	SAFMC
Dalyan Lopez	CFMC
Delisse Ortiz	NMFS
Derek Kraft	NMFS
Genevieve Patrick	MOTE
Ian Miller	NMFS
Kesley Banks	Texas A&M
Leann Bosarge	GMFMC
Liajay Riviera	CFMC
Sascha Cushner	NMFS
Steve Durkee	NMFS
Tobey Curtis	NMFS
Kristin Hannah	NMFS
Matthew Streich	Texas A&M
Dan Crear	NMFS
Daniel Roberts	Water Interface EM

1.4 Document List

Document #	Title	Authors	Received
	Documents Prepared for SED	AR 77 Data process	
SEDAR77-DW01	Hammerhead Shark Catches from Bottom Longline and Pelagic Longline Surveys conducted by Mississippi Laboratories	Adam G. Pollack and David S. Hanisko	9/7/2021
SEDAR77-DW02	Report on spatial movements of great and scalloped hammerhead sharks in the US Atlantic and Gulf of Mexico using Satellite tags	Neil Hammerschlag	9/8/2021
SEDAR77-DW03	Morphometric conversions for great hammerhead <i>Sphyrna</i> <i>mokarran</i> and scalloped hammerhead <i>Sphyrna lewini</i> from the western North Atlantic Ocean and Gulf of Mexico	Lisa J. Natanson, Camilla T. McCandless William B. Driggers III, Eric R. Hoffmayer, Bryan S. Frazier, Carolyn N. Belcher, James Gelsleichter, Michelle S. Passerotti	11/8/2021
SEDAR77-DW04	Preliminary catches of hammerhead sharks in the U.S. Atlantic, Gulf of Mexico, and Caribbean	Enric Cortes	11/28/2021
SEDAR77-DW05	Hammerhead Shark (<i>Sphyrna spp.</i>) Electronic Monitoring Data Review from the Gulf of Mexico Bottom Longline Reef Fish Fishery	Max Lee, B.S., Genevieve Patrick, M.S., Carole Neidig, M.S., and Ryan Schloesser, Ph.D.	11/17/2021
SEDAR77-DW06	Size distribution and trends in relative abundance of scalloped hammerheads (<i>Sphyrna lewini</i>) in the northern Gulf of Mexico, 2006-2021	M. B. Jargowsky, S. P. Powers, and J. M. Drymon	11/29/2021 Revised: 12/16/21
SEDAR77-DW07	Post-release mortality and behavior of sharks in shore-based recreational fisheries using citizen scientists and low-cost tags	John A. Mohan , R.J. David Wells, Marcus Drymon, Gregory Stunz, and Matthew Streich	11/29/2021 Revised: 12/16/21
SEDAR77-DW08	Standardized abundance indices for scalloped hammerhead shark from the Pelagic Longline Observer Program, 1992-2019	John K. Carlson, Sasha Cushner, and Lawrence Beerkircher	11/28/2021

SEDAR77-DW09	Stress physiology of scalloped and great hammerhead sharks from a bottom longline fishery	Bianca K. Prohaska, Heather Marshall, R. Dean Grubbs, Bryan S. Frazier, John J. Morris, Alyssa Andres, Karissa Lear, Robert E Hueter, Bryan A Keller, Nicholas M Whitney	11/29/2021
SEDAR77-DW10	Stress physiology of scalloped and great hammerhead sharks from a bottom longline fishery: Supplemental Tables	Bianca K. Prohaska, Heather Marshall, R. Dean Grubbs, Bryan S. Frazier, John J. Morris, Alyssa Andres, Karissa Lear, Robert E Hueter, Bryan A Keller, Nicholas M Whitney	11/29/2021
SEDAR77-DW11	Age and growth of the great hammerhead, <i>Sphyrna mokarran</i> , in the western North Atlantic Ocean.	William B. Driggers III, Christian M. Jones, Kristin M. Hannan, Andrew Piercy, and Bryan S. Frazier	11/29/2021
SEDAR77-DW12	Standardized abundance indices from scalloped and great hammerhead from the Shark Bottom Longline Observer Program, 1994-2019	John K. Carlson and Alyssa N. Mathers	11/30/2021
SEDAR77-DW13	Standardized Abundance Indices for Scalloped Hammerhead from the Southeast Coastal Gillnet Fishery	John Carlson and Alyssa Mathers	11/30/2021
SEDAR77-DW14	Standardized Abundance Indices for Great Hammerhead from the Florida State University Longline Survey	John Carlson and R. Dean Grubbs	11/30/2021

			11/20/2021
SEDAR77-DW15	Standardized Abundance Index for	John Carlson, Neil	11/30/2021
	Great Hammerhead from the	Hammerschlag and	Revised:
	Rosenstiel School of Marine and	Robert J. Latour	2/9/2022
	Atmospheric Science Drumline		
	Survey		
	-		
SEDAR77-DW16	Relative abundance index for	John K. Carlson and Mark	12/1/2021
	young-of-the-year scalloped	Fisher	
	hammerhead shark based on a		
	fishery-independent gillnet survey		
	off Texas, 1982-2019		
	011 10/405, 1902 2019		
SEDAR77-DW17	Relative abundance index for	John K. Carlson, Jill	12/1/2021
	young-of-the-year scalloped	Hendon, Jeremy Higgs,	
	hammerhead shark from the	Dana M. Bethea, Bethany	
	northeastern Gulf of Mexico	Deacy, Heather Moncrief-	
		Cox, and Andrea Kroetz	
SEDAR77-DW18	Reproductive parameters of great	Heather E. Moncrief-Cox,	12/1/2021
222121,7 2	hammerhead sharks (<i>Sphyrna</i>	Kristin M. Hannan,	
	<i>mokarran</i>) and scalloped	Michelle S. Passerotti,	
	hammerhead sharks (<i>Sphyrna</i>	William B. Driggers III	
	<i>lewini</i>) from the western North	and Bryan S. Frazier	
	Atlantic Ocean		
SEDAR77-DW19	Age and growth of scalloped	Bryan S. Frazier, Ashley	12/2/2021
	(<i>Sphyrna lewini</i>) and Carolina	S. Galloway, Lisa J.	
	(<i>Sphyrna gilberti</i>) hammerheads in	Natanson, Andrew N.	
	the western North Atlantic Ocean	Piercy, and William B.	
		Driggers III	
SEDAR77-DW20	Bycatch estimates of scalloped and	John Carlson, Alyssa	12/8/2021
	great hammerhead shark in the	Mathers, Heather	
	shark bottom longline fishery	Moncrief-Cox, Kevin	
		McCarthy	

SEDAR77-DW21	Bycatch Estimates of Scalloped and Great Hammerhead Shark in the Southeast Coastal Gillnet Fishery	John Carlson, Alyssa Mathers and Kevin McCarthy	12/8/2021
SEDAR77-DW22	Report on the post-release mortality rates of great hammerhead sharks <i>Sphyrna</i> <i>mokarran</i> in the recreational, catch and release, shore-based fishery in Florida, USA.	Hannah B. Medd and Jill L. Brooks	12/6/2021
SEDAR77-DW23	Relative abundance of scalloped hammerhead, <i>Sphyrna lewini</i> , and Carolina hammerhead, <i>Sphyrna</i> <i>gilberti</i> , along the southern U.S east coast.	David S, Portnoy, Amanda M. Barker, and Bryan S. Frazier	12/8/2021
SEDAR77-DW24	Scalloped and Great Hammerheads Abundance Indices from NMFS Bottom Longline Surveys in the Northern Gulf of Mexico and Western North Atlantic	Adam G. Pollack and David S. Hanisko	12/9/2021
SEDAR77-DW25	Standardized Catch Rates Of Great Hammerheads (<i>Sphyrna</i> <i>Mokarran</i>) Collected During Bottom Longline Surveys In Coastal Waters Of The Northern Gulf Of Mexico, 2006-2019	Eric Hoffmayer, Adam Pollack, Jill Hendon, Marcus Drymon, and Sean Powers	12/10/21
SEDAR77-DW26	An Updated Literature Review of Post-Release Live-Discard Mortality Rate Estimates in Sharks for use in SEDAR 77	Dean Courtney, Alyssa Mathers, and Andrea Kroetz	12/13/21
SEDAR77-DW27	Estimation of scalloped and smooth hammerhead discards in the northeast gillnet fishery using data collected by the NOAA Northeast Fisheries Observer Program	Camilla T. McCandless and Joseph J. Mello	1/24/22 Revised: 1/29/2022

	1	1	· · · · · · · · · · · · · · · · · · ·
SEDAR77-DW28	Standardized index of abundance for scalloped hammerhead sharks from the NOAA Northeast Fisheries Science Center coastal shark bottom longline survey	Camilla T. McCandless and Lisa J. Natanson.	1/7/22
SEDAR77-DW29	Standardized indices of abundance for scalloped hammerhead sharks from the South Carolina Department of Natural Resources red drum and Southeast Area Monitoring and Assessment Program longline surveys	Camilla T. McCandless and Bryan S. Frazier	1/7/22
SEDAR77-DW30	Standardized index of abundance for scalloped hammerhead sharks from the South Carolina Department of Natural Resources, Cooperative Atlantic States Shark Pupping and Nursery long-gillnet survey	Camilla T. McCandless, Bryan S. Frazier, James Gelsleichter, and Carolyn N. Belcher.	1/7/22
SEDAR77-DW31	Standardized index of abundance for scalloped hammerhead sharks from the South Carolina Department of Natural Resources, Cooperative Atlantic States Shark Pupping and Nursery long-gillnet survey	Camilla T. McCandless and Bryan S. Frazier	1/7/22
SEDAR77-DW32	Standardized index of abundance for scalloped hammerhead sharks from the South Carolina Department of Natural Resources, Cooperative Atlantic States Shark Pupping and Nursery short-gillnet survey	Camilla T. McCandless and Bryan S. Frazier	1/7/22
SEDAR77-DW33	Standardized index of abundance for scalloped hammerhead sharks from the University of North Carolina shark longline survey south of Shakleford Banks	Camilla T. McCandless and Joel Fodrie	1/7/22
SEDAR77-DW34	Movement and post-release mortality data for great hammerheads, <i>Sphyrna mokarran</i> , tagged during research bottom longline surveys in the northern Gulf of Mexico from 2012-2014	Eric R. Hoffmayer, Jill M. Hendon, Jennifer A. McKinney, Brett Falterman, William B. Driggers III	12/16/21

SEDAR77-DW35	Hammerhead post-release mortality data summary for SEDAR	N.M. Whitney, K.O. Lear, H.M. Marshall, J. Morris, A.M. Andres, C.F. White, T. Driggers, B. Prohaska, J. Gelsleichter, B. Frazier, R.D. Grubbs	12/17/2021
SEDAR77-DW36	Report on post-release mortality of scalloped hammerhead, <i>Sphyrna</i> <i>lewini</i> , and great hammerhead, <i>Sphyrna mokarran</i>	Jayne M. Gardiner, Tonya R. Wiley, Jorge Brenner	1/24/2022
SEDAR77-DW37	Revised bycatch estimates of scalloped and great hammerhead shark in the shark bottom longline fishery	Xinsheng Zhang, John Carlson, Enric Cortés, Elizabeth Babcock, Robert Latour	1/31/22
SEDAR77-DW38	Revised Bycatch Estimates of Scalloped and Great Hammerhead Shark in the Southeast Coastal Gillnet Fishery	Xinsheng Zhang, John Carlson, Enric Cortés, Elizabeth Babcock, Robert Latour	1/31/22
Document #	Title	Authors	Received
	Reference Documents for the SI	DAR 77 Data process	
SEDAR77-RD26		Andrew N. Piercy, John K. Carlson and Michelle S. Passerotti	9/8/2021
SEDAR77-RD27	Status Review Report: Great Hammerhead Shark <i>(Sphyrna mokarran)</i>	Margaret Miller, John Carlson, LeAnn Hogan, and Donald Kobayashi	9/8/2021
SEDAR77-RD28	Hammerhead Sharks of the Northwest Atlantic and Gulf of Mexico (2014 – 2020)	Lisa Clarke, Librarian, NOAA Central Library	9/8/2021

SEDAR77-RD29	Age validation of great hammerhead shark (<i>Sphyrna</i> <i>mokarran</i>), determined by bomb radiocarbon analysis	Michelle S. Passerotti John K. Carlson Andrew N. Piercy Steven E. Campana	9/8/2021
SEDAR77-RD30	Age and growth of the smooth hammerhead, Sphyrna zygaena, in the Atlantic Ocean: comparison with other hammerhead species	Daniela Rosa, Rui Coelho, Joana Fernandez- Carvalho & Miguel N. Santos	9/8/2021
SEDAR77-RD31	Status Review Report: Scalloped Hammerhead Shark (<i>Sphyrna lewini</i>)	Margaret H. Miller, Dr. John Carlson, Peter Cooper, Dr. Donald Kobayashi, Marta Nammack, and Jackie Wilson	9/8/2021
SEDAR77-RD32	Age and growth of the scalloped hammerhead shark, <i>Sphyrna</i> <i>lewini</i> , in the north-west Atlantic Ocean and Gulf of Mexico	Andrew N. Piercy, John K. Carlson, James A. Sulikowski and George H. Burgess	9/8/2021
SEDAR77-RD33	Scalloped hammerhead shark (Sphyrna lewini) 2014-2019	Trevor Riley, Head of Public Services, NOAA Central Library	9/8/2021
SEDAR77-RD34	The biology and conservation status of the large hammerhead shark complex: the great, scalloped, and smooth hammerheads	Austin J. Gallagher and A. Peter Klimley	9/8/2021
SEDAR77-RD35	Hooking mortality of scalloped hammerhead Sphyrna lewini and great hammerhead Sphyrna mokarran sharks caught on bottom longlines	SJB Gulak, AJ de Ron Santiago & JK Carlson	9/8/2021
SEDAR77-RD36	ENDANGERED SPECIES ACT STATUS REVIEW REPORT Smooth Hammerhead Shark (Sphyrna zygaena)	M.H. Miller	9/8/2021
SEDAR77-RD37	Scalloped Hammerhead Shark (Sphyrna lewini) 5-Year Review: Summary and Evaluation	National Marine Fisheries Service Office of Protected Resources Silver Spring, MD	9/8/2021

SEDAR77-RD38 SEDAR77-RD39	Periodicity of the growth-band formation in vertebrae of juvenile scalloped hammerhead shark <i>Sphyrna lewini</i> from the Mexican Pacific Ocean Range extension of the Endangered great hammerhead shark <i>Sphyrna</i> <i>mokarran</i> in the Northwest Atlantic: preliminary data and significance for conservation	C. Coiraton, J. Tovar- Ávila, K. C. Garcés- García, J. A. Rodríguez- Madrigal, R. Gallegos- Camacho, D. A. Chávez- Arrenquín, F. Amezcua Neil Hammerschlag, Austin J. Gallagher, Dominique M. Lazarre, and Curt Slonim	9/8/2021 9/8/2021
SEDAR77-RD40	Identification of a nursery area for the critically endangered hammerhead shark (Sphyrna lewini) amid intense fisheries in the southern Gulf of Mexico	Gabriela Alejandra Cuevas-Gómez, Juan Carlos Pérez-Jiménez, Iván Méndez-Loeza, Maribel Carrera- Fernández, and José Leonardo Castillo-Géniz	9/8/2021
SEDAR77-RD41	SEDAR65-RD20 - An Updated Literature Review of Post-release Live-discard Mortality Rate Estimates in Sharks for use in SEDAR 65	Dean Courtney and Alyssa Mathers	9/23/2021
SEDAR77-RD42	Physiological stress response, reflex impairment, and survival of five sympatric shark species following experimental capture and release	A. J. Gallagher, J. E. Serafy, S. J. Cooke, N. Hammerschlag,	9/23/2021
SEDAR77-RD43	Integrating reflexes with physiological measures to evaluate coastal shark stress response to capture	J. M. Jerome, A. J. Gallagher, S. J. Cooke, and N. Hammerschlag	9/23/2021
SEDAR77-RD44	SEDAR29-WP17- A preliminary review of post-release live-discard mortality estimates for sharks.	Dean Courtney	12/14/21
SEDAR77-RD45	SEDAR34-WP08- A preliminary review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 34	Dean Courtney	12/14/21

SEDAR77-RD46	SEDAR39-DW21 - A preliminary review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 39.	Dean Courtney	12/14/21
SEDAR77-RD47	Updated Post-release Live-discard Mortality Rate and Range of Uncertainty Developed for Blacktip Sharks Captured in Hook and Line Recreational Fisheries for use in the SEDAR 29-Update	Dean Courtney	12/14/2021
SEDAR77-RD48	Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin	Michael K. Musyl and Eric L. Gilman	1/31/2022

2. Life History

Life History Workgroup participants

William Driggers, Co-Leader Bryan Frazier, Co-leader Jim Gelsleichter Kristin Hannan Heather Moncrief-Cox Michelle Passerotti David Portnoy National Marine Fisheries Service, Pascagoula, MS South Carolina Department of Natural Resources University of North Florida National Marine Fisheries Service, Pascagoula, MS National Marine Fisheries Service, Panama City, FL National Marine Fisheries Service, Narragansett, RI Texas A&M University, Corpus Christi, TX

2.1 Summary of Life History Documents

SEDAR77-DW03: Morphometric conversions for great hammerhead *Sphyrna mokarran* and scalloped hammerhead *Sphyrna lewini* from the western North Atlantic Ocean and Gulf of Mexico. *Lisa J. Natanson, Camilla T. McCandless, William B. Driggers III, Eric R. Hoffmayer, Bryan S. Frazier, Carolyn N. Belcher, James Gelsleichter, and Michelle S. Passerotti*

Morphometric conversion equations were presented for great and scalloped hammerheads collected from United States waters of the western North Atlantic Ocean. Equations were given for each species relating fork length (FL), pre-caudal length, total length, stretched total length and whole weight. These data were derived from measurements of sharks sampled during research activities from 1961-2018. All FL – length relationships were pooled across sexes whereas FL – weight relationships were calculated separately for each sex and for sexes combined.

SEDAR77-DW11: Age and growth of the great hammerhead, *Sphyrna mokarran*, in the western North Atlantic Ocean.

William B. Driggers III, Christian M. Jones, Kristin M. Hannan, Andrew Piercy, and Bryan S. Frazier

Vertebrae were collected from 388 great hammerheads off the east coast of the United States and within the northern Gulf of Mexico, including 204 females, 179 males and five individuals of unknown sex, to assess the age and growth of the species. Female sharks ranged in size from 42-357 cm FL and males ranged in size from 40-297 cm FL. As the current study was an update to growth models presented by Piercy et al. (2010), we employed the identical standard ageing methods described in that study with the exception that no stain (i.e., crystal violet) was used to elucidate growth bands as bands were readily visible in non-stained vertebra.

Three parameter von Bertalanffy growth models were fitted to age and length data from both sexes and sexes combined using parameters reported by Piercy et al. (2010) as initial estimates. As expected, females ($L_{\infty} = 323.9 \text{ mm FL}$, k = 0.11, $t_o = -2.06 \text{ years}$) had a higher asymptotic length and lower growth constant than males ($L_{\infty} = 249.4 \text{ mm FL}$, k = 0.20, $t_o = -1.37 \text{ years}$) and there was a significant difference among VBGF parameter estimates between the sexes ($\chi^2 = 113.21$, p < 0.01). The maximum observed ages for females and males were 35 years and 38 years, respectively. These

maximum observed ages were lower than those found by Piercy et al. (2010) who reported maximum observed ages of 44 years for females and 42 years for males.

SEDAR77-DW18: Reproductive parameters of great hammerhead sharks (*Sphyrna mokarran*) and scalloped hammerhead sharks (*Sphyrna lewini*) from the western North Atlantic Ocean. *Heather E. Moncrief-Cox, Kristin M. Hannan, Michelle S. Passerotti, William B. Driggers III and Bryan S. Frazier*

Maturity at length and at age was evaluated for great and scalloped hammerheads from the east coast of the United States (hereafter Atlantic) and Gulf of Mexico. Binomial maturity data were fit to length and age maturity ogives using generalized linear models with a logit link, following the methods of Natanson et al. (2019). Ages for great hammerheads were provided by Driggers et al. (SEDAR77-DW11) and scalloped hammerhead age data were provided by Frazier et al. (SEDAR77-DW11).

Maturity data were available for 751 great hammerheads, of which 86 had associated ages. Most individuals evaluated were captured in the Gulf Mexico (n = 617 and n = 55 for length and age data, respectively). Males ranged in size from 50.0 - 298.0 cm FL, with the median length at maturity (L_{50}) being 200.56 cm FL (L_{50} SE = 1.63, a = -19.144, b = 0.095) for both regions combined. Minimum and maximum observed sizes for females in the Atlantic and Gulf of Mexico were 48.0 cm and 360.0 cm FL, respectively, with L_{50} estimated to be 206.83 cm FL (L_{50} SE = 2.89; a = -21.286, b = 0.103). The age at which 50% of males were mature (A_{50}) for both regions combined was 7.8 years (A_{50} SE = 0.49, a = -8.876, b = 1.137), and 8.1 years for females (A_{50} SE = 0.70, a = -7.569, b = 0.937); however, additional age data are needed to improve confidence in these values.

A total of 1,537 scalloped hammerheads had maturity status information available to evaluate median length at maturity, with fork lengths ranging from 27.0 - 289.0 cm FL. Age information was available for 459 individuals from the Atlantic and 174 from the Gulf of Mexico. Due to the presence of Carolina hammerheads and Carolina-scalloped hammerhead hybrids in the Atlantic, the regions were analyzed separately. In the Atlantic, male L_{50} and A_{50} were 158.31 cm FL ($L_{50} SE = 1.99, a = -21.937, b = 0.139$) and 12.4 years ($A_{50} SE = 0.44, a = -7.670, b = 0.619$), respectively. In the Gulf of Mexico, L_{50} was estimated at 142.94 cm ($L_{50} SE = 1.55, a = -17.544, b = 0.123$) and A_{50} was 8.6 years ($A_{50} SE = 0.57, a = -8.080, b = 2.84$). There was a significant difference in both L_{50} and A_{50} for males between the regions (p < 0.001 in both analyses). Females in the Atlantic had L_{50} estimated at 187.54 cm FL ($L_{50} SE = 3.13, a = -45.626, b = 0.243$), and A_{50} was 16.2 years ($A_{50} SE = 0.78, a = -11.652, b = 0.721$). Within the Gulf of Mexico, 50% of females matured at 176.50 cm FL ($L_{50} SE = 16.80, a = -4941.910, b = 28.000$) and 13.9 years ($A_{50} SE = 6797.88, a = -55.677, b = 4.009$). Females did not show a significant difference between regions, possibly due to the low sample size in the Atlantic (n = 8).

SEDAR77-DW19: Age and growth of scalloped (*Sphyrna lewini*) and Carolina (*Sphyrna gilberti*) hammerheads in the western North Atlantic Ocean. Bryan S. Frazier, Ashley S. Galloway, Lisa J. Natanson, Andrew N. Piercy, and William B. Driggers III

Scalloped hammerhead

Vertebrae from scalloped hammerheads were collected from a variety of fishery dependent and independent sources, including archived samples used by Piercy et al. (2007). Because Carolina and scalloped hammerheads are sympatric in at least a portion of their known ranges (i.e., off the east coast) and are indistinguishable relying solely on their external morphologies, fin clips were taken when possible and samples were identified to species level using genomic techniques (Barker et al. 2021). As fin clips were not available for archived specimens, we could not determine if Carolina hammerhead samples were present. Despite extensive sampling, the Carolina hammerhead has not been detected in the Gulf of Mexico but is known to occur along the U.S. east coast (hereafter, Atlantic) (Barker et al. 2021). Therefore, samples from the Atlantic were assumed to include both scalloped and Carolina hammerheads. Standard techniques were used to section vertebrae and estimate ages and were similar to those used by Piercy et al. (2010).

Atlantic and Gulf of Mexico combined

A total of 1,026 vertebrae were available for analysis. Of these, 403 were females (27-245 cm FL range), and 623 were males (27.6-287 cm FL). Three parameter von Bertalanffy growth models were fit to females, males, and sexes combined. Model results indicate females ($L_{\infty} = 229.2$ cm FL, k = 0.086, $t_o = -2.35$ years) and males ($L_{\infty} = 230.1$ cm FL, k = 0.092, $t_o = -2.17$ years) had similar estimates of average asymptotic length and growth coefficient, although there was a significant difference among VBGF parameter estimates between the sexes ($\chi^2 = 19.00$, p < 0.001). However, it should be noted samples from presumed mature females, and 39.5 for males. Previous age and growth work by Piercy et al. (2007) found maximum estimated ages of 30.5 for both sexes. Region-specific growth models were significantly different ($\chi^2 = 48.15$, p < 0.001) with scalloped hammerheads in the Atlantic reaching a larger asymptotic length and lower growth constant compared to individuals from the Gulf of Mexico.

Gulf of Mexico

A total of 291 vertebrae from scalloped hammerheads collected in the Gulf of Mexico were available for age analysis. Vertebrae from 107 females and 184 males were available for growth modeling. Female sharks ranged in size from 30-235 cm FL and males ranged in size from 35-223 cm FL. Sample sizes were lower for the Gulf of Mexico compared to the Atlantic and samples of mature female scalloped hammerheads were limited. Three parameter von Bertalanffy growth models were fit to length and age data for females, males, and sexes combined. Model results indicate females ($L_{\infty} = 234.5$ cm FL, k = 0.084, $t_o = -2.41$ years) had a higher asymptotic length and lower growth constant than males ($L_{\infty} = 210.5$ cm FL, k = 0.122, $t_o = -1.82$ years). Maximum estimated ages were 24.5 for females, and 37.5 for males.

Vertebral sample were available for 708 scalloped hammerheads from the Atlantic, of which 285 were females and 423 were males. Female sharks ranged in size from 27-245 cm FL and males ranged in size from 28-287 cm FL. Three parameter von Bertalanffy growth models were fit to sexspecific and combined sexes length and age data. Model results indicated females ($L_{\infty} = 225.8$ cm FL, k = 0.089, $t_o = -2.29$ years) had a lower asymptotic length and slightly higher growth constant than males ($L_{\infty} = 242.1$ cm FL, k = 0.081, $t_o = -2.33$ years) and there was a significant difference

among VBGF parameter estimates between the sexes ($X^2 = 19.00, p < 0.001$). Maximum estimated ages were 29.5 for females, and 39.5 for males. *Carolina hammerhead*

A total of 76 vertebrae were available for construction of growth curves for Carolina hammerheads (all from the Atlantic). Unfortunately, insufficient samples were available to generate robust estimates of growth in this species. Further, all but one of the vertebral samples from genetically verified Carolina hammerheads were from individuals 4 years of age or less.

2.2 Life History Information Summary and Consensus

2.2.1 Age and Growth Datasets and Decisions

Scalloped hammerhead

Age estimates for 1,026 scalloped hammerheads (403 females and 623 males) were used to generate region and sex-specific growth curves as well as growth curves for combined regions and sexes. Age estimates reported in Frazier et al. (SEDAR77-DW19) were considered accurate and reliable as between reader agreement was high (70.8%) and 92.8% of age estimates were within ± 1 band. This conclusion was supported by a low inter-reader index of average percentage error (5.5%) and coefficient of variation (7.6%). Three parameter von Bertalanffy growth models were fit to age and length data for female, male, and combined sexes age for the combined Atlantic and Gulf of Mexico areas. While results indicated females and males had similar asymptotic length and growth coefficient estimates, there was a significant difference among VBGF parameter estimates between the sexes ($\chi^2 = 19.00, p < 0.001$). Further, region-specific (i.e. Atlantic vs. Gulf of Mexico) growth models were significantly different ($\gamma^2 = 48.15$, p < 0.001) with scalloped hammerheads in the Atlantic reaching a larger asymptotic length and lower growth constant compared to individuals from the Gulf of Mexico. The regional differences in growth coupled with the inclusion of an unknown number of samples from the cryptic Carolina hammerhead among Atlantic samples led the Life History Group to agree that region-specific growth model parameter estimates should be used for scalloped hammerheads.

When comparing region and sex-specific growth models, there was no significant difference in the growth of females between regions ($\chi^2 = 1.02$, p = 0.796) while VBGF parameter estimates were significantly different between regions for males ($\chi^2 = 48.15$, p < 0.001). Frazier et al. (SEDAR77-DW19) suggested that VBGF parameter estimates for the Gulf of Mexico were based on the inclusion of a limited number of samples from large, mature females and thus possibly do not reflect true population parameters in this region. Regardless, the Life History Group concluded that these are the best available estimates of sex and region-specific growth for the species. Among all vertebral samples aged, the oldest observed individual in the Atlantic was a 39.5 year old male while the oldest individual collected from the Gulf of Mexico was a 37.5 year old male: the previous maximum observed age for the species was 30.5 years. This individual was 9 years older than the oldest aged specimen from Piercy et al. (2007).

Decision: Use region and sex-specific growth model parameters estimates and a maximum age of 39.5 years for both regions as presented in SEDAR77-DW19.

Carolina hammerhead

Limited life history data were available for the Carolina hammerhead. Frazier et al. (SEDAR77-DW19) produced a growth model using the available data, however, there was a paucity of large juvenile and adult samples. Therefore, the Life History Working Group had no confidence that model results were representative of Carolina hammerhead population life history.

Decision: Combine Carolina hammerhead age and growth samples with Atlantic scalloped hammerhead samples to produce sex-specific growth models containing both species.

Great hammerhead

Age and growth information was presented by Driggers et al. (SEDAR77-DW-11) based on analyses of vertebral centra from 388 great hammerheads collected from fishery dependent and independent sources in United States waters of the western North Atlantic Ocean. Included among these samples were 92 vertebrae included in the growth model presented by Piercy et al. (2010); however, not all samples utilized by Piercy et al. (2010) were available for reanalysis. Sharks aged by Driggers et al. (SEDAR77-DW-11) ranged in size from 42-357 cm FL and 40-297 cm FL for females and males, respectively. Based on high between-reader agreement (84% of counts in agreement, 96% of counts within one year, 100% of counts within 2 years), and low inter-reader index of average percentage error (0.92%) and coefficient of variation (1.30%), ages were considered accurate and reliable. Three parameter von Bertalanffy growth models were generated and models for females and males were significantly different from one another. The maximum observed ages by Driggers et al. (SEDAR77-DW-11) for females and males were 35 years and 38 years, respectively. These maximum observed ages were lower than those found by Piercy et al. (2010) who reported maximum observed ages of 44 years for females and 42 years for males. Based on direct observation and bomb radiocarbon analysis, Passerotti et al. (2010) validated an age of 42 years for a great hammerhead collected off the east coast of the United States.

Decision: Use sex-specific growth model parameters from SEDAR77-DW-11 and a maximum age of 42 years from Passerotti et al. (2010).

Smooth hammerhead

No age and growth information or data for smooth hammerheads were available for the US waters of the western North Atlantic Ocean. Therefore, the Life History Working Group reviewed the available literature to determine the most appropriate age and growth data to use for smooth hammerheads. After review, von Bertalanffy parameters from Rosa et al. (2017) were deemed most appropriate as this study contained samples from the northern and southern hemispheres in the Atlantic Ocean.

Decision: Use sex-specific growth model parameters and maximum ages from Rosa et al. (2017).

2.2.2 Reproduction Datasets and Decisions

Scalloped hammerhead

Age and size at maturity ogives for scalloped hammerheads were presented in SEDAR77-DW18. These were based on data collected from fishery dependent and independent sources, including the SEFSC, NEFSC, South Carolina Department of Natural Resources, Mote Marine Laboratory, University of Florida, Dauphin Island Sea Lab, and the Gulf of Mexico Shark Pupping and Nursery Project. The resulting region and sex-specific ogives were based on a robust sample size and larger sample size than previously available.

Decision: Use region-specific age and size at maturity ogives reported for scalloped hammerheads in SEDAR77-DW18 and summarized in Table 1 and maturity schedules listed in Tables 5 and 6.

Despite the common occurrence and frequent capture of scalloped hammerheads, surprisingly few studies have examined their reproductive biology in United States waters of the western North Atlantic Ocean with none being notable or examining the species in detail. Based on the concurrent presence of vitellogenic ovarian follicles and developing embryos, Castro (2009) demonstrated that scalloped hammerheads off the southeastern United States have an annual reproductive cycle. This finding is in agreement with other studies examining the reproductive cycle of the species in other regions (e.g., Hazin et al., 2001; Torres-Huerta et al., 2008). The Life History Group determined the mean fecundity of scalloped hammerheads to be 18 pups per brood (S.D. = 7.67) based on data obtained from various unpublished sources (NEFSC, SEFSC, SCDNR, Florida State University, University of Florida). Based on these data, and in agreement with Hazin et al. (2001), there was no relationship between maternal length and brood size. The gestation period of scalloped hammerheads is considered to be 10-11 months based on a limited number of observations reported in Castro (2011); an estimate similar to gestation times suggested in other parts of the species' range (e.g., Branstetter, 1987; Chen et al., 1988; Stevens and Lyle, 1989; Hazin et al., 2001). Parturition in the southeastern United States occurs during May through June (Ulrich et al. 2007). Data from 351 individuals with an open umbilicus collected in South Carolina waters during May and June indicated that the mean size at birth for scalloped hammerheads is 352 mm FL (S.D. = 31.8).

Decision: Use reproductive characteristics summarized above and in Tables 1.

Carolina hammerhead

Because the Carolina hammerhead was only recently described (i.e., 2013) and that, externally, it is morphologically indistinguishable from the scalloped hammerhead, there has been very limited targeted sampling of the species and almost nothing is known about its basic biology. The only aspect of the species' reproductive biology that are known are that parturition occurs during June and the mean size at birth is 315.3 mm FL (S.D. = 18.5)(B. Frazier, unpublished data). What limited information that is available for Carolina hammerheads is summarized in Table 2.

Decision: Insufficient data to describe the basic reproductive biology of the Carolina hammerhead.

Great hammerhead

Age and size at maturity ogives were presented in SEDAR77-DW18 and based on length and maturity data taken from 751 individuals collected by a number of sources, including the SEFSC, NEFSC, Florida State University, Gulf Coast Research Laboratory and the University of Florida. The resulting sex-specific ogives were based on a robust sample size and larger sample size than previously available.

Decision: Use sex-specific age and size at maturity ogives reported for great hammerheads in SEDAR77-DW18 and summarized in Table 3. and maturity schedules listed in Tables 7 and 8.

Stevens and Lyle (1989) examined the reproductive system of great hammerheads collected off northern Australia and noted the lack of ovarian activity in pregnant females. Thus, they concluded the species reproduces on a biennial cycle. This finding was supported by Castro (2011), who reported observing females nearing parturition with inactive ovaries. Fecundity data were very limited in the primary literature, therefore, the Life History Group compiled information from all available published records (e.g., Springer, 1938, 1940; Baughman and Springer, 1950; Clark and von Schmidt, 1965; Dodrill, 1977; Castro, 2011) and supplemented those data with unpublished records from the NEFSC and E. Hoffmayer. The mean brood size of great hammerheads was determined to be 30.93 pups per brood (S.D. = 10.74). Gestation was determined to be 11-12months by Cadenat and Blache (1981), Stevens and Lyle (1989) and Castro (2011) based primarily on the development of embryos and comparisons of months associated with mating times and presence of postpartum females. Parturition occurs in late spring/ early summer (Clark and von Schmidt, 1965) off the west coast of Florida. As location of pupping grounds are currently unknown for great hammerheads in the western North Atlantic Ocean, the Life History Group determined the time of parturition observed off western Florida was likely representative of what occurs in the western North Atlantic in general. There was a significant relationship between maternal length and brood size (provided in Table 3) based on data reported in Springer (1938), Clark and von Schmidt (1965), Dodrill (1977) and Castro (2011) in addition to unpublished data from the NEFSC and E. Hoffmayer. Piercy et al. (2010) reported that the size at birth for great hammerheads is 50 cm FL; a size similar to the range of sizes (46-54 cm FL) of free swimming, presumed neonates observed in South Corlina waters (B. Frazier, unpublished data).

Decision: Use reproductive characteristics summarized above and in Table 3.

Smooth hammerhead

No new data related to the reproductive biology of smooth hammerheads were presented or available from fisheries dependent or independent sources in the western North Atlantic Ocean. Therefore, the Life History Group relied on published information to determine which of the available data were most appropriate to describe the reproductive biology of the species in United States waters of the western North Atlantic Ocean. Size at 50% maturity for females (200 cm FL) and males (193.7 cm FL) were obtained from Nava Nava and Marquez-Farias (2014), who examined 1,041 individuals collected in the Gulf of California from 1995-2000. Unfortunately, no *a* and *b* parameter estimates were reported for the presented ogives and age at maturity was not assessed. To provide an estimate for age at 50% maturity we back transformed the age at the reported sizes at 50% maturity reported by Nava Nava and Marquez-Farias (2014) for females and males, which were 10.5 years and 10.4, respectively, using the VBGF parameter estimates provided by Rosa et al. (2017).

There are very limited data available to describe the basic reproductive biology of the smooth hammerhead and, as a result, the Life History Group had to rely on information from a number of published sources, most based on studies conducted outside of the western North Atlantic Ocean. Based on the examination of 21 gravid females collected from a commercial longline fishery operating in the Gulf of Guinea, Castro and Mejuto (1995) reported that the mean brood size for smooth hammerheads is 33.5, which was consistent with the brood size range of 29-37 reported by Bigelow and Schroeder (1948) and 20-50 reported by Ebert and Stehmann (2013). The only information the Life History Group could locate regarding the reproductive periodicity for female smooth hammerheads was Castro (2011) who reports having examined two gravid females with inactive ovaries indicating these females were reproducing on a biennial cycle. Castro (2011) also stated that he observed no appendiculae on the umbilical cords of these gravid females. This is consistent with a biennial cycle among placentally viviparous sharks within the order Carcharhiniformes as species with an exclusively annual reproductive cycle have appendiculae present on their umbilical cords (e.g. Atlantic sharpnose sharks (Rhizoprionodon terraenovae), bonnetheads (Sphyrna tiburo) and scalloped hammerheads). A gestation time of 10-11 months was suggested by White et al. (2006), however, there was no supporting information. No relationship between maternal length and fecundity was available. The size at birth for smooth hammerheads is 50.3 cm FL based on conversion of the reported TL at birth of 55 cm TL from Coelho et al. (2011) and Rosa et al. (2017).

Decision: Use reproductive characteristics described above and summarized in Table 4.

2.3 Research recommendations:

- Increase data and sample collection in all forms necessary for informing age related parameters for all hammerhead species, with particular attention to Carolina and smooth hammerheads of both sexes and female scalloped hammerheads.
- Investigate alternative methods for non-lethal estimation of age and/or maturity status (e.g., epigenetic ageing). Conduct age validation studies on scalloped hammerheads to reduce uncertainty in band counting methodology.
- Increased reproductive sampling for all species throughout their range, especially with regard to brood size, gestation period, and reproductive cycle.
- Improve standardization of reproductive measurements and sampling techniques across research groups to facilitate better estimates of reproductive parameters.
- Increase genetic surveillance of scalloped and Carolina hammerheads in the Atlantic in order to further delineate species-specific life history traits and important habitats
- Continued genetic monitoring of Carolina and scalloped hammerheads within nurseries to track the relative abundance of the two species.

- Determine life-stage specific movement patterns and habitat utilization for all hammerhead species using electronic tagging, with particular attention to identifying pupping areas for great and smooth hammerheads.
- Assess stock structure and movement between Caribbean and U.S. waters for scalloped and great hammerheads.
- Identify species-specific abiotic characteristics driving distributions and how environmental changes could impact the life history and distribution of hammerheads in the western North Atlantic Ocean.

Literature cited (including citations from life history tables)

Barker, A. M., Frazier, B. S., Adams, D. H., Bedore, C. N., Belcher, C. N., Driggers, W. B. III, Galloway, A. S., Gelsleichter, J., Grubbs, R. D., Reyier, E.A., & Portnoy, D. S. 2021. Distribution and relative abundance of scalloped (*Sphyrna lewini*) and Carolina (*S. gilberti*) hammerheads in the western North Atlantic Ocean. Fisheries Research 242.

Baughman, J.L. and Springer, S. 1950. Biological and economic notes on the sharks of the Gulf of Mexico with especial reference to those of Texas, and with a key for their identification. American Midland Naturalist 44: 96–152.

Bigelow, H.B. and Schroeder, W.C. 1948. Fishes of the western North Atlantic Pt. 1 (sharks). Memoirs. Sears Foundation for Marine Research 1: 59–576.

Branstetter, S. 1987. Age, growth and reproductive biology of the silky shark, *Carcharhinus falciformis*, and the scalloped hammerhead, *Sphyrna lewini*, from the northwestern Gulf of Mexico. Environmental Biology of Fishes 19: 161–173.

Cadenat, J. and Blache, J. 1981. Requins de Mediterranée et Atlantique. Faune Tropicale. ORSTOM. 21, 1–330.

Castro, J. I. 2009. Observations on the reproductive cycles of some viviparous North American sharks. Aqua 15(4): 205–222.

Castro, J.I., 2011. The Sharks of North America. Oxford University Press, New York, NY.

Castro, J. A., and Mejuto, J. 1995. Reproductive parameters of blue shark, *Prionace glauca*, and other sharks in the Gulf of Guinea. Marine and Freshwater Research 46: 967–973.

Chen, C.T., Liu, T.C. and Joung, S.J. 1988 Notes on reproduction in the scalloped hammerhead, *Sphyrna lewini*, in northeastern Taiwan waters. Fishery Bulletin 86: 389–393.

Clark, E. and von Schmidt, K. 1965. Sharks of the central gulf coast of Florida. Bulletin of Marine Science 15: 13–83.

Coelho, R., Fernandez-Carvalho, J., Amorim, S., & Santos, M. N. 2011. Age and growth of the smooth hammerhead shark, *Sphyrna zygaena*, in the Eastern Equatorial Atlantic Ocean, using vertebral sections. Aquatic Living Resources 24: 351–357.

Cortes, E., Domingo, A., Miller, P., Forselledo, R., Mas, F., Arocha, F., Campana, S., Coelho, R., Da Silva, C., Hazin, F.H.V., et al. 2015. Expanded ecological risk assessment of pelagic sharks caught in Atlantic longline fisheries. Collect. Vol. Sci. Pap. ICCAT 71: 2637–2688.

Dodrill, J.W. 1977. A hook and line survey of the sharks of Melbourne Beach, Brevard County, Florida. Master of Science Thesis, Florida Institute of Technology. 304 pp.

Ebert, D.A. and Stehmann, M.F.W. 2013. Sharks, batoids, and chimaeras of the North Atlantic FAO Species Catalogue for Fishery Purposes. No. 7. Rome, FAO. 523 pp.

Hazin, F., Fischer, A. and Broadhurst, M. 2001. Aspects of reproductive biology of the scalloped hammerhead shark, *Sphyrna lewini*, off northeastern Brazil. Environmental Biology of Fishes 61: 151–159.

Nava Nava P, Fernando Marquez-Farias, J. 2014. Size at maturity of the smooth hammerhead shark, *Sphyma zygaena*, captured in the Gulf of California. Hidrobiologica 24: 129–135.

Passerotti, M.S., Carlson, J.K., Piercy, A.N. and Campana, S.E. 2010. Age validation of great hammerhead shark (*Sphyrna mokarran*), determined by bomb radiocarbon analysis. Fishery Bulletin 108: 346–351.

Piercy, A.N., Carlson, J.K., Sulikowski, J.A., and Burgess, G.H. 2007. Age and Growth of the scalloped hammerhead shark, *Sphyrna lewini*, in the north-west Atlantic Ocean and Gulf of Mexico. Marine and Freshwater Research 58: 34–40.

Piercy, A.N., Carlson, J.K and Passerotti, M.S. 2010. Age and growth of the great hammerhead shark, *Sphyrna mokarran*, in the north-western Atlantic Ocean and Gulf of Mexico. Marine and Freshwater Research 61: 992–998.

Rosa, D., Coelho, R., Fernandez-Carvalho, J. and Santos, M.N. 2017. Age and growth of the smooth hammerhead, *Sphyrna zygaena*, in the Atlantic Ocean: comparison with other hammerhead species. Marine Biology Research 13: 300–313.

Springer, S. 1938. Notes on the sharks of Florida. Proceedings of the Florida Academy of Sciences 3: 9–41.

Springer, S. 1940. The sex ratio and seasonal distribution of some Florida sharks. Copeia 1940 (3): 188–194.

Stevens, J.D. 1984. Biological observations on sharks caught by Sport Fishermen off New-South-Wales. Australian Journal of Marine and Freshwater Research 35: 573–590.

Stevens, J.D. and Lyle, J.M. 1989. The biology of three hammerhead sharks (*Eusphyrna blochii*, *Sphyrna mokarran* and *S. lewini*) from Nothern Australia. Australian Journal of Marine and Freshwater Research 40: 129–146.

Torres-Huerta, A.M., Villavicencio-Garayzar, C. and Corro-Espinosa, D. 2008. Biología reproductiva de la cornuda común *Sphyrna lewini* Griffith & Smith (Sphyrnidae) en el Golfo de California. Hidrobiológica 18: 227–23.

Ulrich, G.F., Jones, C.M., Driggers, W.B., Drymon, J.M., Oakley, D. and Riley, C. 2007. Habitat utilization, relative abundance, and seasonality of sharks in the estuarine and nearshore waters of South Carolina. In: McCandless, C.T., Kohler, N.E., Pratt Jr., H.L. (Eds.), Shark nursery grounds of the Gulf of Mexico and East Coast Waters of the United States. American Fisheries Society Symposium 50, pp. 125–139.

White, W.T., Last, P.R., Stevens, J.D., Yearsley, G.K., Fahmi, and Dharmadi. 2006. Economically Important Sharks and Rays of Indonesia. Australian Centre for International Aqricultural Research, Canberra, Australia.

2.4 Tables

Table 1 Summary of life history parameters for scalloped hammerheads (Sphyrna lewini) in the western North Atlantic Ocean

North Atlantic Ocean.			
Life History Workgroup	Region	Summary of scalloped hammerhead biological inputs for 2022 assessment	Reference
Growth parameters		Female / Male / Combined	
L_{∞} (cm FL)	Combined	229.2 (5.44)/ 230.1 (2.77)/ 232.2 (2.47)	SEDAR77-DW-19
k	Combined	0.086 (0.005)/ 0.092 (0.003)/ 0.088 (0.002)	SEDAR77-DW-19
t_o (years)	Combined	-2.352 (0.11)/ -2.166 (0.10)/ -2.262 (0.07)	SEDAR77-DW-19
Maximum observed age	Combined	29.5 / 39.5	SEDAR77-DW-19
(years)			
Sample size	Combined	403 / 623 / 1026	SEDAR77-DW-19
L_{∞} (cm FL)	GOM	234.5 (12.89)/ 210.5 (3.90)/ 216.0 (3.61)	SEDAR77-DW-19
k	GOM	0.084 (0.009)(/ 0.122 (0.008)/ 0.108 (0.005)	SEDAR77-DW-19
t_o (years)	GOM	-2.407 (0.17)/ -1.818 (0.18)/ -1.998 (0.13)	SEDAR77-DW-19
Maximum observed age	GOM	24.5 / 37.5	SEDAR77-DW-19
(years)	COM	107 / 184 / 201	SEDAD77 DW 10
Sample size L_{∞} (cm FL)	GOM Atlantic	107 / 184 / 291 225.8 (6.33)/ 242.1 (3.65)/ 241.0 (3.28)	SEDAR77-DW-19 SEDAR77-DW-19
L_{∞} (cm rL) K	Atlantic	0.089 (0.006)/ 0.081 (0.003)/ 0.080 (0.003)	SEDAR77-DW-19 SEDAR77-DW-19
t_o (years)	Atlantic	-2.29 (0.14)/ -2.33 (0.11)/ -2.38 (0.09)	SEDAR77-DW-19
Maximum observed age	Atlantic	29.5/ 39.5*	SEDAR77-DW-19
(years)	1 manne	2910/ 0910	
Sample size	Atlantic	285 / 423 / 708	SEDAR77-DW-19
Length-weight relationships			
PCL in cm		PCL= (0.909)FL-0.265	SEDAR77-DW03
TL in cm		TL = (1.281)FL + 0.218	SEDAR77-DW03
STL in cm		STL = (1.305)FL + 0.596	SEDAR77-DW03
WT in kg		$WT = (1.161e-5)FL^{2.988}$	SEDAR77-DW03
Combined			
WT in kg		$WT = (5.774e-6)FL^{3.128}$	SEDAR77-DW03
Female		2005	
WT in kg		$WT = (1.778e-5)FL^{2.905}$	SEDAR77-DW03
Male			
Age at 50% maturity ogive	C 1 1	1 1 1 1	
Female (n =220)	Combined	$t_{mat} = 16.11$ years a = -11.979 (3.80), $b = 0.744$ (0.24)	SEDAR77-DW18
Male (n= 413)	Combined	u = -11.979 (5.80), b = 0.744 (0.24) $t_{mat} = 11.31 \text{ years}$	SEDAR77-DW18
Wale (II- 415)	Comonica	a = -6.317 (0.82), b = 0.559 (0.07)	SEDAR//-DW18
Size at 50% maturity ogive		u = 0.517 (0.02), v = 0.555 (0.07)	
Female $(n=473)$	Combined	$FL_{mat} = 183.93 \text{ cm FL}$	SEDAR77-DW18
		a = -35.342 (10.57), b = 0.192 (0.06)	
Male (n= 1064)	Combined	$FL_{mat} = 147.48 \text{ cm FL}$	SEDAR77-DW18
		a = -16.127 (1.30), b = 0.109 (0.01)	
Age at 50% maturity ogive			
Female ($n=56$)	GOM	$t_{mat} = 13.89$ years	SEDAR77-DW18
		a = -55.677 (62741.45), b = 4.009 (4967.34)	
Male (n= 118	GOM	$t_{mat} = 8.60$ years	SEDAR77-DW18
		a = -8.08 (2.84), b = 0.94 (0.32)	
Size at 50% maturity ogive	COM		
Female (n= 289)	GOM	$FL_{mat} = 176.50 \text{ cm FL}$	SEDAR77-DW18
$M_{alo}(n=656)$	GOM	a = -4941.9 (166040.49), b = 28.0 (940.67) FL _{mat} = 142.94 cm FL	SEDAR77-DW18
Male (n= 656)	GOM	a = -17.544 (1.81), b = 0.123 (0.01)	SEDAR//-Dw18
Age at 50% maturity ogive		u = -17.544 (1.01), v = 0.125 (0.01)	
Female $(n=164)$	Atlantic	$t_{mat} = 16.16$ years	SEDAR77-DW18
remaie (ir 101)	<i>i</i> thuntle	a = -11.652 (3.84), b = 0.721 (0.25)	SEDTIN, P D 10
Male (n= 295)	Atlantic	$t_{mat} = 12.39$ years	SEDAR77-DW18
		a = -7.670(1.31), b = 0.619(0.10)	
Size at 50% maturity ogive			
Female $(n=184)$	Atlantic	$FL_{mat} = 187.54 \text{ cm FL}$	SEDAR77-DW18
		a = -45.626 (19.93), b = 0.243 (0.10)	
Male (n= 408)	Atlantic	$FL_{mat} = 158.31 \text{ cm FL}$	SEDAR77-DW18
		a = -21.937 (3.24), b = 0.139 (0.042)	
Reproductive cycle		Annual	Castro 2009
Fecundity		18 (SD = 7.67); range 7-30 (n=11)	NMFS unpublished, Castro 2011
Size at birth		352.0 m FL (S.D. = 31.8) (n = 351)	Frazier, unpublished
Gestation		10-12 months	Castro 2011
Pupping month Facundity maternal size		May – June	Ulrich et al. 2007 NEMS unpublished Castro 2011
Fecundity-maternal size relationship		No relationship	NFMS unpublished, Castro 2011
*Recommended use of male	maximum ao	e for species	

*Recommended use of male maximum age for species *All values in parentheses are standard error unless indicated otherwise

Life History Workgroup	Summary of Carolina hammerhead biological inputs for 2022 assessment	Reference
Growth parameters	Combined	
$L_{\infty} (\mathrm{cm} \mathrm{FL})$	192*	SEDAR77-DW19
k	0.21*	SEDAR77-DW19
t_o (years)	-0.99*	SEDAR77-DW19
Maximum observed age	21.5*	SEDAR77-DW19
(years) Sample size	78	SEDAR77-DW19
Length-weight relationships**		
PCL in cm	PCL= (0.909)FL-0.265	SEDAR77-DW03
TL in cm	TL = (1.281)FL + 0.218	SEDAR77-DW03
STL in cm	STL = (1.305)FL+0.596	SEDAR77-DW03
WT in kg Combined	WT=(1.161e-5)FL ^{2.988}	SEDAR77-DW03
WT in kg Males	WT=(5.774e-6)FL ^{3.128}	SEDAR77-DW03
WT in kg Females Age at 50% maturity	WT=(1.778e-5)FL ^{2.905}	SEDAR77-DW03
ogive		
Female	Unknown	
Male	Unknown	
Size at 50% maturity ogive		
Female	Unknown	
Male	Unknown	
Reproductive cycle		
Fecundity	Unknown	
Size at birth	315.3 mm FL (S.D. = 18.5)	Frazier, unpublished
Gestation		
Pupping month	June	Frazier, unpublished
Fecundity-maternal size relationship	Unknown	
*Limited samples did not	vield robust growth curves	

Table 2. Summary of life history parameters for Carolina hammerheads (Sphyrna gilberti) in the western North Atlantic Ocean.

*Limited samples did not yield robust growth curves **Recommended use of length-weight relationships from scalloped hammerhead

Life History Workgroup	Summary of great hammerhead biological inputs for 2022 assessment	Reference
Growth parameters	Female / Male / Combined	
L_{∞} (cm FL)	323.9 (7.49)/ 249.4 (3.36)/ 283.8 (3.96)	SEDAR77-DW11
k	0.11 (0.011)/ 0.20 (0.010)/ 0.15 (0.010)	SEDAR77-DW11
t_o (years)	-2.06 (0.20)/ -1.37 (0.14)/ -1.72 (0.14)	SEDAR77-DW11
Maximum observed age	35 / 38 / 42*	SEDAR77-DW11,
(years)		*recommended per
G 1 ¹ -	204 / 170 / 200	SEDAR77-RD29
Sample size	204 / 179 / 388	SEDAR77-DW11
Length-weight relationships		
PCL in cm	PCL= (0.895)FL+1.652	SEDAR77-DW03
TL in cm	TL = (1.226)FL+9.139	SEDAR77-DW03
STL in cm	STL = (1.227)FL + 14.13	SEDAR77-DW03
WT in kg	$WT = (1.691e-5)FL^{2.912}$	SEDAR77-DW03
Combined		SEDTIN, FD 1105
WT in kg	WT=(9.275e-6)FL ^{3.028}	SEDAR77-DW03
Female		
WT in kg Male	WT=(2.482e-5)FL ^{2.836}	SEDAR77-DW03
Age at 50% maturity		
ogive		
Female (n= 34)	$t_{mat} = 8.1$ years	SEDAR77-DW18
	a = -7.569 (2.67), b = 0.937 (0.32)	
Male (n= 52)	$t_{mat} = 7.8$ years a = -8.876 (2.61), $b = 1.137$ (0.34)	SEDAR77-DW18
Size at 50% maturity	u = -0.070(2.01), v = 1.137(0.54)	
ogive		
Female ($n=273$)	$FL_{mat} = 206.83 \text{ cm FL}$	SEDAR77-DW18
M_{-1} ($u = 479$)	a = -21.286 (3.53), b = 0.103 (0.02)	SEDAR77-DW18
Male (n= 478)	$FL_{mat} = 200.56 \text{ cm FL}$ a = -19.144 (1.89), b = 0.095 (0.01)	SEDAK//-Dw18
Reproductive cycle	Biennial	Stevens and Lyle 1989,
		Cortes et al. 2015
Fecundity	30.93 (SD = 10.74), range 13-56	Springer 1938, Springer
		1940, Baughman and Springer, 1950, Clark
		and von Schmidt, 1965,
		Dodrill 1977, Castro
		2011, NEFSC
		unpublished data,
		Hoffmayer unpublished data
Size at birth	500 mm FL	Piercy et al. 2010, Frazier
		unpublished
Gestation	11-12 months	Cadenat and Blache
		1981,Stevens and Lyle 1989, Castro 2011
Pupping month	late spring/summer	Clark and von Schmidt
11 0	1 8	1965
Fecundity-maternal size	Brood size = $-67.9565 + 0.345301$ *FL,	Springer 1938, Baughman
relationship	$(p < 0.01, r^2 = 0.90)$	and Springer 1950, Clark and von Schmidt 1965,
		Dodrill 1977, Castro 2011,
		NEFSC unpublished data,
		Hoffmayer unpublished
		data

Table 3. Summary of life history parameters for great hammerheads (*Sphyrna mokarran*) in thewestern North Atlantic Ocean.

*All values in parentheses are standard error unless indicated otherwise

Life History S Workgroup	Summary of smooth hammerhead biological inputs for 2022 assessment	Reference
Growth parameters	Female / Male / Combined	
L_{∞} (cm FL)	293.9 / 284.6 / 288.2	Rosa et al. 2017
k	0.09 / 0.09 / 0.09	Rosa et al. 2017
L_{θ} (cm)	52.7 / 52.2 / 52.4	Rosa et al. 2017
Maximum observed age (years)	25 / 24 / 25	Rosa et al. 2017
Sample size	287	Rosa et al. 2017
Length-weight relationships		
FL in cm	TL = 12.72 + 0.84 FL	Coelho et al. 2011*
WT in kg Combined Age at 50% maturity	$WT = (2.00e-6)FL^{3.329}$	Coelho (IPMA) unpublished data
ogive Female	$t_{mat} = 10.5$ years	Nava Nava and Marquez- Farias (2014)**
Male	$t_{mat} = 10.4$ years	1
Size at 50% maturity ogive		
Female	$FL_{mat} = 200 \text{ cm FL}$	Nava Nava and Marquez- Farias 2014
Male	$FL_{mat} = 193.7 \text{ cm FL}$	Nava Nava and Marquez- Farias 2014
Reproductive cycle	Biennial	Castro, 2011
Fecundity	33.5	Bigelow and Schroder, 1948, Castro and Mejuto 1995
Size at birth	50.3 cm FL	Coelho et al. 2011, Rosa et al. 2017.
Gestation	10-11 months	White et al. 2006
Pupping month	summer (January-March, NSW Australia)	Stevens 1984
Fecundity-maternal size relationship		

Table 4. Summary of life history parameters for smooth hammerheads (*Sphyrna zygaena*) in thewestern North Atlantic Ocean.

* Relationship misstated in publication as FL=12.72+0.84*TL. This results in FL>TL. **Estimates at age at 50% maturity based on length at 50% maturity transformed using recommended von Bertalanffy growth parameters from Rosa et al. 2017.

Table 5. Proportion of mature scalloped hammerheads (Sphyrna lewini) in 5 cm size classes by
sex and region.

. .		xes combine			Females			Males	
Fork	Areas	Gulf of	Atlantic	Areas	Gulf of	Atlantic	Areas	Gulf of	Atlantic
length	combined	Mexico		combined	Mexico		combined	Mexico	
(cm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45 50	0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50 55	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$						
60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
65	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
105	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00
110	0.01	0.01	0.00	0.00	0.00	0.00	0.02	0.02	0.00
115	0.02	0.01	0.00	0.00	0.00	0.00	0.03	0.03	0.00
120	0.03	0.03	0.01	0.00	0.00	0.00	0.05	0.06	0.01
125	0.04	0.05	0.01	0.00	0.00	0.00	0.08	0.10	0.01
130	0.07	0.08	0.02	0.00	0.00	0.00	0.12	0.17	0.02
135	0.11	0.14	0.03	0.00	0.00	0.00	0.20	0.28	0.04
140	0.17	0.22	0.05	0.00	0.00	0.00	0.30	0.42	0.08
145	0.25	0.34	0.09	0.00	0.00	0.00	0.42	0.57	0.14
150	0.35	0.49	0.16	0.00	0.00	0.00	0.56	0.71	0.25
155	0.48	0.63	0.26	0.00	0.00	0.00	0.68	0.82	0.40
160	0.60	0.76	0.39	0.01	0.00	0.00	0.79	0.89	0.58
165	0.71	0.85	0.53	0.03	0.00	0.00	0.87	0.94	0.73
170	0.80	0.91	0.68	0.06	0.00	0.01	0.92	0.97	0.84
175	0.87	0.95	0.79	0.15	0.00	0.04	0.95	0.98	0.92
180	0.92	0.97	0.87	0.31	1.00	0.13	0.97	0.99	0.96
185	0.95	0.98	0.93	0.54	1.00	0.34	0.98	0.99	0.98
190	0.97	0.99	0.96	0.76	1.00	0.63	0.99	1.00	0.99
195	0.98	1.00	0.98	0.89	1.00	0.85	0.99	1.00	0.99
200	0.99	1.00	0.99	0.96	1.00	0.95	1.00	1.00	1.00
205	0.99	1.00	0.99	0.98	-	0.99	1.00	1.00	1.00
210	1.00	1.00	1.00	0.99	-	1.00	1.00	1.00	1.00
215	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
220	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
225	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
230	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
235	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
240	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
245	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
250	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
255	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
260	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
265	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
270	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
275	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
280	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
285	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
290	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
295	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
300	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00

sex.									
	Sex	tes Combine	d		Females			Males	
Age	Areas	Gulf of		Areas	Gulf of		Areas	Gulf of	
(years)	combined	Mexico	Atlantic	combined	Mexico	Atlantic	combined	Mexico	Atlantic
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.08	0.00
3	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.61	0.00
4	0.01	0.01	0.00	0.00	0.00	0.00	0.02	0.96	0.01
5	0.02	0.02	0.01	0.00	0.00	0.00	0.03	1.00	0.01
6	0.03	0.05	0.01	0.00	0.00	0.00	0.05	1.00	0.02
7	0.06	0.12	0.03	0.00	0.00	0.00	0.08	1.00	0.03
8	0.09	0.28	0.05	0.00	0.00	0.00	0.14	1.00	0.06
9	0.15	0.52	0.08	0.01	0.00	0.01	0.22	1.00	0.11
10	0.23	0.75	0.13	0.01	0.00	0.01	0.33	1.00	0.19
11	0.34	0.89	0.21	0.02	0.00	0.02	0.46	1.00	0.30
12	0.46	0.96	0.33	0.05	0.00	0.05	0.60	1.00	0.44
13	0.59	0.98	0.47	0.09	0.03	0.09	0.72	1.00	0.59
14	0.71	0.99	0.61	0.17	0.61	0.17	0.82	1.00	0.73
15	0.81	1.00	0.73	0.31	0.99	0.30	0.89	1.00	0.83
16	0.88	1.00	0.83	0.48	1.00	0.47	0.93	1.00	0.90
17	0.92	1.00	0.90	0.66	1.00	0.65	0.96	1.00	0.95
18	0.95	1.00	0.94	0.80	1.00	0.79	0.98	1.00	0.97
19	0.97	1.00	0.97	0.90	1.00	0.89	0.99	1.00	0.98
20	0.98	1.00	0.98	0.95	1.00	0.94	0.99	1.00	0.99
21	0.99	1.00	0.99	0.97	1.00	0.97	1.00	1.00	1.00
22	0.99	1.00	0.99	0.99	1.00	0.99	1.00	1.00	1.00
23	1.00	1.00	1.00	0.99	1.00	0.99	1.00	1.00	1.00
24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
25	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
26	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
27	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
28	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
29	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
31	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
32	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
34	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
35	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
36	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
37	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
38	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
39	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
40	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 6. Proportion of mature scalloped hammerheads (Sphyrna lewini) in 1 year age classes by	
sex.	

Fork length (cm)	Sexes Combined	Females	Males
40	0.00	0.00	0.00
45	0.00	0.00	0.00
50	0.00	0.00	0.00
55	0.00	0.00	0.00
60	0.00	0.00	0.00
65	0.00	0.00	0.00
70	0.00	0.00	0.00
75	0.00	0.00	0.00
80	0.00	0.00	0.00
85	0.00	0.00	0.00
90	0.00	0.00	0.00
95	0.00	0.00	0.00
100	0.00	0.00	0.00
105	0.00	0.00	0.00
110	0.00	0.00	0.00
115	0.00	0.00	0.00
120	0.00	0.00	0.00
125	0.00	0.00	0.00
130	0.00	0.00	0.00
135	0.00	0.00	0.00
140	0.00	0.00	0.00
145	0.01	0.00	0.00
150	0.01	0.00	0.01
155	0.02	0.00	0.01
160	0.03	0.01	0.02
165	0.04	0.01	0.03
170	0.07	0.02	0.05
175	0.11	0.04	0.07
180	0.16	0.06	0.11
185	0.24	0.10	0.17
190	0.35	0.15	0.25
195	0.47	0.23	0.35
200	0.59	0.33	0.46
205	0.70	0.46	0.58
210	0.80	0.59	0.69
215	0.87	0.70	$0.78 \\ 0.85$
220	0.91	0.80	
225 230	0.95	0.87	0.90
230	0.97 0.98	0.92 0.95	0.94 0.96
233	0.98	0.93	0.90
240	0.99	0.97	0.97
243	1.00	0.98	0.98
255	1.00	0.99	0.99
260	1.00	1.00	1.00
265	1.00	1.00	1.00
270	1.00	1.00	1.00
275	1.00	1.00	1.00
280	1.00	1.00	1.00
285	1.00	1.00	1.00
290	1.00	1.00	1.00
295	1.00	1.00	1.00
300	1.00	1.00	1.00
305	1.00	1.00	1.00
310	1.00	1.00	1.00
315	1.00	1.00	1.00
320	1.00	1.00	1.00
325	1.00	1.00	1.00
330	1.00	1.00	1.00
335	1.00	1.00	1.00
340	1.00	1.00	1.00
345	1.00	1.00	1.00
350	1.00	1.00	1.00
355	1.00	1.00	1.00
360	1.00	1.00	1.00

Table 7. Proportion of mature great hammerheads (*Sphyrna mokarran*) in 5 cm size classes by sex.

Age (years)	Sexes Combined	Females	Males
0	0.00	0.00	0.00
1	0.00	0.00	0.00
2	0.00	0.00	0.00
3	0.01	0.01	0.00
4	0.02	0.02	0.01
5	0.05	0.05	0.04
6	0.12	0.12	0.11
7	0.28	0.27	0.29
8	0.53	0.48	0.55
9	0.76	0.70	0.80
10	0.90	0.86	0.92
11	0.96	0.94	0.97
12	0.99	0.98	0.99
13	1.00	0.99	1.00
14	1.00	1.00	1.00
15	1.00	1.00	1.00
16	1.00	1.00	1.00
17	1.00	1.00	1.00
18	1.00	1.00	1.00
19	1.00	1.00	1.00
20	1.00	1.00	1.00
21	1.00	1.00	1.00
22	1.00	1.00	1.00
23	1.00	1.00	1.00
24	1.00	1.00	1.00
25	1.00	1.00	1.00
26	1.00	1.00	1.00
27	1.00	1.00	1.00
28	1.00	1.00	1.00
29	1.00	1.00	1.00
30	1.00	1.00	1.00
31	1.00	1.00	1.00
32	1.00	1.00	1.00
33	1.00	1.00	1.00
34	1.00	1.00	1.00
35	1.00	1.00	1.00
36	1.00	1.00	1.00
37	1.00	1.00	1.00
38	1.00	1.00	1.00
39	1.00	1.00	1.00
40	1.00	1.00	1.00
41	1.00	1.00	1.00
42	1.00	1.00	1.00

Table 8. Proportion of mature great hammerheads (*Sphyrna mokarran*) in 1 year age classes by sex.

3. Catches

Catches Panel

Heather Baertlein, co-Leader	NMFS HMS Division
Enric Cortés, Leader	NMFS Panama City
Cliff Hutt	NMFS HMS Division
Alyssa Mathers	NMFS Panama City
Vivian Matter, not present	NMFS Miami
Xinsheng Zhang, Commercial Bycatch Leader	NMFS Panama City

Ad-hoc working group on Post-Release Live Discard Mortality (PRLDM)

SEDAR Pool members:

Banks, Kesley	Texas A&M University
Courtney, Dean, Ad-Hoc WG Leader	NMFS Panama City
Drymon, Marcus	Mississippi State University
Frazier, Bryan	South Carolina DNR
Gardiner, Jayne	New College of Florida
Gelsleichter, Jim	UNF
Grubbs, Dean	FSU
Hammerschlag, Neil	RSMAS, U. of Miami
Hoffmayer, Eric	NMFS Pascagoula
Hutt, Cliff	NMFS HMS Division
Medd, Hannah	American Shark Conservancy
Wells, David	Texas A&M University

Working paper or data providers who participated in PRLDM ad-hoc WG discussions but were not part of SEDAR pool:

Gulak, Simon	Mar Alliance
Whitney, Nick	New England Aquarium

	Documents Prepared for the Data Workshop Pre-	ocess
SEDAR77-DW4	Preliminary catches of hammerhead sharks in the U.S. Atlantic, Gulf of Mexico, and Caribbean	Enric Cortés and Heather Baertlein
SEDAR77-DW7	Preliminary post-release mortality estimates for the shore-based recreational shark fishery in Texas	John A. Mohan , R. J. David Wells, Marcus Drymon, Gregory Stunz, and Matthew Streich
SEDAR77-DW9	Stress physiology of scalloped and great hammerhead sharks from a bottom longline fishery	Bianca K. Prohaska, Heather Marshall, R. Dean Grubbs, Bryan S. Frazier, John J. Morris, Alyssa Andres, Karissa Lear, Robert E. Hueter, Bryan A. Keller, and Nicholas M. Whitney
SEDAR77-DW10	Stress physiology of scalloped and great hammerhead sharks from a bottom longline fishery: Supplemental Tables	Bianca K. Prohaska, Heather Marshall, R. Dean Grubbs, Bryan S. Frazier, John J. Morris, Alyssa Andres, Karissa Lear, Robert E. Hueter, Bryan A. Keller, and Nicholas M Whitney
SEDAR77-DW20	Bycatch estimates of scalloped and great hammerhead shark in the shark bottom longline fishery	John Carlson, Alyssa Mathers, Heather Moncrief-Cox, and Kevin McCarthy
SEDAR77-DW21	Bycatch estimates of scalloped and great hammerhead shark in the southeast coastal gillnet fishery	John Carlson, Alyssa Mathers, and Kevin McCarthy
SEDAR77-DW22	Report on the post-release mortality rates of great hammerhead sharks <i>Sphyrna mokarran</i> in the recreational, catch and release, shore-based fishery in Florida, USA	Hannah B. Medd and Jill L. Brooks
SEDAR77-DW26	An updated literature review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 77	Dean Courtney, Alyssa Mathers, and Andrea Kroetz
SEDAR77-DW27	Estimation of scalloped and smooth hammerhead discards in the northeast gillnet	Camilla T. McCandless and Joseph J. Mello

List of Working and Reference Papers

	fishery using data collected by the NOAA		
	Northeast Fisheries Observer Program		
SEDAR77-DW34	Movement and post-release mortality data for	Eric Hoffmayer, Jill	
	great hammerheads, Sphyrna mokarran, tagged	Hendon, Jennifer	
	during research bottom longline surveys in the	McKinney, Brett	
	northern Gulf of Mexico from 2012-2014	Falterman, and William	
		B. Driggers III	
SEDAR77-DW35	Hammerhead post-release mortality data	N. M. Whitney, K. O.	
	summary for SEDAR	Lear, H. M. Marshall, J.	
		Morris, A. M. Andres, C.	
		F. White, T. Driggers, B.	
		Prohaska, J. Gelsleichter,	
		B. Frazier, and R. D.	
		Grubbs	
SEDAR77-DW36	Report on post-release mortality of scalloped	Jayne M. Gardiner,	
	hammerhead, Sphyrna lewini, and great	Tonya R. Wiley, and	
	hammerhead, Sphyrna mokarran	Jorge Brenner	
SEDAR77-DW37	Revised bycatch estimates of scalloped and	Xinsheng Zhang, John	
	great hammerhead shark in the shark bottom	Carlson, Enric Cortés,	
	longline fishery	Elizabeth Babcock, and	
		Robert Latour	
SEDAR77-DW38	Revised bycatch estimates of scalloped and	Xinsheng Zhang, John	
	great hammerhead shark in the southeast	Carlson, Enric Cortés,	
	coastal gillnet fishery	Elizabeth Babcock, and	
		Robert Latour	
	Reference Documents		
SEDAR77-RD20	Double tagging clarifies post-release fate of great	J. M. Drymon and R. J.	
	hammerheads (Sphyrna mokarran)	D. Wells	
SEDAR77-RD35	Hooking mortality of scalloped hammerhead	S. J. B. Gulak, A. J. de	
	Sphyrna lewini and great hammerhead Sphyrna	Ron Santiago, and J. K.	
	mokarran sharks caught on bottom longlines	Carlson	
SEDAR77-RD41	An updated literature review of post-release live-	Dean Courtney and	
	discard mortality rate estimates in sharks for use	Alyssa Mathers	
	in SEDAR 65		
SEDAR77-RD42	Physiological stress response, reflex impairment,	A. J. Gallagher, J. E.	
	and survival of five sympatric shark species	Serafy, S. J. Cooke, and	
	following experimental capture and release	N. Hammerschlag	
SEDAR77-RD43	Integrating reflexes with physiological measures		
	to evaluate coastal shark stress response to capture	Gallagher, S. J. Cooke,	
		and N. Hammerschlag	
SEDAR77-RD44	SEDAR29-WP17- A preliminary review of post-	Dean Courtney	
	release live-discard mortality estimates for sharks		
L			

SEDAR77-RD45	SEDAR34-WP08- A preliminary review of post-	Dean Courtney
	release live-discard mortality rate estimates in	
	sharks for use in SEDAR 34	
SEDAR77-RD46	SEDAR39-DW21 - A preliminary review of post-	Dean Courtney
	release live-discard mortality rate estimates in	
	sharks for use in SEDAR 39	
SEDAR77-RD47	Updated post-release live-discard mortality rate	Dean Courtney
	and range of uncertainty developed for blacktip	
	sharks captured in hook and line recreational	
	fisheries for use in the SEDAR 29-Update	
SEDAR77-RD48	Meta-analysis of post-release fishing mortality in	Michael K. Musyl and
	apex predatory pelagic sharks and white marlin	Eric L. Gilman

RELEVANT TERMS OF REFERENCE

<u>Term of Reference 4</u>

- Provide commercial catch statistics for each stock being assessed, including landings, dead discards, live discards, and potential post-release mortality in both weight and number. Consider species identification issues among hammerhead shark species and correct for these instances as appropriate.
- a. Evaluate and discuss the adequacy of available data for accurately characterizing landings and discards by fishery sector or gear.
- b. Provide length and age distributions for both landings and discards if feasible.
- c. Provide maps of fishery effort and harvest by fishery sector or gear.
- *d. Provide estimates of uncertainty around each set of commercial landings (if possible) and discard estimates.*
- e. Provide estimates of discard mortality rate by gear.

Term of Reference 5

- Provide recreational catch statistics for each stock being assessed, including landings, dead discards, live discards, and potential post-release mortality in both weight and number. Consider species identification issues among hammerhead shark species and correct for these instances as appropriate.
- a. Evaluate and discuss the adequacy of available data for accurately characterizing landings and discards by fishery sector or gear.
- b. Provide length and age distributions for both landings and discards if feasible.
- c. Provide maps of fishery effort and harvest by fishery sector or gear.
- d. Provide estimates of uncertainty around each set of recreational landings and discard estimates.
- e. Provide estimates of discard mortality rate by gear.

Term of Reference 7

Provide recommendations for future research in areas such as sampling, fishery monitoring, and stock assessment. Include specific guidance on sampling intensity (number of length samples) and appropriate strata and coverage.

Term of Reference 8

Prepare a Data Workshop report providing complete documentation of workshop actions and decisions in accordance with project schedule deadlines.

3.1 Data Review - Catch Statistics

3.1.1 Commercial catches

Review of working papers

SEDAR77-DW4: Preliminary catches of hammerhead sharks in the U.S. Atlantic, Gulf of Mexico, and Caribbean *E. Cortes and H. Baertlein*

This document presents commercial landings and recreational catch estimates of hammerhead sharks (*Sphyrna lewini, S. mokarran, S. zygaena, and Sphyrna* spp.) along the U.S. Atlantic and Gulf of Mexico coasts for 1981-2020. Commercial dead discards from the pelagic longline fishery are also presented along with Mexican landings from the Gulf of Mexico and available landings from Puerto Rico and the U.S. Virgin Islands. Information on the geographical distribution of both commercial landings and recreational catches is presented along with gear-specific information of commercial landings and information on recreational catches by fishing mode and fishing area. Length composition information from recreational sources is also presented.

SEDAR77-DW7: Preliminary post-release mortality estimates for the shore-based recreational shark fishery in Texas *J.A. Mohan, R.J. David Wells, M. Drymon, G. Stunz, and M. Streich*

Recreational shark fishing has become increasingly popular in recent decades, especially shorebased fishing that has provided access to a broad demographic of anglers. Catch and release (CR) shark fishing has become best practice to limit deleterious effects on overall stocks, but speciesspecific stress levels and post-release mortality in shore-based fisheries are unclear. Advances in electronic tagging technology, including acceleration data loggers (ADLs) and pop-up satellite archival transmitting tags (PSATs), now provide unprecedented insight into fine scale (e.g. seconds to minutes with ADLs) and long term (e.g. daily to monthly with PSAT) behavior of sharks post-release. Using electronic tags, researchers have demonstrated that the physical and physiological stress inflicted upon sharks caught and released contributes directly to post-release mortality (PRM), which can occur immediately or as a result of cumulative sub-lethal effects causing fitness losses over time. Currently, PRM estimates from boat-based shark fisheries are primarily used to inform management strategies and research into the contribution of shore-based shark fishing to overall PRM rates is lacking. This project cooperatively engaged recreational shore-based shark anglers to deploy ADLs and PSATs on blacktip, bull, tiger and scalloped hammerhead sharks to estimate post-release behavior and mortality rates. These species vary in physiological sensitivity to capture from highly sensitive (hammerhead species) to less sensitive (tiger) and ensures increased tag deployment rates in unpredictable but diverse catches to explore species specific mortality rates. The objectives of the study were: 1) Characterize both fine and broad-scale post-release behavior and mortality of beach-caught sharks in Texas using ADLs and PSATs deployed by experienced recreational fishermen; 2) Compare behavioral capture responses among diverse shark species with variable capture-sensitivities (blacktip, bull, tiger, and scalloped hammerhead sharks) and seasonal environmental variables; 3) Host both pre- and post-tagging shark angler workshops to train anglers in shark identification, disseminate tagging results and discuss how results can be applied to shark conservation efforts. Sharks were captured by recreational shore-based anglers from August 2018 to October 2021. For each captured shark, fight time, handling time, and biological metrics including length and sex were recorded, and release condition was scored as good, fair, poor, or dead.

Of the 21 PSATs deployed, 5 PSAT tags were recovered by researchers and provided high-resolution data for temperature, light level, and depth: 4 sharks survived and 1 shark experienced mortality 1.25 hours after release. Eleven tags transmitted limited data, but the data were sufficient to determine shark status based on high-resolution depth data for the final 5 days of deployment and daily summaries for minimum and maximum depths, temperature, and light levels: 8 sharks survived, and 3 sharks exhibited mortality immediately. One tag on a shark that experienced mortality less than 10 min after release returned light level, depth, and temperature data that were sufficient to determine the shark was ingested by a predator. Five tags did not transmit any data after deployment and thus we cannot determine the post-release fate of those sharks. Post release mortality rates across all the PSAT tags was 25% (4/16). ADLs were deployed on 20 different sharks and were recovered for analysis: 14 sharks survived, 2 sharks exhibited mortality immediately, and 4 sharks displayed mortality from 45 min to 5 hours post release. Post-release mortality across all the ADL tags was 30% (6/20). A total of 20 bull sharks were caught and tagged: 2 sharks experienced mortality, 14 sharks survived, and 4 tags did not transmit data. The mortality rate for bull sharks was therefore found to be 12.5% (2/16). A total of 13 blacktip sharks were caught and tagged: 5 sharks exhibited mortality, 6 sharks survived, and 2 tags did not transmit any data. The mortality rate for blacktip sharks was estimated to be 45.5% (5/11). Although scalloped hammerheads were originally targeted, 2 great hammerheads were caught and tagged: 1 experienced immediate mortality and was ingested and 1 experienced delayed mortality five days after release. The mortality rate for great hammerheads was estimated at 100% (2/2) if both mortalities can be attributed to the capture event, or 50% if the delayed mortality five days post release is considered a natural mortality. A total of 4 tiger sharks were caught and tagged and all survived, suggesting 0% mortality. However, one tiger shark exhibited mortality 41 days after tagging that was categorized as a natural mortality and not due to capture stress.

Understanding how fishing mortality rates may differ between shore-based and boat-based recreational fleets and across different species is essential for accurately assigning gear type and mortality estimates in stock assessment models. Angler outreach and education was achieved by PIs attending the Sharkathon shore-based fishing tournament in October 2021, reaching hundreds of participating anglers, even though 2020 survey ambitions were delayed due to COVID19. Follow-up angler surveys will occur in 2022 to generate reference data on angler attitude and

response to research results. In summary, this collaborative project combined cooperative angler citizen scientists and advanced electronic tags to provide an empirically derived post-release mortality rate estimate across different species in a recreational shore-based fishery for use in management protocols.

SEDAR77-DW9: Stress physiology of scalloped and great hammerhead sharks from a bottom longline fishery

B.K. Prohaska, H. Marshall, R.D. Grubbs, B.S. Frazier, J.J. Morris, A. Andres, K. Lear, R.E. Hueter, B.A. Keller, and N.M. Whitney

The scalloped hammerhead Sphyrna lewini and the great hammerhead Sphyrna mokarran are large, coastal to semi-oceanic shark species common to waters of the U.S. east coast where they are regularly taken in commercial and recreational fisheries, particularly the bottom longline fishery. High rates of hooking mortality and low rates of population growth are believed to have caused severe declines in the U.S. Atlantic populations of these species. The objective of this study was to determine the physiological stress induced by bottom longline capture in both S. lewini and S. mokarran. Physiological stress was quantified using the blood biochemical indicators glucose, lactate, pH, hematocrit, sodium, potassium, calcium, chloride, and magnesium, which have been demonstrated to indicate physiological stress in elasmobranchs. Each shark captured was assigned a condition factor, which was compared with the stress parameters and time on hook to quantify stress induced by different longline hook times. The physiological stress parameters lactate and pH were found to scale negatively with hook time and condition factor in both species. For both species, possible predictors of mortality include hook time, lactate, potassium, and pH. These data will be useful for estimating post-release mortality of S. mokarran from measurements taken at the time of capture and the physiological stress response to longline capture in both species to the Atlantic bottom longline fishery.

SEDAR77-DW20: Bycatch estimates of scalloped and great hammerhead shark in the shark bottom longline fishery.

J. Carlson, A. Mathers, H. Moncrief-Cox, and K. McCarthy

This document presents calculated scalloped and great hammerhead shark dead and live discards (in numbers of sharks) from the commercial shark bottom longline fishery (1993–2019) and the shark research fishery (2008–2019). The authors followed the approach of Garrison (2007) by employing a simple ratio estimator to represent bycatch rates. An estimate of uncertainty in these estimates was derived from bootstrap resampling of the calculated CPUE data set. Estimates of dead and live discards were reported separately for the shark research fishery and the shark bottom longline fishery. As vessels in the shark research fishery are monitored 100%, no extrapolations of the dead discards were needed.

SEDAR77-DW21: Bycatch estimates of scalloped and great hammerhead shark in the southeast coastal gillnet fishery *J. Carlson, A. Mathers, and K. McCarthy*

SEDAR 77 SAR Section III

This document presents calculated scalloped and great hammerhead shark dead and live discards (in numbers of sharks) from the commercial gillnet fishery from 1998–2019. The authors followed the approach of Garrison (2007) by employing a simple ratio estimator to represent bycatch rates. An estimate of uncertainty in these estimates was derived from bootstrap resampling of the calculated CPUE data set. Total discards were calculated as the product of observer reported yearly mean dead and live discard rates by set and the yearly total fishing effort (gillnet sets) reported to the coastal logbook program.

SEDAR77-DW22: Report on the post-release mortality rates of great hammerhead sharks *Sphyrna mokarran* in the recreational, catch and release, shore-based fishery in Florida, USA. *H.B. Medd and J.L. Brooks*

Great hammerhead sharks (*Sphyrna mokarran*) are targeted by recreational anglers along the coast of Florida. We estimated the post-release mortality rates for those great hammerhead sharks captured by rod and reel shore-based recreational anglers using short-term, pop-off satellite archival tags (PSATs). All sharks were tagged within the normal release procedures by anglers, and the handling time was not extended to collect other data. One of 13 sharks with reporting tags (7.7%) died post-release.

SEDAR77-DW26: An updated literature review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 77

D. Courtney, A. Mathers, and A. Kroetz

This working paper summarizes a literature database reviewed for post-release live-discard mortality (PRLDM) rates in sharks. The literature database was reviewed for estimates of delayed discard-mortality rates (MD) and immediate (i.e. at-vessel or acute) discard-mortality rates (MA) for hammerhead sharks (Sphyrnidae). Previous SEDAR Assessment Process (AP) and Data Workshop (DW) PRLDM rate decisions for sharks were also summarized.

SEDAR77-DW27: Estimation of scalloped and smooth hammerhead discards in the northeast gillnet fishery using data collected by the NOAA Northeast Fisheries Observer Program *C.T. McCandless and J.J. Mello*

Dead and live discards of scalloped and smooth hammerhead sharks from the Northeast Region's Mid-Atlantic sink-gillnet fishing fleet were estimated in numbers and weight using data collected by the Northeast Fisheries Observer Program from 1995 to 2019 and were backcalculated to 1981. Block averaging of the discard rates was also used to create estimates in numbers of individuals and weight. Additionally, based on panel recommendations considering all bycatch data available for use during this assessment, discard estimates for the northeast gillnet fishery were created using the grand mean of the discard ratios.

SEDAR77-DW34: Movement and post-release mortality data for great hammerheads, *Sphyrna mokarran*, tagged during research bottom longline surveys in the northern Gulf of Mexico from 2012-2014

E.R. Hoffmayer, J.M. Hendon, J.A. McKinney, B. Falterman, and W.B. Driggers III

Great hammerheads, *Sphyrna mokarran*, were targeted using 1.8 km bottom longline with 100 3m gangions baited with Atlantic mackerel, *Scomber scomber* set in northern Gulf of Mexico waters from 9 - 366m. The bottom longlines were soaked for one hour and retrieved, and sharks were identified, measured, weighed and then tagged and released. Nine great hammerheads (male n=1: 155 cm FL; female n=8: 85.5-214 cm FL) were fitted with smart position and temperature transmitting (SPOT) tags. Four SPOT tags (range 19 to 101 days, mean: 53.3 ± 20.0 days) reported data with five of the tags not transmitting data to the satellite after the tags were deployed, suggesting those sharks succumbed to the capture stress. All surviving four great hammerheads remained in relatively coastal, nearshore waters with only two locations occurring in waters deeper than 50m. Two of the sharks remained in the general localized area where they were tagged, whereas the other two sharks moved across the Mississippi River Delta from MS to LA and vice versa. The post-release mortality rate was estimated to be 55.5% with a 95% binomial confidence interval of 21.2 to 86.3%.

SEDAR77-DW35: Hammerhead post-release mortality data summary for SEDAR

N.M. Whitney, K.O. Lear, H.M. Marshall, J. Morris, A.M. Andres, C.F. White, T. Driggers, B. Prohaska, J. Gelsleichter, B. Frazier, and R.D. Grubbs

Between 2014 and 2019 Scalloped and Great Hammerhead sharks (*Sphyrna lewini* and *Sphyrna mokarran*) were tagged with a combination of acceleration data-loggers (ADLs; model G6A+, Cefas, Inc., Lowestoft UK) and Pop-up Satellite Archival Tags (PSATs; model PSATLIFE, Lotek, Ontario, CAN) to determine their post-release survival from commercial longline fisheries. Sharks were caught on longlines in collaboration with commercial fishermen in the Gulf of Mexico near Madeira Beach, FL, Naples, FL, and Galveston, TX, and in Florida Bay near Key West, FL. In most cases (excluding sets fished near Galveston, TX), hook timers were deployed on the gangions with each hook, so that the actual time each shark was hooked before capture was known. Relatively short soak times were used in order to land live animals for tagging, with the result that the majority of hook times are under three hours.

SEDAR77-DW36: Report on post-release mortality of scalloped hammerhead, *Sphyrna lewini*, and great hammerhead, *Sphyrna mokarran J.M. Gardiner, T.R. Wiley, and J. Brenner*

This was a data summary and there was no abstract available.

SEDAR77-DW37: Revised bycatch estimates of scalloped and great hammerhead shark in the shark bottom longline fishery

X. Zhang, J.Carlson, E. Cortés, E. Babcock, and R. Latour

This document details the use of the delta-lognormal method (Pennington, 1983) to calculate discard rates to produce discard estimates and associated uncertainty to use in the SEDAR 77 assessment of hammerhead sharks. The ratio method was used in SEDAR77-DW20 to calculate discard estimates and associated uncertainty. However, the estimated standard deviations (or CVs) obtained through bootstrap resampling reported in SEDAR77-DW20 are extremely high. The panel recommended to use the delta-lognormal method as an alternative method to estimate dead discards and live discards with the same data sets. The discard estimates from the delta-lognormal are similar to those of the ratio method, but the estimated standard deviations (or CVs) from the delta-lognormal method are much smaller than the ratio method and are within a very reasonable range. Consequently, the panel recommended to use discard

estimates and associated uncertainty estimates from the delta-lognormal method in the SEDAR 77 stock assessment. Given the very small number of sets in which a non-zero bycatch was observed (positive sets), the panel recommended to use the grand mean of discard rates based on the pooled observed sets for all years and the annual logbook effort to produce annual discard estimates. With this recommendation, the trend of the discard estimates is solely driven by the logbook effort. The estimated discard estimates, upper 95% CI and lower 95% CI were recommended to be used in the base, and high and low catch scenarios, respectively.

SEDAR77-DW38: Revised Bycatch Estimates of Scalloped and Great Hammerhead Shark in the Southeast Coastal Gillnet Fishery

X. Zhang, , J. Carlson, E. Cortés, E. Babcock, and R. Latour

This document details the use of the delta-lognormal method (Pennington, 1983) to calculate discard rates to produce discard estimates and associated uncertainty from US southeast commercial gillnet fishery to use in the SEDAR 77 assessment of hammerhead sharks. The ratio method was used in SEDAR77-DW21 to calculate discard estimates and associated uncertainty. However, the estimated standard deviations (or CVs) obtained through bootstrap resampling reported in SEDAR77-DW21 are extremely high. The panel recommended to use the delta-lognormal method as an alternative method to estimate dead discards and live discards with the same data sets. The discard estimates from the delta-lognormal are similar to those of the ratio method, but the estimated standard deviations (or CVs) from the delta-lognormal method are much smaller than the ratio method and are within a very reasonable range. Consequently, the panel recommended to use discard estimates and associated uncertainty estimates from the delta-lognormal method in the SEDAR 77 stock assessment. Given the very small number of sets in which a non-zero bycatch was observed (positive sets), the panel recommended to use the grand mean of discard rates based on the pooled observed sets for all years and the annual logbook effort to produce annual discard estimates. With this recommendation, the trend of the discard estimates is solely driven by the logbook effort. The estimated discard estimates, upper 95% CI and lower 95% CI were recommended to be used in the base and high and low catch scenarios, respectively.

3.1.2 Commercial Datasets and Decisions

Commercial landings

U.S. commercial landings in weight (lb dw) were available for the period 1991-2020. These data were gathered from two different sources over the time series. Commercial landings for 1991-2013 come from the FINS database, which includes Atlantic Coastal Cooperative Statistics Program (ACCSP) and Gulf Fisheries Information Network (GulfFIN) landings, from the Atlantic and Gulf of Mexico regions, respectively. Landings for 2014-2020 come from the NOAA Fisheries Highly Migratory Species commercial landings (eDealer) database.

In addition to the above databases, landings for Puerto Rico and the U.S. Virgin Islands were also gathered from the Accumulated Landings System (ALS) database for 1987-2011 and the Caribbean Commercial Vessel Logbook database for 2012-2020. Mexican landings of hammerhead sharks in the Gulf of Mexico were reconstructed based on a near-census of landings at fishing camps in the states of Tamaulipas, Veracruz, Tabasco, and Campeche conducted during approximately one year from November 1993 to December 1994 (see section below).

Reported landings of unclassified sharks were apportioned to scalloped, great, smooth, and unclassified hammerheads based on year, state, gear, and area fished whenever possible; year, state and gear; year and state; or only state depending on data availability. Unclassified hammerheads were then apportioned to the different species (scalloped, great, or smooth hammerhead) based on the proportions of these three species in the FINS database during 1991-2020 (the average proportion for the entire period was used because proportions fluctuated widely from year to year and some years had no observations). For gear-specific landings, unclassified hammerheads were apportioned to the different species based on the average proportions of the three species in the main gears (bottom longlines, gillnets, and lines) during the same period.

Commercial landings in numbers were calculated by dividing annual landings in weight (lb dw) by average weights (lb dw) obtained from the Southeast Gillnet Observer Program (GNOP) and the Reef Fish and Shark Bottom Longline Observer Programs (collectively referred to as BLLOP henceforth) as appropriate. All weights from the GNOP and BLLOP were predicted from fork length measurements taken by observers in gillnet and longline fisheries, respectively, using weight-length regressions given in SEDAR77-DW03. Since there were no observations of sharks caught on hook and line/hand line fisheries, average weights for hook and line/hand line gears were assumed equal to those from the bottom longline fishery. Since the native form of commercial catches is weight (lb dw, with lb dw = lb whole weight/1.39) it is more appropriate to use catch in weight in models where catches can be entered either in numbers or in weight (e.g., Stock Synthesis).

<u>Scalloped hammerhead, all regions</u>—Total commercial landings of scalloped hammerheads (with added pelagic longline dead discards; see section below) peaked during the early to mid-1990s and decreased thereafter generally remaining below 100,000 pounds dressed weight (lb dw) after 1996 (**Figure 1**).

Commercial landings by gear from FINS for 1991-2020 (accounting only for unclassified sharks apportioned to be scalloped hammerheads) were dominated by longlines (60%) and gillnets (26%), with hook & line accounting for 10% of the total (**Figure 2, top**). The relative importance of longlines and gillnets alternated through time but was generally higher for longlines (**Figure 2, bottom**).

Landings by state were dominated by Florida (62%; 29% on the west coast, 33% on the east coast), followed by North Carolina (21%) and Louisiana (13%) (**Figure 3, top**), with Florida dominating through time during most of 1991-2015 and North Carolina and Louisiana becoming more important thereafter (**Figure 3, bottom**).

Average weights were available for 2002-2020 from the GNOP and for 1993-2020 from the BLLOP. For the GNOP, the average weight for 1981-2001 was taken as the mean for the entire time series of data (2002-2020); for the BLLOP, the average weight for 1981-1992 was taken as the average for the entire time series of data (1993-2020) owing to high interannual variability in average weights in both cases. Individual weights were obtained from individual fork lengths using the sex-specific weight-to-length regressions given in SEDAR77-DW03.

<u>Scalloped hammerhead GOM</u>—Total commercial landings of scalloped hammerheads in the Gulf of Mexico (with added pelagic longline dead discards; see section below) were rather choppy throughout the time series but never exceeded 41,000 lb dw (**Figure 4**).

Commercial landings by gear from FINS for 1991-2020 (accounting only for unclassified sharks apportioned to be GOM scalloped hammerheads) were dominated by longlines (76%) and hand lines (23%), with gillnets accounting for less than 1% (**Figure 5, top**). Longlines were the dominant gear in all years except for 2018 and 2020 when hand lines had a higher contribution (**Figure 5, bottom**).

Landings by state were dominated by Florida (66%), followed by Louisiana (30%) and Alabama to a lesser extent (4%) (**Figure 6, top**), with Florida dominating throughout the entire time series with the exception of higher landings in Louisiana in 2018 and 2020 (**Figure 6, bottom**).

Average weights were available for 2002-2020 from the GNOP and for 1994-2020 from the BLLOP. For the GNOP, the average weight for 1981-2001 was taken as the mean for the entire time series of data (2002-2020); for the BLLOP, the average weight for 1981-1993 was taken as the average for the entire time series of data (1994-2020) owing to high interannual variability in average weights in both cases. Individual weights were obtained from individual fork lengths using the sex-specific weight-to-length regressions given in SEDAR77-DW03 (for GOM and ATL combined).

<u>Scalloped hammerhead ATL</u>— Total commercial landings of scalloped hammerheads (with added pelagic longline dead discards; see section below) peaked during the early to mid-1990s and decreased thereafter generally remaining below 100,000 pounds dressed weight (lb dw) after 1996 (**Figure 7**).

Commercial landings by gear from FINS for 1991-2020 (accounting only for unclassified sharks apportioned to be ATL scalloped hammerheads) were almost equally represented by longlines (46%) and gillnets (47%), with hook and line accounting for the remaining 7% (**Figure 8, top**). Longlines and gillnets alternated in importance throughout the time series (**Figure 8, bottom**). Landings by state were dominated by Florida (59%) and North Carolina (39%) (**Figure 9, top**), with Florida being the main state of landings in most years up to 2015 after which North Carolina became the main sate of landings (**Figure 9, bottom**).

Average weights were available for 2002-2020 from the GNOP and for 1993-2020 from the BLLOP. For the GNOP, the average weight for 1981-2001 was taken as the mean for the entire time series of data (2002-2020); for the BLLOP, the average weight for 1981-1992 was taken as the average for the entire time series of data (1993-2020) owing to high interannual variability in average weights in both cases. Individual weights were obtained from individual fork lengths using the sex-specific weight-to-length regressions given in SEDAR77-DW03 (for GOM and ATL combined).

<u>Great hammerhead</u>—Total commercial landings of great hammerheads (with added pelagic longline dead discards; see section below) peaked at over 550,000 lb dw in 1994, but rapidly decreased thereafter remaining under 90,000 lb dw since 1997 (**Figure 10**).

Commercial landings by gear from FINS for 1991-2020 (accounting only for unclassified sharks apportioned to be great hammerheads) were dominated by longlines (57%), followed by gillnets (42%), with hook and line making up the remaining 1% (**Figure 11, top**). The relative importance of longlines and gillnets varied slightly through time (**Figure 11, bottom**).

Landings by state were dominated by Florida (50%; 42% on the west coast, 8% on the east coast), closely followed by North Carolina (40%), with some landings from Alabama (7%) (**Figure 12, top**). Alabama accounted for all landings in 2005-2011 and Florida and North Carolina consistently dominated the landings since 2012 (**Figure 12, bottom**).

Average weights were only available for 2002, 2003, and 2020 from the GNOP and for 1993-2020 from the BLLOP. For the GNOP, the average weight for all remaining years was taken as the average of the three available years (2002, 2003, 2020); for the BLLOP, the average weight for 1981-1992 was taken as the average for the entire time series of data (1993-2020) owing to high interannual variability in average weights. Individual weights were obtained from individual fork lengths using the sex-specific weight-to-length regressions given in SEDAR77-DW03.

<u>Smooth hammerhead</u>—Total commercial landings of smooth hammerheads (with added pelagic longline dead discards; see section below) were of small magnitude and never exceeded 10,000 lb dw during the entire time series (**Figure 13**).

Almost half of all commercial landings from FINS for 1991-2020 (accounting only for unclassified sharks apportioned to be smooth hammerheads) were not identified to gear, gillnets made up the majority of the identified gears (41%), followed by longlines (5%) (**Figure 14, top**). The majority of unidentified gear occurred in 2009 and 2010, after which gillnets were generally the most dominant gear (**Figure 14, bottom**).

All landings occurred in the Atlantic, with New York (52%), Virginia (23%), and North Carolina (18%) being the main states of landing (**Figure 15, top**). New York landings dominated in 2009-2011, Virginia landings in 2012, and North Carolina landings in 2013-2014 and since 2016 (**Figure 15, bottom**).

There were very few available average weights: for 2009 and 2010 from the GNOP and for 1994, 1995, 1997, 2000, 2002, 2005, 2008, 2010, and 2018 from the BLLOP, but sample sizes were very low for most years. For the GNOP, the average weight for all remaining years was taken as the average of the two available years (2009-2010); for the BLLOP, the average weight for 1981-1993 and all other years without samples was taken as the average of the years with samples (1994, 1995, 1997, 2000, 2002, 2005, 2008, 2010, and 2018). Individual weights were obtained from individual fork lengths using a weight-to-length regression for sexes combined given in Coelho et al. (2011).

<u>Carolina hammerhead</u>—There were no commercial landings identified as Carolina hammerheads, but an unknown portion of the scalloped hammerhead landings in the Atlantic could be attributed to this cryptic species.

Discussion and decisions

Although recreational catch statistics are available since 1981, commercial landings by species only start in 1991. Based on previous input from the commercial shark fishing industry provided for SEDAR 65, there was very little commercial shark fishing effort in the early 1980s so it was proposed that to reconstruct the commercial landings series back to 1981, a linear decrease from the average of the first three years of data (1991-1993) be assumed from 1990 back to 1981. This back-calculation methodology should also be applied to the discard series available.

<u>Decision:</u> Assume a linear increase of landings from 0 in 1981 to 90% of the mean of 1991-1993 in 1990 to represent growing market for shark products. Apply this increase to the three fleets considered for each stock (longlines, gillnets, and hook and line/unknown gear)

Commercial dead and live discards

Working papers SEDAR77-DW20 and SEDAR77-DW21 provided estimates of dead and live discards of scalloped and great hammerheads for the bottom longline fishery and the gillnet fishery for the southeast region, respectively, based on observer reports and commercial logbook data. Working Paper SEDAR77-DW27 provided estimates of live and dead discards in the northeast gillnet fishery based on observer reports from the Northeast Fishery Observer Program and Vessel Trip Report (VTR) landings data. SEDAR77-DW20 and SEDAR77-DW21 were replaced by SEDAR77-DW37 and SEDAR77-DW38 after the data workshop for the bottom longline fishery and the gillnet fishery for the southeast region, respectively.

Discussion and decisions

Estimates of dead and live discards were generated for 1993-2019 for longlines and 1998-2019 for gillnets for the southeast region, and 1995-2019 for gillnets in the northeast region. For consistency with the landings, which started in 1981, it was also proposed that the longline and gillnet dead and live discards be back-calculated to 1981.

The Group discussed that the ratio method used to estimate discards in the three working papers was a reasonable approach, but that the estimated standard deviations (or CVs) obtained from bootstrapping were extremely high in working papers SEDAR77-DW20 and SEDAR77-DW21. It was decided to form a small bycatch working group to use an alternative discard estimation method based on the delta-lognormal approach (Pennington, 1983) using the same data sets with the expectation that this alternative method can provide reasonable estimated standard deviations (or CVs).

The delta-lognormal method (Pennington, 1983) assumes a lognormal distribution of the positive bycatch rate observations. Effectively, the estimates are constructed as a product of the proportion of successful occurrences of an event and the average rate at which the event occurs for those successful events. The variance is a function of the variability of the positive bycatch rates as well the number of successful and unsuccessful sets. The delta estimator is more appropriate than the simple ratio estimate because catch rates are generally log-normally distributed and bycatch events (i.e., positive sets) are rare. The unit of

effort in this analysis is the number of hooks (bottom longlines) or sets (gillnets). Due to small number of sets in which a non-zero bycatch of the species group was observed (positive sets), observed sets are pooled by each observed year and all observed years, respectively. The annual mean discard rate is based on the pooled observed sets for each observed year. The grand mean discard rate is based on the pooled observed years.

When number of sets in which a non-zero bycatch was observed (positive sets) is greater than 1, the mean discard rate, *C*, is calculated as:

$$C = \frac{m}{n} e^L G_m(\frac{s^2}{2}) \tag{1}$$

m is number of sets in which a non-zero bycatch was observed (positive sets),

n is total number of sets observed,

L is the mean of the log-transformed number of animals taken per 1000 hooks (bottom longlines) or per set (gillnets) for the positive sets,

 s^2 is the variance of the log-transformed number of animals taken per 1000 hooks (bottom longlines) or per set (gillnets) for the positive sets, and

 $G_m(\frac{1}{2}s^2)$ is the cumulative probability function from the Poisson distribution given as:

$$G_m(\frac{1}{2}s^2) = 1 + \frac{m-1}{m}(\frac{1}{2}s^2) + \sum_{j=2}^{\infty} \frac{(m-1)^{2j-1}}{m^j(m+1)(m+3)\dots(m+2j-3)} \times \frac{(\frac{1}{2}s^2)^j}{j!}$$
(2)

The series was computed numerically over *j* terms until meeting a convergence criterion of a change in the function value of < 0.001 with additional terms (j). The variance of the delta estimator is:

$$\operatorname{var}(C) = \frac{m}{n} (e^{2L}) \left[\frac{m}{n} G_m^2(\frac{s^2}{2}) - \frac{m-1}{n-1} G_m(\frac{m-2}{m-1}s^2) \right]$$
(3)

When number of sets in which a non-zero bycatch was observed (positive sets) is equal to 1, the mean discard rate reduces to the simple mean rate where:

$$C = \frac{e^L}{n} \tag{4}$$

and the variance of the delta estimator is:

(7)

$$\operatorname{var}(C) = \left(\frac{e^{L}}{n}\right)^{2}$$
(5)

When number of sets in which a non-zero bycatch was observed (positive sets) is equal to 0, the mean discard is:

$$C = 0 \tag{6}$$

and the variance of the delta estimator is:

When number of sets in which a non-zero bycatch was observed (positive sets) is greater than or equal to 1, the coefficient of variation for the mean discard rate is taken as:

$$CV = \frac{\sqrt{\operatorname{var}(C)}}{C} \tag{8}$$

The *C* calculated above gives either the annual mean or the grand mean number of animals caught per 1000 hooks (bottom longlines) or per set (gillnets) for the observed sets. To estimate annual discards, *N*, these rates are multiplied by the annual total number of logbook hooks (in thousands, bottom longlines) or logbook sets (gillnets). With an assumption of effort (*number of logbook hooks or logbook sets*) being a known constant, the coefficient of variation for the annual (or grand) mean discard rate is the same as the coefficient of variation for the annual discards. Approximate 95% confidence intervals (95% CI) were calculated assuming a lognormal distribution of annual discards as *Nk* and *N/k* for the upper and lower confidence bounds respectively where:

$$k = e^{\left[1.96\sqrt{\ln(1+CV^2)}\right]}$$
(9)

The discard estimates from the delta-lognormal method are similar to those of the ratio method, but the estimated standard deviations (or CVs) from the delta-lognormal method are much smaller than those from the ratio method and are within a very reasonable range. Consequently, the panel recommended to use discard estimates and associated uncertainty estimates from the delta-lognormal method (Pennington, 1983) in the SEDAR 77 stock assessment. The panel recommended to include the number of reported logbook hooks/sets, number of observed hooks/sets, number of observed positive hooks/sets, and number of animals caught in the Tables if they are available. Given the very small number of sets in which a non-zero bycatch was observed (positive sets), the panel recommended to use the grand mean of discard rates based on the pooled observed sets for all years and the annual logbook effort to produce annual discard estimates. With this recommendation, the trend of the discard estimates is solely driven by the logbook effort. The estimated discard estimates, upper 95% CI and lower 95% CI were recommended to be used in the base, and high and low catch scenarios, respectively. The discard estimates from the delta-

lognormal method were presented in working papers SEDAR77-DW37 and SEDAR77-DW38 after the data workshop for the bottom longline fishery and the gillnet fishery for the southeast region, respectively.

<u>Decision:</u> Include the number of reported logbook hooks/sets, number of observed hooks/sets, number of observed positive hooks/sets, and number of animals caught in the Tables if they are available.

<u>Decision:</u> Back-calculate dead and live discards to 1981 for the southeast bottom longlines and southeast gillnets (1993 – 2019 for southeast bottom longlines; 1998-2019 for southeast gillnets). Assume a linear increase in discards from 0 in 1981 to 90% of the mean of the entire time series in the year preceding the first year of bycatch estimates for southeast bottom longlines and southeast gillnets to parallel the approach used for back-calculating landings.

<u>Decision</u>: Back-calculate dead and live discards to 1981 for northeast gillnets. The average discard ratio for the entire time series (1995-2019 for northeast gillnets) across all strata (grand mean) for live and dead discards by number and weight were applied to the annual total landings for the Mid-Atlantic statistical areas identified in the dealer database for northeast gillnets.

<u>Decision:</u> Use the delta-lognormal method to replace the ratio method for southeast bottom longline and southeast gillnet discard estimates.

<u>Decision:</u> Include the dead and live discard estimates obtained with the delta-lognormal method and the grand mean CPUE in the base run for southeast bottom longline and southeast gillnet; include the dead and live discard estimates obtained with the ratio method and the grand mean CPUE in the base run for northeast gillnet. Use the estimated lower 95%CI and upper 95%CI in low and high catch sensitivity scenarios, respectively.

Shark bottom longline for areas combined

<u>Great hammerhead</u> — Yearly calculated dead discards of great hammerhead sharks for the shark bottom longline fishery were a couple of hundred during 1993 to the mid-2000s and less than 50 after 2006 (**Table 1**). Yearly observed dead discards of great hammerhead sharks for the shark research bottom longline fishery (2008-2019) were small and were less than 10 after 2011 (**Table 2**). Yearly calculated live discards of great hammerhead sharks for the shark bottom longline fishery were a couple of hundred during 1993 to the mid-2000s and less than 100 after 2006 (**Table 3**). Yearly observed live discards of great hammerhead sharks for the shark bottom longline fishery were a couple of hundred during 1993 to the mid-2000s and less than 100 after 2006 (**Table 3**). Yearly observed live discards of great hammerhead sharks for the shark research bottom longline fishery (2008-2019) were less than 30 (**Table 4**).

<u>Scalloped hammerhead</u> — Yearly calculated dead discards of scalloped hammerhead sharks for the shark bottom longline fishery were generally a few hundred during 1993 to the mid-2000s except for a peak in 1996 and were about 100 after 2007 (**Table 5**). Yearly observed dead discards of scalloped hammerhead sharks for the shark research bottom longline fishery (2008-2019) were small and were less than 10 after 2011 (**Table 6**). Yearly calculated live discards of scalloped hammerhead sharks for the shark bottom

longline fishery were a few hundred during 1993 to the mid-2000s except for a peak in 1996 and were about 100 after 2006 (**Table 7**). Yearly observed live discards of scalloped hammerhead sharks for the shark research bottom longline fishery (2008-2019) were less than 50 (**Table 8**).

Shark bottom longline for the Atlantic

<u>Scalloped hammerhead</u> — Yearly calculated dead discards of scalloped hammerhead sharks for the shark bottom longline fishery were generally a couple of hundred during 1993 to the mid-2000s and below 100 after 2006 (**Table 9**). Yearly observed dead discards of scalloped hammerhead sharks for the shark research bottom longline fishery (2008-2019) were small and were less than 5 after 2011 (**Table 10**). Yearly calculated live discards of scalloped hammerhead sharks for the shark bottom longline fishery were generally a couple of hundred during 1993 to the mid-2000s and less than 100 after 2006 (**Table 11**). Yearly observed live discards of scalloped hammerhead sharks for the shark research bottom longline fishery (2008-2019) were less than 20 (**Table 12**).

Shark bottom longline for the Gulf of Mexico

<u>Scalloped hammerhead</u> — Yearly calculated dead discards of scalloped hammerhead sharks for the shark bottom longline fishery were generally a couple of hundred during 1993 to the mid-2000s with peaks in 1995 and 1996 and were less than 100 after 2007 (**Table 13**). Yearly observed dead discards of scalloped hammerhead sharks for the shark research bottom longline fishery (2008-2019) were small and were less than 10 after 2011 (**Table 14**). Yearly calculated live discards of scalloped hammerhead sharks for the shark research bottom longline fishery (2008-2019) were small and were less than 10 after 2011 (**Table 14**). Yearly calculated live discards of scalloped hammerhead sharks for the shark bottom longline fishery were a couple of hundred during 1993 to the mid-2000s with peaks in 1995 and 1996 and were less than 100 after 2006 (**Table 15**). Yearly observed live discards of scalloped hammerhead sharks for the shark research bottom longline fishery (2008-2019) were less than 30 (**Table 16**).

US southeast commercial gillnet for areas combined

<u>Great hammerhead</u> — Yearly calculated dead discards of great hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 28 to 77 (**Table 17**). Yearly calculated live discards of great hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 4 to 10 (**Table 18**).

<u>Scalloped hammerhead</u> — Yearly calculated dead discards of scalloped hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 183 to 504 (**Table 19**). Yearly calculated live discards of scalloped hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 75 to 208 (**Table 20**).

US southeast commercial gillnet for the Atlantic

<u>Scalloped hammerhead</u> — Yearly calculated dead discards of scalloped hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 173 to 459 (**Table 21**). Yearly calculated live discards of scalloped hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 75 to 200 (**Table 22**).

US southeast commercial gillnet for the Gulf of Mexico

<u>Scalloped hammerhead</u> — Yearly calculated dead discards of scalloped hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 9 to 120 (**Table 23**). Yearly calculated live discards of scalloped hammerhead sharks for the US southeast commercial gillnet fishery (1998-2019) ranged from 1 to 12 (**Table 24**).

US northeast commercial gillnet for the Mid-Atlantic

<u>Scalloped hammerhead</u> — Yearly back-calculated dead discards of scalloped hammerhead sharks for the US northeast commercial gillnet fishery (1981-1994) ranged from 4 to 110 and yearly calculated dead discards of scalloped hammerhead sharks for the US northeast commercial gillnet fishery (1995-2019) ranged from 70 to 618 (**Table 25**). Yearly back-calculated live discards of scalloped hammerhead sharks for the US northeast commercial gillnet fishery (1981-1994) ranged from 3 to 86 and yearly calculated dead discards of scalloped hammerhead sharks for the US northeast commercial gillnet fishery (1981-1994) ranged from 3 to 86 and yearly calculated dead discards of scalloped hammerhead sharks for the US northeast commercial gillnet fishery (1995-2019) ranged from 55 to 483 (**Table 25**).

<u>Smooth hammerhead</u> — Yearly back-calculated dead discards of smooth hammerhead sharks for the US northeast commercial gillnet fishery (1981-1994) ranged from 4 to 111 and yearly calculated dead discards of smooth hammerhead sharks for the US northeast commercial gillnet fishery (1995-2019) ranged from 71 to 628 (**Table 26**). Yearly back-calculated live discards of smooth hammerhead sharks for the US northeast commercial gillnet fishery (1981-1994) ranged from 2 to 58 and yearly calculated dead discards of smooth hammerhead sharks for the US northeast commercial gillnet fishery (1981-1994) ranged from 2 to 58 and yearly calculated dead discards of smooth hammerhead sharks for the US northeast commercial gillnet fishery (1995-2019) ranged from 37 to 328 (**Table 26**).

Commercial post-release live discard mortality

Discussion and decisions

SEDAR77-DW09 and SEDAR77-DW10

The Post-release delayed mortality (PRLDM) Ad-hoc Working Group discussed SEDAR77-DW09 and SEDAR77-DW10 (Prohaska et al. 2021a, 2021b), which provided evidence from the evaluation of blood biochemical indicators and capture condition that scalloped and great hammerheads captured with bottom longlines and on the hook for longer than about 3 hr are likely to be in either poor condition or dead at

release. SEDAR77-DW09 and SEDAR77-DW10 evaluated the physiological stress induced by bottom longline capture for scalloped and great hammerheads. Each captured shark was assigned a capture condition factor at release, which was compared with physiological stress quantified using the blood biochemical indicators and with time on hook to quantify stress induced by different longline hook times. SEDAR77-DW09 and SEDAR77-DW10 indicated that after about 3 hr of hook time, there were no scalloped hammerhead assigned to either excellent, good, or fair condition at release (**Figure 16**). SEDAR77-DW09 and SEDAR77-DW10 indicated that after about 2 hr of hook time, there were no great hammerhead assigned to either excellent, good, or fair capture condition at release (**Figure 16**). SEDAR77-DW09 and SEDAR77-DW10 indicated that scalloped and great hammerheads released in fair condition had lactate levels of about 6 and 12 mmol l⁻¹, respectively, which corresponded to about 80 and 100 minutes of time on the hook, respectively (**Figure 17**). SEDAR77-DW09 and SEDAR77-DW10 indicated that lactate levels of scalloped and great hammerheads released in poor condition were about 12 and 19 mmol l⁻¹, respectively, which corresponded to about 12 and 19 mmol l⁻¹, respectively, which corresponded to about 120 minutes of time on the hook, respectively (**Figure 18**).

SEDAR77-RD35

The PRLDM Ad-hoc Working Group discussed SEDAR77-RD35 (Gulak et al. 2015; Simon Gulak, Pers. Comm. December 14, 2022), which provided evidence from fisheries research conducted employing hook timers on contracted commercial bottom-longline vessels in the U.S. Highly Migratory Species Shark Research Fishery to determine that the proportion of total number captured by hour for scalloped and great hammerheads on the hook <= 3 hr was 33.54 and 33.80%, respectively (**Tables 27 and 28**).

SEDAR77-RD20, SEDAR77-RD42, SEDAR77-DW34, and SEDAR77-DW35

The PRLDM Ad-hoc Working Group discussed SEDAR77-RD20 (Drymon and Wells 2017), SEDAR77-RD42 (Gallagher et al. 2014), SEDAR77-DW34 (Hoffmayer et al. 2021), and SEDAR77-DW35 (Whitney et al. 2021), which provided evidence from electronically tagged sharks to estimate PRLDM of great hammerheads captured on drumline and bottom longline gear soaked for between about 1 - 3 hr that ranged from 0 % (N tagged = 3, n dead post-release = 0) to 56% (N tagged = 9, n dead post-release = 5) with a pooled estimate of 45% (N tagged = 60, n dead post-release = 27; **Table 29**). The PRLDM Ad-hoc Working Group also discussed that SEDAR77-DW35 (Whitney et al. 2021) provided evidence from electronically tagged sharks to estimate PRLDM of scalloped hammerheads captured on bottom longline gear soaked for between about 1 - 3 hr (post-release mortality = 8% obtained from N tagged = 25 and n dead post-release = 2; **Table 29**).

The PRLDM Ad-hoc Working Group discussed using the proportion of total number captured by hour for scalloped hammerheads on bottom longline hook-timers for ≤ 3 hr and > 3 hr to compute the PRLDM rate for scalloped hammerheads captured in commercial bottom longline gear. The estimate of PRLDM rate obtained from electronically tagged scalloped hammerheads captured on bottom longlines with hook or soak times about 1 - 3 hr (8%; **Table 29**) was applied to the proportion of scalloped hammerheads on hook-timers for ≤ 3 hr (33.54%, n = 55; **Tables 27 and 30**). The PRLDM Ad-hoc Working Group

discussed that the PRLDM rate of scalloped hammerheads on hook timers > 3hr (66.46%, n = 109; **Tables 27 and 30**) was assumed to be 100% because live scalloped hammerheads were likely to be in poor condition at release and unlikely to survive post-release. The PRLDM mortality rate calculated for scalloped hammerheads released from commercial bottom longline gear using this approach was 69.15% (**Table 30**).

<u>Decision:</u> Use a PRLDM mortality rate of 69.15% as the best estimate of PRLDM for scalloped hammerheads released alive from commercial bottom longline gear.

A binomial confidence interval was used to calculate a range of uncertainty for PRLDM in a recent SEDAR blacktip shark stock assessment (NMFS 2020). Consequently, the PRLDM Ad-hoc Working Group also discussed using a binomial 95% confidence interval (CI, 0.0098 - 0.2603) calculated in R version 4.0.5 (R Development Core Team, 2021) with the library "binom" (Dorai-Raj 2014): binom.confint(x = 2, n = 25, method = "exact") as the minimum and maximum estimate of PRLDM obtained from electronic tag data for scalloped hammerheads captured on bottom longline gear soaked for between about 1 - 3 hr. Applying this range of uncertainty obtained from the binomial CI to the equations in **Table 30** resulted in a 95% CI of 66.79 – 75.19% PRLDM for scalloped hammerheads captured on bottom longline gear.

<u>Decision:</u> Use a 95% CI of 66.79 – 75.19% PRLDM as the minimum and maximum estimate of PRLDM for scalloped hammerheads released alive from commercial bottom longline gear.

Similarly, the PRLDM Ad-hoc Working Group discussed using proportions of great hammerheads on bottom longline hook-timers for ≤ 3 hr and > 3hr to compute the PRLDM for great hammerheads captured in commercial bottom longline gear. The estimate of PRLDM rate obtained from electronically tagged great hammerheads captured on drumlines and bottom longlines with soak times about 1 - 3 hr (45%; **Table 29**) was applied to the proportion of great hammerheads on hook-timers for ≤ 3 hr (33.80%, n = 24; **Tables 28 and 31**). The PRLDM Ad-hoc Working Group discussed that the PRLDM rate of great hammerheads on hook timers > 3hr (66.20%, n = 47; **Tables 28 and 31**) was assumed to be 100% because live great hammerheads were likely to be in poor condition at release and unlikely to survive post-release. The PRLDM rate calculated for great hammerheads released from commercial bottom longline gear using this approach was 81.41% (**Table 31**).

<u>Decision:</u> Use a PRLDM rate of 81.41% for great hammerheads released alive from commercial bottom longline gear.

Similarly, the PRLDM Ad-hoc Working Group discussed using a binomial 95% confidence interval (CI, 0.3212 - 0.5839) calculated in R version 4.0.5 (R Development Core Team, 2021) with the library "binom" (Dorai-Raj 2014): binom.confint(x = 27, n = 60, method = "exact") as the minimum and maximum estimate of PRLDM obtained from electronic tag data for great hammerheads captured on bottom longline gear soaked for between about 1 - 3 hr. Applying this range of uncertainty obtained from the binomial CI to the equations in **Table 31** resulted in a 95% CI of 77.05 – 85.93% PRLDM for great hammerheads captured on bottom longline gear.

<u>Decision:</u> Use a 95% CI of 77.05 – 85.93% PRLDM as the minimum and maximum estimate of PRLDM for great hammerheads released alive from commercial bottom longline gear.

Other methods have also been used to obtain a 95% confidence interval for post-release mortality estimates for demersal longlines (Whitney 2019 citing methods in Goodyear 2002), however these methods were not reviewed by the PRLDM Ad-hoc Working Group during the data process workshops.

The PRLDM Ad-hoc Working Group discussed that PRLDM rates obtained for hammerheads captured with bottom longline gear may also be the best available estimates of PRLDM for hammerheads captured in commercial gillnet gear.

<u>Decision:</u> Use PRLDM rates obtained for hammerheads captured with bottom longline gear as the best available estimates of PRLDM for hammerheads captured in commercial gillnet gear.

The PRLDM Ad-hoc Working Group discussed that smooth and scalloped hammerheads are physiologically more similar than smooth and great hammerheads. Consequently, the PRLDM Ad-hoc Working Group discussed that PRLDM rates obtained for scalloped hammerheads captured with bottom longline gear may be the best available estimates of PRLDM for smooth hammerheads captured with both bottom longline gear and commercial gillnet gear.

<u>Decision:</u> Use PRLDM rates obtained for scalloped hammerheads captured with bottom longline gear as the best available estimates of PRLDM for smooth hammerheads captured with both bottom longline gear and commercial gillnet gear.

Commercial length compositions

The data sources for lengths of commercially caught sharks are the observer programs (BLLOP, GNOP, NEFOP, and PLLOP in this case). Length composition information from these programs is provided in the length composition section of this DW report.

Mexican landings

An intensive monitoring of the artisanal shark fisheries in the coastal waters of the Mexican Gulf of Mexico was carried out from November 1993 to December 1994 with the aim of characterizing the shark fisheries prosecuted in the region (Castillo et al., 1998). Twelve of the most important fishing ports from the States of Tamaulipas, Veracruz, Tabasco and Campeche were sampled on a daily basis (**Figure 19**). The shark fishing operations of 901 artisanal boats were monitored. Most of the sampled boats (97%) were small boats ("pangas") with fiberglass and wood hulls, 7.5–10.0 m long and 1.0–2.5 m wide, with an outboard motor and an operational range of 1–3 days, whereas the remaining 3% were larger boats with hulls of wood and metal, > 10 m long and >2.6 m wide, with an inboard motor and an operational range of 4–15 days. The two types of boats combined accounted for 9964 trips, with Campeche having the highest number of boats, fishing trips, and shark landings overall. Biological information collected included length, sex, and reproductive stage of individual animals. It must be noted that in some of the sites visited sampling was not systematic throughout the year owing to logistic and funding issues.

The Castillo et al. (1998) study thus provided a snapshot of the landings, sex, and lengths of sharks captured in four of the six Mexican states in the GOM for one year spanning 1993-1994. Based on this information it was possible to reconstruct the catches of the different hammerhead shark species using the following procedure. First, the proportion that hammerhead shark species made up of the total sharks landed was computed for each of the four states sampled (Figure 20). Second, for each species of hammerhead represented in the landings (i.e., scalloped and great hammerhead) length-frequency distributions (cm TL) by sex by state were computed (Figures 21, 22) and the proportion of landings of sharks <150 cm TL were assigned to a "cazones" category and those >=150 cm TL to a "tiburones" category. These two categories are those reported in the Mexican official fishery statistics from the Comisión Nacional de Acuacultura y Pesca (Conapesca) available for the period 1976-2019 (J.L. Castillo, pers. comm. to Enric Cortés). We then calculated the percentage of "cazones" and "tiburones" for sexes combined as a weighted average (by sample size for each sex) for each state (Figures 21, 22). Third, for each species, we took the landings of "cazones" and "tiburones" reported for each state by Conapesca (Table 32) and multiplied it by the proportion that scalloped and great hammerhead make up of the entire catches (step 1) and by the proportion of "cazones" and "tiburones" attributed to each species (step 2) to obtain the total estimated number of hammerheads of each species caught in each state (Table 33; Figure 23). This assumed that the species composition of the landings observed in 1993-1994 remained the same throughout the entire time series. Fourth, these total estimated landings could further be disaggregated into gear-specific landings for each state by assigning landings to three major gear types (longlines, nets, and hook and line) based on gear composition observed by state. Gear-specific landings by state were then added to provide total landings by gear type (Table 34; Figures 24, 25).

An additional source of information on Mexican shark landings was also examined in SEDAR77-DW04. This sample, based in part on Pérez-Jiménez and Méndez-Loeza (2015), monitored the small-scale artisanal shark gillnet fishery in the states of Tabasco and Campeche during 2011-2016. However, the proportion that hammerhead shark species (scalloped and great hammerheads) made up of the total sharks landed was only available for the state of Campeche and therefore it was decided not to use this source of data.

Discussion ensued about these sources of Mexican landings. It was noted that while the Castillo et al. (1998) study was almost a census, reconstruction of catches for the 1981-2019 period assumed that the species composition had remained the same throughout this time period. Since there was no additional information available to determine whether/how species composition may have changed through time and that the entire reconstructed series was based on a single year of data, the Panel decided that Mexican landings should be used only in a high catch sensitivity scenario. It was also noted that the U.S. has no management authority in Mexico and therefore inclusion of this series in the base run could be problematic.

<u>Decision:</u> Include the reconstructed Mexican landings based on one year of data from Castillo et al. (1998) in a high catch sensitivity scenario only; exclude from the base run.

Puerto Rico/U.S. Virgin Islands landings

There were no commercial landings of hammerhead sharks from Puerto Rico (PR) or the U.S. Virgin Islands (USVI) reported in the FINS or eDealer databases. The Caribbean Commercial Vessel Logbook database included some reports, but of very small magnitude. For scalloped hammerhead in PR, weights ranged from 14 to 116 lb dw during 2012-2020 and in the USVI, weights were less than 1 lb dw. For great hammerhead in PR, weights ranged from 81 to 676 lb dw during 2012-2020, and in the USVI, from 57 to 662 lb dw. Additional information obtained from the Accumulated Landings System (ALS) database showed that most sharks in PR are reported as unclassified and those reported as "hammerhead" never exceeded 80 lb whole weight (ww) in any year during 1987-2011. **Figure 26** shows the landings of scalloped and great hammerheads after apportioning the unclassified sharks to the different hammerhead species and then apportioning the unclassified hammerheads to scalloped or great hammerhead. Scalloped hammerhead landings ranged from 31 to 323 lb dw during 1987-2011 and great hammerhead landings ranged from 261 to 2,694 lb dw during the same period.

These low reported landings reflect the fact that few longliners dock and offload in PR ports and that they do not fish in more coastal waters (R. Espinoza, Conservación Conciencia, pers. comm. to Enric Cortés). As part of a Shark Research and Conservation Program Conservación Conciencia has been conducting fishery-dependent surveys at fishing ports and villages from 2019 to 2021 as well as fishery-independent surveys since 2017 with the aim to characterize Puerto Rico's shark fishery through a marine conservation agreement with PR fishers who report and provide details on their catch. Scalloped hammerheads were the second most observed species during fishery-dependent surveys conducted from February 2019-August 2021 (n = 46; all immature) and only 10 (90% immature) great hammerheads were observed. While this information may become important in future stock assessments, there are currently no data/estimates of coastal shark landings in PR that could be used to raise these observations to total estimates of hammerhead sharks landed.

The Panel noted the small magnitude of the PR/USVI landings available, that inclusion of potentially available hammerhead catch data from the rest of Caribbean nations was outside the scope of this assessment and should be addressed in the future through a Regional Fisheries Management Organization (RFMO) such as the WECAFC (Western Central Atlantic Fishery Commission), and that the current assessment represented a good-faith effort to include catches from U.S. territories (and Mexico) only.

<u>Decision:</u> Although the magnitude is almost insignificant, do not include Puerto Rico and U.S. Virgin Islands landings in the base run; include them only in a high catch sensitivity scenario

Pelagic longline dead discards and live post-release mortality

Dead discard estimates of scalloped, great, and smooth hammerhead sharks in the pelagic longline fishery for the period 1987-2020 (based on the Pelagic Longline Observer Program and fishing effort reported in pelagic longline logbooks) were obtained from the International Commission for the Conservation of Atlantic Tunas (ICCAT) Task 1 statistics (**Figures 1, 4, 7, 10, and 13**). Estimates of animals released alive were not available. To convert weights into numbers, weights in tons ww were first converted to weights in lb dw by applying a conversion ratio of 2.02 (ww = 2.02 dw) and then obtaining average weights from fork lengths

reported in the Pelagic Longline Observer Program for 1992-2017. Average weight for all remaining years was taken as the average for the entire time series of data available (1992-2017). Individual weights were obtained from individual fork lengths using the sex-specific weight-to-length regressions given in SEDAR77-DW03. Unclassified hammerheads were apportioned to the different species based on the proportions of the three species for years with data or based on the average proportions for the entire period in the years for which there were no species-specific data. Years with no data at all (i.e., 2002-2006) were set equal to the mean unclassified hammerheads for the entire period multiplied by the average proportion of the three species for the entire period.

It was noted that the dead discard estimates from the pelagic longline fishery are available in the ICCAT Task I database and should thus be used, but that no estimates of live release discards have been generated to date.

<u>Decision</u>: There are no uncertainty estimates associated with published ICCAT pelagic longline dead discards and no live discard estimates. CVs are calculated by area/quarter but not overall, and are not included in the Task 1 data reported to ICCAT. The DW panel recommended using ICCAT pelagic longline dead discards in the base run (and low catch and high catch scenarios).

<u>Decision:</u> Assume a linear increase in discards from 0 in 1981 to 83.4% of the mean of the entire time series in the year preceding the first year of bycatch estimates (1987) to parallel the approach used for back-calculating landings and other commercial discard series

3.1.3 Recreational Catch Datasets and Decisions

Recreational catches

Recreational catches of hammerhead sharks reported herein are the sum of estimates from the Marine Recreational Information Program (MRIP), the Southeast Region Headboat Survey (SRHS) operated by the SEFSC Beaufort Laboratory, and the Texas Parks and Wildlife Department (TPWD) Survey. There were no hammerhead sharks reported from the Louisiana Creel survey and only insignificant amounts in the Large Pelagic Survey (LPS). The MRIP estimates include Access Point Angler Intercept Survey (APAIS) and Fishing Effort Survey (FES) calibrations. Annual recreational catch estimates of hammerhead sharks were computed as the sum of type A (number of fish killed or kept seen by the interviewer), type B1 (number of fish killed or kept reported to the interviewer by the angler), and type B2 (number of fish released alive reported by the fisher) estimated to have died from post-release livediscard mortality. MRIP catches are reported in both numbers and weight for types A and B1, but only in numbers for type B2. SRHS catch estimates for types A and B1 are also provided in both numbers and weight, but B2 estimates are not available. TPWD catch estimates for types A and B1 are only provided in numbers and B2 estimates are not available. Annual weight estimates for MRIP type B2 were computed by multiplying B2 catches in numbers by an average weight obtained from MRIP AB1 catches. Since the native form of recreational catches is numbers, it is more appropriate to use catch in numbers in models where catches can be entered either in numbers or in weight (e.g., Stock Synthesis).

To account for sharks identified only as Sphyrnidae or *Sphyrna* spp., unclassified sphyrnid sharks were initially allocated to each of the three hammerhead species (*S. lewini*, *S. mokarran* or *S. zygaena*) based on the annual contribution of these three species and the bonnethead shark (*Sphyrna tiburo*) to the sphyrnid shark catch. On average throughout the time series (1981-2020) bonnethead, scalloped hammerhead, great hammerhead, and smooth hammerhead sharks accounted for 82%, 7%, 9%, and 2% of sphyrnid AB1 catches and 83%, 5%, 9%, and 3% of sphyrnid B2 catches, respectively.

It was noted that it would be better to use the species composition of A catches only (observed by the interviewer) rather than AB1 or B2 catches to apportion the unclassified hammerheads into the three species. It was thus recommended to use the annual proportions based on A catches for 1981-2000, and to use the 1981-2000 average proportions of A catches for 2001-2020 to account for management measures implemented during that period.

As in other SEDARs, in initial discussions the Panel expressed concerns over the inter-annual variability and high uncertainty of the recreational catch estimates. To account for the large interannual variability in recreational catch estimates, the A+B1 and B2 catch series were smoothed using a three-year moving geometric average, as most recently done for SEDAR 65 [(NMFS 2020), while preserving the average trend. It was noted that despite smoothing the series with the three-year moving geometric average there were still some large peaks apparent. Thus, individual years with noticeable peaks were identified for each of the stocks and smoothed:

			Stock			
		Scalloped	Scalloped GOM	Scalloped	Great	Smooth
		all	GOM	ATL		
AB1	Numbers	1982, 1993	1984, 1985	1982, 1993	1982	1991
	Weight	1993	1984, 1985	1993	1982	1991

The individual smoothing applied is described below for each stock.

<u>Decision:</u> Apportion the AB1 and B2 unclassified sphyrnid sharks as follows: 1) for 1981-2000, use annual proportions based on A catches (observed by interviewer) and 2) for 2001-2020, use average proportion during 1981-2000 based on the A catches to account for management measures implemented

<u>Decision:</u> Smooth the AB1 and B2 recreational catch series with a three-year geometric moving average

<u>Decision:</u> Smooth individual years with noticeable peaks by setting them equal to the geometric mean of the 3 preceding and ensuing years (as available)

Recreational post-release live discard mortality

The PRLDM Ad-hoc Working Group discussed that direct estimates of PRLDM were not available for hammerheads from a review of the scientific literature reviewed in SEDAR77-DW25 (Courtney et al. 2021, their Tables A.1 and A.2). Consequently, a minimum estimate of recreational PRLDM for hammerheads was developed by the PRLDM Ad-hoc Working Group from great hammerheads captured and released alive in three directed electronic tagging studies of recreational fishing gear reported and reviewed during the SEDAR 77 Data Workshop (SEDAR77-DW07, SEDAR77-DW22, and a SEDAR 77 Data Workshop presentation) as summarized below. The PRLDM rate estimate was obtained primarily from great hammerheads captured and released alive by experienced recreational anglers targeting sharks. As a result, the PRLDM estimate obtained from these studies was assumed to represent a plausible minimum estimate of the PRLDM of all hammerheads released alive from recreational gear, which are primarily captured incidentally, as discussed below. In contrast, a best estimate of hammerhead shark recreational PRLDM was obtained during the SEDAR 77 Data Workshop from a previously published meta-analysis of pelagic shark PRLDM rates captured and released alive from multiple gear types (Musyl and Gilman 2019). It was noted during the SEDAR 77 Data Workshop that meta-analysis may provide a relatively more robust (stable) PRLDM estimate than those obtained from individual directed studies, which can fluctuate based on individual study design and sample size, as discussed below. Similarly, a maximum estimate of hammerhead shark recreational PRLDM was obtained during the SEDAR 77 Data Workshop as the 95% upper confidence interval (UCI) of pelagic shark PRLDM (Musyl and Gilman 2019).

<u>Decision:</u> Use the pooled PRLDM rate of 11.8% obtained from three directed electronic tagging studies of great hammerheads released alive from recreational gear as a minimum estimate of the PRLDM rate for hammerheads captured and released alive with recreational gear.

The PRLDM Ad-hoc Working Group discussed, and the SEDAR 77 Data Workshop panel accepted, using a pooled PRLDM rate of 11.8% obtained from great hammerheads released alive from recreational gear as a minimum estimate of the PRLDM rate of hammerheads captured and released alive with recreational gear.

Source	Tags	PRLDM	(%)
SEDAR77-DW07	2	1	50.0%
SEDAR77-DW22	13	1	7.7%
SEDAR 77 Data Workshop Presentation ¹	2	0	0.0%
Total (pooled data)	17	2	11.8%

¹(Bryan Frazier – Tag Data)

The PRLDM Ad-hoc Working Group noted that two of the directed studies (SEDAR77-DW07 and SEDAR77-DW22) which reported PRLDM from electronic tagging involved anglers experienced at targeting sharks, and that experienced anglers may reflect best practices associated with maximizing post-release survival (for example, reduced fight and handling time associated with heavy tackle designed to catch sharks). The PRLDM Ad-hoc Working Group also noted that the post-release mortality rate of 11.8% obtained from great hammerheads released alive from recreational gear is lower than that obtained for Atlantic blacktip sharks (18.5%; range 10.8–28.7%) during the SEDAR 65 Atlantic blacktip shark stock assessment (NMFS 2020; e.g., Courtney et al. 2021, their Table B.1) and also lower than that obtained from meta-analysis of pelagic sharks captured and released alive from longline, purse-seine and rod & reel gear combined (Musyl and Gilman 2019). Consequently, the PRLDM Ad-hoc Working Group discussed that the post-release mortality rate of 11.8% obtained from the three directed studies evaluated here may represent a plausible minimum estimate of the PRLDM rate of hammerheads captured and released alive with recreational gear.

<u>Decision</u>: Use the PRLDM obtained from meta-analysis for pelagic sharks (26.8%, Musyl and Gilman 2019) as the best estimate of the PRLDM rate for hammerheads captured and released alive with recreational gear.

<u>Decision:</u> Use the 95% upper confidence interval (UCI) of PRLDM obtained from meta-analysis for pelagic sharks (36.0%, Musyl and Gilman 2019) as the maximum estimate of the PRLDM rate for hammerheads captured and released alive with recreational gear.

The PRLDM Ad-hoc Working Group discussed the meta-analysis of pelagic shark post-release mortality rates captured and released alive from multiple gear types (Musyl and Gilman 2019) during the SEDAR 77 Data Workshop. The PRLDM Ad-hoc Working Group discussed, and the SEDAR 77 Data Workshop panel accepted, that the PRLDM rate obtained from meta-analysis (Musyl and Gilman, 2019) is likely to be more robust (stable) compared to the PRLDM estimated from the three directed studies evaluated here because of low sample size in the directed studies.

SEDAR77-DW07

The PRLDM Ad-hoc Working Group discussed SEDAR77-DW07 (Mohan et al. 2021), which provided evidence to estimate post release mortality from electronically tagged great hammerheads captured and released alive during Texas shore based angling. Two great hammerheads were caught, tagged, released alive, and provided electronic tag data that indicated the animal's fate (alive or dead) after live release. One experienced immediate mortality (light level, depth, and temperature data were sufficient to determine the shark was ingested by a predator) and one survived up to 16 days following release. The mortality rate for great hammerheads obtained from these data was estimated at 50%. The study included highly experienced Texas shore-based anglers who were trained during the study in shark identification,

data collection, and tag deployment. No further input was provided by investigators during the study in order to ensure the preservation of normal techniques utilized by shore-based recreational fishermen.

SEDAR77-DW22

The PRLDM Ad-hoc Working Group discussed SEDAR77-DW22 (Medd et al. 2021), which provided evidence to estimate post release mortality from electronically tagged great hammerheads captured and released alive during Florida shore based recreational angling. Thirteen great hammerheads were caught, tagged, released alive, and provided electronic tag data that indicated the animal's fate (alive or dead) after live release. One experienced constant depth associated with mortality. None of the pressure profiles of the other 13 tags indicated a detachment due to constant depth release. The mortality rate for great hammerheads obtained from these data was estimated at 7.7%. The anglers that caught the sharks in the tagging study were experienced (i.e., more than 1- 5 years of shark fishing) and generally used heavy gear types capable of reeling in sharks to shore relatively more quickly than would have been possible with lighter tackle.

SEDAR 77 Data Workshop presentation (Bryan Frazier – PRLDM in South Carolina charter vessel based recreational angling)

The PRLDM Ad-hoc Working Group discussed the SEDAR 77 Data Workshop presentation by Bryan Frazier, which provided evidence to estimate post-release mortality from electronically tagged great hammerheads captured and released alive during South Carolina charter vessel based recreational angling. Two great hammerheads were caught, tagged, released alive, and provided electronic tag data that indicated the animal's fate (alive or dead) after live release. None experienced constant depth assumed to be associated with mortality. The mortality rate for great hammerheads obtained from these data was estimated at 0%. One additional great hammerhead was tagged, but electronic tag data was not available at the Data Workshop to determine the animal's fate after live release.

A summary of the information provided during the SEDAR 77 Data Workshop presentation by Bryan Frazier is provided below and in **Figures 27** and **28**. One great hammerhead was a 245 cm fork length pregnant female (confirmed via ultrasound) captured after a 32 minute fight time and at a water temperature of 30.7° C. The shark was tagged with standard-rate X-tag on 8/24/17. The tag was shed after 122 days at liberty. An example of the temperature and depth profile is provided in **Figure 27**. The other great hammerhead was a 286 cm fork length female captured after a 47 minute fight time and at a water temperature of 29.4° C. The shark was tagged with a PSATLife tag on 6/28/17. After 9 days at liberty, the tag shed prematurely, but indicated post-release survival based on light intensity and depth data. An example of light intensity and pressure (depth) of the great hammerhead tagged with a PSATLife tag is provided in **Figure 28**.

SEDAR 77 Data Workshop presentation (Kesley Banks - Fight and handling times in a Texas shore-based recreational shark fishery)

The PRLDM Ad-hoc Working Group discussed the SEDAR 77 Data Workshop presentation by Kesley Banks, which summarized fight and handling times in a shore-based recreational shark fishery. It was noted that anglers generally used heavy gear, and that fight times for great hammerheads were generally longer than those for scalloped hammerhead because the size of great hammerheads was generally larger than the size of scalloped hammerheads in the shore based fishery.

A summary of the information provided during the SEDAR 77 Data Workshop presentation by Kesley Banks is provided below. The Texas Shark Rodeo (TSR) is an annual 9-month long land-based shark fishing tournament that advocates for catch-photo-release with an "emphasis on tagging and collecting data for the conservation of sharks" (texassharkrodeo.com). There is no entry fee for the tournament, with winners receiving trophies and recognition, but no monetary incentive. Anglers participating in the TSR tag and submit a photograph of their catch for it to be counted, allowing for confirmation of the species submitted. Date of capture, location, stretched total length (measured from the tip of the snout to the tip of the stretched upper caudal lobe), sex, species, and tag number, along with photographs were then submitted via online form. Although variation in recreational gear types exists amongst individual anglers, the general strategy for land-based fishing in Texas involves the use of large reels spooled with 800-1,000 m of 50-lb (22.68-kg) to 100-lb (45.36-kg) test line (monofilament or braided) with approximately 100 m of monofilament top shot of increased strength. A wire or monofilament leader, consisting of a weight and a line with a circle or J-hook ranging in size from 13/0 to 24/0, is connected to the top-shot line. The hook is baited with large sections of stingray *Rhinoptera* spp. or *Dasyatis* spp., crevalle jack Caranx hippos, or striped mullet Mugil cephalus and is either surf cast or kayaked out 100-400 m offshore. Anglers participating in the TSR span the entire Texas coast and were permitted to target sharks from shore (e.g., beach, jetty, channel), excluding piers or vessels of any type.

Beginning in 2020, time of hook, time at landing, and time at release were asked during the tournaments. This allowed for 62 hammerheads (great: n = 43, scalloped: n = 19) to be sampled for fight and handling times. Anglers typically spent longer fighting great hammerheads (mean \pm SD: 30 ± 21 min) than scalloped hammerheads (5 ± 4 min). The maximum fight time was 90 minutes to land a great hammerhead and the shortest time was 1 minute for a scalloped hammerheads (3 ± 1.6 min) with the longest being 15 minutes for a great hammerhead and shortest at 0 minutes for a great hammerhead. Length data was also available for hammerheads from 2014 – 2021. Scalloped hammerheads were typically smaller in length than great hammerheads. The reported number of pups captured is larger for scalloped hammerheads (n = 43 smaller than 70 cm FL) than great hammerheads (n = 2 smaller than 80 cm FL), which could help explain the shorter fight and handling times for scalloped hammerheads.

SEDAR 77 Data Workshop presentation (Cliff Hutt – Proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads)

The PRLDM Ad-hoc Working Group discussed the SEDAR 77 Data Workshop presentation by Cliff Hutt, which reported the proportion of shark targeted recreational fishing trips in the MRIP data base that

captured or harvested hammerheads. It was noted that the majority of trips which reported either catching or harvesting hammerheads, did not report targeting sharks.

A summary of the information provided during the SEDAR 77 Data Workshop presentation by Cliff Hutt is provided below and in **Figures 29** to **32**. The MRIP data base was queried for the number of MRIP trips: (1) targeting sharks (excluding pelagic, small coastals, and dogfish); (2) catching hammerheads, including generic hammerheads; (3) catching hammerheads identified to species; and 4) harvesting hammerheads identified to species. 17.7% of trips that reported catch of hammerheads reported targeting sharks (excluding pelagics or small coastals). 33.1% of trips that reported harvesting hammerheads reported targeting sharks (excluding pelagics or small coastals). Trips targeting sharks account for approximately 3.5% of all MRIP estimated recreational trips that reported catching sharks. The patterns of available data used to calculate these proportions has also changed over time, possibly in response to changes in management, for example limiting harvest of hammerheads (e.g., see **Figures 29 to 32**).

SEDAR77-RD48 (Musyl and Gilman 2019)

The PRLDM Ad-hoc Working Group discussed the published meta-analysis of pelagic shark post-release mortality rates captured and released alive from multiple gear types (Musyl and Gilman 2019) during the SEDAR 77 Data Workshop. The PRLDM Ad-hoc Working Group noted that the post-release mortality rate obtained from the published meta-analysis (Musyl and Gilman, 2019) is likely to be more robust (stable) compared to the PRLDM estimated from the three directed studies identified above because of low sample size in the directed studies. PRLDM obtained from meta-analysis for all pelagic sharks combined (33 studies) was 26.8% (Musyl and Gilman 2019, 19.3% LCI, 36.0% UCI, obtained from longline, purse-seine, rod and reel combined, Dead = 95, Tagged = 401). In comparison, PRLDM obtained from meta-analysis for scalloped hammerhead captured and released alive from purse-seine gear (One study) was 87.5% (Musyl and Gilman 2019, 26.6% LCI, 99.3% UCI, Dead = 3, Tagged = 3). The PRLDM Ad-hoc Working Group discussed that the post-release mortality rate of 26.8% obtained from meta-analysis for all pelagic sharks combined (Musyl and Gilman 2019) along with the 95% UCI (36.0%) may represent plausible robust (stable) estimates of the best available and maximum, respectively, PRLDM rate of hammerheads captured and released alive with recreational gear.

SEDAR77-DW36

The PRLDM Ad-hoc Working Group discussed SEDAR77-DW36 (Gardiner et al. 2022), which provided evidence of post-release mortality for great and scalloped hammerheads fitted with surgically implanted acoustic transmitters and/or satellite tags after being captured during fishery-independent surveys or directed sampling efforts using gillnet, bottom longline, or drum line gear. One great hammerhead was also incidentally captured using rod and reel gear, with light monofilament terminating in a 6/0 circle hook. Only individuals that appeared healthy and in robust condition were selected for tagging. Upon release, animal movements were tracked by arrays of passive acoustic receivers (e.g., SEDAR 77-SID05, Gardiner et al. 2021). Animals were classified as either survivals (individuals that maintained continuous

movement for a period \geq 14 days) or mortalities (individuals that ceased movement within 14 days or individuals that disappeared within a gated array after 6 months had elapsed).

Post-release outcomes were determined for scalloped and great hammerheads from multiple release locations in Florida west coast estuaries and bays adjacent to the Gulf of Mexico as described in Gardiner et al. (2022, their Tables 1 and 2) and summarized below in **Table 35**. The PRLDM Ad-hoc Working Group discussed that many of the acoustic array locations provided complete coverage across all entry/exit points (Gardiner et al. 2022), such that acoustically tagged sharks were unlikely to emigrate from the tag location undetected. Consequently, the PRLDM Ad-hoc Working Group discussed that the resulting post-release mortality rate estimates obtained from the acoustic tagging data (**Table 35**) could be useful to inform stock assessment. However, the PRLDM rates obtained from the study were not adopted for use in the current assessment because the data were not reviewed by the PRLDM Ad-hoc Working Group in detail. The PRLDM Ad-hoc Working Group discussed that the post-release mortality captured using rod and reel gear, with light monofilament terminating in a 6/0 circle hook, was consistent with the possibility that hammerheads captured by anglers targeting sharks, as discussed above.

SEDAR77-SID01

The PRLDM Ad-hoc Working Group discussed SEDAR77-SID01 (Heim et al. 2021), which provided evidence of post-release mortality for 15 great hammerhead (1 post-release mortality) and 10 scalloped hammerheads (1 post release mortality). Sharks were tagged in the Bahamas, Florida and South Carolina using various capture methods including hand line and bottom longline. The data collection for the project was still ongoing and therefore the data analysis was preliminary. The PRLDM rates obtained from the study were not adopted for use in the current assessment because the data were not reviewed by the PRLDM Ad-hoc Working Group in detail.

Catches by species/stock

Scalloped hammerhead, all regions—The vast majority of scalloped hammerhead catches were from MRIP. Catches were highest at the beginning of the time series and showed a decreasing trend punctuated by some peaks, notably in 1982 and 1993 for the AB1 series. Upon further examination, it was found that the A estimate for 1982 was influenced by a large value of 22,010 sharks for South Carolina (Wave 3, Private, Inland), which was based on one observed trip that harvested 20 sharks, all measuring only 11 inches. Since this was unrealistic, the recommendation was to remove this SC estimate entirely. Thus, 22,010 was subtracted from the original A estimate of 39,739. The original AB1 estimate for 1993 was 60,926 sharks, including an A estimate of 5,559 sharks (east coast of FL, Wave 3, Shore, State Ocean) and a B1 estimate of 38,913 sharks (east coast of FL, W3, Shore, State Ocean). The A estimate corresponded to 1 angler reporting 1 harvested shark and the B1 estimate to 3 anglers reporting harvests of 1, 2, and 4 sharks each, all legal in 1993). Based on this the recommendation was to smooth the 1993 data point. **Figure 33** shows the recreational catches before (top) and after (bottom) smoothing the individual points and the general smoothing.

Most AB1 catches by state corresponded to the southeast region in the Atlantic with Florida-East coast (45%), Georgia (17%), and South Carolina (13%) accounting for 75% of all scalloped hammerhead catches (**Figure 34, top**). By fishing mode, most AB1 catches were from shore (48%) and by private boats (47%), with charter boats and headboats contributing very little (**Figure 34, middle**). By fishing area, most AB1 catches occurred less than 3 miles from shore (45%) and in inshore waters (37%), with the remaining catches occurring in waters over three miles from shore (9%) or less than 10 miles from shore (8%; **Figure 34, bottom**).

<u>Decision:</u> Remove the South Carolina A estimate of 22,010 sharks from the original A estimate of 39,739 for the 1982 AB1 estimate in numbers; smooth the 1993 AB1 estimate (in numbers and weight) by setting it equal to the geometric mean of the 3 preceding and ensuing years

<u>Scalloped hammerhead GOM</u>—The vast majority of scalloped hammerhead catches were from MRIP. Catches showed a decreasing trend punctuated by some peaks, notably in 1985 for the AB1 series. Upon further examination, it was found that of the original AB1 estimate of 27,387 sharks for 1985, 19,977 sharks corresponded to A estimates of 5,408 sharks (MS, W3, Private, Inland), 7,600 sharks (West coast of FL, W4, Private, Fed Ocean), and 4,814 sharks (MS, W4, Private, Inland). The 5,408 estimate was based on 2 anglers reporting 1 shark each, the 7,600 estimate was based on 1 angler reporting 2 sharks. Based on this the recommendation was to smooth the 1985 estimate. The 1984 AB1 estimate of 10,416 was influenced by a B1 estimate of 10,001 sharks (MS, Wave 4, Private, Fed Ocean), which was based on an extrapolation from 2 trips reporting 1 shark harvested each. Based on this the recommendation was also to smooth this estimate. **Figure 35** shows the recreational catches before (top) and after (bottom) smoothing the individual points and the general smoothing.

Most AB1 catches by state corresponded to Florida-west coast (43%), Mississippi (38%), Alabama (10%), and Texas (9%) (**Figure 36, top**). By fishing mode, most AB1 catches were from private boats (72%) and from shore (19%), with charter boats and headboats contributing the remaining 9% (**Figure 36, middle**). By fishing area, most AB1 catches occurred in waters over three miles from shore (21%) and less than 10 miles from shore (33%) with catches in less than 3 miles from shore and in inshore waters accounting for 40% of the total catches (**Figure 36, bottom**).

<u>Decision:</u> Smooth the 1984 and 1985 AB1 estimates (in numbers and weight) by setting them equal to the geometric mean of the 3 preceding and ensuing years

<u>Scalloped hammerhead ATL</u>—Almost all scalloped hammerhead catches were from MRIP. Catches showed a decreasing trend punctuated by some peaks, notably in 1982 and 1993 for the AB1 series. As for the scalloped hammerhead with all regions combined, the A estimate for 1982 was influenced by a large value of 22,010 sharks for SC (Wave 3, Private, Inland), which was based on one observed trip that harvested 20 sharks, all measuring only 11 inches. Since this was unrealistic, the recommendation was to remove this SC estimate entirely. Thus, 22,010 was subtracted from the original A estimate of 39,066. The original AB1 estimate for 1993 was 56,720 sharks, including an A estimate of 5,559 sharks (east coast of FL, Wave 3, Shore, State Ocean) and a B1 estimate of 38,913 sharks (east coast of FL, W3, Shore, State Ocean). The A estimate corresponded to 1 angler reporting 1 harvested shark and the B1 estimate to 3 anglers reporting harvests of 1, 2, and 4 sharks each, all legal in 1993). Based on this the

recommendation was to smooth the 1993 data point. **Figure 37** shows the recreational catches before (top) and after (bottom) smoothing the individual points and the general smoothing.

Most AB1 catches by state corresponded to Florida-east coast (58%), Georgia (22%), South Carolina (17%), and North Carolina (3%) (**Figure 38, top**). By fishing mode, most AB1 catches were from shore (57%) and from private boats (39%), with charter boats contributing the remaining 4% (**Figure 38, middle**). By fishing area, most AB1 catches occurred in waters less than 3 miles from shore (55%) and in inshore waters (39%), with catches in waters over three miles from shore accounting for 6% of the total (**Figure 38, bottom**).

<u>Decision:</u> Remove the South Carolina A estimate of 22,010 sharks from the original A estimate of 39,066 for the 1982 AB1 estimate in numbers; smooth the 1993 AB1 estimates (in numbers and weight) by setting them equal to the geometric mean of the 3 preceding and ensuing years

<u>Great hammerhead</u>—The vast majority of great hammerhead catches were from MRIP. Catches showed a decreasing trend punctuated by some peaks, notably in 1982 for the AB1 series. Upon further examination, it was found that of the original AB1 estimate of 105,497 sharks for 1982, 87,791 sharks corresponded to an A estimate of 19,282 sharks (LA, W3, Shore, Ocean), an A estimate of 10,865 sharks (east coast of FL, W4, Shore, Ocean), a B1 estimate of 42,876 sharks (East coast of FL, W2, Shore, Ocean), and a B1 estimate of 14,768 sharks (east coast of FL, W4, Shore, Ocean). The 19,282 estimate was based on 1 angler reporting 1 shark, the 10,865 estimate was based on 1 angler reporting 1 shark, the 42,876 estimate was based on 1 angler reporting 1 shark (which was an unusually large effort extrapolation), and the 14,768 estimate on 1 angler reporting 1 shark. Based on this the recommendation was to remove the 42,876 B1 estimate and to further smooth the 1982 estimate. **Figure 39** shows the recreational catches before (top) and after (bottom) smoothing the individual points and the general smoothing.

Most AB1 catches by state corresponded to the southeast region with Florida-east coast (53%) and Florida-west coast (34%) accounting for 87% of all great hammerhead catches, followed by Louisiana (5%), and Georgia and South Carolina (3% each) (**Figure 40, top**). By fishing mode, almost all AB1 catches were from shore (76%) and by private boats (32%), with charter boats and headboats contributing only 2% (**Figure 40, middle**). By fishing area, most AB1 catches occurred less than 3 miles from shore (48%) and in inshore waters (28%), with the remaining catches occurring in waters over three from shore (3%), less than 10 miles from shore (18%), or in waters over 10 miles from shore (3%) (**Figure 40, bottom**).

<u>Decision:</u> Remove the Florida east coast B1 estimate of 42,876 sharks from the original AB1 estimate of 105,497 for the 1982 AB1 estimate in numbers and smooth that 1982 AB1 estimate (in numbers and weight) by setting it equal to the geometric mean of the 3 ensuing years (1981 value was 0)

<u>Smooth hammerhead</u>—Almost all smooth hammerhead catches were from MRIP. Catches showed a generally decreasing trend punctuated by a very large peak in 1991 for the AB1 series. Upon further examination, it was found that the A estimate for 1991 was influenced by a large value of 39,148 sharks (east coast of FL, W6, Shore, Ocean), which was based on 1 angler reporting 1 shark (an unusually large effort extrapolation). Since this was unrealistic, the recommendation was to remove this FL estimate

entirely. Thus, 39,148 was subtracted from the original A estimate of 39,284. **Figure 41** shows the recreational catches before (top) and after (bottom) smoothing the individual points and the general smoothing.

Most AB1 catches by state corresponded to the southeast region with Florida-East coast (51%) and Florida-west coast (16%) accounting for 67% of all smooth hammerhead catches, followed by Georgia (17%), South Carolina (10%), and Maryland (6%) (**Figure 42, top**). By fishing mode, almost all AB1 catches were from shore (60%) and by private boats (38%), with charter boats and headboats contributing only 2% (**Figure 42, middle**). By fishing area, most AB1 catches occurred less than 3 miles from shore (53%) and in inshore waters (27%), with the remaining catches occurring in waters over three miles from shore (4%) and less than 10 miles from shore (16%) (**Figure 42, bottom**).

<u>Decision:</u> Remove the Florida east coast A estimate of 39,148 sharks from the original A estimate of 39,284 for the 1991 AB1 estimate in numbers; smooth that 1991 AB1 estimate in weight by setting it equal to the geometric mean of the 3 preceding and ensuing years

<u>Carolina hammerhead</u> There were no recreational catches identified as Carolina hammerheads, but an unknown portion of the scalloped hammerhead catches in the Atlantic could be attributed to this cryptic species.

Recreational length compositions

Lengths available from the MRIP and the SRHS surveys were reported and analyzed in SEDAR77-DW04. See that working document for details and section on length compositions of this DW report. We only provide a synopsis by stock here.

<u>Scalloped hammerhead, all regions</u>—Lengths of scalloped hammerheads were available from the MRIP (cm FL; n=227) and the SRHS (mm TL; n=63). Total lengths in the SRHS were converted to fork lengths with the equation for combined sexes given in SEDAR77-DW03. Length-frequency distributions show that more immature than mature sharks are caught based on the median sizes at maturity for males and females listed in the SEDAR 77 Stock ID report (146 cm FL for males; 179 cm FL for females) (**Figure 43**).

<u>Scalloped hammerhead GOM</u>—Lengths of GOM scalloped hammerheads were available from the MRIP (cm FL; n=53) and the SRHS (mm TL; n=59). Total lengths in the SRHS were converted to fork lengths with the equation for combined sexes given in SEDAR77-DW03 for scalloped hammerheads (GOM and ATL combined). Length-frequency distributions show that more immature than mature sharks are caught based on the median sizes at maturity for males and females listed in the SEDAR 77 Stock ID report (142 cm FL for males; 180 cm FL for females) (**Figure 44**).

<u>Scalloped hammerhead ATL</u>—Lengths of ATL scalloped hammerheads were available from the MRIP (cm FL; n=174) while very few were available from the SRHS (mm TL; n=4). Total lengths in the SRHS were converted to fork lengths with the equation for combined sexes given in SEDAR77-DW03 for scalloped hammerheads (GOM and ATL combined). Length-frequency distributions show that more

immature than mature sharks are caught in the MRIP based on the median sizes at maturity for males and females listed in the SEDAR 77 Stock ID report (157 cm FL for males; 178 cm FL for females) (**Figure 45**).

<u>Great hammerhead</u>—Lengths of great hammerheads were available from the MRIP (cm FL; n=89) while very few were available from the SRHS (mm TL; n=8). Total lengths in the SRHS were converted to fork lengths with the equation for combined sexes given in SEDAR77-DW03. Length-frequency distributions show that more immature than mature sharks are caught based on the median sizes at maturity for males and females listed in the SEDAR 77 Stock ID report (197 cm FL for males; 199 cm FL for females) **(Figure 46)**.

<u>Smooth hammerhead</u>—Lengths of smooth hammerheads were only available from the MRIP (cm FL; n=47). The length-frequency distribution shows that most sharks caught were immature based on median sizes at maturity for males and females given in Stevens (1984) (255 cm TL for males; 265 cm TL for females; when transformed into fork lengths using the regression equation FL=12.72+0.84TL from Coelho et al. (2011) they become 227 cm FL for males and 235 cm FL for females) (**Figure 47**).

<u>Carolina hammerhead</u>— There were no recreational lengths identified as Carolina hammerheads, but an unknown portion of the scalloped hammerhead lengths in the Atlantic could be attributed to this cryptic species.

3.1.4 Combined commercial and recreational catches

<u>Scalloped hammerhead, all regions</u>—Total catches of scalloped hammerheads in weight peaked during the early 1990s and again in the early 2000s and showed a decreasing trend thereafter. Recreational catches were generally the most important, except for years with higher commercial catches in the late 1980s and mid-1990s (**Figure 48**).

Tables 36 and **37** show commercial catches by gear, dead discard estimates from the pelagic longline (PLL) fishery, recreational catches (AB1, LPRM=Live post-release mortality=B2 dead), and total catch. Total catch was computed as the sum of recreational catches (AB1+LPRM) and the maximum of the sum of commercial catches by gear (bottom longline+gillnets+hand lines/hook and line+PLL discards) and the total combined commercial catches not disaggregated by gear, in weight (lb dw) and numbers, respectively.

<u>Scalloped hammerhead GOM</u>— Total catches of GOM scalloped hammerheads in weight peaked during the mid-1990s and again in the mid-2000s and showed a decreasing trend thereafter. Recreational catches were generally the most important, except for years with higher commercial catches in the mid-1990s, late 2000s, and mid-2010s (**Figure 49**).

Tables 38 and **39** show commercial catches by gear, dead discard estimates from the pelagic longline (PLL) fishery, recreational catches (A+B1, LPRM=Live post-release mortality), and total catch. Total catch was computed as the sum of recreational catches (AB1+LPRM) and the maximum of the sum of commercial catches by gear (bottom longline+gillnets+hand lines/hook and line+PLL discards) and the

total combined commercial catches not disaggregated by gear, in weight (lb dw) and numbers, respectively.

<u>Scalloped hammerhead ATL</u>—Total catches of ATL scalloped hammerheads in weight generally mirrored those for the scalloped hammerheads for regions combined because catches in the Atlantic accounted for the majority of scalloped hammerhead catches (**Figure 50**).

Tables 40 and **41** show commercial catches by gear, dead discard estimates from the pelagic longline (PLL) fishery, recreational catches (AB1, LPRM=Live post-release mortality), and total catch. Total catch was computed as the sum of recreational catches (AB1+LPRM) and the maximum of the sum of commercial catches by gear (bottom longline+gillnets+hand lines/hook and line+PLL discards) and the total combined commercial catches not disaggregated by gear, in weight (lb dw) and numbers, respectively.

<u>Great hammerhead</u>—Total catches of great hammerheads in weight were overwhelmingly dominated by recreational catches until the late 1990s and remained at low levels thereafter. Recreational catches showed a steep decline from the early 1980s to the late 1990s (**Figure 51**).

Tables 42 and **43** show commercial catches by gear, dead discard estimates from the pelagic longline (PLL) fishery, recreational catches (AB1, LPRM=Live post-release mortality), and total catch. Total catch was computed as the sum of recreational catches (AB1+LPRM) and the maximum of the sum of commercial catches by gear (bottom longline+gillnets+hand lines/hook and line+PLL discards) and the total combined commercial catches not disaggregated by gear, in weight (lb dw) and numbers, respectively.

<u>Smooth hammerhead</u>—The vast majority of catches of smooth hammerheads in weight were reported as recreational during the entire time series (**Figure 52**).

Tables 44 and **45** show commercial catches by gear, dead discard estimates from the pelagic longline (PLL) fishery, recreational catches (AB1, LPRM=Live post-release mortality), and total catch. Total catch was computed as the sum of recreational catches (AB1+LPRM) and the maximum of the sum of commercial catches by gear (bottom longline+gillnets+unknown gear+PLL discards) and the total combined commercial catches not disaggregated by gear, in weight (lb dw) and numbers, respectively.

<u>Carolina hammerhead</u>—There were no commercial or recreational catches reported as Carolina hammerheads, but an unknown portion of the scalloped hammerhead catches in the Atlantic could be attributed to this cryptic species.

3.2 Research Recommendations

- Increase public education outreach activities for species identification in the recreational fishery. This is important because there are no species identification training workshops for recreational fishers, and it is difficult to distinguish among different species, especially juveniles, by non-trained individuals.
- Improve the MRIP process to filter biased sampling that leads to unreal, extreme fluctuations in catch data for sharks, through a QA step that is applied with an objective, non-arbitrary procedure.
- Promote that the next stock assessment of hammerhead shark species/stocks be conducted under the auspices of an RFMO (e.g., WECAFC) so that all sources of removals and abundance indices and length compositions (if available) from Caribbean nations where the species/stock is distributed can be accounted for.
- Pooling observed sets for all areas by either each observed year or all observed years without considering variance of areas and seasons, along with an assumption of effort (*number of logbook hooks*) being a known constant, may cause the actual variance of discard estimates to be underestimated. This in turn will produce a narrower confidence interval, which may have a confidence level lower than desired. The pooling methods may need to be further evaluated in the future.
- Given the very small number of sets in which a non-zero bycatch was observed (positive sets), the panel recommended to use the grand mean of discard rates based on the pooled observed sets for all years and the annual logbook effort to produce annual discard estimates. Assuming the grand mean of discard rate based on all the pooled observed sets is a constant for the entire time series, and the trend of the discard estimates is solely driven by the logbook effort, which may need to be further evaluated in the future.
- The discard estimates and associated uncertainty estimates using the delta-lognormal method (SEDAR77-DW37 and SEDAR77-DW38) are regarded as an improvement over the discard estimates and associated uncertainty estimates using the ratio method reported in SEDAR77-DW20 and SEDAR77-DW21. More discard methods should be further explored in the future.

3.3 Literature Cited

- Castillo, J.L., Márquez, F., Rodriguez de la Cruz, M.C., Cortés, E., and A. Cid. 1998. The Mexican artisanal shark fishery in the Gulf of Mexico: toward a regulated fishery. Marine and Freshwater Research 49:611-620.
- Coelho, R., Fernandez-Carvalho, J., Amorim, S., and M.N. Santos. 2011. Age and growth of the smooth hammerhead shark, *Sphyrna zygaena*, in the Eastern Equatorial Atlantic Ocean, using vertebral sections. Aquatic Living Resources 24:351–357.

- Courtney, D., Mathers, A., and A. Kroetz. 2021. An updated literature review of post-release live-discard mortality rate estimates in sharks for use in SEDAR 77. SEDAR77-DW25. SEDAR, North Charleston, SC. 47 pp.
- Dorai-Raj, S. 2014. binom: Binomial confidence intervals for several parameterizations. R package version 1.1-1. <u>https://CRAN.R-project.org/package=binom</u>.
- Drymon, J. M., and R. J. D. Wells. 2017. Double tagging clarifies post-release fate of great hammerheads (*Sphyrna mokarran*). Animal Biotelemetry 5:28 (SEDAR77-RD20).
- Gallagher, A. J., Serafy, J. E., Cooke, S. J. and N. Hammerschlag. 2014. Physiological stress response, reflex impairment, and survival of five sympatric shark species following experimental capture and release. Marine Ecology Progress Series 496:207–218 (SEDAR77-RD42).
- Gardiner, J. M., Wiley, T. R., and J. Brenner. 2022. Report on post-release mortality of scalloped hammerhead, Sphyrna lewini, and great hammerhead, *Sphyrna mokarran*. SEDAR77-DW36. SEDAR, North Charleston, SC. 3 pp.
- Gardiner, J. M., Wiley, T. R., Lowerre-Barbieri, S. K., Bassos-Hull, K., and K. Wilkinson. 2021.
 Residency and movements of juvenile great hammerheads, Sphyrna mokarran, in the Tampa Bay area: preliminary results. SEDAR77-SID05. SEDAR, North Charleston, SC. 7 pp.
- Goodyear, C. P. 2002. Factors affecting robust estimates of the catch-and-release mortality using pop-off tag technology. Trans Am Fish Soc 30:172–179.
- Gulak, S. J. B., de Ron Santiago, A. J., and J. K. Carlson. 2015. Hooking mortality of scalloped hammerhead Sphyrna lewini and great hammerhead Sphyrna mokarran sharks caught on bottom longlines. African Journal of Marine Science 37:267–273 (SEDAR77-RD35).
- Heim, V., Grubbs, D., Frazier, B., Smukall, M. K., and T. L. Guttridge. 2021. Regional movements of great, *Sphyrna mokarran*, and scalloped, *Sphyrna lewini*, hammerhead sharks in the US Atlantic, Gulf of Mexico and the 2 Bahamas: preliminary results. SEDAR77-SID01. SEDAR, North Charleston, SC. 8 pp.
- Hoffmayer, E. R., Hendon, J. M., McKinney, J. A., Falterman, B., and W. B. Driggers III. 2021.
 Movement and post-release mortality data for great hammerheads, *Sphyrna mokarran*, tagged during research bottom longline surveys in the northern Gulf of Mexico from 2012-2014.
 SEDAR77-DW34. SEDAR, North Charleston, SC. 5 pp.
- Medd, H. B., and J. L. Brooks. 2021. Report on the post-release mortality rates of great hammerhead sharks *Sphyrna mokarran* in the recreational, catch and release, shore-based fishery in Florida, USA. SEDAR77-DW22. SEDAR, North Charleston, SC. 14 pp.
- Mohan, J. A., Wells, R. J. D., Drymon, M. Stunz, G., and M. Streich. 2021. Post-release mortality and behavior of sharks in shore-based recreational fisheries using citizen scientists and low-cost tags. SEDAR77-DW07. SEDAR, North Charleston, SC. 66 pp.
- Musyl, M. and E. L. Gilman. 2019. Meta-analysis of post-release fishing mortality in apex predatory pelagic sharks and white marlin. Fish and Fisheries, doi:10.1111/faf.12358 (SEDAR77-RD48).
- NMFS (National Marine Fisheries Service). 2020. Southeast Data Assessment and Review (SEDAR) 65 Atlantic blacktip shark stock assessment report: Highly Migratory Species (HMS) Gulf of Mexico blacktip shark. December, 2020. DOC/NOAA/NMFS SEDAR, 4055 Faber Place Drive, Suite 201, North Charleston, SC 29405. Available: http://sedarweb.org/sedar-65 (February, 2022).
- Pennington, M. 1983. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39:281-286.

- Pérez-Jiménez, J.C., and I. Mendez-Loeza. 2015. The small-scale shark fisheries in the southern Gulf of Mexico: understanding their heterogeneity to improve their management. Fisheries Research 172:96-104.
- Prohaska, B. K., Marshall, H., Grubbs, R. D., Frazier, B. S., Morris, J. J., Andres, A., Lear, K., Hueter, R. E, Keller, B. A., and N. M. Whitney. 2021a. Stress physiology of scalloped and great hammerhead sharks from a bottom longline fishery. SEDAR77-DW09. SEDAR, North Charleston, SC. 34 pp.
- Prohaska, B. K., Marshall, H., Grubbs, R. D., Frazier, B. S., Morris, J. J., Andres, A., Lear, K., Hueter, R. E, Keller, B. A., and N. M. Whitney. 2021b. Stress physiology of scalloped and great hammerhead sharks from a bottom longline fishery: Supplemental Tables. SEDAR77-DW10. SEDAR, North Charleston, SC. 4 pp.
- R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.
- Whitney, N. 2019. Discard mortality of carcharhinid sharks in the Florida Commercial Shark Fishery SEDAR65- RD06. Available: http://sedarweb.org/sedar-65 (February, 2022).
- Whitney, N. M., Lear, K. O., Marshall, H. M., Morris, J., Andres, A. M., White, C. F., Driggers, T., Prohaska, B., Gelsleichter, J., Frazier, B., and R. D. Grubbs. 2021. Hammerhead post-release mortality data summary for SEDAR. SEDAR77-DW35. SEDAR, North Charleston, SC. 3 pp.

3.4 Tables

Table 1. Yearly calculated dead discards of great hammerhead sharks for the shark bottom longline fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	1993	1101380	102	252	41
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	1994	1941435	180	444	73
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	1995	2417653	224	553	91
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	1996	3435583	319	787	129
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	1997	1471463	137	338	56
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	1998	1579283	147	363	60
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	1999	1529138	142	350	58
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2000	1387950	129	318	52
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2001	1358879	126	311	51
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2002	1662874	154	380	62
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2003	1652615	153	378	62
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2004	1227075	114	281	46
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2005	1388406	129	318	52
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2006	1579548	147	363	60
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2007	495758	46	114	19
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2008	258546	24	59	10
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2009	290442	27	67	11
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2010	230152	21	52	9
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2011	209477	19	47	8
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2012	193178	18	44	7
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2013	231876	22	54	9
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2014	329424	31	76	13
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2015	300820	28	69	11
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2016	187493	17	42	7
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2017	210155	20	49	8
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2018	196449	18	44	7
2005-2019	649	6	249305	1327	12	0.093	0.045	0.490	2019	130975	12	30	5

Table 2. Yearly observed dead discards of great hammerhead sharks from the shark research fishery for the areas combined. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Dead Discards
2008	62	3
2009	111	3
2010	185	27
2011	236	37
2012	85	2
2013	93	6
2014	104	1
2015	99	1
2016	81	1
2017	104	2
2018	108	0
2019	100	3

small 1	number	of ob	served	positiv	ve sets,	all years of	fobserv	ved dat	a are c	ombin	ed.		
Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	1993	1101380	155	289	83
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	1994	1941435	272	507	146
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	1995	2417653	339	631	182
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	1996	3435583	482	898	259
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	1997	1471463	206	384	111
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	1998	1579283	222	413	119
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	1999	1529138	215	400	115
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2000	1387950	195	363	105
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2001	1358879	191	356	103
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2002	1662874	233	434	125
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2003	1652615	232	432	125
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2004	1227075	172	320	92
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2005	1388406	195	363	105
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2006	1579548	222	413	119
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2007	495758	70	130	38
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2008	258546	36	67	19
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2009	290442	41	76	22
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2010	230152	32	60	17
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2011	209477	29	54	16
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2012	193178	27	50	14
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2013	231876	33	61	18
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2014	329424	46	86	25
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2015	300820	42	78	23
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2016	187493	26	48	14
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2017	210155	29	54	16
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2018	196449	28	52	15
2005-2019	649	15	249305	4608	20	0.140	0.046	0.330	2019	130975	18	34	10

Table 3. Yearly calculated live discards of great hammerhead sharks for the shark bottom longline fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Table 4. Yearly observed live discards of great hammerhead sharks from the shark research fishery for the areas combined. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Live Discards
2008	62	2
2009	111	4
2010	185	0
2011	236	8
2012	85	3
2013	93	15
2014	104	4
2015	99	12
2016	81	5
2017	104	26
2018	108	5
2019	100	14

small 1	number	of ob	served	positiv	ve sets,	all years of	fobser	ved dat	a are c	ombin	ed.		
Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	1993	1101380	362	615	213
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	1994	1941435	637	1083	375
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	1995	2417653	794	1349	467
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	1996	3435583	1128	1917	664
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	1997	1471463	483	821	284
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	1998	1579283	518	880	305
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	1999	1529138	502	853	295
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2000	1387950	456	775	268
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2001	1358879	446	758	262
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2002	1662874	546	928	321
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2003	1652615	543	923	320
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2004	1227075	403	685	237
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2005	1388406	456	775	268
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2006	1579548	519	882	305
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2007	495758	163	277	96
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2008	258546	85	144	50
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2009	290442	95	161	56
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2010	230152	76	129	45
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2011	209477	69	117	41
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2012	193178	63	107	37
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2013	231876	76	129	45
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2014	329424	108	184	64
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2015	300820	99	168	58
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2016	187493	62	105	36
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2017	210155	69	117	41
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2018	196449	64	109	38
2005-2019	649	25	249305	7203	44	0.328	0.090	0.280	2019	130975	43	73	25

Table 5. Yearly calculated dead discards of scalloped hammerhead sharks for the shark bottom longline fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Table 6. Yearly observed dead discards of scalloped hammerhead sharks from the shark research fishery for the areas combined. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Dead Discards
2008	62	1
2009	111	41
2010	185	23
2011	236	37
2012	85	6
2013	93	3
2014	104	4
2015	99	4
2016	81	6
2017	104	8
2018	108	4
2019	100	3

<u> </u>						all years of	-						
Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	1993	1101380	347	670	180
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	1994	1941435	611	1179	317
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	1995	2417653	761	1468	394
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	1996	3435583	1081	2086	560
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	1997	1471463	463	893	240
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	1998	1579283	497	959	258
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	1999	1529138	481	928	249
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2000	1387950	437	843	226
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2001	1358879	428	826	222
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2002	1662874	523	1009	271
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2003	1652615	520	1003	269
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2004	1227075	386	745	200
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2005	1388406	437	843	226
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2006	1579548	497	959	258
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2007	495758	156	301	81
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2008	258546	81	156	42
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2009	290442	91	176	47
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2010	230152	72	139	37
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2011	209477	66	127	34
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2012	193178	61	118	32
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2013	231876	73	141	38
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2014	329424	104	201	54
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2015	300820	95	183	49
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2016	187493	59	114	31
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2017	210155	66	127	34
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2018	196449	62	120	32
2005-2019	649	18	249305	5196	40	0.315	0.109	0.350	2019	130975	41	79	21

Table 7. Yearly calculated live discards of scalloped hammerhead sharks for the shark bottom longline fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Table 8. Yearly observed live discards of scalloped hammerhead sharks from the shark research fishery for the areas combined. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Live Discards
2008	62	2
2009	111	16
2010	185	13
2011	236	19
2012	85	5
2013	93	7
2014	104	10
2015	99	13
2016	81	23
2017	104	42
2018	108	14
2019	100	17

Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	1993	373270	99	208	47
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	1994	767570	204	429	97
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	1995	293603	78	164	37
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	1996	853758	226	475	108
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	1997	393413	104	219	49
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	1998	458687	122	256	58
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	1999	420234	111	233	53
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2000	398160	106	223	50
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2001	432662	115	242	55
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2002	586165	155	326	74
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2003	586888	156	328	74
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2004	455745	121	254	58
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2005	386396	103	217	49
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2006	386212	102	214	49
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2007	207548	55	116	26
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2008	112946	30	63	14
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2009	252278	67	141	32
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2010	209491	56	118	27
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2011	150252	40	84	19
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2012	88786	24	50	11
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2013	126843	34	71	16
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2014	173177	46	97	22
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2015	155914	41	86	20
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2016	92890	25	53	12
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2017	97453	26	55	12
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2018	72317	19	40	9
2005-2019	251	11	94607	3721	21	0.265	0.104	0.39	2019	22476	6	13	3

Table 9. Yearly calculated dead discards of scalloped hammerhead sharks for the shark bottom longline fishery for the Atlantic. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Table 10. Yearly observed dead discards of scalloped hammerhead sharks from the shark research fishery for the Atlantic. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Dead Discards
2008	21	0
2009	40	0
2010	127	10
2011	141	17
2012	58	3
2013	47	1
2014	88	2
2015	60	2
2016	52	1
2017	49	1
2018	57	4
2019	51	0

Table 11. Yearly calculated live discards of scalloped hammerhead sharks for the shark bottom longline fishery for the Atlantic. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	1993	373270	118	298	47
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	1994	767570	243	613	96
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	1995	293603	93	235	37
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	1996	853758	270	681	107
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	1997	393413	124	313	49
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	1998	458687	145	366	57
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	1999	420234	133	335	53
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2000	398160	126	318	50
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2001	432662	137	346	54
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2002	586165	185	467	73
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2003	586888	186	469	74
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2004	455745	144	363	57
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2005	386396	122	308	48
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2006	386212	122	308	48
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2007	207548	66	166	26
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2008	112946	36	91	14
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2009	252278	80	202	32
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2010	209491	66	166	26
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2011	150252	48	121	19
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2012	88786	28	71	11
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2013	126843	40	101	16
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2014	173177	55	139	22
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2015	155914	49	124	19
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2016	92890	29	73	11
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2017	97453	31	78	12
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2018	72317	23	58	9
2005-2019	251	8	94607	2263	10	0.316	0.158	0.500	2019	22476	7	18	3

Table 12. Yearly observed live discards of scalloped hammerhead sharks from the shark research fishery for the Atlantic. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Live Discards
2008	21	0
2009	40	0
2010	127	9
2011	141	4
2012	58	0
2013	47	7
2014	88	7
2015	60	6
2016	52	17
2017	49	19
2018	57	9
2019	51	1

Table 13. Yearly calculated dead discards of scalloped hammerhead sharks for the shark bottom longline fishery for the Gulf of Mexico. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	1993	728110	267	525	136
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	1994	1173865	431	848	219
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	1995	2124050	780	1534	397
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	1996	2581825	948	1864	482
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	1997	1078050	396	779	201
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	1998	1120596	411	808	209
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	1999	1108904	407	800	207
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2000	989790	363	714	185
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2001	926217	340	669	173
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2002	1076709	395	777	201
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2003	1065727	391	769	199
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2004	771330	283	557	144
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2005	1002010	368	724	187
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2006	1193336	438	861	223
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2007	288210	106	208	54
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2008	137903	51	100	26
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2009	29846	11	22	6
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2010	24177	9	18	5
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2011	26370	10	20	5
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2012	95264	35	69	18
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2013	95401	35	69	18
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2014	135732	50	98	25
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2015	130594	48	94	24
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2016	82828	30	59	15
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2017	100869	37	73	19
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2018	111142	41	81	21
2005-2019	398	14	154698	3482	23	0.367	0.131	0.360	2019	96685	35	69	18

Table 14. Yearly observed dead discards of scalloped hammerhead sharks from the shark research fishery for the Gulf of Mexico. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Dead Discards
2008	41	1
2009	71	41
2010	58	13
2011	95	20
2012	27	3
2013	46	2
2014	16	2
2015	39	2
2016	29	5
2017	55	7
2018	49	0
2019	49	3

Table 15. Yearly calculated live discards of scalloped hammerhead sharks for the shark bottom longline fishery for the Gulf of Mexico. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Hooks	Hooks	Animals	(Per 1000 Hooks)	Deviation	CV	Year	Hooks	Discards	95% CI	95% CI
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	1993	728110	224	514	98
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	1994	1173865	362	830	158
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	1995	2124050	655	1502	286
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	1996	2581825	796	1825	347
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	1997	1078050	332	761	145
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	1998	1120596	345	791	150
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	1999	1108904	342	784	149
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2000	989790	305	699	133
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2001	926217	285	653	124
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2002	1076709	332	761	145
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2003	1065727	328	752	143
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2004	771330	238	546	104
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2005	1002010	309	708	135
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2006	1193336	368	844	161
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2007	288210	89	204	39
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2008	137903	42	96	18
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2009	29846	9	21	4
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2010	24177	7	16	3
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2011	26370	8	18	3
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2012	95264	29	66	13
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2013	95401	29	66	13
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2014	135732	42	96	18
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2015	130594	40	92	17
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2016	82828	26	60	11
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2017	100869	31	71	14
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2018	111142	34	78	15
2005-2019	398	10	154698	2933	30	0.308	0.137	0.440	2019	96685	30	69	13

Table 16. Yearly observed live discards of scalloped hammerhead sharks from the shark research fishery for the Gulf of Mexico. Discards are reported as number of individuals.

Year	Number Observed Sets	Total Live Discards
2008	41	2
2009	71	16
2010	58	4
2011	95	15
2012	27	5
2013	46	0
2014	16	3
2015	39	7
2016	29	6
2017	55	23
2018	49	5
2019	49	16

Table 17. Yearly calculated dead discards of great hammerhead sharks from the US southeast commercial gillnet fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	3790	25	68	0.018	0.004	0.250	1998	2515	44	71	27
1998-2019	3790	25	68	0.018	0.004	0.250	1999	2077	36	58	22
1998-2019	3790	25	68	0.018	0.004	0.250	2000	2097	37	60	23
1998-2019	3790	25	68	0.018	0.004	0.250	2001	2034	36	58	22
1998-2019	3790	25	68	0.018	0.004	0.250	2002	1953	34	55	21
1998-2019	3790	25	68	0.018	0.004	0.250	2003	1633	29	47	18
1998-2019	3790	25	68	0.018	0.004	0.250	2004	1602	28	45	17
1998-2019	3790	25	68	0.018	0.004	0.250	2005	1879	33	54	20
1998-2019	3790	25	68	0.018	0.004	0.250	2006	2471	43	70	27
1998-2019	3790	25	68	0.018	0.004	0.250	2007	3748	66	107	41
1998-2019	3790	25	68	0.018	0.004	0.250	2008	3756	66	107	41
1998-2019	3790	25	68	0.018	0.004	0.250	2009	4422	77	125	47
1998-2019	3790	25	68	0.018	0.004	0.250	2010	2801	49	80	30
1998-2019	3790	25	68	0.018	0.004	0.250	2011	3825	67	109	41
1998-2019	3790	25	68	0.018	0.004	0.250	2012	3773	66	107	41
1998-2019	3790	25	68	0.018	0.004	0.250	2013	2173	38	62	23
1998-2019	3790	25	68	0.018	0.004	0.250	2014	3932	69	112	43
1998-2019	3790	25	68	0.018	0.004	0.250	2015	3871	68	110	42
1998-2019	3790	25	68	0.018	0.004	0.250	2016	3221	56	91	35
1998-2019	3790	25	68	0.018	0.004	0.250	2017	2351	41	67	25
1998-2019	3790	25	68	0.018	0.004	0.250	2018	3227	56	91	35
1998-2019	3790	25	68	0.018	0.004	0.250	2019	3635	64	104	39

Table 18. Yearly calculated live discards of great hammerhead sharks from the US southeast commercial gillnet fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	3790	8	9	0.002	0.001	0.360	1998	2515	6	12	3
1998-2019	3790	8	9	0.002	0.001	0.360	1999	2077	5	10	3
1998-2019	3790	8	9	0.002	0.001	0.360	2000	2097	5	10	3
1998-2019	3790	8	9	0.002	0.001	0.360	2001	2034	5	10	3
1998-2019	3790	8	9	0.002	0.001	0.360	2002	1953	5	10	3
1998-2019	3790	8	9	0.002	0.001	0.360	2003	1633	4	8	2
1998-2019	3790	8	9	0.002	0.001	0.360	2004	1602	4	8	2
1998-2019	3790	8	9	0.002	0.001	0.360	2005	1879	4	8	2
1998-2019	3790	8	9	0.002	0.001	0.360	2006	2471	6	12	3
1998-2019	3790	8	9	0.002	0.001	0.360	2007	3748	9	18	5
1998-2019	3790	8	9	0.002	0.001	0.360	2008	3756	9	18	5
1998-2019	3790	8	9	0.002	0.001	0.360	2009	4422	10	20	5
1998-2019	3790	8	9	0.002	0.001	0.360	2010	2801	7	14	4
1998-2019	3790	8	9	0.002	0.001	0.360	2011	3825	9	18	5
1998-2019	3790	8	9	0.002	0.001	0.360	2012	3773	9	18	5
1998-2019	3790	8	9	0.002	0.001	0.360	2013	2173	5	10	3
1998-2019	3790	8	9	0.002	0.001	0.360	2014	3932	9	18	5
1998-2019	3790	8	9	0.002	0.001	0.360	2015	3871	9	18	5
1998-2019	3790	8	9	0.002	0.001	0.360	2016	3221	8	16	4
1998-2019	3790	8	9	0.002	0.001	0.360	2017	2351	6	12	3
1998-2019	3790	8	9	0.002	0.001	0.360	2018	3227	8	16	4
1998-2019	3790	8	9	0.002	0.001	0.360	2019	3635	9	18	5

Table 19. Yearly calculated dead discards of scalloped hammerhead sharks from the US southeast commercial gillnet fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	3790	115	558	0.114	0.017	0.150	1998	2515	287	386	213
1998-2019	3790	115	558	0.114	0.017	0.150	1999	2077	237	319	176
1998-2019	3790	115	558	0.114	0.017	0.150	2000	2097	239	321	178
1998-2019	3790	115	558	0.114	0.017	0.150	2001	2034	232	312	173
1998-2019	3790	115	558	0.114	0.017	0.150	2002	1953	223	300	166
1998-2019	3790	115	558	0.114	0.017	0.150	2003	1633	186	250	138
1998-2019	3790	115	558	0.114	0.017	0.150	2004	1602	183	246	136
1998-2019	3790	115	558	0.114	0.017	0.150	2005	1879	214	288	159
1998-2019	3790	115	558	0.114	0.017	0.150	2006	2471	282	379	210
1998-2019	3790	115	558	0.114	0.017	0.150	2007	3748	427	574	318
1998-2019	3790	115	558	0.114	0.017	0.150	2008	3756	428	575	318
1998-2019	3790	115	558	0.114	0.017	0.150	2009	4422	504	678	375
1998-2019	3790	115	558	0.114	0.017	0.150	2010	2801	319	429	237
1998-2019	3790	115	558	0.114	0.017	0.150	2011	3825	436	586	324
1998-2019	3790	115	558	0.114	0.017	0.150	2012	3773	430	578	320
1998-2019	3790	115	558	0.114	0.017	0.150	2013	2173	248	333	184
1998-2019	3790	115	558	0.114	0.017	0.150	2014	3932	448	602	333
1998-2019	3790	115	558	0.114	0.017	0.150	2015	3871	441	593	328
1998-2019	3790	115	558	0.114	0.017	0.150	2016	3221	367	493	273
1998-2019	3790	115	558	0.114	0.017	0.150	2017	2351	268	360	199
1998-2019	3790	115	558	0.114	0.017	0.150	2018	3227	368	495	274
1998-2019	3790	115	558	0.114	0.017	0.150	2019	3635	414	557	308

Table 20. Yearly calculated live discards of scalloped hammerhead sharks from the US southeast commercial gillnet fishery for the areas combined. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	3790	106	194	0.047	0.005	0.11	1998	2515	118	147	95
1998-2019	3790	106	194	0.047	0.005	0.11	1999	2077	98	122	79
1998-2019	3790	106	194	0.047	0.005	0.11	2000	2097	99	123	79
1998-2019	3790	106	194	0.047	0.005	0.11	2001	2034	96	120	77
1998-2019	3790	106	194	0.047	0.005	0.11	2002	1953	92	115	74
1998-2019	3790	106	194	0.047	0.005	0.11	2003	1633	77	96	62
1998-2019	3790	106	194	0.047	0.005	0.11	2004	1602	75	93	60
1998-2019	3790	106	194	0.047	0.005	0.11	2005	1879	88	110	71
1998-2019	3790	106	194	0.047	0.005	0.11	2006	2471	116	145	93
1998-2019	3790	106	194	0.047	0.005	0.11	2007	3748	176	219	141
1998-2019	3790	106	194	0.047	0.005	0.11	2008	3756	177	221	142
1998-2019	3790	106	194	0.047	0.005	0.11	2009	4422	208	259	167
1998-2019	3790	106	194	0.047	0.005	0.11	2010	2801	132	164	106
1998-2019	3790	106	194	0.047	0.005	0.11	2011	3825	180	224	144
1998-2019	3790	106	194	0.047	0.005	0.11	2012	3773	178	222	143
1998-2019	3790	106	194	0.047	0.005	0.11	2013	2173	102	127	82
1998-2019	3790	106	194	0.047	0.005	0.11	2014	3932	185	230	148
1998-2019	3790	106	194	0.047	0.005	0.11	2015	3871	182	227	146
1998-2019	3790	106	194	0.047	0.005	0.11	2016	3221	152	189	122
1998-2019	3790	106	194	0.047	0.005	0.11	2017	2351	111	138	89
1998-2019	3790	106	194	0.047	0.005	0.11	2018	3227	152	189	122
1998-2019	3790	106	194	0.047	0.005	0.11	2019	3635	171	213	137

Table 21. Yearly calculated dead discards of scalloped hammerhead sharks from the US southeast commercial gillnet fishery for the Atlantic. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	3598	111	511	0.112	0.017	0.15	1998	2403	269	361	200
1998-2019	3598	111	511	0.112	0.017	0.15	1999	1855	207	278	154
1998-2019	3598	111	511	0.112	0.017	0.15	2000	1945	218	293	162
1998-2019	3598	111	511	0.112	0.017	0.15	2001	1872	209	281	156
1998-2019	3598	111	511	0.112	0.017	0.15	2002	1874	210	282	156
1998-2019	3598	111	511	0.112	0.017	0.15	2003	1558	174	234	130
1998-2019	3598	111	511	0.112	0.017	0.15	2004	1547	173	232	129
1998-2019	3598	111	511	0.112	0.017	0.15	2005	1812	203	273	151
1998-2019	3598	111	511	0.112	0.017	0.15	2006	2379	266	357	198
1998-2019	3598	111	511	0.112	0.017	0.15	2007	3658	409	549	305
1998-2019	3598	111	511	0.112	0.017	0.15	2008	3602	403	541	300
1998-2019	3598	111	511	0.112	0.017	0.15	2009	4108	459	616	342
1998-2019	3598	111	511	0.112	0.017	0.15	2010	2714	304	408	226
1998-2019	3598	111	511	0.112	0.017	0.15	2011	3467	388	521	289
1998-2019	3598	111	511	0.112	0.017	0.15	2012	3540	396	532	295
1998-2019	3598	111	511	0.112	0.017	0.15	2013	1876	210	282	156
1998-2019	3598	111	511	0.112	0.017	0.15	2014	3354	375	504	279
1998-2019	3598	111	511	0.112	0.017	0.15	2015	3125	350	470	261
1998-2019	3598	111	511	0.112	0.017	0.15	2016	2851	319	428	238
1998-2019	3598	111	511	0.112	0.017	0.15	2017	2151	241	324	179
1998-2019	3598	111	511	0.112	0.017	0.15	2018	3063	343	461	255
1998-2019	3598	111	511	0.112	0.017	0.15	2019	3370	377	506	281

Table 22. Yearly calculated live discards of scalloped hammerhead sharks from the US southeast commercial gillnet fishery for the Atlantic. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	3598	104	191	0.049	0.006	0.110	1998	2403	117	146	94
1998-2019	3598	104	191	0.049	0.006	0.110	1999	1855	90	112	72
1998-2019	3598	104	191	0.049	0.006	0.110	2000	1945	95	119	76
1998-2019	3598	104	191	0.049	0.006	0.110	2001	1872	91	114	73
1998-2019	3598	104	191	0.049	0.006	0.110	2002	1874	91	114	73
1998-2019	3598	104	191	0.049	0.006	0.110	2003	1558	76	95	61
1998-2019	3598	104	191	0.049	0.006	0.110	2004	1547	75	94	60
1998-2019	3598	104	191	0.049	0.006	0.110	2005	1812	88	110	70
1998-2019	3598	104	191	0.049	0.006	0.110	2006	2379	116	145	93
1998-2019	3598	104	191	0.049	0.006	0.110	2007	3658	178	222	143
1998-2019	3598	104	191	0.049	0.006	0.110	2008	3602	176	220	141
1998-2019	3598	104	191	0.049	0.006	0.110	2009	4108	200	250	160
1998-2019	3598	104	191	0.049	0.006	0.110	2010	2714	132	165	106
1998-2019	3598	104	191	0.049	0.006	0.110	2011	3467	169	211	135
1998-2019	3598	104	191	0.049	0.006	0.110	2012	3540	173	216	139
1998-2019	3598	104	191	0.049	0.006	0.110	2013	1876	91	114	73
1998-2019	3598	104	191	0.049	0.006	0.110	2014	3354	164	205	131
1998-2019	3598	104	191	0.049	0.006	0.110	2015	3125	152	190	122
1998-2019	3598	104	191	0.049	0.006	0.110	2016	2851	139	174	111
1998-2019	3598	104	191	0.049	0.006	0.110	2017	2151	105	131	84
1998-2019	3598	104	191	0.049	0.006	0.110	2018	3063	149	186	119
1998-2019	3598	104	191	0.049	0.006	0.110	2019	3370	164	205	131

Table 23. Yearly calculated dead discards of scalloped hammerhead sharks from the US southeast commercial gillnet fishery for the Gulf of Mexico. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	192	4	47	0.161	0.131	0.810	1998	112	18	73	4
1998-2019	192	4	47	0.161	0.131	0.810	1999	222	36	146	9
1998-2019	192	4	47	0.161	0.131	0.810	2000	152	24	97	6
1998-2019	192	4	47	0.161	0.131	0.810	2001	162	26	105	6
1998-2019	192	4	47	0.161	0.131	0.810	2002	79	13	53	3
1998-2019	192	4	47	0.161	0.131	0.810	2003	75	12	49	3
1998-2019	192	4	47	0.161	0.131	0.810	2004	55	9	36	2
1998-2019	192	4	47	0.161	0.131	0.810	2005	67	11	44	3
1998-2019	192	4	47	0.161	0.131	0.810	2006	92	15	61	4
1998-2019	192	4	47	0.161	0.131	0.810	2007	90	14	57	3
1998-2019	192	4	47	0.161	0.131	0.810	2008	154	25	101	6
1998-2019	192	4	47	0.161	0.131	0.810	2009	314	51	206	13
1998-2019	192	4	47	0.161	0.131	0.810	2010	87	14	57	3
1998-2019	192	4	47	0.161	0.131	0.810	2011	358	58	234	14
1998-2019	192	4	47	0.161	0.131	0.810	2012	233	37	150	9
1998-2019	192	4	47	0.161	0.131	0.810	2013	297	48	194	12
1998-2019	192	4	47	0.161	0.131	0.810	2014	578	93	376	23
1998-2019	192	4	47	0.161	0.131	0.810	2015	746	120	485	30
1998-2019	192	4	47	0.161	0.131	0.810	2016	370	60	243	15
1998-2019	192	4	47	0.161	0.131	0.810	2017	200	32	129	8
1998-2019	192	4	47	0.161	0.131	0.810	2018	164	26	105	6
1998-2019	192	4	47	0.161	0.131	0.810	2019	265	43	174	11

Table 24. Yearly calculated live discards of scalloped hammerhead sharks from the US southeast commercial gillnet fishery for the Gulf of Mexico. Discards are reported as number of individuals. Due to small number of observed positive sets, all years of observed data are combined.

Observed	Observed	Positive	Observed	Mean CPUE	Standard		Logbook	Logbook	Estimated	Upper	Lower
Year	Sets	Sets	Animals	(Per Set)	Deviation	CV	Year	Sets	Discards	95% CI	95% CI
1998-2019	192	2	3	0.016	0.012	0.740	1998	112	2	7	1
1998-2019	192	2	3	0.016	0.012	0.740	1999	222	3	11	1
1998-2019	192	2	3	0.016	0.012	0.740	2000	152	2	7	1
1998-2019	192	2	3	0.016	0.012	0.740	2001	162	3	11	1
1998-2019	192	2	3	0.016	0.012	0.740	2002	79	1	4	0
1998-2019	192	2	3	0.016	0.012	0.740	2003	75	1	4	0
1998-2019	192	2	3	0.016	0.012	0.740	2004	55	1	4	0
1998-2019	192	2	3	0.016	0.012	0.740	2005	67	1	4	0
1998-2019	192	2	3	0.016	0.012	0.740	2006	92	1	4	0
1998-2019	192	2	3	0.016	0.012	0.740	2007	90	1	4	0
1998-2019	192	2	3	0.016	0.012	0.740	2008	154	2	7	1
1998-2019	192	2	3	0.016	0.012	0.740	2009	314	5	18	1
1998-2019	192	2	3	0.016	0.012	0.740	2010	87	1	4	0
1998-2019	192	2	3	0.016	0.012	0.740	2011	358	6	22	2
1998-2019	192	2	3	0.016	0.012	0.740	2012	233	4	15	1
1998-2019	192	2	3	0.016	0.012	0.740	2013	297	5	18	1
1998-2019	192	2	3	0.016	0.012	0.740	2014	578	9	33	2
1998-2019	192	2	3	0.016	0.012	0.740	2015	746	12	44	3
1998-2019	192	2	3	0.016	0.012	0.740	2016	370	6	22	2
1998-2019	192	2	3	0.016	0.012	0.740	2017	200	3	11	1
1998-2019	192	2	3	0.016	0.012	0.740	2018	164	3	11	1
1998-2019	192	2	3	0.016	0.012	0.740	2019	265	4	15	1

Table 25. Scalloped hammerhead final discard estimates from the Northeast Region's Mid-Atlantic sink-gillnet fishing fleet created using the grand mean discard ratio for use in the SEDAR 77 assessment for this species.

	total	ave num	est num	95%	95%	ave wgt	est wgt (Ibs)	95%	95%	ave num	est num	95%	95%	ave wgt	est wgt (lbs)	95%	95%
year	landings (lbs)	live d/k	live disc	LCL	UCL	live d/k	live disc	LCL	UCL	dead d/k	dead disc	LCL	UCL	dead d/k	dead disc	LCL	UCL
1981	952070	0.0000040	4	2	6	0.0002151	205	40	369	0.0000051	5	3	7	0.0003480	331	143	520
1982	800479	0.0000040	3	1	5	0.0002151	172	34	311	0.0000051	4	2	6	0.0003480	279	120	437
1983	1633356	0.0000040	7	3	10	0.0002151	351	69	634	0.0000051	8	4	12	0.0003480	568	245	891
1984	1109970	0.0000040	4	2	7	0.0002151	239	47	431	0.0000051	6	3	8	0.0003480	386	167	606
1985	1393009	0.0000040	6	2	9	0.0002151	300	59	540	0.0000051	7	4	10	0.0003480	485	209	760
1986	1665998	0.0000040	7	3	11	0.0002151	358	70	646	0.0000051	9	5	12	0.0003480	580	250	909
1987	2535339	0.0000040	10	4	16	0.0002151	545	107	984	0.0000051	13	7	19	0.0003480	882	381	1384
1988	2641003	0.0000040	11	4	17	0.0002151	568	111	1025	0.0000051	14	7	20	0.0003480	919	397	1441
1989	7681371	0.0000040	31	13	49	0.0002151	1652	324	2980	0.0000051	39	21	58	0.0003480	2673	1154	4192
1990	8883032	0.0000040	36	15	56	0.0002151	1911	375	3446	0.0000051	45	24	67	0.0003480	3091	1334	4848
1991	14004376	0.0000040	56	23	89	0.0002151	3012	591	5433	0.0000051	72	39	105	0.0003480	4873	2103	7643
1992	14803957	0.0000040	59	25	94	0.0002151	3184	625	5743	0.0000051	76	41	111	0.0003480	5151	2224	8079
1993	21398090	0.0000040	86	36	136	0.0002151	4602	903	8301	0.0000051	110	59	160	0.0003480	7446	3214	11678
1994	20856487	0.0000040	83	35	132	0.0002151	4486	880	8091	0.0000051	107	57	156	0.0003480	7257	3133	11382
1995	18574803	0.0000040	74	31	118	0.0002151	3995	784	7206	0.0000051	95	51	139	0.0003480	6463	2790	10137
1996	26013961	0.0000040	104	43	165	0.0002151	5595	1098	10092	0.0000051	133	72	195	0.0003480	9052	3907	14197
1997	33567487	0.0000040	134	56	213	0.0002151	7220	1417	13022	0.0000051	172	92	251	0.0003480	11680	5042	18319
1998	37990099	0.0000040	152	63	241	0.0002151	8171	1604	14738	0.0000051	195	105	285	0.0003480	13219	5706	20733
1999	35233873	0.0000040	141	59	223	0.0002151	7578	1487	13669	0.0000051	180	97	264	0.0003480	12260	5292	19228
2000	29740831	0.0000040	119	49	188	0.0002151	6397	1255	11538	0.0000051	152	82	223	0.0003480	10349	4467	16231
2001	25990262	0.0000040	104	43	165	0.0002151	5590	1097	10083	0.0000051	133	71	195	0.0003480	9044	3904	14184
2002	22966222	0.0000040	92	38	146	0.0002151	4940	970	8910	0.0000051	118	63	172	0.0003480	7991	3449	12533
2003	28133639	0.0000040	113	47	178	0.0002151	6051	1188	10914	0.0000051	144	77	211	0.0003480	9790	4226	15354
2004	22495571	0.0000040	90	37	143	0.0002151	4838	950	8727	0.0000051	115	62	168	0.0003480	7828	3379	12277
2005	20886990	0.0000040	84	35	132	0.0002151	4492	882	8103	0.0000051	107	57	156	0.0003480	7268	3137	11399
2006	13680048	0.0000040	55	23	87	0.0002151	2942	577	5307	0.0000051	70	38	102	0.0003480	4760	2055	7466
2007	25248342	0.0000040	101	42	160	0.0002151	5430	1066	9795	0.0000051	129	69	189	0.0003480	8786	3792	13779
2008	20668902	0.0000040	83	34	131	0.0002151	4445	873	8018	0.0000051	106	57	155	0.0003480	7192	3104	11280
2009	27306265	0.0000040	109	45	173	0.0002151	5873	1153	10593	0.0000051	140	75	205	0.0003480	9502	4101	14902
2010	14664473	0.0000040	59	24	93	0.0002151	3154	619	5689	0.0000051	75	40	110	0.0003480	5103	2203	8003
2011	30295460	0.0000040	121	50	192	0.0002151	6516	1279	11753	0.0000051	155	83	227	0.0003480	10542	4550	16533
2012	24959012	0.0000040	100	41	158	0.0002151	5368	1054	9683	0.0000051	128	69	187	0.0003480	8685	3749	13621
2013	23562221	0.0000040	94	39	149	0.0002151	5068	995	9141	0.0000051	121	65	176	0.0003480	8199	3539	12859
2014	31582469	0.0000040	126	53	200	0.0002151	6793	1333	12252	0.0000051	162	87	237	0.0003480	10990	4744	17236
2015	120724151	0.0000040	483	201	765	0.0002151	25965	5096	46834	0.0000051	618	332	904	0.0003480	42008	18132	65883
2016	19271696	0.0000040	77	32	122	0.0002151	4145	814	7476	0.0000051	99	53	144	0.0003480	6706	2895	10517
2017	18009161	0.0000040	72	30	114	0.0002151	3873	760	6987	0.0000051	92	50	135	0.0003480	6267	2705	9828
2018	16100672	0.0000040	64	27	102	0.0002151	3463	680	6246	0.0000051	82	44	121	0.0003480	5602	2418	8787
2019	18502297	0.0000040	74	31	117	0.0002151	3979	781	7178	0.0000051	95	51	139	0.0003480	6438	2779	10097

Table 26. Smooth hammerhead final discard estimates from the Northeast Region's Mid-Atlantic sink-gillnet fishing fleet created using the grand mean discard ratio for use in the SEDAR 77 assessment for this species.

	total	ave num	est num	95%	95%	ave wgt	est wgt (lbs)	95%	95%	ave num	est num	95%	95%	ave wgt	est wgt (lbs)	95%	95%
year	landings (lbs)	live d/k	live disc	LCL	UCL	live d/k	live disc	LCL	UCL	dead d/k	dead disc	LCL	UCL	dead d/k	dead disc	LCL	UCL
1981	952070	0.0000027	3	2	3	0.0000386	37	26	47	0.0000052	5	4	6	0.0001878	179	92	266
1982	800479	0.0000027	2	1	3	0.0000386	31	22	40	0.0000052	4	3	5	0.0001878	150	77	223
1983	1633356	0.0000027	4	3	6	0.0000386	63	45	81	0.0000052	8	6	11	0.0001878	307	158	456
1984	1109970	0.0000027	3	2	4	0.0000386	43	31	55	0.0000052	6	4	7	0.0001878	208	107	310
1985	1393009	0.0000027	4	3	5	0.0000386	54	39	69	0.0000052	7	5	9	0.0001878	262	134	389
1986	1665998	0.0000027	5	3	6	0.0000386	64	46	82	0.0000052	9	6	11	0.0001878	313	161	465
1987	2535339	0.0000027	7	5	9	0.0000386	98	70	125	0.0000052	13	10	17	0.0001878	476	245	707
1988	2641003	0.0000027	7	5	9	0.0000386	102	73	131	0.0000052	14	10	17	0.0001878	496	255	737
1989	7681371	0.0000027	21	14	27	0.0000386	296	213	380	0.0000052	40	29	51	0.0001878	1443	742	2143
1990	8883032	0.0000027	24	17	32	0.0000386	343	246	439	0.0000052	46	34	59	0.0001878	1668	858	2479
1991	14004376	0.0000027	38	26	50	0.0000386	540	388	693	0.0000052	73	53	93	0.0001878	2630	1352	3908
1992	14803957	0.0000027	40	28	53	0.0000386	571	410	732	0.0000052	77	56	98	0.0001878	2780	1429	4131
1993	21398090	0.0000027	58	40	77	0.0000386	826	593	1059	0.0000052	111	81	141	0.0001878	4019	2066	5971
1994	20856487	0.0000027	57	39	75	0.0000386	805	578	1032	0.0000052	108	79	138	0.0001878	3917	2014	5820
1995	18574803	0.0000027	51	35	66	0.0000386	717	514	919	0.0000052	97	70	123	0.0001878	3488	1793	5183
1996	26013961	0.0000027	71	49	93	0.0000386	1004	720	1287	0.0000052	135	99	172	0.0001878	4885	2512	7259
1997	33567487	0.0000027	91	63	120	0.0000386	1295	930	1661	0.0000052	175	127	222	0.0001878	6304	3241	9367
1998	37990099	0.0000027	103	71	136	0.0000386	1466	1052	1879	0.0000052	198	144	251	0.0001878	7134	3668	10603
1999	35233873	0.0000027	96	66	126	0.0000386	1359	976	1743	0.0000052	183	134	233	0.0001878	6617	3402	9832
2000	29740831	0.0000027	81	56	106	0.0000386	1147	824	1471	0.0000052	155	113	197	0.0001878	5585	2871	8299
2001	25990262	0.0000027	71	49	93	0.0000386	1003	720	1286	0.0000052	135	99	172	0.0001878	4881	2509	7253
2002	22966222	0.0000027	62	43	82	0.0000386	886	636	1136	0.0000052	119	87	152	0.0001878	4313	2217	6409
2003	28133639	0.0000027	77	53	101	0.0000386	1085	779	1392	0.0000052	146	107	186	0.0001878	5283	2716	7851
2004	22495571	0.0000027	61	42	80	0.0000386	868	623	1113	0.0000052	117	85	149	0.0001878	4225	2172	6277
2005	20886990	0.0000027	57	39	75	0.0000386	806	578	1033	0.0000052	109	79	138	0.0001878	3923	2017	5828
2006	13680048	0.0000027	37	26	49	0.0000386	528	379	677	0.0000052	71	52	90	0.0001878	2569	1321	3817
2007	25248342	0.0000027	69	47	90	0.0000386	974	699	1249	0.0000052	131	96	167	0.0001878	4742	2438	7045
2008	20668902	0.0000027	56	39	74	0.0000386	797	572	1022	0.0000052	108	78	137	0.0001878	3882	1996	5768
2009	27306265	0.0000027	74	51	98	0.0000386	1054	756	1351	0.0000052	142	104	181	0.0001878	5128	2636	7620
2010	14664473	0.0000027	40	27	52	0.0000386	566	406	725	0.0000052	76	56	97	0.0001878	2754	1416	4092
2011	30295460	0.0000027	82	57	108	0.0000386	1169	839	1499	0.0000052	158	115	200	0.0001878	5689	2925	8454
2012	24959012	0.0000027	68	47	89	0.0000386	963	691	1235	0.0000052	130	95	165	0.0001878	4687	2410	6965
2013	23562221	0.0000027	64	44	84	0.0000386	909	653		0.0000052	123	89	156	0.0001878	4425	2275	6575
2014	31582469	0.0000027	86	59	113	0.0000386	1219	875		0.0000052	164	120		0.0001878	5931	3049	8813
2015	120724151	0.0000027	328	225		0.0000386	4658	3343		0.0000052	628	458	798	0.0001878	22672	11656	
2016	19271696	0.0000027	52	36		0.0000386	744	534	953	0.0000052	100	73		0.0001878	3619	1861	5378
2017	18009161	0.0000027	49	34	_	0.0000386	695	499	891	0.0000052	94	68	_	0.0001878	3382	1739	5025
2018	16100672	0.0000027	44	30		0.0000386	621	446	796	0.0000052	84	61	_	0.0001878	3024	1555	4493
2019	18502297	0.0000027	50	35	_	0.0000386	714	512	915	0.0000052	96	70	_	0.0001878	3475	1786	_

Table 27. Capture of scalloped hammerheads (n = 164) by hour during fisheries research conducted employing hook timers on contracted commercial bottom-longline vessels in the U.S. Highly Migratory Species Shark Research Fishery (Gulak et al. 2015; Simon Gulak, Pers. Comm. December 14, 2022)¹.

						Proportion	Running	Running proportion
Hours	Alive	Dead	Total	% Alive	% Dead	of total captured each hour	tally	of total captured by hour
0-1	14		14	100.0%	0.0%	8.54%	14	8.54%
1-2	22	6	28	78.6%	21.4%	17.07%	42	25.61%
2-3	7	6	13	53.8%	46.2%	7.93%	55	33.54%
3-4	9	10	19	47.4%	52.6%	11.59%	74	45.12%
4-5	7	8	15	46.7%	53.3%	9.15%	89	54.27%
5-6	1	13	14	7.1%	92.9%	8.54%	103	62.80%
6-7	1	4	5	20.0%	80.0%	3.05%	108	65.85%
7-8	1	14	15	6.7%	93.3%	9.15%	123	75.00%
8-9		13	13	0.0%	100.0%	7.93%	136	82.93%
9-10		1	1	0.0%	100.0%	0.61%	137	83.54%
10-11	1	3	4	25.0%	75.0%	2.44%	141	85.98%
11-12		6	6	0.0%	100.0%	3.66%	147	89.63%
12-13		3	3	0.0%	100.0%	1.83%	150	91.46%
13-14		4	4	0.0%	100.0%	2.44%	154	93.90%
14-15		3	3	0.0%	100.0%	1.83%	157	95.73%
15-16		1	1	0.0%	100.0%	0.61%	158	96.34%
16-17		3	3	0.0%	100.0%	1.83%	161	98.17%
17-18		1	1	0.0%	100.0%	0.61%	162	98.78%
18-19		1	1	0.0%	100.0%	0.61%	163	99.39%
19-20		1	1	0.0%	100.0%	0.61%	164	100.00%

¹ Data provided by Simon Gulak (Pers. Comm. December 14, 2022) were not filtered to include covariates used in the original study and, consequently, differ slightly from those presented in the original study.

Table 28. Capture of great hammerheads (n = 71) by hour during fisheries research conducted employing hook timers on contracted commercial bottom-longline vessels in the U.S. Highly Migratory Species Shark Research Fishery (Gulak et al. 2015; Simon Gulak, Pers. Comm. December 14, 2022)¹.

						Proportion	Running	Running proportion
Hours	Alive	Dead	Total	% Alive	% Dead	of total captured each hour	tally	of total captured by hour
0-1	10		10	100.0%	0.0%	14.08%	10	14.08%
1-2	9		9	100.0%	0.0%	12.68%	19	26.76%
2-3	4	1	5	80.0%	20.0%	7.04%	24	33.80%
3-4	5	3	8	62.5%	37.5%	11.27%	32	45.07%
4-5	2	5	7	28.6%	71.4%	9.86%	39	54.93%
5-6		8	8	0.0%	100.0%	11.27%	47	66.20%
6-7	1	6	7	14.3%	85.7%	9.86%	54	76.06%
7-8		2	2	0.0%	100.0%	2.82%	56	78.87%
8-9		6	6	0.0%	100.0%	8.45%	62	87.32%
9-10		1	1	0.0%	100.0%	1.41%	63	88.73%
10-11		1	1	0.0%	100.0%	1.41%	64	90.14%
12-13		1	1	0.0%	100.0%	1.41%	65	91.55%
14-15		2	2	0.0%	100.0%	2.82%	67	94.37%
15-16		1	1	0.0%	100.0%	1.41%	68	95.77%
16-17		1	1	0.0%	100.0%	1.41%	69	97.18%
18-19		1	1	0.0%	100.0%	1.41%	70	98.59%
19-20		1	1	0.0%	100.0%	1.41%	71	100.00%

¹ Data provided by Simon Gulak (Pers. Comm. December 14, 2022) were not filtered to include covariates used in the original study and, consequently, differ slightly from those presented in the original study.

A. Great Hammerhead							
Source	Tagged (N)	Post-release mortality (n)	Proportion (n/N)	Post-release mortality (%)			
SEDAR77-RD20 ¹	3	0	0.00	0			
SEDAR77-RD42 ²	28	13	0.46	46			
SEDAR77-DW34 ³	9	5	0.56	56			
SEDAR77-DW35 ⁴	20	9	0.45	45			
Pooled	60	27	0.45	45			

Table 29. Post release mortality of electronically tagged great and scalloped hammerheads captured onbottom longline gear (SEDAR77-RD20; SEDAR77-RD42; SEDAR77-DW34; SEDAR77-DW35).

B. Scalloped Hammerhead								
Source	Tagged (N)	Post-release mortality (n)	Proportion (n/N)	Post-release mortality (%)				
SEDAR77-DW35 ⁴	25	2	0.08	8				

¹ SEDAR77-RD20 (Drymon and Wells 2017) captured sharks in northern Gulf of Mexico with research longlines set for about one hour; Post-release mortality was estimated with double tagging from SPOT and survivorship pop-off archival transmitting tags (sPAT, Wildlife Computers).

² SEDAR77-RD42 (Gallagher et al. 2014) captured sharks in subtropical locations with baited drum-lines soaked for about one hour; Post-release mortality was estimated with Smart Position or Temperature Transmitting (SPOT) satellite tags (SPOTS, Wildlife Computers) reporting rates after 4 weeks.

³ SEDAR77-DW34 (Hoffmayer et al. 2021) captured sharks in the northern Gulf of Mexico with research longlines set for about one hour; Post-release mortality was estimated with SPOT tag reporting rates (n = 4 reporting tags ranged 19 to 101 days, mean: 53.3 ± 20.0 days). Five tags did not transmit data to the satellite after the tags were deployed, suggesting those sharks succumbed to the capture stress.

⁴ SEDAR77-DW35 (Whitney et al. 2021) captured sharks in the Gulf of Mexico with commercial longlines using a combination of relatively short soak times and (or) hook-timers in order to land live animals for tagging, with the result that the majority of hook times were under three hours; Post-release mortality was estimated with a combination of acceleration data-loggers (ADLs; model G6A+, Cefas, Inc., Lowestoft UK) and Pop-up Satellite Archival Tags (PSATs; model PSATLIFE, Lotek, Ontario, CAN).

Table 30. Post-release live-discard mortality rate calculations for scalloped hammerheads released from commercial bottom longline gear (69.15%).

M_A = Minimum PRLDM	0.0800	
$S_A = 1 - M_A$	0.9200	
Cumulative percentage on hook timers		
Hook time	Scalloped	n
1hr	8.54%	14
2hr	25.61%	42
3hr	33.54%	55
Total	100.00%	164
Proportion not at poor condition (<= 3hr)		
<= 3hr	0.3354	55
Proportion at poor condition (> 3hr)		
> 3hr	0.6646	109
Proportion that survive post-release		Calculations
<= 3hr	0.3085	[(1-0.0800)*0.3354]
> 3hr	0	[0*0.6646]
Total	0.3085	
Proportion that die post-release		Calculations
1-Total	0.6915	[1-0.3085]
Check proportion that die		Calculations
<= 3hr	0.0268	[0.0800*0.3354]
> 3hr	0.6646	[">3 hr"]
Total	0.6915	["<=3hr" + ">3 hr"]
PRLDM – Scalloped hammerhead	69.15%]

Table 31. Post-release live-discard mortality rate calculations for great hammerheads released from commercial bottom longline gear (81.41%).

M A = Minimum PRLDM	0.4500	
$\vec{S} = 1 - M A$	0.5500	
Cumulative percentage on hook timers		
Hook time	Great	n
1hr	14.08%	10
2hr	26.76%	19
3hr	33.80%	24
Total	100.00%	71
Proportion not at poor condition (<= 3hr)		
<= 3hr	0.3380	24
Proportion at poor condition (> 3hr)		
> 3hr	0.6620	47
Proportion that survive post-release		Calculations
<= 3hr	0.1859	[(1-0.4500)*0.3380]
> 3hr	0	[0*0.6620]
Total	0.1859	
Proportion that die post-release		Calculations
1-Total	0.8141	[1-0.1859]
Check proportion that die		Calculations
<= 3hr	0.1521	[0.4500*0.3380]
> 3hr	0.6620	[">3 hr"]
Total	0.8141	["<=3hr" + ">3 hr"]
PRLDM – Great hammerhead	81.41%	

Table 32. Mexican landings of "cazones " (sharks less than 150 cm TL) and "tiburones" (sharks greater than 150 cm TL) by state reported by the Comisión Nacional de Acuacultura y Pesca (Conapesca; tons ww).

		Landings of o	cazones			Landings of til	ourones	
Year	Tamaulipas	Veracruz	Tabasco	Campeche	Tamaulipas	Veracruz	Tabasco	Campech
1976	266	474	169	627	75	234	92	468
1977	575	654	189	544	155	190	358	817
1978	439	358	204	377	133	667	309	1037
1979	733	627	228	429	203	738	193	640
1980	889	706	274	491	371	1351	182	391
1981	2486	1036	407	441	703	3676	181	758
1982	1044	1309	392	847	286	3461	148	706
1983	1019	1493	311	2013	423	2719	374	1741
1984	1291	2433	500	2005	466	3133	397	1839
1985	1479	1144	442	1582	378	1239	414	1249
1986	1382	991	438	1174	372	1935	812	1754
1987	1583	777	467	1390	494	1425	669	2671
1988	1744	838	477	1363	631	2283	372	2573
1989	1917	1254	410	1128	573	1617	252	1400
1990	2352	1254	667	1209	666	1823	380	2022
1991	1692	1137	802	1003	551	1670	400	1802
1992	1907	1135	678	2414	622	1823	482	2163
1993	2154	1464	571	1745	593	1731	326	1785
1994	2052	1266	489	1273	707	1685	438	1808
1995	1655	1162	449	1115	1136	1683	325	1543
1996	1775	1355	515	1066	1044	2047	328	1637
1997	825	1739	331	489	697	2381	148	615
1998	1229	972	421	821	981	1519	136	641
1999	882	736	419	738	784	1414	188	483
2000	928	532	372	851	729	1652	199	519
2001	973	653	357	901	814	1738	147	548
2001	1156	586	344	757	698	1314	101	398
2002	1036	389	360	778	751	974	226	277
2003	1325	354	254	824	776	933	165	200
2004	676	23	1243	309	220	336	593	229
2005	618	400	316	432	562	1155	227	140
2000	624	631	321	405	775	842	236	140
2007	698	286	309	379	647	503	310	101
2008	847	336	266	542	520	505	208	118
2003	1256	351	260	507	807	550	307	260
	774		197					
2011		153		329	531	282	605	105
2012	883	224	113	409	507	545	449	148
2013	1060	344	138	269	1060	344	138	269
2014	911	392	133	345	654	652	727	291
2015	1058	621	141	391	662	904	841	318
2016	1297	861	159	435	874	1405	756	1375
2017	1775	838	215	344	1046	2209	739	163
2018	2131	974	230	312	1912	1990	751	215

	Scall	oped hammer	head landing	S	Gr	eat hammerhe	ead landings	
Year	Tamaulipas	Veracruz	Tabasco	Campeche	Tamaulipas	Veracruz	Tabasco	Campech
1976	45408	11841	55386	26946	4803	3562	974	10556
1977	98119	15818	64931	25701	10294	4806	1413	12719
1978	74988	10862	69177	20471	8041	3093	1427	12894
1979	125109	17340	75529	20244	13190	5063	1402	9993
1980	152388	21560	90182	21240	17545	6128	1622	8479
1981	424387	38264	132910	21375	44915	10382	2295	11140
1982	178174	43715	127703	36818	18748	12146	2177	14899
1983	174660	45053	104323	87859	20083	12846	2053	35956
1984	220916	68339	165327	88103	24577	19869	3041	36722
1985	252271	31217	146888	68374	26222	9150	2769	27224
1986	235824	30414	150268	55413	24736	8633	3253	27369
1987	270478	23486	157911	68965	29175	6693	3219	37554
1988	298441	28249	157643	67365	33219	7831	2893	36425
1989	327415	35232	134706	51630	35018	10242	2401	23825
1990	401517	36038	218793	58283	42505	10411	3867	30054
1991	289222	32742	262409	49056	31469	9454	4578	26012
1992	325979	33295	223523	105786	35480	9565	4053	43770
1993	367627	40518	187310	77720	38717	11829	3312	33558
1994	350962	35774	162273	59555	38646	10383	3038	28864
1995	286023	33369	148094	51934	38186	9642	2691	24929
1996	305849	39242	169338	50566	38792	11313	3030	25236
1997	143263	49400	108101	22428	20657	14317	1868	10399
1998	213119	28348	136881	35443	30061	8157	2309	14066
1999	153365	22498	136848	31333	22566	6393	2365	11837
2000	160862	18727	121874	35917	22553	5138	2141	13320
2001	168922	21852	116444	38019	24263	6069	1998	14090
2002	199284	18649	111727	31590	25488	5244	1874	11297
2003	179254	12778	118334	31720	24399	3565	2114	10467
2004	228292	11810	83556	33068	28916	3282	1498	10276
2005	115551	1845	406385	13271	12571	439	7061	5188
2006	107526	13739	104207	17535	15968	3792	1892	5692
2007	109656	17839	105919	16268	18698	5177	1929	5074
2008	121509	8560	102930	15357	18187	2446	1962	4952
2009	146060	9721	87916	21799	18782	2803	1614	6833
2010	216778	10243	87149	21120	28296	2947	1709	7509
2011	133764	4630	70397	13345	17855	1319	1767	4321
2012	152084	7296	41576	16689	19145	2040	1143	5523
2013	184933	9275	45964	11946	28580	2728	875	5120
2014	157592	11587	51261	15016	21376	3322	1597	6098
2015	182511	17851	55168	16952	23615	5157	1783	6809
2016	224067	25344	59956	24628	29724	7274	1766	16423
2017	305859	27960	77752	14254	38817	7770	2029	4979
2018	370638	30237	82713	13308	54741	8558	2120	5098

Table 33. Estimated Mexican landings of scalloped and great hammerheads by state (lb dw).

loar	Scalloped ham	1		Great hamm	Netc	1
Year	Longlines	Nets	Lines	Longlines	Nets	Lines
1976	53650	79756	6176	3751	14663	1481
1977	63181	132424	8964	5207	21734	2291
1978	61723	106680	7095	4028	19844	1583
1979	70765	157048	10408	5349	21705	2594
1980	84416	188218	12736	6314	24198	3262
1981	127923	463111	25902	10684	51354	6694
1982	129164	236590	20656	11034	31704	5232
1983	124504	267029	20362	12301	53083	5553
1984	183601	329285	29800	17920	58199	8089
1985	142512	336371	19868	10322	50172	4872
1986	141427	311219	19273	10348	49047	4596
1987	145756	356519	18565	9613	62696	4333
1988	148473	382614	20612	10171	65197	4999
1989	133213	393180	22589	10878	54719	5889
1990	196146	491174	27310	12728	67592	6518
1991	222432	386344	24653	12168	53975	5370
1992	207713	456088	24782	12663	74491	5714
1993	180446	465987	26743	13210	67537	6669
1994	155289	429069	24207	11835	62883	6212
1995	141378	356681	21361	10879	58624	5946
1996	160236	380629	24131	12293	59564	6514
1997	115268	187265	20660	12075	29109	6056
1998	125899	270243	17650	8867	40869	4857
1999	120759	208859	14426	7418	32012	3730
2000	108671	215546	13162	6466	33348	3338
2001	107299	223858	14080	7045	35615	3760
2002	100679	246707	13863	6325	33982	3597
2003	101542	228634	11910	5355	32200	2989
2004	76638	268152	11938	4792	35933	3248
2005	296766	224606	15680	6863	17292	1104
2006	88314	144903	9790	4842	20091	2411
2007	91901	146763	11019	5846	21978	3054
2008	83715	155939	8703	4060	21325	2162
2009	75296	180948	9253	4099	23613	2319
2010	75480	248534	11275	4615	32751	3096
2011	57497	157653	6987	3121	20357	1785
2012	39393	170886	7366	3160	22582	2109
2013	43015	200191	8911	3680	30574	3050
2014	48762	177721	8973	4481	25232	2681
2015	56195	204805	11482	5944	27995	3425
2015	66445	252734	14816	7917	42715	4556
2018	79236	328353	14816	8291	39894	5410
2017		391598	20748	9414	54222	6881
010	84550	227229	20748	9414	54222	1000

Table 34. Estimated Mexican l	landings of scallo	ped and great hammerhe	eads by major gear type (lb dw)	
	0			

Table 35. Post-release live discard mortality (PRLDM) rate (%) outcomes for electronically tagged scalloped and great hammerheads from multiple release locations in Florida west coast estuaries and bays adjacent to the Gulf of Mexico adapted from Gardiner et al. (2022, their Tables 1 and 2).

Scalloped hammerhead				
	Gear type	Tags reporting	PRLDM	(%)
	GN	2	2	100%
	DL	1	0	0%
Great hammerhead				
	Source	Tags reporting	PRLDM	(%)
	RR	1	1	100%
	BLL	7	1	14%

Gear type (GN = gillnet, DL = drumline, BLL = bottom longline, RR = rod and reel).

HMS Hammerhead Sharks

Table 36. Catches of scalloped hammerheads for areas combined in weight (lb dw). Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM (live post-release mortality=B2 dead); total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
rear	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial	recreational	recreational	recreational	
	catch		hand line catch	discards	catch	catch	LPRM	catch	catch
1981	0	0	0	0	0	344834	120621	465454	465454
1982	20095	4641	88	11446	49453	344834	120621	465454	514907
1983	40189	9342	175	23168	98906	262674	105935	368609	467515
1984	60284	13957	263	34615	148359	201196	78254	279450	427809
1985	80379	18649	351	46061	197812	192528	75544	268072	465884
1986	100474	23360	438	57507	247264	156621	57171	213792	461056
1987	120568	28219	526	84513	296717	157274	57747	215021	511738
1988	140663	32948	614	275099	449324	210126	61440	271566	720890
1989	160758	39096	701	127729	395623	322442	75539	397981	793604
1990	180853	44369	789	163350	445076	460766	85443	546209	991285
1991	79321	76921	121	111360	325196	471572	128370	599941	925137
1992	229490	50096	912	405737	737447	483904	222049	705953	1443400
1993	298117	29300	1597	44761	420944	296889	364756	661645	1082589
1994	508601	25247	43129	46221	676082	186186	231260	417446	1093528
1995	324146	22070	10393	89767	471014	135787	60918	196705	667719
1996	276803	30681	10758	15546	351177	141401	30676	172078	523255
1997	86146	28089	235	48258	171746	159323	29690	189013	360760
1998	95459	29054	1272	47384	186198	176826	84581	261407	447605
1999	108111	23392	9704	40433	187294	195243	193419	388662	575956
2000	69798	21011	388	46364	157837	212856	407217	620073	777911
2001	63314	19710	1182	55740	180295	185014	707696	892710	1073005
2002	97532	10098	2759	44239	205088	158624	702714	861338	1066426
2003	122966	47533	726	44239	234996	192135	646678	838812	1073808
2004	92665	26383	2690	44239	181461	231956	459143	691099	872560
2005	88680	9887	2346	44239	221448	291251	344016	635267	856715
2006	92643	15402	216	44239	205937	125684	234518	360202	566140
2007	22132	11526	83	96855	151883	68720	199444	268164	420047
2008	29237	77323	789	63284	177781	30799	194339	225138	402919
2009	77151	21045	13711	51367	168913	30665	226045	256710	425622
2010	44546	13458	1825	2401	68776	17743	308583	326326	395102
2011	65256	26130	1404	4092	103357	19021	414648	433670	537026
2012	57039	22371	9490	1900	90806	35643	483193	518836	609642
2013	31547	21145	1989	3240	58167	100491	336837	437328	495496
2014	36165	23388	409	34086	94048	177288	191907	369195	463243
2015	34149	57050	70	31145	122414	37735	139812	177547	299961
2016	18757	21741	17225	52595	114598	7026	125625	132651	247249
2017	27670	49017	3147	80614	160680	1288	133651	134939	295619
2018	20848	13266	17713	22552	74379	1288	133651	134939	209318
2019	12350	16214	205	10805	39574	1288	133651	134939	174513
2020	3682	8704	3172	66025	81799	1288	133651	134939	216738

HMS Hammerhead Sharks

Table 37. Catches of scalloped hammerheads for areas combined in numbers. Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial		recreational	recreational	
	catch		hand line catch	discards	catch	recreational catch	LPRM	catch	catch
1981	0	0	0	0	0	23641	22898	46539	46539
1982	227	138	1	163	829	23641	22898	46539	47368
1983	454	277	2	329	1659	19641	14312	33954	35612
1984	681	414	3	492	2488	16353	7444	23797	26285
1985	908	552	4	655	3318	13812	5644	19456	22774
1986	1135	692	5	817	4147	8373	2008	10380	14527
1987	1362	834	6	1201	4977	6134	1384	7518	12494
1988	1588	974	7	3909	6478	5822	1209	7031	13509
1989	1815	1144	8	1815	6635	8374	2501	10875	17510
1990	2042	1296	9	2321	7465	11299	4041	15341	22805
1991	896	2247	1	1583	5033	11283	7022	18305	23338
1992	2592	1448	10	7839	13220	11498	12474	23972	37192
1993	3367	812	18	536	6630	7262	16393	23655	30285
1994	4732	693	401	695	9320	4680	8397	13078	22398
1995	2761	605	89	803	5388	3404	4247	7651	13039
1996	2727	840	106	339	4612	3413	2335	5748	10360
1997	1291	743	4	680	3003	3670	2344	6014	9016
1998	1045	759	14	376	2409	3992	2296	6288	8697
1999	1003	599	90	505	2363	4449	2727	7176	9539
2000	788	543	4	434	2083	4937	3551	8488	10571
2001	860	515	16	1154	3314	4656	4925	9581	12895
2002	1056	625	30	423	3172	4272	5189	9461	12633
2003	1716	467	10	571	2764	5267	5736	11004	13767
2004	1417	420	41	783	2797	5868	5873	11741	14539
2005	1050	449	28	553	3949	6827	7049	13876	17825
2006	1391	509	3	877	4131	2909	6718	9627	13758
2007	482	750	2	1345	3568	1616	6933	8549	12117
2008	590	734	16	1269	2609	740	6085	6825	9434
2009	804	1142	143	1313	3830	746	5844	6590	10420
2010	511	807	21	55	1581	466	5359	5825	7406
2011	593	912	13	57	1855	511	4858	5369	7223
2012	507	1062	84	30	1781	939	4873	5812	7593
2013	301	2924	19	68	3311	2436	4543	6979	10290
2014	485	2011	5	506	3007	4132	4423	8555	11562
2015	294	1939	1	372	2605	890	3689	4579	7185
2016	232	1955	173	770	3130	193	2988	3181	6311
2017	267	532	30	1287	2115	39	2495	2534	4649
2018	236	1288	202	320	2047	39	2495	2534	4581
2019	133	1095	2	154	1384	39	2495	2534	3918
2020	55	361	43	938	1397	39	2495	2534	3931

HMS Hammerhead Sharks

Table 38. Catches of GOM scalloped hammerheads in weight (lb dw). Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial		recreational	recreational	
	catch		hand line catch	discards	catch	recreational catch	LPRM	catch	catch
1981	0	0	0	0	0	46365	1692	48057	48057
1982	3388	128	46	928	4489	46365	1692	48057	52546
1983	6775	256	91	1878	9001	36701	5334	42035	51036
1984	10163	385	137	2806	13490	27874	16796	44670	58160
1985	13550	513	182	3734	17979	24832	52889	77721	95700
1986	16938	641	228	4661	22468	26475	35971	62446	84914
1987	20326	769	273	6496	27865	33016	27198	60215	88079
1988	23713	898	319	20239	45169	47588	20565	68153	113322
1989	27101	1026	364	13441	41932	44311	14755	59065	100997
1990	30488	1154	410	19083	51135	24420	2934	27355	78490
1991	34507	1282	0	8821	45823	20770	2238	23008	68831
1992	33534	1284	875	4303	39995	22191	2652	24843	64838
1993	35449	1282	492	4303	41525	34473	10241	44714	86239
1994	91367	1286	30561	4303	127516	14113	3452	17564	145080
1995	157845	1283	1573	2292	169212	5516	1064	6581	175792
1996	187200	1296	7549	1519	204227	5368	694	6062	210289
1997	29529	1282	116	1598	35744	12613	1351	13965	49709
1998	43693	653	106	223	51577	31079	4167	35246	86823
1999	16130	1282	1	610	23758	20573	8261	28834	52592
2000	48215	855	127	14236	76088	14283	25179	39462	115550
2001	37548	945	0	3641	58358	14494	54993	69487	127845
2002	50598	58	0	4303	86592	22891	87083	109974	196566
2003	81602	1939	678	4303	101798	35027	66668	101695	203493
2004	57839	759	446	4303	76034	24324	40765	65089	141123
2005	106403	100	0	4303	167223	14485	18180	32666	199889
2006	53300	412	0	4303	90319	6421	7940	14360	104679
2007	11045	67	0	2013	24361	4290	4241	8531	32892
2008	16644	3232	372	13995	39822	3500	4476	7976	47798
2009	37790	663	2854	5784	55251	3394	9958	13352	68604
2010	16037	175	290	149	20739	3196	23312	26509	47248
2011	32795	1414	575	2301	43018	3662	38825	42487	85506
2012	39373	701	5827	386	46287	4786	30962	35748	82035
2013	6838	239	0	1315	8392	6301	20616	26917	35310
2014	9154	705	80	14028	23967	4397	10723	15120	39087
2015	13352	1808	70	4353	20443	2852	12887	15738	36181
2016	10010	594	17068	10937	42889	1627	16539	18165	61054
2017	19890	3725	3147	378	27371	1283	26573	27856	55228
2018	13953	177	17584	1346	33060	1283	26573	27856	60917
2019	9061	458	0	832	10452	1283	26573	27856	38308
2020	868	0	2882	0	3750	1283	26573	27856	31606

HMS Hammerhead Sharks

Table 39. Catches of GOM scalloped hammerheads in numbers. Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial		recreational	recreational	
	catch		hand line catch	discards	catch	recreational catch	LPRM	catch	catch
1981	0	0	0	0	0	2102	255	2357	2357
1982	40	35	1	13	89	2102	255	2357	2446
1983	81	8	1	27	116	1658	655	2313	2429
1984	121	11	2	40	174	1301	1678	2979	3153
1985	162	15	2	53	232	1217	4302	5519	5751
1986	202	19	3	66	290	1279	1302	2581	2872
1987	243	23	3	92	361	1501	649	2150	2512
1988	283	27	4	288	601	1997	324	2321	2922
1989	324	30	4	191	550	1864	489	2352	2902
1990	364	34	5	271	675	1043	190	1233	1907
1991	412	38	0	125	602	931	180	1111	1713
1992	401	38	10	83	532	1044	185	1230	1762
1993	424	38	6	52	519	1698	476	2174	2694
1994	766	38	256	65	1141	993	295	1288	2430
1995	1440	38	14	20	1717	465	184	650	2367
1996	1747	38	70	33	2150	341	95	435	2585
1997	729	38	3	23	889	418	82	500	1389
1998	668	19	2	2	836	622	87	709	1545
1999	696	38	0	8	934	467	116	583	1516
2000	576	25	2	133	953	383	240	623	1577
2001	560	28	0	75	994	509	415	925	1919
2002	689	14	0	41	1615	875	686	1561	3176
2003	825	13	7	55	960	1385	619	2004	2964
2004	748	10	6	76	1009	629	512	1141	2150
2005	620	12	0	54	1346	261	338	599	1945
2006	1043	16	0	85	2092	110	183	293	2384
2007	286	15	0	28	944	100	110	210	1154
2008	336	26	8	281	651	107	118	225	876
2009	402	54	30	148	1068	104	212	317	1385
2010	201	15	4	3	442	88	376	465	906
2011	274	62	5	32	616	98	407	505	1121
2012	373	45	55	6	732	125	337	461	1193
2013	68	51	0	27	157	179	277	456	613
2014	190	110	2	208	585	114	234	348	933
2015	147	128	1	52	376	66	307	373	749
2016	166	72	198	160	843	38	378	416	1259
2017	202	34	32	6	273	34	496	530	804
2018	186	28	238	19	771	34	496	530	1301
2019	97	46	0	12	176	34	496	530	707
2020	10	0	34	0	69	34	496	530	600

HMS Hammerhead Sharks

Table 40. Catches of ATL scalloped hammerheads in weight (lb dw). Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
rear	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial				
	catch	onner euten	hand line catch	discards	catch			recreational	
1001	0	0	0		0	recreational catch 276251	LPRM	catch 408141	catch
1981				0			131889		408141
1982 1983	25469	4581 9224	36	11430	45878	276251	131889	408141	454018
	50939			23135	91755	101772	90553	192325	284080
1984	76408	13777	109	34565	137633	42156	39460	81616	219249
1985	101878	18412	145	45995	183510	35340	25687	61027	244537
1986	127347	23067	181	57425	229388	53448	25314	78763	308151
1987	152817	27876	217	84365	275265	93025	42987	136012	411277
1988	178286	32550	253	274617	485706	155373	68581	223954	709660
1989	203756	38713	290	127505	370264	264983	80331	345314	715578
1990	229225	43959	326	163064	436574	411972	88192	500164	936737
1991	61349	77022	98	111165	288394	456615	124943	581559	869953
1992	300448	49709	73	405737	755966	483664	215320	698984	1454950
1993	404694	28642	915	44761	479012	332019	357630	689649	1168661
1994	642570	24472	11626	46221	724889	228407	264168	492575	1217464
1995	238160	21234	7189	89767	356349	178347	81827	260174	616524
1996	123325	29966	2956	15519	171766	156319	40409	196727	368493
1997	64557	27553	101	48174	140385	147599	35457	183056	323442
1998	47850	21650	945	47302	117746	139307	80513	219820	337566
1999	48962	15872	7825	40363	113021	156589	181451	338040	451061
2000	23499	14865	216	46283	89408	174074	358662	532736	622144
2001	33454	14148	953	55642	122422	154092	680480	834573	956995
2002	33591	5921	2225	44162	96515	127903	724912	852815	949331
2003	74692	40553	72	44162	159479	157940	735427	893367	1052846
2004	43913	21356	2100	44162	111530	203163	528941	732104	843634
2005	38508	6038	2170	44162	94731	276442	398066	674508	769239
2006	41773	12534	174	44162	110770	120339	276395	396734	507504
2007	12772	6912	67	96686	123451	65195	232965	298160	421611
2008	15217	67869	354	63284	146725	27673	234543	262217	408941
2009	41909	12100	8895	51367	114272	27260	263510	290770	405042
2010	34463	8834	1252	2396	46946	14016	358975	372991	419936
2011	25181	15582	696	4085	46171	14806	446550	461356	507526
2012	8805	13392	3778	1897	36720	28437	507748	536185	572905
2013	7263	17607	1989	3234	46708	91072	372331	463404	510112
2014	8302	18293	329	34086	76999	172400	240253	412653	489653
2015	10719	38407	0	31145	87544	3060	186026	189086	276630
2016	6654	18481	157	52595	79161	54	161446	161500	240661
2017	8407	43066	0	80614	132116	2	152373	152376	284492
2018	4884	10818	129	22552	39656	2	152373	152376	192031
2019	961	13180	205	9825	25908	2	152373	152376	178284
2020	0	8704	290	66025	78049	2	152373	152376	230425

HMS Hammerhead Sharks

Table 41. Catches of ATL scalloped hammerheads in numbers. Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial		recreational	recreational	
	catch		hand line catch	discards	catch	recreational catch	LPRM	catch	catch
1981	0	0	0	0	0	25249	26004	51253	51253
1982	250	136	0	162	744	25249	26004	51253	51997
1983	500	272	1	329	1488	8248	12283	20530	22018
1984	750	408	1	491	2231	2872	3544	6416	8648
1985	1000	544	1	654	2975	1226	1503	2729	5704
1986	1251	681	2	816	3719	1474	771	2245	5964
1987	1501	821	2	1199	4463	2152	887	3039	7502
1988	1751	958	2	3903	6614	3593	1376	4969	11584
1989	2001	1122	3	1812	5950	6125	2475	8600	14551
1990	2251	1269	3	2317	6694	9522	3971	13493	20187
1991	602	2224	1	1580	4407	10554	6703	17258	21665
1992	2950	1409	1	7839	12340	11180	11538	22718	35058
1993	3974	753	9	536	5662	7674	15898	23573	29235
1994	6036	632	109	695	8188	5279	10730	16009	24197
1995	2006	546	61	803	3678	4122	6790	10912	14590
1996	1256	771	30	338	2425	3613	3663	7276	9701
1997	567	665	1	679	1919	3411	2837	6248	8167
1998	448	752	9	375	1584	3219	2138	5358	6942
1999	436	572	70	504	1596	3619	2429	6048	7644
2000	231	527	2	433	1259	4023	3065	7088	8347
2001	313	495	9	1152	2261	3632	4617	8249	10510
2002	463	620	31	422	1841	3082	5208	8290	10130
2003	903	462	1	570	1935	3834	6214	10048	11983
2004	692	412	33	781	1919	4836	6445	11281	13200
2005	563	443	32	552	1986	6436	7694	14131	16117
2006	350	497	1	876	1960	2781	7415	10197	12157
2007	190	740	1	1343	2530	1508	7527	9035	11564
2008	149	683	3	1269	2106	640	7084	7724	9830
2009	343	1063	73	1313	2791	640	7121	7761	10552
2010	301	779	11	55	1147	374	6947	7321	8468
2011	261	820	7	57	1198	408	5769	6176	7374
2012	68	947	29	30	1074	774	5397	6170	7245
2013	68	2970	18	68	3123	2183	4922	7104	10228
2014	274	2034	4	506	2818	4000	5121	9120	11938
2015	136	2290	0	372	2799	595	4548	5143	7942
2016	69	1964	1	770	2804	89	3630	3719	6523
2017	62	570	0	1287	1918	4	2845	2849	4767
2018	59	1323	1	320	1703	4	2845	2849	4552
2019	34	1124	2	140	1300	4	2845	2849	4149
2020	45	361	4	938	1348	4	2845	2849	4197

HMS Hammerhead Sharks

Table 42. Catches of great hammerheads in weight (lb dw). Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
rear	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial				
	catch	Gilliot euten	hand line catch	discards	catch		recreational	recreational	
4004	0	0	0	0	0	recreational catch	LPRM	catch	catch 2993851
1981	22580			651		1805080	1188771	2993851	
1982 1983	45160	14157	11 22	1317	37399 74814	1805080	1188771	2993851 3658362	3031250 3733176
	67740	28314				2353810	1304552		
1984		42471	34	1967	112213	3183814	1311445	4495258	4607471
1985	90321	56628	45	2618	149612	2908133	1037763	3945896	4095508
1986	112901	70786	56	3268	187011	2271091	819635	3090726	3277737
1987	135481	84943	67	4981	225471	1338955	509558	1848514	2073985
1988	158061	99100	78	16212	273452	844899	388267	1233167	1506618
1989	180641	113257	90	7527	301515	812657	303680	1116336	1417851
1990	203221	127414	101	9627	340363	1048784	276710	1325494	1665857
1991	61870	196477	18	6563	264927	1463934	248883	1712818	1977745
1992	264261	138762	117	21665	424804	987133	231498	1218631	1643435
1993	356276	89475	204	7157	453111	528352	256239	784591	1237702
1994	587130	81260	5509	5686	679585	356835	468713	825548	1505133
1995	258843	76231	1328	546	336947	337131	807241	1144372	1481319
1996	167915	88904	1374	916	259110	343424	1423679	1767103	2026212
1997	69717	77641	30	2844	150231	126380	604849	731229	881460
1998	51265	6534	162	2793	60753	70612	287768	358380	419133
1999	54675	131366	1240	2383	191344	54553	92722	147275	338619
2000	45394	166852	50	2732	231201	92000	74440	166440	397641
2001	46811	21478	151	3285	101137	95213	35302	130515	231653
2002	50113	47304	352	2607	137360	18356	27932	46287	183647
2003	111826	217562	93	2607	332088	4467	18973	23440	355527
2004	90940	555945	166	2607	649658	1475	22487	23962	673619
2005	33432	18622	116	2607	105650	4330	18655	22985	128635
2006	51387	82006	28	2607	163848	10089	17552	27642	191489
2007	13105	15248	12	5708	41031	20751	20335	41086	82117
2008	30756	29847	101	44	60749	9787	30417	40203	100952
2009	79516	30854	1752	118	112239	5741	44041	49782	162022
2010	53510	29465	252	141	83368	3001	37014	40015	123383
2011	56229	17707	179	241	74356	3342	27663	31005	105362
2012	8954	81235	1179	112	91480	2067	22230	24297	115777
2013	52403	58553	512	191	116661	1387	21111	22499	139159
2014	22930	14279	2094	5422	55782	898	31575	32473	88255
2015	37554	47992	13941	4554	105630	840	47013	47853	153483
2016	20987	39573	15198	2218	77976	272	69717	69989	147965
2017	29105	17743	966	1449	49938	72	53188	53260	103198
2018	60761	127112	1612	688	190174	72	53188	53260	243434
2019	42343	52325	1224	0	96042	72	53188	53260	149302
2020	9995	27773	409	0	38282	72	53188	53260	91542

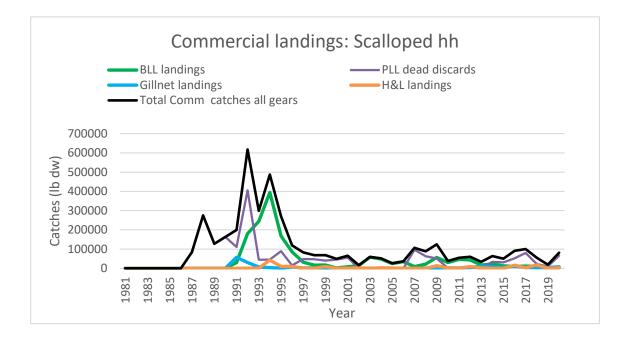
HMS Hammerhead Sharks

Table 43. Catches of great hammerheads in numbers. Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

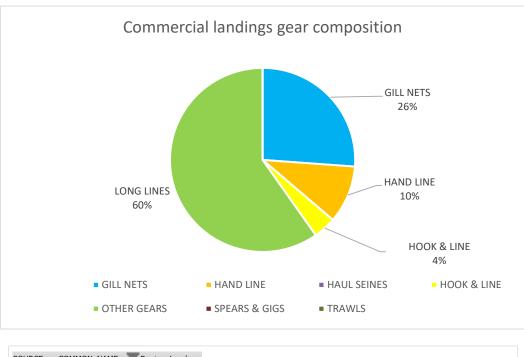
Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
	Bottom longline	Gillnet catch	hook and line +	longline dead	commercial		recreational	recreational	
	catch		hand line catch	discards	catch	recreational catch	LPRM	catch	catch
1981	0	0	0	0	0	30549	39786	70335	70335
1982	133	136	0	5	274	30549	39786	70335	70609
1983	267	271	0	10	548	38694	41373	80067	80615
1984	400	407	0	15	822	51047	32318	83365	84187
1985	534	543	0	20	1096	47728	19483	67211	68307
1986	667	678	0	25	1370	38331	12598	50929	52300
1987	801	814	0	38	1652	22539	7978	30517	32169
1988	934	999	0	122	2055	14205	6536	20740	22796
1989	1067	1085	1	57	2210	14079	4412	18491	20701
1990	1201	1221	1	73	2495	19278	4844	24121	26616
1991	366	1882	0	49	2298	28009	5285	33294	35591
1992	1562	1330	1	254	3145	18896	7211	26107	29252
1993	2105	857	1	41	3005	9996	8054	18050	21055
1994	3110	779	29	24	3942	6592	9652	16243	20185
1995	2164	730	11	3	2908	6097	10140	16237	19145
1996	1422	852	12	11	2297	6086	10473	16559	18857
1997	515	744	0	24	1283	2299	5563	7862	9145
1998	378	63	1	16	457	1273	3204	4476	4934
1999	361	1259	8	17	1644	998	2186	3184	4829
2000	200	1599	0	21	1820	1650	2598	4247	6067
2001	242	206	1	31	479	1765	2950	4715	5194
2002	345	686	2	20	1053	377	1534	1910	2964
2003	769	1521	1	38	2328	97	705	803	3131
2004	642	5327	1	30	6000	33	408	442	6442
2005	132	178	0	24	335	87	389	477	812
2006	301	786	0	17	1104	188	419	606	1710
2007	94	146	0	18	258	358	449	808	1066
2008	191	286	1	0	478	182	585	767	1245
2009	476	296	10	1	783	111	741	852	1635
2010	302	282	1	1	587	58	622	679	1266
2011	326	170	1	3	500	60	464	524	1024
2012	53	778	7	1	839	36	373	410	1249
2013	271	561	3	2	837	26	354	381	1218
2014	176	132	10	65	383	19	530	549	932
2015	237	449	77	39	802	19	789	808	1610
2016	108	368	79	16	571	7	1171	1178	1749
2017	194	170	6	16	387	2	893	895	1282
2018	385	1214	10	5	1614	2	893	895	2509
2019	256	501	7	0	764	2	893	895	1659
2020	49	274	2	0	325	2	893	895	1220

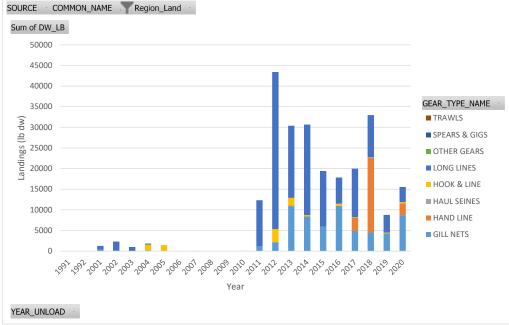
HMS Hammerhead Sharks

Table 44. Catches of smooth hammerheads in weight (lb dw). Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.

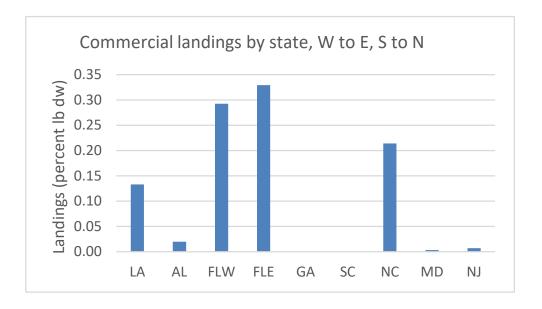

Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
rear	Bottom longline	Gillnet catch	unknown gear	longline dead	commercial				
	catch	Gilliet eaten	unknown gear	discards	catch		recreational	recreational	
			-			recreational catch	LPRM	catch	catch
1981	0	3651	0	0	3651	18232	28852	47084	50735
1982	102	406	0	220	5360	18232	28852	47084	52443
1983	204	0	0	446	10719	11145	52243	63387	74107
1984	307	1217	0	666	16079	15779	138388	154167	170246
1985	409	1623	0	886	21439	24491	226635	251127	272565
1986	511	2028	0	1107	26799	70365	386063	456429	483227
1987	613	2434	0	1800	32158	83958	372880	456838	488997
1988	715	2840	0	5858	37518	87102	191568	278670	316188
1989	818	3245	0	2720	42878	83726	142396	226121	268999
1990	920	3651	0	3479	48238	89834	131028	220861	269099
1991	204	7326	0	2371	33827	150086	204139	354225	388052
1992	1214	3889	0	4329	61201	243597	119783	363379	424580
1993	1649	954	0	668	65763	360474	60555	421029	486792
1994	2658	465	2	220	107102	255864	27648	283512	390614
1995	1139	165	0	742	45160	170017	33746	203762	248922
1996	582	920	0	331	26667	120077	48187	168265	194932
1997	219	249	0	1028	10492	110034	75232	185266	195758
1998	113	389	0	1009	8388	85937	50033	135970	144358
1999	122	69	0	861	8215	52694	23790	76483	84699
2000	18	4	0	987	6036	34985	6157	41141	47178
2001	53	5	0	1187	11864	28578	3774	32352	44216
2002	77	148	0	942	15128	3439	3335	6774	21901
2003	386	116	0	942	17911	287	5531	5818	23729
2004	327	139	0	942	15251	30	5954	5984	21235
2005	166	7	0	942	23022	26	10693	10719	33741
2006	237	128	0	942	20587	33	18790	18823	39410
2007	65	2	0	2063	8775	10	32852	32863	41637
2008	507	317	0	63	7463	3	21964	21967	29430
2009	384	565	2540	43	20311	1	14322	14323	34634
2010	207	424	5607	51	14844	1	9551	9552	24396
2011	242	179	65	87	9949	28	6116	6144	16093
2012	41	4141	70	40	7244	801	4357	5158	12402
2013	0	179	0	69	329	22690	4430	27120	27449
2014	312	257	32	58	659	801	7304	8106	8765
2015	264	40	0	562	866	28	11334	11363	12229
2016	0	125	0	1385	1510	1	8707	8708	10219
2017	0	1127	0	6446	7639	1	6719	6720	14359
2018	0	530	0	286	816	1	6719	6720	7536
2019	0	13	0	1306	1346	1	6719	6720	8066
2020	0	0	0	361	361	1	6719	6720	7081

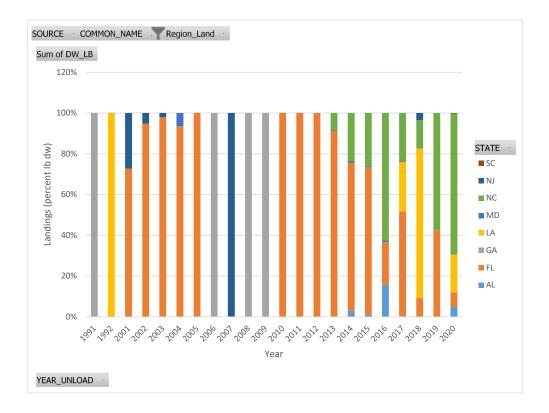
HMS Hammerhead Sharks


Table 45. Catches of smooth hammerheads in numbers. Total commercial catch is the maximum of the sum of commercial catches by gear and total commercial catches not disaggregated by gear; total recreational catch is the sum of total recreational AB1 catch and LPRM; total catch is the sum of total recreational and total commercial catch. See text for additional definitions of terms.


Year	Total	Total	Total	Pelagic	Total	Total AB1	Total	Total	Total
. cui	Bottom longline	Gillnet catch	unknown gear	longline dead	commercial				
	catch		8	discards	catch			recreational	
1981	0	309	0	0	309	recreational catch 4095	LPRM 872	catch 4966	catch 5276
1981	1	309	0	3	118	4095	872	4966	5085
1982	3	0	0	6		1198		2511	
1983	4	103	0	9	237 355	810	1312 2446	3256	2748 3611
1984	5	103	0	12		624	3616	4240	4713
1985	5	138	0	12	473 592	2135	5820	7956	8547
1986	8	206	0		710		6992		10774
	9			24		3071		10064	
1988		241 275	0	77	828	3696	4020	7716	8544 7790
1989	11 12		0	36	947	3943	2900	6844	
1990		309		46	1065	4414	2501	6916	7981
1991	3	621	0	31	739	6412	4698	11110	11849
1992	16	330	0	56	1336	7248	6468	13716	15053
1993	21	81	0	9	1474	7877	8661	16538	18013
1994	37	39	0	3	2584	4927	7000	11927	14511
1995	11	14	0	10	770	3273	5290	8563	9333
1996	8	78	0	1	594	2310	2032	4341	4935
1997	18	21	0	13	795	2114	1031	3144	3940
1998	1	33	0	26	192	1651	431	2082	2273
1999	2	6	0	11	177	1013	295	1308	1484
2000	1	0	0	13	327	675	112	788	1114
2001	1	0	0	16	256	554	84	638	894
2002	35	13	0	10	2031	135	73	208	2239
2003	5	10	0	14	396	26	113	139	535
2004	4	12	0	10	332	5	120	125	457
2005	2	1	0	22	498	5	215	220	718
2006	3	11	0	15	457	4	378	382	839
2007	1	0	0	44	195	3	660	663	858
2008	2	27	0	1	68	2	441	443	511
2009	5	34	33	0	433	1	288	289	722
2010	1	62	33	1	166	1	192	193	359
2011	3	15	1	3	225	8	175	184	408
2012	1	351	1	1	353	68	170	238	590
2013	0	15	0	3	19	559	198	757	776
2014	4	22	0	1	27	55	228	283	310
2015	3	3	0	7	14	5	261	266	281
2016	0	11	0	41	51	1	175	175	227
2017	0	96	0	148	243	1	135	136	379
2018	0	45	0	4	49	1	135	136	184
2019	0	1	0	17	18	1	135	136	154
2020	0	0	0	5	5	1	135	136	140

3.5 Figures




Figure 1. Commercial landings (lb dw) of scalloped hammerheads (all regions) by gear, including dead discards from the pelagic longline fishery. BLL=bottom longline; PLL=pelagic longline; H&L=hook and line.

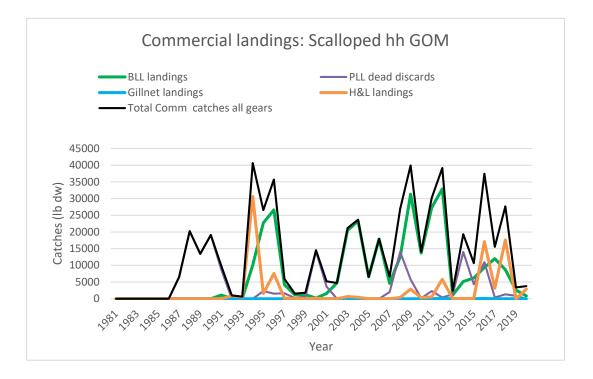
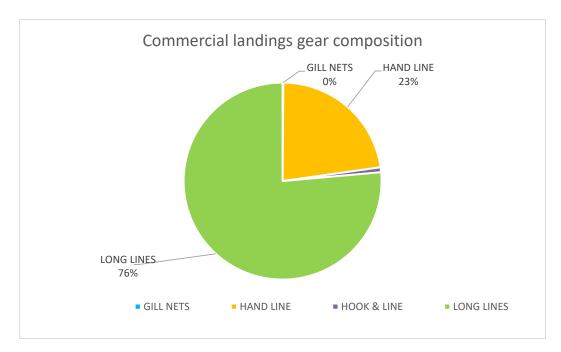


Figure 2. Commercial landings (lb dw) of scalloped hammerheads (all regions) by gear type from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: annual composition of the main gears by year.



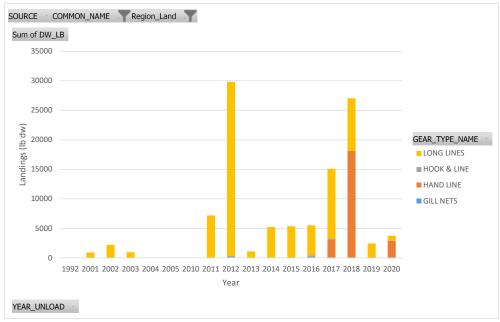
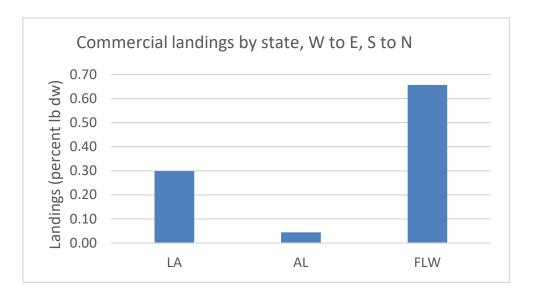
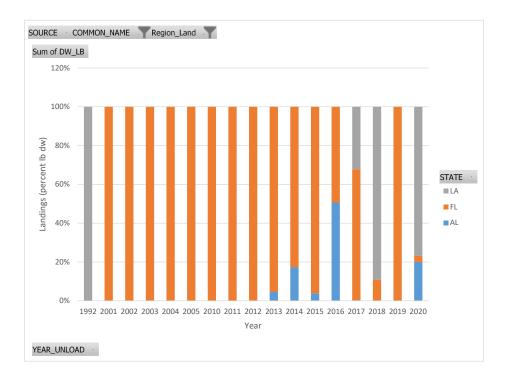


Figure 3. Commercial landings (lb dw) of scalloped hammerheads (all regions) by state of landing from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: composition of states by year




Figure 4. Commercial landings (lb dw) of scalloped hammerheads in the GOM by gear, including dead discards from the pelagic longline fishery. BLL=bottom longline; PLL=pelagic longline; H&L=hook and line.

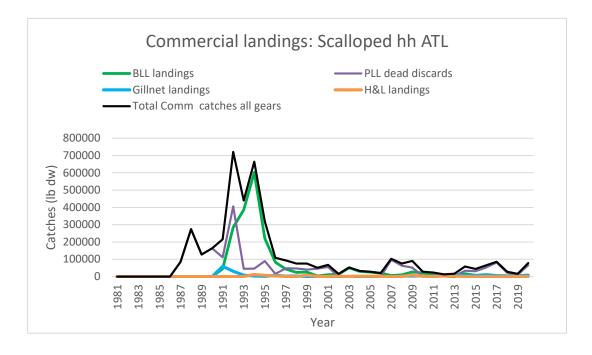
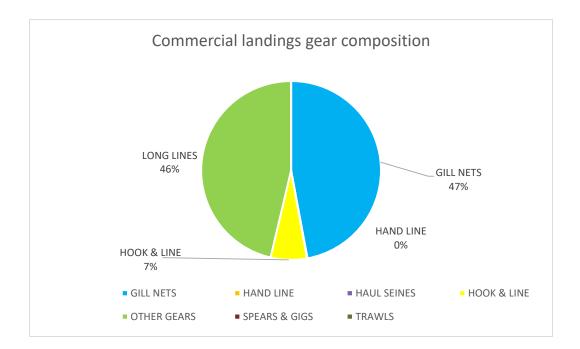


Figure 4. Commercial landings (lb dw) of scalloped hammerheads in the GOM by gear type from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: annual composition of the main gears by year.



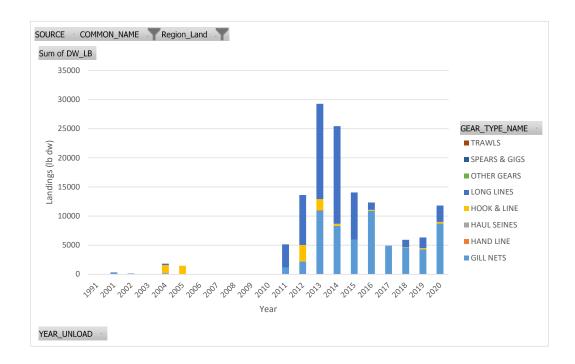
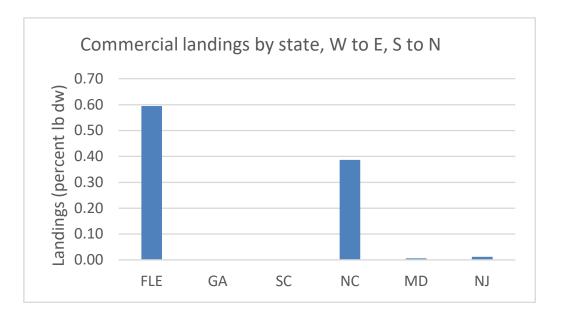
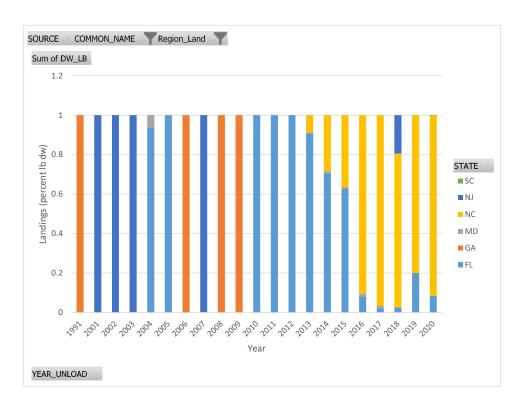


Figure 6. Commercial landings (lb dw) of scalloped hammerheads in the GOM by state of landing from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: composition of states by year.




Figure 7. Commercial landings (lb dw) of scalloped hammerheads in the ATL by gear, including dead discards from the pelagic longline fishery. BLL=bottom longline; PLL=pelagic longline; H&L=hook and line.

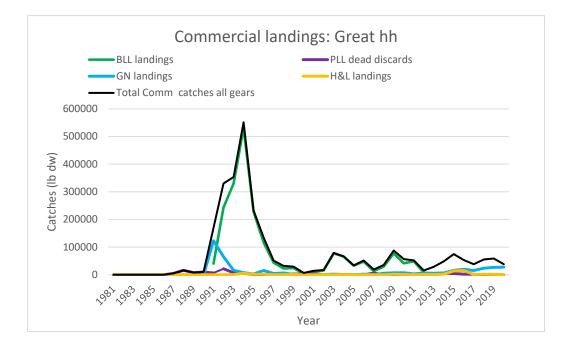
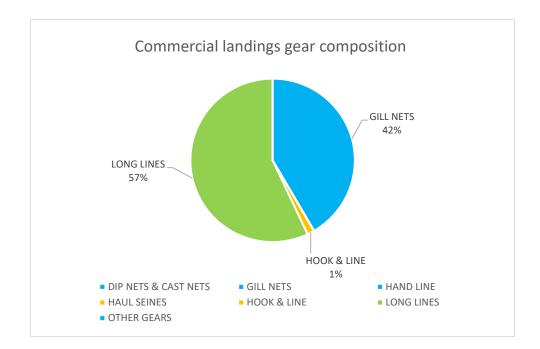


Figure 8. Commercial landings (lb dw) of scalloped hammerheads in the ATL by gear type from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: annual composition of the main gears by year.



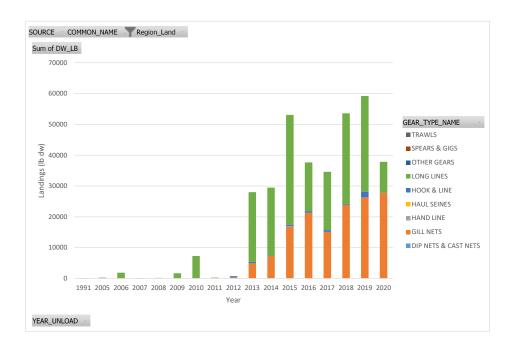
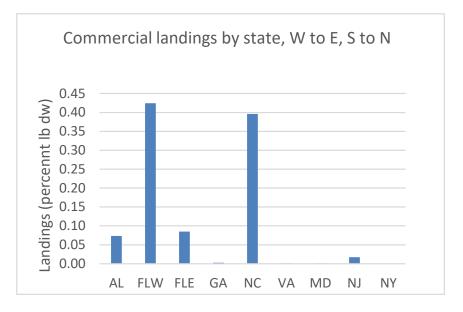
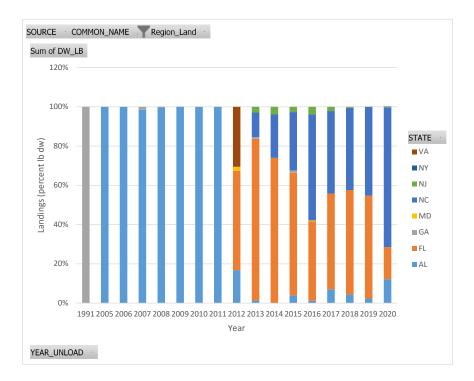


Figure 9. Commercial landings (lb dw) of scalloped hammerheads in the ATL by state of landing from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: composition of states by year.




Figure 10. Commercial landings (lb dw) of great hammerheads by gear, including dead discards from the pelagic longline fishery. BLL=bottom longline; PLL=pelagic longline; H&L=hook and line.

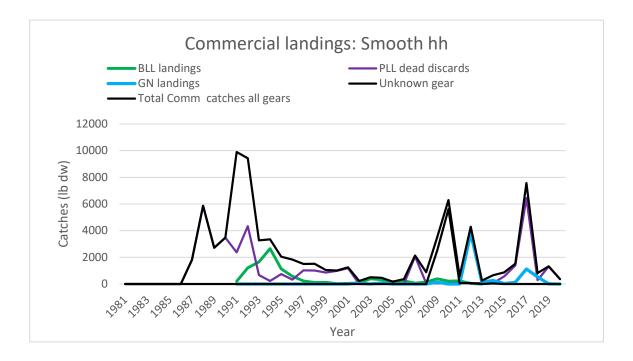
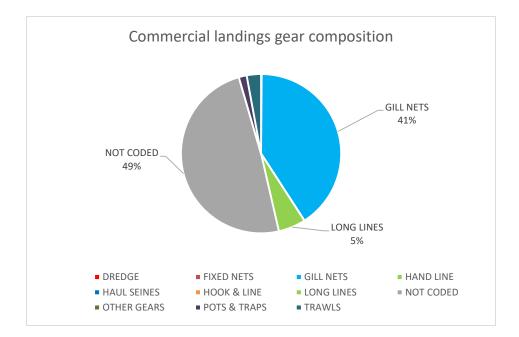


Figure 11. Commercial landings (lb dw) of great hammerheads by gear type from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: annual composition of the main gears by year.



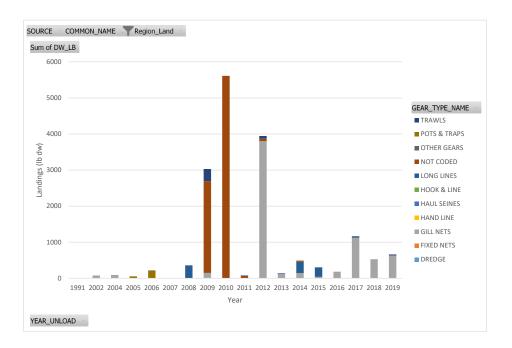
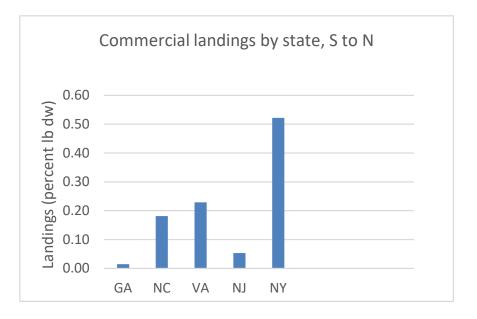


Figure 12. Commercial landings (lb dw) of great hammerheads by state of landing from FINS for 1991-2020.Top panel: relative contribution for the entire time period; bottom panel: composition of states by year.



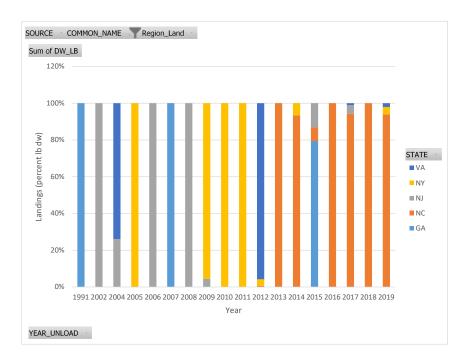

Figure 13. Commercial landings (lb dw) of smooth hammerheads by gear, including dead discards from the pelagic longline fishery. BLL=bottom longline; PLL=pelagic longline; H&L=hook and line.

Figure 14. Commercial landings (lb dw) of smooth hammerheads by gear type from FINS for 1991-2020. Top panel: relative contribution for the entire time period; bottom panel: annual composition of the main gears by year.

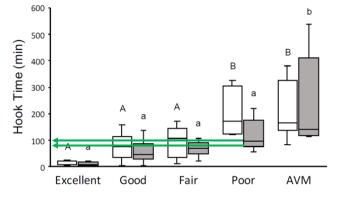
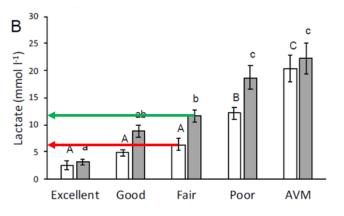


Figure 15. Commercial landings (lb dw) of smooth hammerheads by state of landing from FINS for 1991-2020.Top panel: relative contribution for the entire time period; bottom panel: composition of states by year.


A. Scalloped hammerheads in poor condition at release.

B. Great hammerheads in poor condition at release.

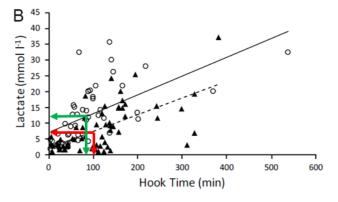


Figure 16. Box plots (quartiles) of scalloped (white, N = 86) and great (grey, N = 85) hammerheads release condition by hook time (min) (adapted from SEDAR77-DW09, their Figure 1); Scalloped hammerheads reached poor condition after about 120 - 180 minutes on hook (Panel A); Great hammerheads reached poor condition after about 80 - 100 minutes on hook (Panel B).

A. Lactate levels of scalloped and great hammerheads in fair condition.

B. Hook time of scalloped and great hammerheads with lactate levels associated with fair condition.

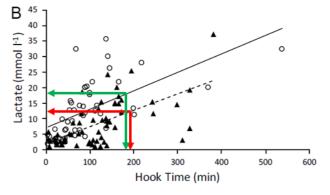


Figure 17. Lactate levels of scalloped (white bars) and great (grey bars) hammerheads released in fair condition were about 6 and 12 mmol l⁻¹, respectively (Panel A; Adapted from SEDAR77-DW09, their Figure 4), which corresponded to about 80 and 100 minutes of time on the hook for scalloped (closed triangles, dashed line) and great (open circles, solid line) hammerheads, respectively (Panel B; Adapted from SEDAR77-DW09, their Figure 2).

A. Lactate levels of scalloped and great hammerheads in poor condition.

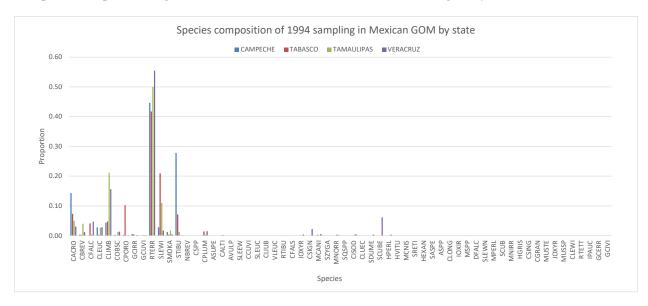
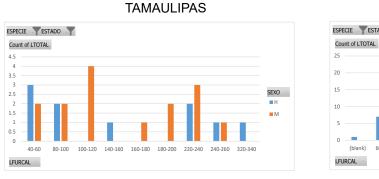
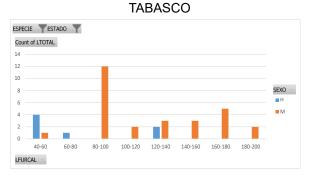

B. Hook time of scalloped and great hammerheads with lactate levels associated with poor condition.

Figure 18. Lactate levels of scalloped (white bars) and great (grey bars) hammerheads released in poor condition were about 12 and 19 mmol l⁻¹, respectively (Panel A; Adapted from SEDAR77-DW09, their Figure 4), which corresponded to about 180 and 200 minutes of time on the hook for scalloped (closed triangles, dashed line) and great (open circles, solid line) hammerheads, respectively (Panel B; Adapted from SEDAR77-DW09, their Figure 2).



Figure 19. Map of Mexico showing the Gulf of Mexico states of Tamaulipas, Veracruz, Tabasco, and Campeche sampled during the 1993-1994 Castillo et al. (1998) monitoring study.




	TAMAULIPAS	VERACRUZ	TABASCO	CAMPECHE	ALL
SLEWI	0.110	0.017	0.210	0.028	0.054
SMOKA	0.017	0.005	0.004	0.012	0.009
SZYGA	0	3.64511E-05	0	0	1E-05

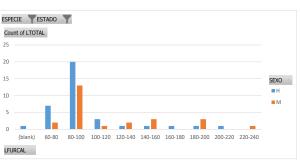
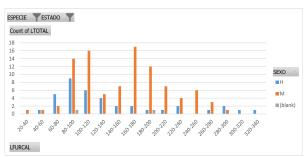
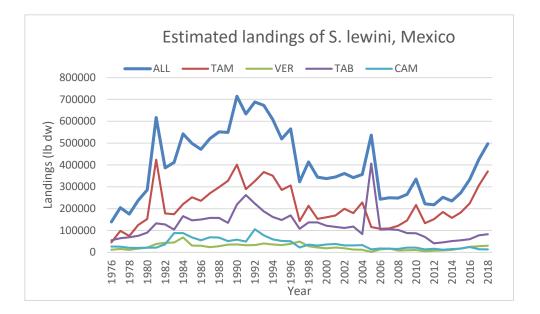
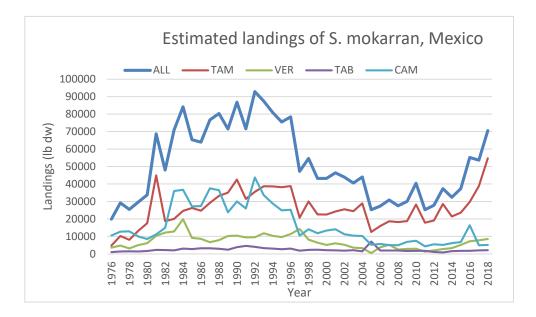

Figure 20. Species composition of sharks landed in the Mexico states of Tamaulipas, Veracruz, Tabasco, and Campeche observed in the 1993-1994 Castillo et al. (1998) monitoring study. The table shows scalloped hammerheads (SLEWI) were the main hammerhead species landed in each state, with smooth hammerhead (SZYGA) landings being negligible (SMOKA=great hammerhead).

Figure 21. Length-frequency distributions of scalloped hammerheads landed in Mexico states by sex (H=Hembra=Female; Macho=M=Male), and state observed in the 1993-1994 Castillo et al. (1998) monitoring study (upper panels). The table shows the proportion of scalloped hammerhead landings that were <150 cm TL ("cazones") and >=150 cm TL ("tiburones") for sexes combined computed as a weighted average (weighted by sample size for each sex). Most animals observed were immature and assigned to the "cazones" category.




VERACRUZ



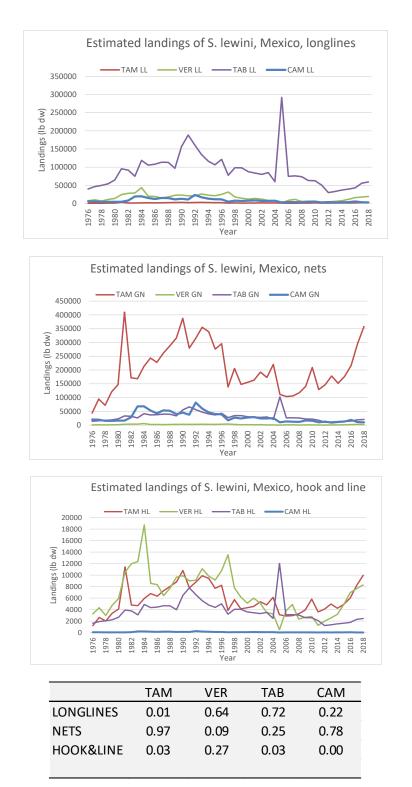

	ALL both sexes	TAM both sexes	VER both sexes	TAB both sexes	CAM both sexes	
% Cazon	0.66	0.56	0.88	0.80	0.54	
% Tiburon	0.34	0.44	0.12	0.20	0.46	

Figure 22. Length-frequency distributions of great hammerheads landed in Mexico states by sex (H=Hembra=Female; Macho=M=Male) and state observed in the 1993-1994 Castillo et al. (1998) monitoring study (upper panels). The table shows the proportion of great hammerhead landings that were <150 cm TL ("cazones") and >=150 cm TL ("tiburones") for sexes combined computed as a weighted average (weighted by sample size for each sex). Although a larger proportion of animals observed were assigned to the "tiburones" category, most animals were immature.

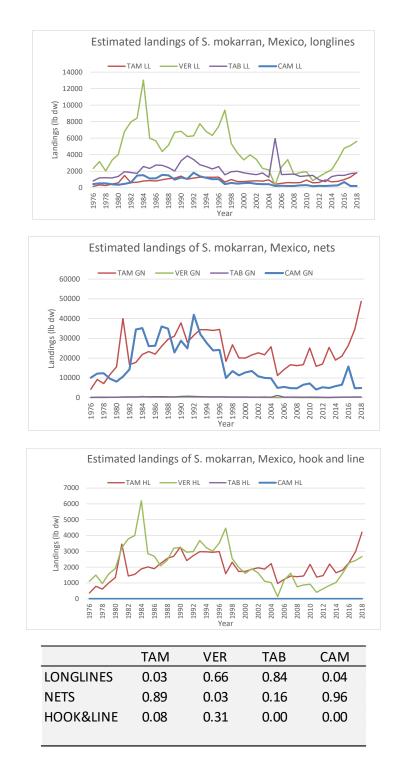


Figure 23. Estimated landings of scalloped (top) and great (bottom) hammerheads by Mexico state. Landings of "cazones" (<150 cm TL) and "tiburones" (>=150 cm TL) by state reported by the Comisión Nacional de Acuacultura y Pesca (Conapesca) were multiplied by the proportion that scalloped and great hammerheads make up of the entire catches and by the proportion of "cazones" and "tiburones" attributed to each species to obtain total estimates.

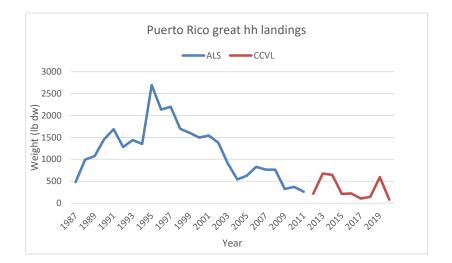


Figure 24. Estimated landings of scalloped hammerheads by gear and Mexico state. The table shows the percentage composition of gears that scalloped hammerheads were caught by state.

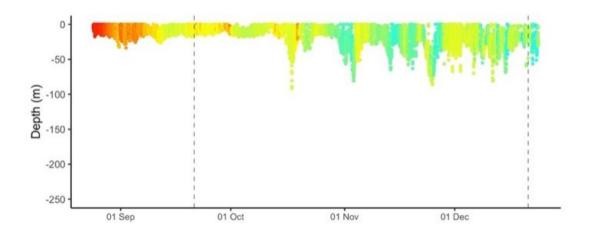


Figure 25. Estimated landings of great hammerheads by gear and Mexico state. The table shows the percentage composition of gears that great hammerheads were caught by state.

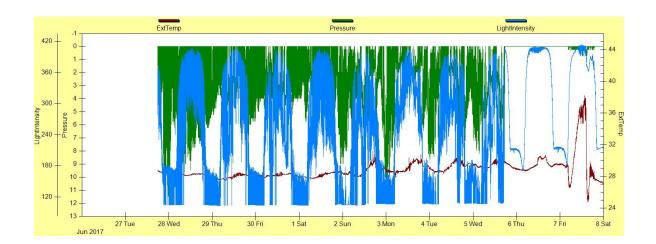


Figure 26. Landings of scalloped (top) and great (bottom) hammerheads from the Caribbean Commercial Vessel Logbook (CCVL) in 2011-2020 and from the Accumulated Landings System (ALS) for 1987-2011.

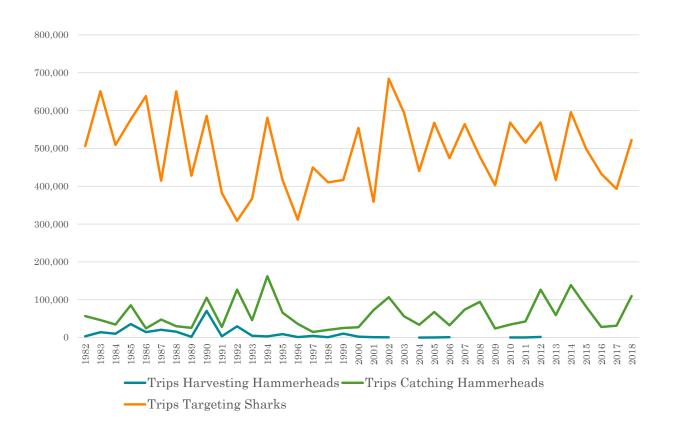
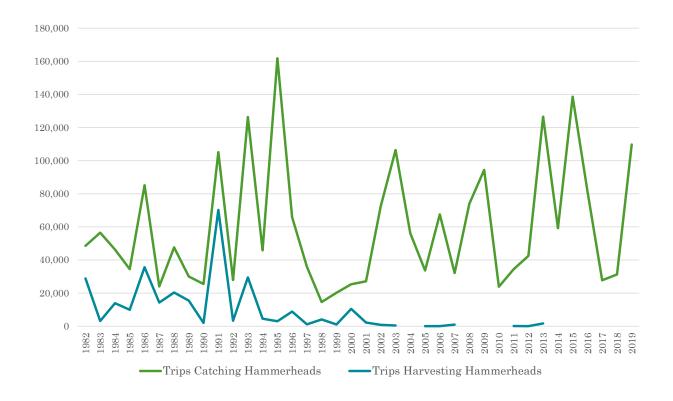
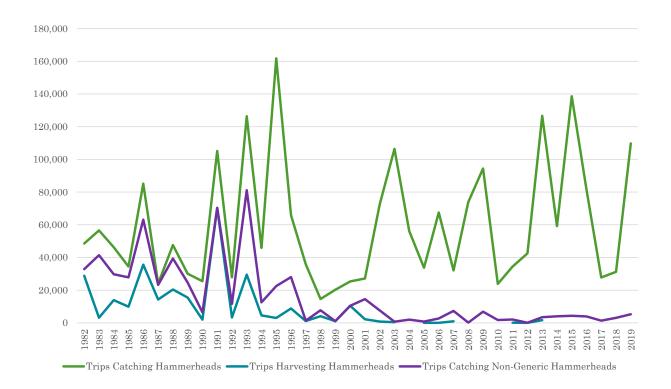
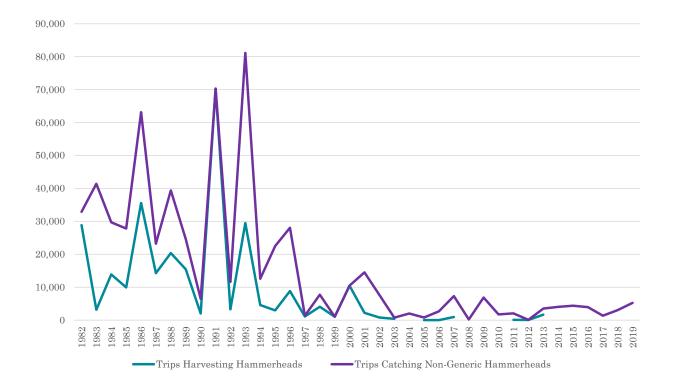


Figure 27. Vertical and thermal habitat use of a great hammerhead, *Sphyrna mokarran*, tagged with a PSAT using recreational fishing gear during South Carolina charter vessel based recreational angling, as described above. Red to blue color scale indicates warmer to cooler temperature. Adapted from SEDAR 77 Data Workshop presentation by Bryan Frazier – PRLDM in South Carolina charter vessel based recreational angling.


April 2022


Figure 28. Depth, light intensity, and pressure (depth) of a great hammerhead, *Sphyrna mokarran* tagged with a PSATLife captured using recreational fishing gear during South Carolina charter vessel based recreational angling, as described above. Adapted from SEDAR 77 Data Workshop presentation by Bryan Frazier – PRLDM in South Carolina charter vessel based recreational angling.


Figure 29. Summary of data used to calculate the proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads, as described above. The MRIP data base was queried for the number of MRIP trips: (1) targeting sharks (excluding pelagic, small coastals, and dogfish); (2) catching hammerheads, including generic hammerheads; (3) catching hammerheads identified to species; and (4) harvesting hammerheads identified to species. Adapted from SEDAR 77 Data Workshop presentation by Cliff Hutt – Proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads.

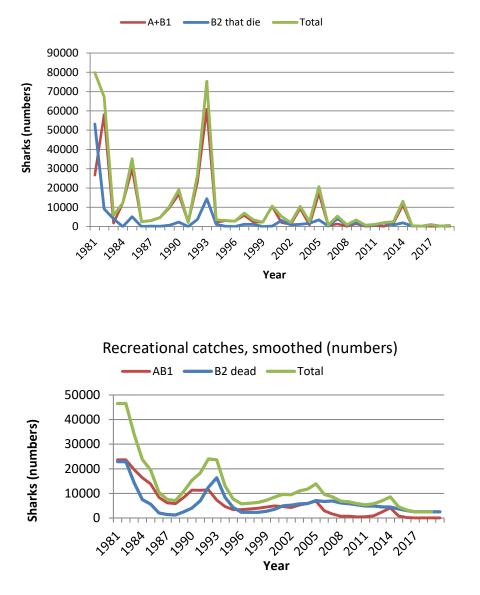
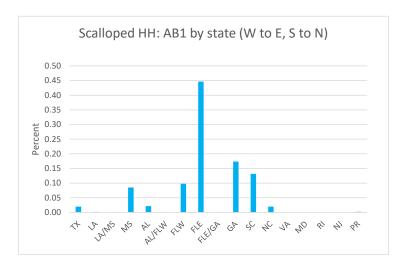
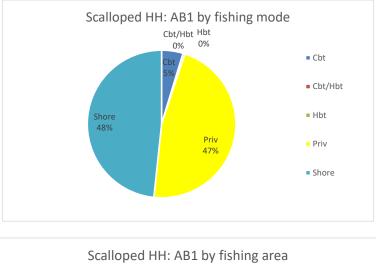
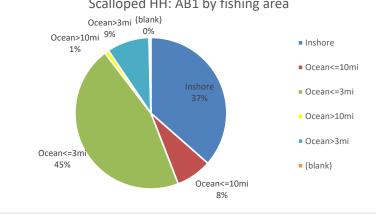

Figure 30. Summary of data used to calculate the proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads, as described above. The MRIP data base was queried as described in Figure 29. Adapted from SEDAR 77 Data Workshop presentation by Cliff Hutt – Proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads.

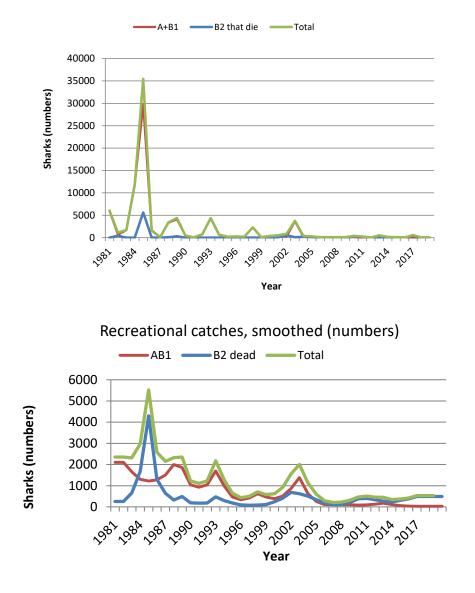
Figure 31. Summary of data used to calculate the proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads, as described above. The MRIP data base was queried as described in Figure 29. Adapted from SEDAR 77 Data Workshop presentation by Cliff Hutt – Proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads.

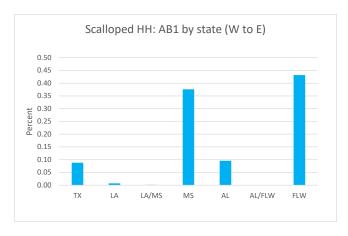


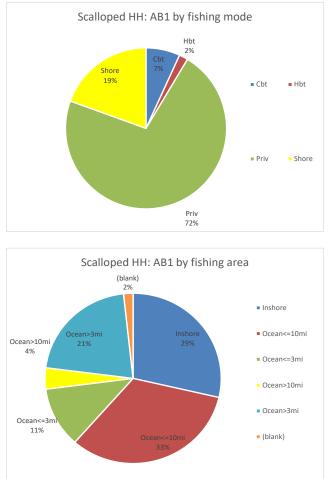

Figure 32. Summary of data used to calculate the proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads, as described above. The MRIP data base was queried as described in Figure 29. Adapted from SEDAR 77 Data Workshop presentation by Cliff Hutt – Proportion of shark targeted recreational fishing trips in the MRIP data base that captured or harvested hammerheads.



Recreational catches (numbers)


Figure 33. Recreational catches in numbers (AB1 and B2s that die assuming an initial arbitrary postrelease mortality rate of 10%) of scalloped hammerheads (all regions) before smoothing (top) and after adjusting the 1982 AB1 estimate, smoothing the 1993 AB1 estimate, smoothing the entire series using a three-year moving geometric average, and using the recommended post-release mortality rate of 26.81% (bottom).




Figure 34. Recreational catches (AB1, numbers) of scalloped hammerhead by state (top), fishing mode (middle), and fishing area (bottom), 1981-2020. Note: "Blank" fishing area indicates catches reported in the Southeast Region Headboat Survey (SRHS).

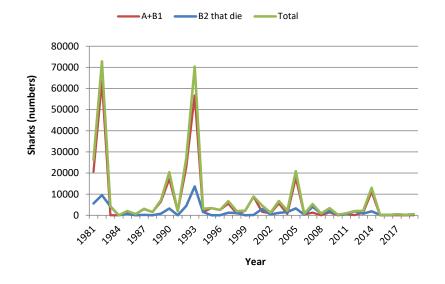
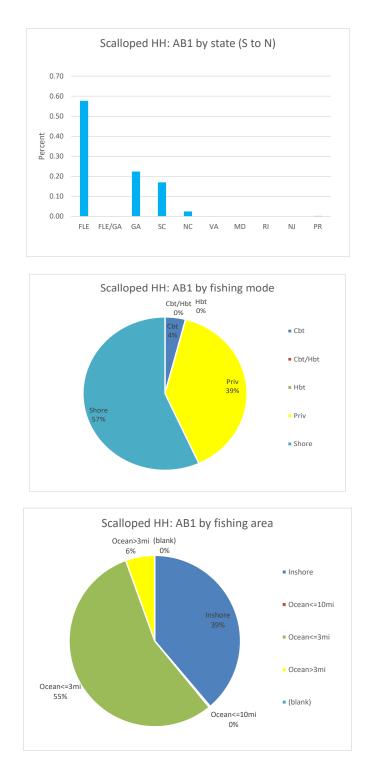
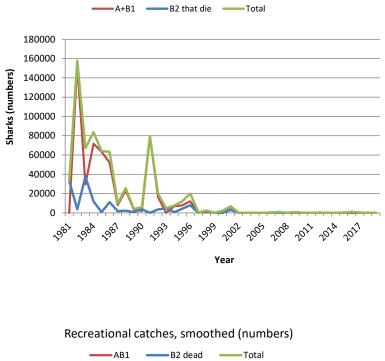
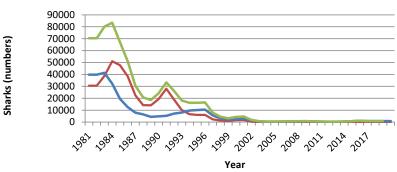

Recreational catches (numbers)

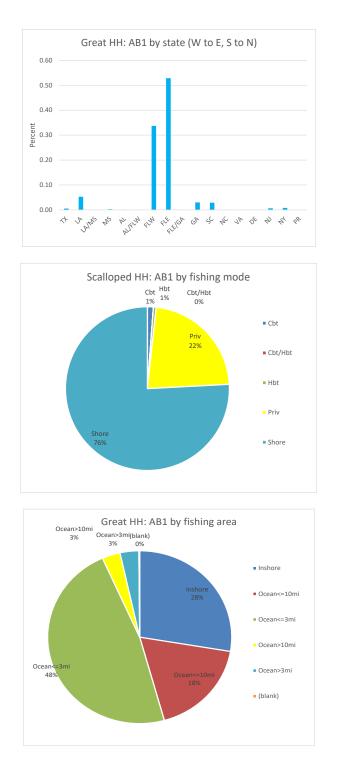
Figure 35. Recreational catches in numbers (AB1 and B2s that die assuming an initial arbitrary postrelease mortality rate of 10%) of scalloped hammerheads in the GOM before smoothing (top) and after smoothing the 1984 and 1985 AB1 estimates, smoothing the entire series using a three-year moving geometric average, and using the recommended post-release mortality rate of 26.81% (bottom).




Figure 36. Recreational catches (AB1, numbers) of scalloped hammerheads in the GOM by state (top), fishing mode (middle), and fishing area (bottom), 1981-2020. Note: "Blank" fishing area indicates catches reported in the Southeast Region Headboat Survey (SRHS).


Recreational catches (numbers)


Figure 37. Recreational catches in numbers (AB1 and B2s that die assuming an initial arbitrary postrelease mortality rate of 10%) of scalloped hammerheads in the ATL before smoothing (top) and after adjusting the 1982 AB1 estimate, smoothing the 1993 AB1 estimate, smoothing the entire series using a three-year moving geometric average, and using the recommended post-release mortality rate of 26.81% (bottom).


Figure 38. Recreational catches (AB1, numbers) of scalloped hammerheads in the ATL by state (top), fishing mode (middle), and fishing area (bottom), 1981-2020. Note: "Blank" fishing area indicates catches reported in the Southeast Region Headboat Survey (SRHS).

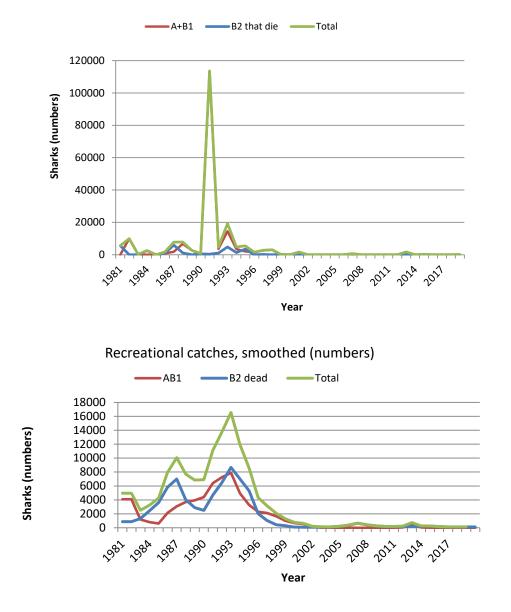

Recreational catches (numbers)

Figure 39. Recreational catches in numbers (AB1 and B2s that die assuming an initial arbitrary postrelease mortality rate of 10%) of great hammerheads before smoothing (top) and after adjusting and smoothing the 1982 AB1 estimate, smoothing the entire series using a three-year moving geometric average, and using the recommended post-release mortality rate of 26.81% (bottom).

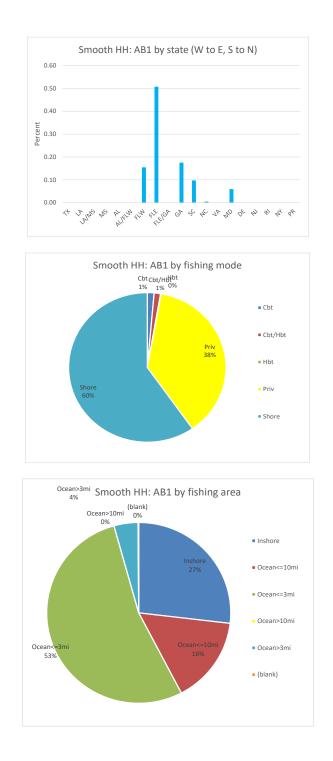
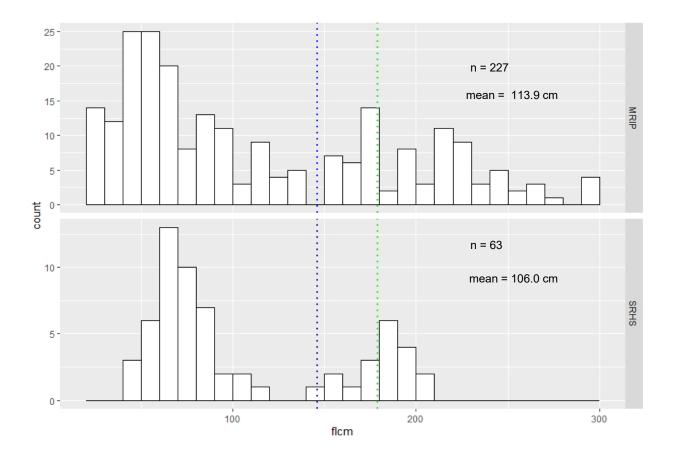
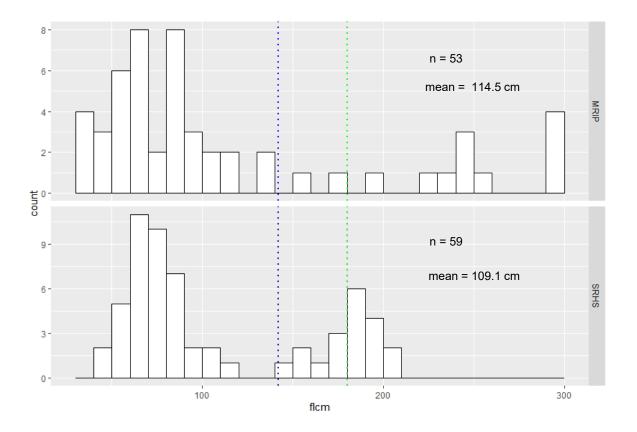
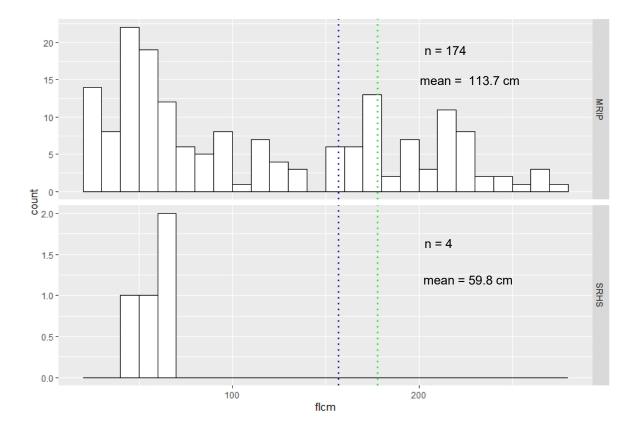


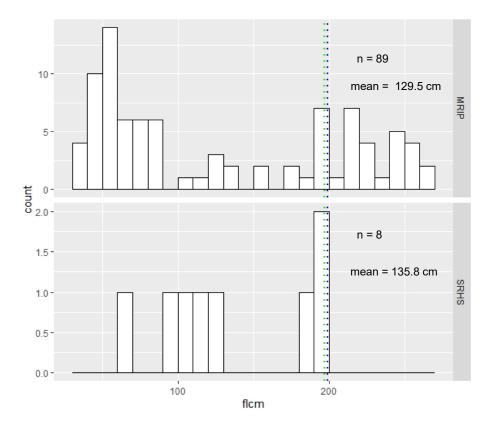
Figure 40. Recreational catches (AB1, numbers) of great hammerheads by state (top), fishing mode (middle), and fishing area (bottom), 1981-2020. Note: "Blank" fishing area indicates catches reported in the Southeast Region Headboat Survey (SRHS).

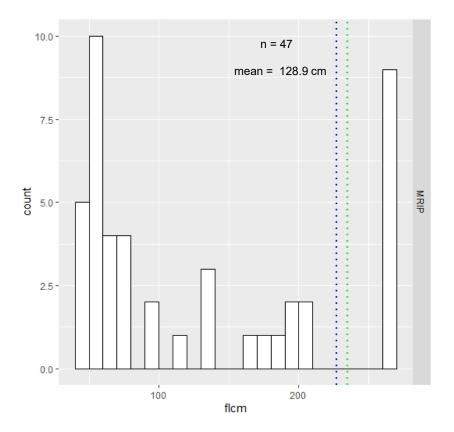


Recreational catches (numbers)


Figure 41. Recreational catches in numbers (AB1 and B2s that die assuming an initial arbitrary postrelease mortality rate of 10%) of smooth hammerheads before smoothing (top) and after adjusting the 1991 AB1 estimate, smoothing the entire series using a three-year moving geometric average, and using the recommended post-release mortality rate of 26.81% (bottom).


Figure 42. Recreational catches (AB1, numbers) of smooth hammerheads by state (top), fishing mode (middle), and fishing area (bottom), 1981-2020. Note: "Blank" fishing area indicates catches reported in the Southeast Region Headboat Survey (SRHS).


Figure 43. Length-frequency histograms of scalloped hammerheads in all regions caught in the MRIP and SRHS recreational surveys. The dotted blue and green lines denote the median length at maturity for males and females, respectively. MRIP= Marine Recreational Information Program (MRIP). SRHS=Southeast Region Headboat Survey.


Figure 44. Length-frequency histograms of GOM scalloped hammerheads caught in the MRIP and SRHS recreational surveys. The dotted blue and green lines denote the median length at maturity for males and females, respectively. MRIP= Marine Recreational Information Program (MRIP). SRHS=Southeast Region Headboat Survey.

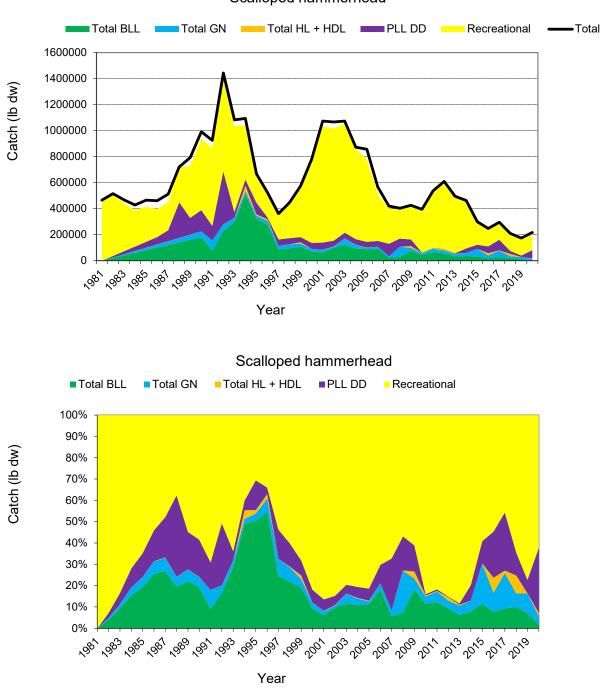

Figure 45. Length-frequency histograms of ATL scalloped hammerheads caught in the MRIP and SRHS recreational surveys. The dotted blue and green lines denote the median length at maturity for males and females, respectively. MRIP= Marine Recreational Information Program (MRIP). SRHS=Southeast Region Headboat Survey.

Figure 46. Length-frequency histograms of great hammerheads caught in the MRIP and SRHS recreational surveys. The dotted blue and green lines denote the median length at maturity for males and females, respectively. MRIP= Marine Recreational Information Program (MRIP). SRHS=Southeast Region Headboat Survey.

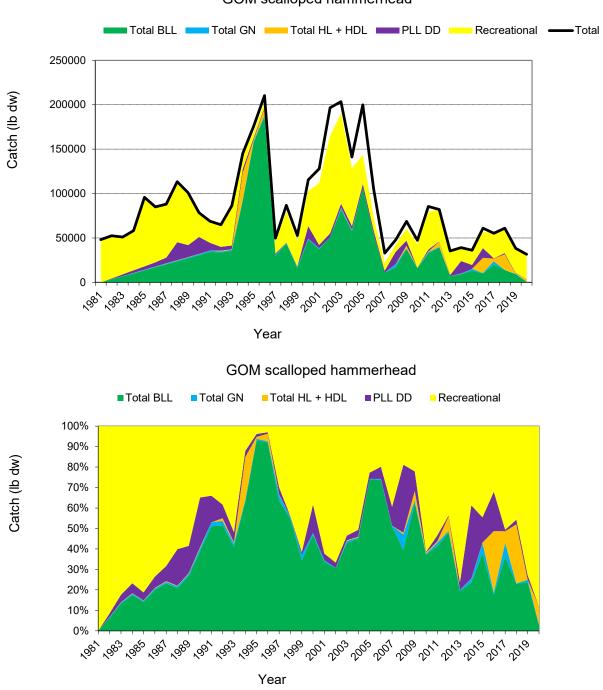


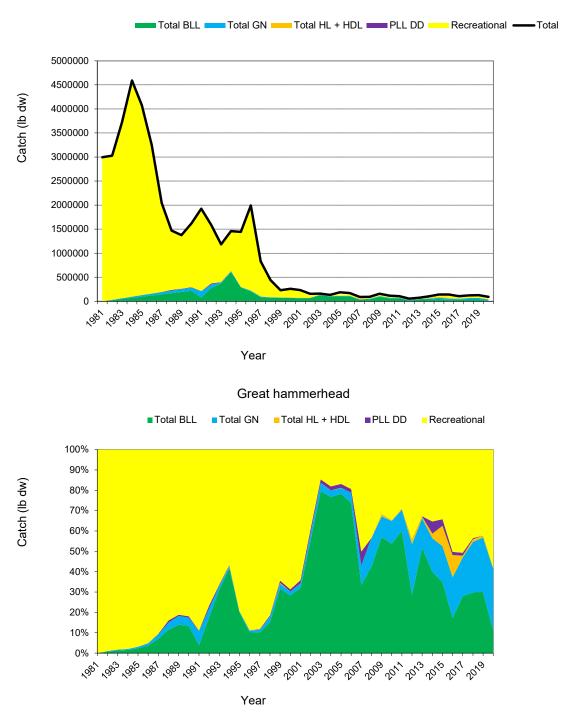
Figure 47. Length-frequency histograms of smooth hammerheads caught in the MRIP and SRHS recreational surveys. The dotted blue and green lines denote the median length at maturity for males and females, respectively. MRIP= Marine Recreational Information Program (MRIP). SRHS=Southeast Region Headboat Survey.


Scalloped hammerhead

Figure 48. Commercial catches by gear and smoothed recreational catches of scalloped hammerheads in weight (lb dw), 1981-2020. Top panel: stacked catches by year; bottom panel: proportions by year.

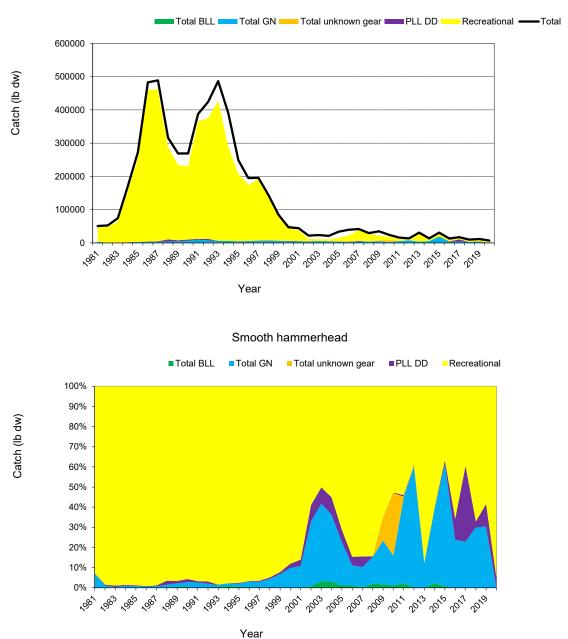
GOM scalloped hammerhead

Figure 49. Commercial catches and smoothed recreational catches of GOM scalloped hammerheads in weight (lb dw), 1981-2020. Top panel: stacked catches by year; bottom panel: proportions by year.



ATL scalloped hammerhead

Figure 50. Commercial catches and smoothed recreational catches of ATL scalloped hammerheads in weight (lb dw), 1981-2020. Top panel: stacked catches by year; bottom panel: proportions by year.


Year

30% 20% 10% 0%

Great hammerhead

Figure 51. Commercial catches and smoothed recreational catches of great hammerheads in weight (lb dw), 1981-2020. Top panel: stacked catches by year; bottom panel: proportions by year.

Smooth hammerhead

Figure 52. Commercial catches and smoothed recreational catches of smooth hammerheads in weight (lb dw), 1981-2020. Top panel: stacked catches by year; bottom panel: proportions by year

4. Indices of Population Abundance

4.1 Overview

During the initial webinars for SEDAR77, data sources were preliminary examined in terms of their usefulness in developing an index of abundance. Thirty-one (31) data sources were initially considered for use in developing indices of abundance (Table 1). No data sources were considered for Carolina hammerhead due to the difficulty in differentiating the species in the field without genetic analysis. Indices were constructed using both scientific survey and fishery-dependent data. The Working Group (referred to as "Group" henceforth) assessed the appropriateness of each time series by modifying guidelines developed by the International Commission for the Conservation of Atlantic Tunas (ICCAT) Scientific Committee on Research and Statistics (SCRS; ICCAT Doc. No. SCI-033 / 2012). In almost all data series, regardless of whether the data were fishery-dependent or from a scientific survey, the data were standardized using a form of the generalized linear model (Aitchison, 1955). In some cases, scalloped hammerhead datasets were subset to create an Age 0 complex (61 cm FL, young-ofthe-year, SEDAR77-DW) and an Age 1+ complex (62 cm FL and greater, juvenile to adult, SEDAR77-DW) to facilitate the creation of recruitment indices (Age 0). The delta-lognormal modeling methods were the most often used to estimate relative abundance indices for great and scalloped hammerheads (Pennington, 1983; Bradu and Mundlak, 1970). The main advantage of using this method is allowance for the probability of zero catch (Ortiz et al., 2000). Elements considered for each data series ranged from the statistical diagnostics of the analysis to the temporal and spatial coverage of the index (Table 2). The Group also used a flowchart developed by ICCAT in its decision-making process (Figure 1). In previous SEDARs for sharks, the indices working group ranked indices on a scale of 1-5 as a means of attributing relative weights for the stock assessment. As was done at SEDAR65, the Group discussed that there is likely little difference among several of the categorical designations and decided to drop that method and to simply recommend the retention of the index or recommend it be not utilized for the assessment. While all indices reviewed were judged to be appropriately constructed, in some cases revisions were recommended.

159

Group Membership

John Carlson, (Leader) NOAA Fisheries Service- Panama City, FL
Cami McCandless (Co-Leader)NOAA Fisheries Service, Narragansett, RI
Elizabeth BabcockRosenstiel School of Marine and Atmospheric Science
Dean Courtney NOAA Fisheries Service- Panama City, FL
J. Marcus Drymon Mississippi State University
R. Dean GrubbsFlorida State University Neil
HammerschlagRosenstiel School of Marine and Atmospheric Science
Eric HoffmayerNOAA Fisheries Service- Pascagoula, MS Andrea
KroetzNOAA Fisheries Service- Panama City, FL
Robert J LatourVirginia Institute of Marine Science Adam
PollackNOAA Fisheries Service- Pascagoula, MS

4.2 Review Of Indices – Scalloped Hammerhead-

4.2.1 Fishery-Dependent Indices

Pelagic Longline Observer Program (SEDAR77-DW08)

In 1992, the National Marine Fisheries Service (NMFS) initiated scientific sampling of the U.S. large pelagic fisheries longline fleet, as mandated by the U.S. Swordfish Fisheries Management Plan and subsequently the Atlantic Highly Migratory Species Fishery Management Plan (1998). Scientific observers were placed aboard vessels participating in the Atlantic pelagic longline fishery. Relative abundance indices from data collected by observers have been previously developed and used in a variety of assessments of pelagic species primarily under the auspices of the International Commission for the Conservation of Atlantic Tunas (ICCAT). A data set was developed based on the observer programs as described in Beerkircher et al. (2002) and Cortés et al. (2007). Following recommendations of the stock identification workshop, separate indices were evaluated for the three putative scalloped hammerhead stocks defined in the stock identification workshop by the geographic region: (1) the Atlantic Ocean and Gulf of Mexico region alone (sensitivity). However, it was not possible to develop and index for the Gulf of Mexico region alone because the model would not converge with only Year as a covariate. For the Atlantic Ocean and Gulf of Mexico regions combined (base) and the Atlantic Ocean region alone

(sensitivity) the CPUE was standardized using generalized linear mixed models in a two-step deltalognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The Group determined that because this series is stock wide and used in previous stock assessments for other pelagic species, the series should be retained for use in the scalloped hammerhead stock assessment base model. The recommendation is for Age 1+ scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 5) and the Atlantic Ocean region (Sensitivity; Tables 3 and 6). There was discussion relative to the initial abundance in 1992 being much higher than the remainder of the series. It was noted that this high value was also found for other species (e.g. shortfin mako) and as there was no obvious explanation, the data point was retained in the time series.

Shark Bottom Longline Observer Program and Shark Research Fishery (SEDAR77-DW12)

Observations by at-sea observers of the shark-directed bottom longline fishery in the Atlantic Ocean and Gulf of Mexico have been conducted since 1994 (e.g. Morgan et al. 2009, Mathers et al. 2018 and references therein). A combined data set was developed based on observer programs from Morgan et al. (2009) and Mathers et al. (2018). Historically, vessels in this fishery primarily targeted sandbar shark. With the introduction of the shark research fishery in 2008, vessels outside the research fishery were not permitted to target or land sandbar sharks. This change in management regulations likely influences the time series of abundance for sharks such that vessels fishing in the research fishery should be modeled separately from those outside the research fishery. Therefore, two indices of abundance were created from this data series; 1994-2007 for all vessels and 2008-2019 for vessels in the research fishery. The time series covers a broad area (North Carolina to eastern Gulf of Mexico) over a long temporal period (1993-2019). Following recommendations of the stock identification workshop, separate indices were evaluated for the three putative scalloped hammerhead stocks defined in the stock identification workshop by the geographic region: (1) the Atlantic Ocean and Gulf of Mexico regions combined (base); (2) the Atlantic Ocean region alone (sensitivity); and (3) the Gulf of Mexico region alone (sensitivity). For each region, the CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The Group determined that because this series is stock wide and used in previous stock assessments for sharks, the series should be retained for use in the scalloped hammerhead stock assessment base model. The recommendation is for Age 1+ scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 5), the Atlantic Ocean region (Sensitivity; Tables 3 and 6), and the Gulf of Mexico region (Sensitivity; Tables 3 and 7) including both the non-research (≤ year 2007) and the research (≥ year 2008) time series in each region.

Southeast Coastal Gillnet Observer Program (SEDAR77-DW13)

Observer coverage of the Florida-Georgia shark gillnet fishery began in 1992, and has since documented the many changes to effort, gear characteristics, and target species the fishery has undergone following the implementation of multiple fisheries regulations. In 2005, the gillnet observer program was expanded to include all vessels that have an active directed shark permit and fish with sink gillnet gear. These vessels were not previously subject to observer coverage because they either were targeting non-highly migratory species or were not fishing gillnets in a drift or strike fashion. In 2006, the National Marine Fisheries Service Southeast Regional Office requested further expansion of the scope of the gillnet observer program to include all vessels fishing gillnets regardless of target, and for coverage to be extended to cover the full geographic range of gillnet fishing effort in the southeast United States. Based on these regulations and on current funding levels, the gillnet observer program now covers all anchored (sink, stab, set), strike, or drift gillnet fishing by vessels that fish from Florida to North Carolina and the Gulf of Mexico year-round. Following recommendations of the stock identification workshop, separate indices were evaluated for the three putative scalloped hammerhead stocks defined in the stock identification workshop by the geographic region: (1) the Atlantic Ocean and Gulf of Mexico regions combined (base); (2) the Atlantic Ocean region alone (sensitivity); and (3) the Gulf of Mexico region alone (sensitivity). However, abundance trends were not developed specific to the Gulf of Mexico due to low proportion positives. For the Atlantic Ocean and Gulf of Mexico regions combined (base) and the Atlantic Ocean region alone (sensitivity) the CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The Group determined that because this series is stock wide and used in previous stock assessments for sharks, the series should be retained for use in the scalloped hammerhead stock

assessment. However, given the higher CVs and the presence of other indices it was recommended this time series be used as a sensitivity. The recommendation is for use as an additional sensitivity analysis of Age 1+ scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Sensitivity; Tables 3 and 8), and the Atlantic Ocean region alone (Sensitivity; Tables 3 and 8).

4.2.2 Scientific Survey Indices

Dauphin Island Sea Laboratory Bottom Longline Survey (SEDAR77-DW06)

Scalloped hammerheads (*Sphyrna lewini*) are a common shelf-associated shark off the coast of Alabama. From May 2006 to October 2019, 230 scalloped hammerheads were captured during 1311 fisheriesindependent bottom longline sets. Trends in catch by sex were examined and catch data were standardized using a negative binomial generalized linear model to create a standardized index of relative abundance. Males were significantly larger and more abundant than females and few females larger than 175 cm stretch total length were caught. The standardized index of relative abundance indicated that the relative abundance of scalloped hammerheads in the sampling region has remained relatively stable over the past 14 years.

Decision: The Group determined that because this series covers a relatively long time period, the series should be retained for use in the scalloped hammerhead stock assessment. However, given that the time series is limited spatially (only off the coast of Alabama) and it overlaps with the SEFSC bottom longline survey (SEDAR77-DW24), it was recommended that this time series be used as a sensitivity. The recommendation is for Age 1+ scalloped hammerhead stocks in the Gulf of Mexico region alone (Tables 3 and 8).

Florida State University Bottom Longline Survey (SEDAR77-DW14)

The Florida State University longline survey was expanded in 2011 to include regular sampling in southwest Florida in an effort to capture smalltooth sawfish for research directed at promoting recovery of this endangered species. This work is concentrated in two areas, in Everglades National Park, mostly in northern Florida Bay, along the middle to lower Florida Keys, primarily along the shelf break. Along the Florida Keys, scalloped and great hammerhead sharks are among the most frequently encountered species in this survey. The FSU survey targets coastal sharks and smalltooth sawfish using fishery-independent longlines consisting of a 4.0 mm monofilament main line that is anchored on each end and marked with a surface buoy bearing the permit numbers. Each mainline set was approximately 750 m long. A standard set included 50 or 100 gangions consisting of a stainless-steel tuna clip with an 8/0 stainless steel swivel attached to 2.5 m of 300 kg monofilament that was doubled in the terminal 25 cm and attached to 16/0 non-offset circle hook. Hooks were baited with ladyfish *Elops saurus* or Spanish mackerel Scomberomorus maculatus. Depth (m), turbidity (cm), water temperature (°C), salinity, and dissolved oxygen (mg l^{-1}) were recorded from the surface to the bottom for all sets made in depths of less than 10 m, and bottom water temperature (°C) was recorded for those greater than 10 m deep. Targeted soak times were 1 h to minimize mortality, and all lines were set during daylight hours. The line was hauled in the order and direction it was set and teleosts and elasmobranchs were sampled as they were caught during retrieval. Areas sampled included the Atlantic side of the Florida Keys from Key West to Islamorada and inside ENP from Florida Bay north to Ponce de Leon Bay. The CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The series covers a proportion of the stock not sampled by other surveys. The initial analysis of these data resulted in high CVs and a low proportion positive. The Group decided that a post-analysis be conducted on a subset of data based on habitat. Data were refined and post-analysis conducted on a subset of data to reduce true zeros from areas where hammerheads would never or rarely be available. The revised indices were recommended for use in the scalloped hammerhead stock assessment base model. The recommendation is for Age 1+ scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 5) and the Gulf of Mexico region alone (Sensitivity; Tables 3 and 7).

NOAA Fisheries-Southeast Fisheries Science Center- Bottom Longline Survey (SEDAR77-DW24)

The Southeast Fisheries Science Center Mississippi Laboratories (MSLABS) has conducted standardized bottom longline surveys in the Gulf of Mexico (GOM), Caribbean, and Western North Atlantic Ocean (Atlantic) since 1995. Additionally, in 2011 the Congressional Supplemental Sampling Program (CSSP) was conducted, where high levels of standardized bottom longline survey effort were maintained from April through October. Data from the MSLABS Bottom Longline Survey and the CSSP Survey were used to produce a relative abundance index for scalloped hammerhead (*Sphyrna lewini*) and great hammerhead (*Sphyrna mokarran*). One abundance index was calculated for great hammerhead that included data from both the GOM and Atlantic. Following recommendations of the stock identification workshop, separate indices were evaluated for the three putative scalloped hammerhead stocks defined in the stock identification workshop by the geographic region: (1) the Atlantic Ocean and Gulf of Mexico region alone (sensitivity). Delta-lognormal modeling methods were used to estimate relative abundance indices for great and scalloped hammerheads. All age 0 scalloped hammerhead (FL < 61 cm) were removed when building the dataset for the abundance indices.

Decision: The Group determined that because this series is stock wide and used in previous stock assessments for sharks, the series should be retained for use in the scalloped hammerhead stock assessment base model. The recommendation is for Age 1+ scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 5), the Atlantic Ocean region alone (Sensitivity; Tables 3 and 6), and the Gulf of Mexico region alone (Sensitivity; Tables 3 and 7).

NOAA Northeast Fisheries Science Center coastal shark bottom longline survey (SEDAR77-DW28)

This document details scalloped hammerhead shark catches from the Northeast Fisheries Science Center (NEFSC) coastal shark bottom longline survey conducted by the Apex Predators Program from 1996-2018. Data from this survey were used to examine the trends in relative abundance in the waters off the east coast of the United States. Catch per unit effort (CPUE) in number of sharks per 100 hook hours were examined for each year of the bottom longline survey, 1996, 1998, 2001, 2004, 2007, 2009, 2012, 2015, and 2018. The CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. The standardized

CPUE results from the NEFSC longline survey show an increasing trend in scalloped hammerhead shark relative abundance across the survey years from 1996 to 2018.

Decision: The initial standardized CPUE results showed an increasing trend in scalloped hammerhead shark relative abundance across the survey years from 1996 to 2018. This result is not supported by the life history of the species, particularly the large increase in the final years of the survey. Following SEDAR 77 panel feedback, additional analyses were undertaken that modified the spatial coverage of the survey (excluding non-repeated stations and excluding areas), modified model development (excluding year until all covariates were incorporated), and incorporating habitat suitability. Although some improvements were seen in model fit, diagnostics, and estimated trends, these models still seemed to be driven by the year effect and/or overinflated some estimates (habitat suitability weighting). Therefore, resulting indices from these analyses for the NEFSC coastal shark bottom longline survey are not recommended for use in the SEDAR 77 assessment for scalloped hammerhead sharks at this time. However, during the final post- Data Workshop webinar it was decided that spatiotemporal modelling should be investigated and results reviewed during the first Assessment Workshop webinar for potential incorporation into the assessment as a recommended index or in a sensitivity run if recommended for inclusion by the Assessment Workshop panel.

Texas Parks and Wildlife Gillnet Survey (SEDAR77-DW16)

This paper determines a relative abundance index for young-of-the-year scalloped hammerhead sharks utilizing a scientific survey gillnet survey by the Texas Parks and Wildlife Department, Coastal Fisheries Division. The protocol for the survey, as it is constituted today, has been standardized since 1982 with the purpose of monitoring relative abundance and size of organisms, their spatial and temporal distribution, and species composition of the community and selected environmental parameters known to influence their distribution and abundance. Surveys were conducted in 10 major bay systems along the Texas coast in the northwestern Gulf of Mexico from 1982 to 2019. The CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: Although the proportion positive was low for scalloped hammerhead, the Group noted the temporal and spatial coverage of the series (1982-2019; entire Texas coast). As the survey

largely catches only juveniles, the series was recommended for use in the scalloped hammerhead stock assessment base model as a potential recruitment series (Age 0). The recommendation is for Age 0 scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 9) and Gulf of Mexico region alone (Sensitivity; Tables 3 and 9).

Northeast Gulf of Mexico (GULFSPAN) Gillnet Survey (SEDAR77-DW17)

Fishery-independent surveys of coastal shark populations have taken place since 1994 in the eastern and northern Gulf of Mexico. The cooperative Gulf of Mexico Shark Pupping and Nursery (GULFSPAN) survey began in 1996 to examine the distribution and abundance of juvenile sharks in coastal areas. The ultimate intent of this survey is to continue to describe and further refine shark essential fish habitat as mandated by the Magnuson-Steven Fishery Conservation and Management Act. NOAA Fisheries Panama City Laboratory oversees the survey. In 2003, Gulf Coast Research Laboratory at the University of Southern Mississippi was added to the survey. In 2007, additional participants included the Florida Natural History Museum at the University of Florida and Dauphin Island Sea Laboratory at the University of South Alabama. In 2008, the Florida State University Coastal and Marine Laboratory became a collaborator. In 2016 and 2017, New College of Florida and Havenworth Coastal Conservation became collaborators in the GULFSPAN project, respectively. Preliminary examination of the data indicated the occurrence of scalloped hammerhead was highest in the northern Gulf of Mexico for the NOAA and University of Southern Mississippi surveys. While the other surveys did capture scalloped hammerhead, the frequency of capture (<1%) was too low to develop a reliable index and these surveys were excluded. The CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The survey has been used in previous shark assessments. As the survey largely catches only juveniles, the series was recommended for use in the scalloped hammerhead stock assessment base model as a potential recruitment series (Age 0). The recommendation is for Age 0 scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 9) and Gulf of Mexico region alone (Sensitivity; Tables 3 and 9).

Cooperative Atlantic States Shark Pupping and Nursery longline survey (SEDAR77-DW30)

This document details the shark catches from the Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) longline surveys conducted in estuarine and nearshore waters from South Carolina to northern Florida. Catch per unit effort (CPUE) in number of sharks per 100 hook hours were used to examine young-of-the-year scalloped hammerhead shark relative abundance from 2005-2019. The CPUE was standardized using a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. The standardized index of abundance from the COASTSPAN longline survey shows an overall decreasing trend in in relative abundance for YOY scalloped hammerhead across survey years.

Decision: The survey has been used in previous shark assessments. As the survey largely catches only juveniles, the series was recommended for use in the scalloped hammerhead stock assessment base model as a potential recruitment series (Age 0). The recommendation is for Age 0 scalloped hammerhead stocks in the in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 9) and Atlantic region alone (Sensitivity; Tables 3 and 9).

South Carolina Department of Natural Resources, Cooperative Atlantic States Shark Pupping and Nursery long-gillnet survey (SEDAR77-DW31)

This document details scalloped hammerhead shark catches from the South Carolina Department of Natural Resources (SCDNR), Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) long-gillnet survey (2001-2019). Catch per unit effort (CPUE) in number of sharks per net hour were used to examine young-of-the-year (YOY) scalloped hammerhead shark relative abundance in South Carolina's estuarine waters. The CPUE was standardized using generalized linear models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. Nominal and standardized CPUE results from the COASTSPAN long-gillnet survey indicate a slight increasing trend in YOY scalloped hammerhead relative abundance across survey years. Decision: Although the survey is limited spatially, it has been used in previous shark assessments. As the survey largely catches only juveniles, the series was recommended for use in the scalloped hammerhead stock assessment base model as a potential recruitment series (Age 0). The recommendation is for Age 0 scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 9) and Atlantic region alone (Sensitivity; Tables 3 and 9).

South Carolina Department of Natural Resources, Cooperative Atlantic States Shark Pupping and Nursery short-gillnet survey (SEDAR77-DW32)

This document details scalloped hammerhead shark catches from the South Carolina Department of Natural Resources (SCDNR), Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) short-gillnet survey (2007-2019). Catch per unit effort (CPUE) in number of sharks per net hour were used to examine the young-of-year (YOY) scalloped hammerhead sharks trend in South Carolina estuaries for use as a recruitment index in the SEDAR 77 stock assessment. The CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. Nominal and standardized CPUE results from the COASTSPAN short-gillnet survey indicate an overall decreasing trend in YOY scalloped hammerhead shark relative abundance during the survey years.

Decision: Although the survey is limited spatially and contained missing years, it has been used in previous shark assessments. As the survey largely catches only juveniles, the series was recommended for use in the scalloped hammerhead stock assessment base model as a potential recruitment series (Age 0). The recommendation is for Age 0 scalloped hammerhead stocks in the Atlantic Ocean and Gulf of Mexico regions combined (Base; Tables 3 and 9) and Atlantic region alone (Sensitivity; Tables 3 and 9).

Standardized index of abundance for scalloped hammerhead sharks from the University of North Carolina shark longline survey south of Shakleford Banks (SEDAR77-DW33)

This document details the scalloped hammerhead catch from April-November, 1981-2019, at two fixed stations in Onslow Bay south of Shackleford Banks, North Carolina. Catch per unit effort (CPUE) by set

in number of sharks per number of set hooks were examined by year. The CPUE was standardized using a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution. The majority of catches occurred during April and early May (82%), which were not consistently sampled across years due to weather and logistical constraints. The standardized relative abundance for scalloped hammerhead sharks shows a variable but overall decreasing trend through the early 1990s followed by an increasing trend throughout the remainder of the time series.

Decision: The survey is limited spatially but is long term and began in 1981. However, in many years the catches are very low (0-3) which suggests it may not be a good survey for tracking abundance. However, the time series has been used in previous shark assessments (blacknose shark) and the Group agreed that the series should be retained for use in the scalloped hammerhead stock assessment, but it was recommended that this time series be used as a sensitivity. The recommendation is for Age 1+ scalloped hammerhead Atlantic Ocean and Gulf of Mexico regions combined and in the Atlantic region (Table 6).

4.2.3 Summary-Scalloped Hammmerhead

The geographic coverage of the abundance indices for scalloped hammerhead shark are in Figures 2-6 and plots of the relative indices (index/mean index of the time series) by year are in Figures 7-11. The Indices Working Group recommends compiling indices for use in stock assessment consistent with scalloped hammerhead Stock ID Workshop recommendations to separate indices for the three putative scalloped hammerhead stocks defined in the stock identification workshop by the geographic region: (1) the Atlantic Ocean and Gulf of Mexico regions combined (base); (2) the Atlantic Ocean region alone (sensitivity); and (3) the Gulf of Mexico region alone (sensitivity):

1. Compile indices for a base model in the Atlantic Ocean and Gulf of Mexico regions combined from the recommended scalloped hammerhead stock assessment indices as follows:

a. Include each recommended stock wide Age 1+ index (Tables 3 and 5); and

b. Include each recommended regional Age 0 index (Tables 3 and 9) as a potential recruitment index within the base model.

2. Compile indices for an Atlantic region sensitivity model from the recommended scalloped hammerhead stock assessment indices as follows:

a. Include each recommended regional Age 1+ index (Tables 3 and 6), from the Atlantic region within the Atlantic region model; and

b. Include each recommended regional Age 0 index from the Atlantic region (Tables 3 and 9) as a potential recruitment index within the Atlantic region model.

3. Compile indices for a Gulf of Mexico region sensitivity model from the recommended scalloped hammerhead stock assessment indices as follows:

a. Include each recommended regional Age 1+ index (Tables 3 and 7), from the Gulf of Mexico region within the Gulf of Mexico region model; and

b. Include each recommended regional Age 0 index from the Gulf of Mexico region (Tables 3 and 9) as a potential recruitment index within the Gulf of Mexico region model.

4. Compile additional recommended indices of abundance for Age 1+ scalloped hammerhead sensitivity analysis as described in Tables 3 and 8.

4.3 Review Of Indices –Great Hammerhead

4.3.1 Fishery-Dependent Indices

Shark Bottom Longline Observer Program (SEDAR77-DW12)

Observations by at-sea observers of the shark-directed bottom longline fishery in the Atlantic Ocean and Gulf of Mexico have been conducted since 1994 (e.g. Morgan et al. 2009, Mathers et al. 2018 and references therein). A combined data set was developed based on observer programs from Morgan et al. (2009) and Mathers et al. (2018). Historically, vessels in this fishery primarily targeted sandbar shark. With the introduction of the shark research fishery in 2008, vessels outside the research fishery were not permitted to target or land sandbar sharks. This change in management regulations likely influences the time series of abundance for sharks such that vessels fishing in the research fishery should be modeled separately from those outside the research fishery. Therefore, two indices of abundance were created from this data series; 1994-2007 for all vessels and 2008-2019 for vessels in the research fishery. While observations of vessels outside the research fishery were made from 2008-2018, the low sample size in some years precluded including those data, as the model would have difficulty converging. The time series covers a broad area (North Carolina to eastern Gulf of Mexico) over a long temporal period (1993-2019). The CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal

approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The Group determined that because this series is stock wide and used in previous stock assessments for sharks, the series should be retained for use in the stock assessment. The recommendation is for the stock wide great hammerhead stock assessment base run (Table 10), including both the non-research (\leq year 2007) and the research (\geq year 2008) time series.

4.3.2 Scientific Survey Indices

Florida State University Bottom Longline Survey (SEDAR77-DW14)

The Florida State University longline survey was expanded in 2011 to include regular sampling in southwest Florida in an effort to capture smalltooth sawfish for research directed at promoting recovery of this endangered species. This work is concentrated in two areas, in Everglades National Park, mostly in northern Florida Bay, along the middle to lower Florida Keys, primarily along the shelf break. Along the Florida Keys, scalloped and great hammerhead sharks are among the most frequently encountered species in this survey. The FSU survey targets coastal sharks and smalltooth sawfish using fishery-independent longlines consisting of a 4.0 mm monofilament main line that is anchored on each end and marked with a surface buoy bearing the permit numbers. Each mainline set was approximately 750 m long. A standard set included 50 or 100 gangions consisting of a stainless steel tuna clip with an 8/0 stainless steel swivel attached to 2.5 m of 300 kg monofilament that was doubled in the terminal 25 cm and attached to 16/0 non-offset circle hook. Hooks were baited with ladyfish *Elops saurus* or Spanish mackerel Scomberomorus maculatus. Depth (m), turbidity (cm), water temperature (°C), salinity, and dissolved oxygen (mg l⁻¹) were recorded from the surface to the bottom for all sets made in depths of less than 10 m, and bottom water temperature (°C) was recorded for those greater than 10 m deep. Targeted soak times were 1 h to minimize mortality, and all lines were set during daylight hours. The line was hauled in the order and direction it was set and teleosts and elasmobranchs were sampled as they were caught during retrieval. Areas sampled included the Atlantic side of the Florida Keys from Key West to Islamorada and inside ENP from Florida Bay north to Ponce de Leon Bay. The CPUE was standardized using generalized linear

172

mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The initial analysis of these data resulted in high CVs and a low proportion positive. The Group decided that a post-analysis be conducted on a subset of data based on habitat (i.e. samples were only included if they represented habitat where great hammerheads would be expected to be found) to reduce true zeros from areas where hammerheads are not available. The revised indices were recommended for use in the stock wide great hammerhead stock assessment base run (Table 10).

Rosenstiel School of Marine and Atmospheric Science Drumline Survey (SEDAR65-DW15)

Shark surveys were conducted year-round, encompassing Florida's wet season (May-October) and dry season (November – April). Shark surveys in the Keys region predominately occurred between January 2009 and December 2013, whereas surveys in the Miami region primarily occurred between April 2014 and February 2021. Daily sampling locations were selected randomly within inshore or offshore habitats. Sharks were surveyed using a standardized and minimally invasive drumline fishing method as described in Gallagher et al. (2014). The fishing gear consisted of a submerged 20-kg weight tied to a line running to the surface by means of an attached inflatable buoy. A 23-m monofilament ganglion line (~400 kg test) was attached to the submerged weight by a swivel, which terminated at a baited 16/0 5°-offset circle hook. Two sets of five baited drumlines were deployed and hooks were baited with a standardized type of cut fish, primarily great barracuda (Sphyrna barracuda) and false albacore (Euthynnus alletteratus), and to a lesser degree ladyfish (Elops saurus), greater amberjack (Seriola dumerili) and jack crevalle (*Caranx hippos*). Each drumline within a set was separated by ~ 100 m. Catch per unit effort were calculated by dividing the number of hammerheads captured by the total soak time of the 10 drumlines deployed at a specific site on a given day. Data were analyzed using the gamlss R package with a negative binomial distribution. Model covariates including month, region (Keys vs Miami), Habitat (Bay vs Ocean), Season (Wet vs Dry) and Latitude and Longitude. Soak Time was included as an offset in the model

Decision: Similar to the Florida State University longline series, the initial analysis of these data resulted in high CVs and a low proportion positive. The Group decided that a post-analysis be

conducted on subset of data based on habitat (i.e. samples were only included if they represented habitat where great hammerheads would be expected to be found) to reduce true zeros from areas where hammerheads are not available. The revised indices were recommended use in the for stock wide great hammerhead stock assessment base run (Table 10).

NOAA Fisheries-Southeast Fisheries Science Center- Bottom Longline Survey (SEDAR77-DW24)

The Southeast Fisheries Science Center Mississippi Laboratories (MSLABS) has conducted standardized bottom longline surveys in the Gulf of Mexico (GOM), Caribbean, and Western North Atlantic Ocean (Atlantic) since 1995. Additionally, in 2011, the Congressional Supplemental Sampling Program (CSSP) was conducted, where high levels of standardized bottom longline survey effort were maintained from April through October. Data from the MSLABS Bottom Longline Survey and the CSSP Survey were used to produce a relative abundance index for scalloped hammerhead (*Sphyrna lewini*) and great hammerhead (*Sphyrna mokarran*). One abundance index was calculated for great hammerhead that included data from both the GOM and Atlantic. Three abundance indices were calculated for scalloped hammerhead, with one covering both the GOM and Atlantic, and with the other two covering the GOM and Atlantic separately. The CPUE was standardized using generalized linear mixed models in a two-step delta-lognormal approach that models the proportion of positive catch with a binomial error distribution separately from the positive catch, which is modeled using a lognormal distribution (Lo et al. 1992).

Decision: The Group determined that because this series is stock wide and used in previous stock assessments for sharks, the series should be retained for use in the stock assessment. The recommendation is for use in the stock wide great hammerhead stock assessment base run (Table 10).

SEAMAP Bottom Longline Survey (SEDAR77-DW25)

A combined index of great hammerhead abundance from scientific survey bottom longline (BLL) surveys conducted in coastal waters of the northern Gulf of Mexico was generated using Southeast Area Monitoring and Assessment Program (SEAMAP) BLL (AL-TX, 2008-2019) and Dauphin Island Sea Lab BLL (2006-2019) data. Both BLL surveys used the same gear, bait, and identical deployment protocols. Due to a change in survey design of the SEAMAP BLL survey, which started sampling exclusively in waters between 3-10m in 2015 to complement the NMFS bottom longline survey and the fact that the

majority of the great hammerhead sharks were caught in shallow waters (<15m), the datasets were truncated to include only stations that occurred in less than 15 m of water. The index extends from 2006 to 2019, and resulted in 85 great hammerheads captured during 1,279 BLL sets. Standardized catch rates were estimated using a delta-lognormal modeling method. Nominal and standardized great hammerhead catch rates remained relatively stable throughout the survey period.

Decision: The Group recommended that this series be retained for use in the assessment. It was noted that the time series represents sampling with the spatial distribution of great hammerhead where there are few indices. The recommendation is for use in the stock wide great hammerhead stock assessment base run (Table 9).

4.3.3 Summary-Great Hammerhead

The geographic coverage of the abundance indices for great hammerhead shark are in Figure 12 and plots of the relative indices (index/mean index of the time series) by year are in Figures 13. The Indices Working Group recommends compiling indices for use in stock assessment consistent with great hammerhead Stock ID Workshop recommendations:

1. Compile indices for a base model from the recommended great hammerhead stock assessment indices as follows:

a. Include each recommended stock wide Age 1+ index (Table 10) within the base model.

4.4 Review Of Indices – Smooth Hammerhead

During the initial webinars for SEDAR77, data sources were preliminary examined in terms of their usefulness in developing an index of abundance for smooth hammerhead. Two data sources were identified; the pelagic longline observer program and the personal logbooks of a recreational charter Captain, Mark Sampson, which are being archived in a database at Maryland Department of Natural Resources. While data from the pelagic longline observer program was previously analyzed in Jiao et al. (2011), the initial analysis noted a very low proportion positive (<1%) and many years with no (0) catches of smooth hammerhead. Therefore, the data were deemed not to be useful for describing the abundance of smooth hammerhead. The initial examination of the data provided by Maryland Department of Natural Resources was incomplete due to issues related to COVID. The data that were provided had covariates with multiply levels (e.g trip type had over 70 levels) that would be difficult to refine without

SEDAR 77 SAR Section III

considerable work. While the data series has great promise, it will require much more time and resources to understand the data. It was suggested this data source be examined in the future as a potential thesis project for a student.

4.5 Review Of Indices – Carolina Hammerhead

During the initial webinars for SEDAR77, it was determined that without genetic verification it would not be possible to separate catches of Carolina hammerhead from scalloped hammerhead when trying to derive indices of abundance. Therefore, no indices are currently available for Carolina hammerhead.

4.6 Research Recommendations

- During the assessment process, explore the utility of combining multiple indices into one scalloped hammerhead index using the Bayesian hierarchical model (Conn, 2009) or Dynamic Factor Analysis (Peterson et al., 2017). The data series that could potentially be combined as a recruitment index are Texas Parks and Wildlife gillnet series, Gulfspan gillnet series, South Carolina Coastspan Gillnet Long and Short Series and the Coastspan Longline Series.
- 2. Examine the utility of spatiotemporal modelling as a way to improve the indices of abundance for the NEFSC longline survey.

4.7 Literature Cited

Aitchison, J. (1955). On the distribution of a positive random variable having a discrete probability mass at the origin. Journal of the American Statistical Association 50: 901-908.
Bradu, D. and Mundlak, Y. 1970. Estimation in Lognormal Linear Models, Journal of the American Statistical Association 65, 198-211.
Conn, P.B. (2009). Hierarchical analysis of multiple noisy abundance indices. Canadian Journal of Fisheries and Aquatic Sciences, 67:108-120.
Kroetz, A.M. and Courtney, D. 2022. Review of Available Length Composition Data Submitted for use in the SEDAR 77 HMS Hammerhead Sharks Stock Assessment. SEDAR 77 ASSESSMENT WORKSHOP DOCUMENT xx-xx

Lo, N.C.H., Jacobson, L.D. and Squire, J.L. (1992). Indices of relative abundance from fish spotter data based on delta-lognormal models. Canadian Journal of Fisheries and Aquatic Sciences 49:2515-2526.

- Ortiz, M., C.M. Legault and N.M. Ehrhardt. 2000. An alternative method for estimating bycatch from the U.S. shrimp trawl fishery in the Gulf of Mexico, 1972-1995. Fishery Bulletin 98:583-599.
- Pennington, M. 1983. Efficient Estimators of Abundance, for Fish and Plankton Surveys. Biometrics 39, 281-286.
- Peterson, C.D., Belcher, C.N., Bethea, D.M., Driggers III, W.B., Frazier, B.S. and Latour, R.J., 2017. Preliminary recovery of coastal sharks in the south-east United States. Fish and Fisheries 18:845-859.
- Jiao, Y., Cortés, E., Andrews, K. and Guo, F., 2011. Poor-data and data-poor species stock assessment using a Bayesian hierarchical approach. Ecological Applications 21:2691-2708.

4.8 Tables

Table 1. Data sources initially examined as potential indices of abundance for hammerhead sharks.

 Area(s)=the area the data source covered following recommendations from the stock identification process for all hammerheads.

Data source	Area(s)	Hammerhead Species	Further develop	Factors for not developing as an
		Considered	as an	index
		considered	index	mack
Shark bottom longline	All	Scalloped/Great	Yes	
observer program and shark		• •		
research fishery				
Southeast gillnet observer	All	Scalloped	Yes	
program				
	Gulf of	Scalloped	No	Low catches
	Mexico			
	Atlantic	Scalloped	Yes	
	All	Great	No	Low catches
Pelagic longline observer program	All	Scalloped	Yes	
	All	Smooth	No	Low proportion
				positive, No
				catches in many
				years
SEFSC Bottom Longline Survey	All	Great/Scalloped	Yes	
Texas Parks and Wildlife	All/Gulf of	Scalloped	Yes	
Gillnet	Mexico	Scalloped	105	
Everglades National Park	Gulf of	Scalloped	No	Low catches,
Creel Census	Mexico			species
				identification
Mote Marine Laboratory	Gulf of	Great/Scalloped	No	Low catches
Longline	Mexico			
Mote Drumline Survey	Gulf of	Great	No	Low catches
	Mexico			
1				

Table 1 Continued: Data sources initially examined as potential indices of abundance forhammerhead sharks. Area(s)=the area the data source covered following recommendations from thestock identification process for all hammerheads.

stock identification process for a	ll hammerhead	ls.		
Dauphin Island Sea	All/Gulf of	Scalloped	Yes	
Laboratory Longline Survey	Mexico			
, , , , , , , , , , , , , , , , , , , ,				
GULFSPAN Gillnet Series	All/Gulf of			
	Mexico			
NMFS-Panama City		Scalloped	Yes	
Mote Marine Laboratory		Great/Scalloped	No	Low catches;
		eread, seanoped		Limited
				temporally
Havenworth Consulting		Scalloped	No	Low catches;
		Scallopeu	NO	Limited
Florido Stato University		Coollonad	Ne	temporally
Florida State University		Scalloped	No	Low catches
New College		Scalloped	No	Low catches;
				Limited
				temporally
Gulf Coast Research		Scalloped	Yes	
Laboratory				
Virginia Institute of Marine	Atlantic	Scalloped	No	Low catches
Science Longline				
SEAMAP Coastal Bottom	Gulf of	Scalloped	No	Low
Longline	Mexico			catches/Survey(s)
				already present
				in the area
	All	Great	Yes	
SEAMAP Trawl	Atlantic	Scalloped	No	Low catches
Florida State University	All/Gulf of	Great/Scalloped	Yes	
Longline Sawfish	Mexico			
Mark Sampson Logbook	Atlantic	Scalloped/Smooth	No	Database not
Recreational Series				complete
Rosenstiel School of Marine	All	Great	Yes	
and Atmospheric Science				
Drumline				
	1			

Table 1 Continued: Data sources initially examined as potential indices of abundance forhammerhead sharks. Area(s)=the area the data source covered following recommendations from thestock identification process for all hammerheads.

stock identification process for a	II hammerheads			
Electronic Monitoring of Gulf	Gulf of	Scalloped	No	Data was
of Mexico reeffish fishery	Mexico			preliminary
NEFSC-Bottom Longline	All/Atlantic	Scalloped	Yes	
Survey				
		Great	No	Low catches
South Carolina SEAMAP	Atlantic	Scalloped	No	Low proportion
longline				positive, No
				catches in many
				years
COASTSPAN Series				
Bottom Longline	All/Atlantic	Scalloped	Yes	
South Carolina Large Gillnet	All/Atlantic	Scalloped	Yes	
South Carolina Small Gillnet	All/Atlantic	Scalloped	Yes	
South Carolina Red Drum	Atlantic	Scalloped	No	Low proportion
	Atlantic	Scallopeu	NO	
Survey				positive, No
				catches in many
University North Carolina	All/Atlantia	Coollopod	Yes	years
University North Carolina Longline	All/Atlantic	Scalloped	res	
GA Seamap Longline	Atlantic	Scalloped	No	Low proportion
				positive, No
				catches in many
				years
NEFSC Observer Gillnet	Atlantic	Smooth	No	Low catches

Table 2. Elements used to evaluate the adequacy and retention of CPUE series as an input to the stock assessment model.

ELEMENT	DESCRIPTION	ACTIONS AND REASONING
1	Diagnostics	Apply defendable model validations (i.e., Q-Q plots, residuals, etc.) and consider overdispersion
2	Appropriateness of data exclusions and classifications (e.g., to identify targeted trips).	How were trips identified and was this a shark directed survey
3	Geographical coverage	How does the series compare with the range of the stock (i.e. Miami , FL to Long Island, NY)
4	Catch fraction	Change to mean proportion positives through time series
5	Length of time series relative to the history of exploitation.	The length of catch series for assessment is 1981-2018. For inclusion, survey must be established for minimum of 10 years but consideration will be given to shorter time series if they satisfy other important criteria
6	Are other indices available for the same time period?	Evaluate and pick best survey or combine them at the data level (if methods are similar)
7	Does the index standardization account for known factors that influence catchability/selectivity?	Is there an attempt to account for catchability and are the appropriate factors being considered
8	Are there conflicts between the catch history and the CPUE response?	Does the trend follow the expected performance based on management
9	Is the interannual variability outside biologically plausible bounds	Look at interannual variability: Is the trend of increase biologically plausible?
10	Are biologically implausible interannual deviations severe?	Covariates appropriate or accurate, change in design or stations appropriate
11	Assessment of data quality and adequacy of data for standardization purposes (e.g., sampling design, sample size, factors considered)	Are the covariates appropriate that were used in standardizing the data?
12	Is this CPUE time series continuous?	If not continuous, were there big changes in survey?
13	Characterization of Index uncertainty	Method of characterization (e.g., bootstrap, delta method), magnitude of uncertainty (e.g., CV)

Table 3. Scalloped hammerhead indices recommended by the Indices Working Group, including the corresponding SEDAR document number, the area covered, age class sampled and index type (fishery dependent or scientific survey).

Index Name	SEDAR	Area(s)	Age	Index	Base/Sensitivity
	Document		Class	Туре	
	Number				
Pelagic Longline	SEDAR77-	All/Atlantic	Age	Fishery	Base/Sensitivity
Observer Program	DW08		1+	Dependent	
SEFSC Shark	SEDAR77-	All/Atlantic/Gulf	Age	Fishery	Base/Sensitivity/Sensitivity
Bottom Longline	DW12	of Mexico	1+	Dependent	
Observer Program					
Florida State	SEDAR77-	All/Gulf of	Age	Scientific	Base/Sensitivity
University	DW14	Mexico	1+	Survey	
Longline Survey					
Gulfspan Gillnet	SEDAR77-	All/Gulf of	Age	Scientific	Base/Sensitivity
Survey	DW17	Mexico	0	Survey	
Texas Parks and	SEDAR77-	All/Gulf of	Age	Scientific	Base/Sensitivity
Wildlife Gillnet	DW16	Mexico	0	Survey	
Survey					
SEFSC Bottom	SEDAR77-	All/Atlantic/Gulf	Age	Scientific	Base/Sensitivity/Sensitivity
Longline Survey	DW24	of Mexico	1+	Survey	
COASTSPAN	SEDAR77-	All/Atlantic	Age	Scientific	Base/Sensitivity
Longline	DW30		Õ	Survey	·
SC COASTSPAN	SEDAR77-	All/Atlantic	Age	Scientific	Base/Sensitivity
Long and Short	DW31 and		0	Survey	5
Gillnet Survey	32			5	
SEFSC Southeast	SEDAR77-	All/Atlantic	Age	Fishery	Sensitivity/Sensitivity
Gillnet Observer	DW13		1+	Dependent	, , , , , , , , , , , , , , , , , , ,
Program				1	
Dauphin Island	SEDAR77-	Gulf of Mexico	Age	Scientific	Sensitivity
Sea Laboratory	DW06		1+	Survey	5
Longline Survey				5	
University of	SEDAR77-	All/Atlantic	Age	Scientific	Sensitivity/Sensitivity
North Carolina	DW33		1+	Survey	5 5
Longline Survey				-	

HMS Hammerhead Sharks

Table 4. Great hammerhead indices recommended by the Indices Working Group, including the corresponding SEDAR document number, the area covered, age class sampled and index type (fishery dependent or scientific survey).

Index Name	SEDAR Document Number	Area(s)	Age Class	Index Type	Base/Sensitivity
SEFSC Shark Bottom Longline Observer Program	SEDAR77- DW12	All/	Age 1+	Fishery Dependent	Base
Florida State University Longline Survey	SEDAR77- DW14	All	Age 1+	Scientific Survey	Base
SEAMAP Bottom Longline Survey	SEDAR77- DW25	All	Age 1+	Scientific Survey	Base
Rosenstiel School of Marine and Atmospheric Science Drumline	SEDAR77- DW15	All/	Age 1+	Scientific Survey	Base
SEFSC Bottom Longline Survey	SEDAR77- DW24	All	Age 1+	Scientific Survey	Base

HMS Hammerhead Sharks

Table 5. Recommended base stock wide indices of abundance for Age 1+ scalloped hammerhead including index name, the value of catch per unit effort, and SEDAR document number. CV is the coefficient of variation for the annual index value. Missing values in a given year correspond to zero catches (index value of 0 and no CV), where no sampling occurred (ns), or when the model did not converge (nc).

	Pelagic Lor	ngline	Shark Botto	m Longline	Shark Researc	h Fishery	FSU Longline		SEFSC MS Bo	ttom Longline	
	SEDAR77-D	0W08	SEDAR77-DV	V12	SEDAR77-DW2	12	SEDAR77-DW14	L	SEDAR77-DW	/24	
	sharks per	1000 hooks	sharks per 10000 hooks		sharks per 10000 hooks		sharks per 100 hook hour		number sharks per hook-hou		
year	index	CV	index	cv	index	CV	index	CV	index	CV	
1992	0.174	0.741									
1993	0.062	0.565									
1994	0.045	0.645	5.867	0.430							
1995	0.039	0.629	8.990	0.419					0.081	0.337	
1996	0.014	1.231	9.030	0.398					0.052	0.438	
1997	0.070	0.729	9.015	0.503					0.063	0.310	
1998	0.077	0.880	12.811	0.452					ns		
1999	0.018	1.066	3.266	0.714					0.050	0.339	
2000	0.017	0.772	0.281	1.596					0.071	0.247	
2001	0.052	0.807	12.125	0.447					0.115	0.219	
2002	0.017	1.319	16.468	0.390					0.093	0.177	
2003	0.038	0.785	20.271	0.343					0.154	0.209	
2004	0.035	0.772	16.563	0.378					0.056	0.312	
2005	0.040	0.642	6.975	0.509					0.112	0.475	
2006	0.050	0.777	25.205	0.405					0.060	0.358	
2007	0.049	0.591	15.530	0.562					0.088	0.327	
2008	0.073	0.497			4.129	0.773			0.095	0.372	
2009	0.101	0.449			65.590	0.331			0.129	0.268	
2010	0.084	0.488			46.926	0.328			0.142	0.242	
2011	0.054	0.481			58.507	0.325	0.003	0.333	0.066	0.269	
2012	0.101	0.471			90.500	0.374	ns		0.060	0.358	
2013	0.046	0.458			53.035	0.396	ns		0.061	0.312	
2014	0.038	0.551			68.047	0.358	0.001	1.147	0.079	0.337	
2015	0.039	0.516			99.944	0.371	0.006	0.468	0.157	0.219	
2016	0.041	0.521			68.444	0.360	0.004	0.777	0.094	0.295	
2017	0.073	0.523			89.840	0.361	0.009	0.271	0.126	0.243	
2018	0.033	0.688			42.589	0.395	0.003	0.656	0.094	0.275	
2019	0.015	0.918			44.341	0.387	0.002	0.796	0.118	0.294	

HMS Hammerhead Sharks

Table 6. Recommended indices of abundance for the Atlantic Ocean region of Age 1+ scalloped hammerhead sensitivity analysis including index name, the value of catch per unit effort and SEDAR document number. CV is the coefficient of variation for the annual index value. Missing values in a given year correspond to zero catches (index value of 0 and no CV), where no sampling occurred (ns), or when the model did not converge (nc).

	Pelagic Lo	ngline	Shark Bottom	Longline	Shark Resear	ch Fishery	SEFSC MS B	ottom Longline	
	SEDAR77-	DW08	SEDAR77-DW1	2	SEDAR77-DW	12	SEDAR77-D	W24	
	sharks per	1000 hooks	sharks per 100	00 hooks	sharks per 10000 hooks		number sharks per hook-hou		
year	index	CV	index	CV	index	CV	index	CV	
1992	0.232	0.571							
1993	0.100	0.459							
1994	0.087	0.517	9.514	0.350					
1995	0.085	0.486	11.957	0.351			0.068	0.624	
1996	0.022	0.842	12.727	0.330			0.034	1.108	
1997	0.145	0.538	6.067	0.553			ns		
1998	0.130	0.608	17.577	0.308			ns		
1999	0.038	0.761	5.929	0.744			ns		
2000	0.059	0.553	0.229	1.482			0.016	0.781	
2001	0.122	0.596	16.904	0.377			ns		
2002	0.041	0.884	17.461	0.366			0.074	0.310	
2003	0.069	0.632	12.811	0.333			ns		
2004	0.068	0.617	7.867	0.421			ns		
2005	0.116	0.530	11.620	0.674			0.031	1.104	
2006	0.122	0.594	63.093	0.375			0.105	0.646	
2007	0.189	0.492	21.511	0.593			ns		
2008	0.095	0.543			0.000		0.149	0.527	
2009	0.174	0.456			63.443	0.427	0.194	0.623	
2010	0.144	0.406			46.747	0.255	0.229	0.408	
2011	0.097	0.462			37.435	0.271	0.135	0.492	
2012	0.201	0.437			91.472	0.304	0.064	0.783	
2013	0.025	0.578			64.498	0.438	0.100	0.636	
2014	0.047	0.513			53.727	0.287	0.060	0.665	
2015	0.097	0.432			63.541	0.348	0.236	0.370	
2016	0.092	0.432			56.871	0.315	0.036	0.777	
2017	0.152	0.402			40.475	0.368	0.091	0.549	
2018	0.070	0.536			41.877	0.368	0.055	0.642	
2019	0.035	0.658			22.889	0.504	0.120	0.552	

HMS Hammerhead Sharks

Table 7. Recommended indices of abundance for the Gulf of Mexico region of Age 1+ scalloped hammerhead sensitivity analysis including index name, the value of catch per unit effort and SEDAR document number. Missing values in a given year correspond to zero catches (index value of 0 and no CV), where no sampling occurred (ns), or when the model did not converge (nc).

	Shark Bottom Longli	ine Observer	Shark Resear	ch Fishery	FSU Longline		SEFSC MS Bo	ttom Longline
	SEDAR77-DW12		SEDAR77-DW	12	SEDAR77-DW14	L .	SEDAR77-DW	/24
	sharks per 10000 ho	oks	sharks per 10000 hooks		sharks per 100	hook hour	number shar	ks per hook-hou
year	index	CV	index	CV	index	CV	index	CV
1994	0.727	1.100						
1995	4.445	0.801					0.090	0.402
1996	6.603	0.621					0.057	0.476
1997	23.542	0.632					0.086	0.306
1998	6.604	0.665					ns	
1999	0.399	1.511					0.048	0.332
2000	ns						0.111	0.259
2001	11.066	0.628					0.109	0.211
2002	14.561	0.459					0.080	0.241
2003	24.324	0.353					0.147	0.200
2004	24.302	0.344					0.062	0.307
2005	3.808	0.642					0.145	0.525
2006	6.982	0.774					0.042	0.435
2007	19.646	0.796					0.084	0.319
2008			11.196	0.878			0.082	0.522
2009			84.325	0.260			0.095	0.305
2010			41.180	0.339			0.110	0.302
2011			50.887	0.311	0.003	0.333	0.047	0.320
2012			64.255	0.544	ns		0.055	0.402
2013			67.233	0.397	ns		0.050	0.356
2014			61.826	0.556	0.001	1.147	0.070	0.400
2015			216.816	0.366	0.006	0.468	0.131	0.271
2016			78.541	0.452	0.004	0.777	0.111	0.317
2017			260.287	0.321	0.009	0.271	0.120	0.281
2018			31.181	0.472	0.003	0.656	0.099	0.305
2019			71.195	0.352	0.002	0.796	0.109	0.350

HMS Hammerhead Sharks

Table 8. Additional recommended indices of abundance for Age 1+ scalloped hammerhead sensitivity analysis including index name, the value of catch per unit effort, the area sampled and SEDAR document number (See Table 3 for the regions recommended for sensitivity analysis with each index). Missing values in a given year correspond to zero catches (index value of 0 and no CV), where no sampling occurred (ns), or when the model did not converge (nc).

	Dauphin Isla	and Sea Lab	Southeast Gi	llnet Observer		Univ North C	arolina		Southeast 0	Gillnet			
	SEDAR77-D	W-06	SEDAR77-DW	/13		SEDAR77-DW	/-33		SEDAR77-D	W13			
	Gulf of Mex	ico	Stock wide			Stockwide/A	tlantic		Atlantic				
	shark 100 h	ook/hour	sharks/(net le	ength*net depth	*soak time/1000000))	shark per hook		sharks/(net	depth*soak	time/1000000	JO))		
year	index	cv	index	cv		ind		cv	index	cv	· ·		
1981						0.0	08 0	.350					
1982						0.0	05 0	.286					
1983						0.0	07 0	.246					
1984						0.0	07 0	.299					
1985						0.0	001 0	.447					
1986						0.0	06 0	.307					
1987						0.0	05 0	.339					
1988						0.0	07 0	.301					
1989						0.0	01 0	.735					
1990						0.0	000 1	.045					
1991						0.0	000 1	.042					
1992						0.0	000 1	.042					
1993						0.0	02 0	.576					
1994						0.0	01 1	.038					
1995						0.0	000						
1996						0.0	01 1	.051					
1997						0.0	000 1	.087					
1998			28.901	1.149		0.0	01 0	.736	17.261	1.235			
1999			3.901	0.806		0.0	05 0	.725	3.358	0.779			
2000			24.642	0.718		0.0	02 0	.581	13.957	0.758			
2001			6.986	0.714		0.0	01 1	.054	10.132	0.680			
2002			6.308	0.765		0.0	01 0	.739	7.090	0.771			
2003			3.667	0.917		0.0	01 1	.042	4.840	0.877			
2004			23.651	0.723		0.0	01 1	.043	27.603	0.670			
2005			22.095	0.575		0.0	02 0	.760	31.277	0.552			
2006	0.127	0.531	37.384	0.596		0.0	06 0	.399	36.875	0.608			
2007	0.068	0.515	11.077	0.922		0.0	06 0	.385	7.145	0.901			
2008	0.103	0.387	11.252	0.695		0.0	03 0	.730	19.188	0.696			
2009	nc		18.625	0.662		0.0	00		26.397	0.604			
2010	0.047	1.038	18.804	0.829		0.0	01 1	.043	21.259	0.834			
2011	0.073	0.474	23.339	0.808		0.0	05 0	.367	29.713	0.739			
2012	0.175	0.458	27.013	0.682		0.0	02 1	.049	22.212	0.618			
2013	0.480	0.495	41.607	0.798		0.0	09 0	.358	50.386	0.770			
2014	0.097	0.322	25.509	1.037		0.0	01 1	.039	42.718	0.976			
2015	0.090	0.310	18.620	0.968		0.0	04 0	.576	13.233	0.900			
2016	0.118	0.284	21.464	0.877		0.0	02 0	.755	25.716	0.805			
2017	0.104	0.308	0.702	1.450		0.0	04 0	.710	0.462	1.928			
2018	0.204	0.271	124.260	0.775		0.0	03 0	.575	83.657	0.781			
2019	0.040	0.430	54.626	0.822		0.0		.479	33.383	0.885			

HMS Hammerhead Sharks

Table 9. Recommended base indices of abundance for the Age 0 scalloped hammerhead including index name, the value of catch per unit effort, the area sampled and SEDAR document number (See Table 3 for the regions recommended for base model and sensitivity analysis with each index). CV is the coefficient of variation for the annual index value. Missing values in a given year correspond to zero catches (index value of 0 and no CV), where no sampling occurred (ns), or when the model did not converge (nc).

	TXPWD-Gilln	et	GULFSPAN		COASTSPA	N - LL	SCCOASTGN - I	LONG		SCCOASTGN - SHORT		
	SEDAR77 DV	/-16	SEDAR77 D	N-17	SEDAR77-D	W-30	SEDAR77-DW-	31		SEDAR77 DW-32		
	Stockwide/G	ulf of Mexico	Stockwide/Gulf of Mexico		Stockwide/Atlantic		Stockwide/Atlantic			Stockwide/Atlantic		
	sharks per net per hour		sharks per net per hour		sharks per 100 hook hours		sharks per net hour			sharks per net hour		
year	index	CV	index	cv	index	CV		index	cv	index	CV	
1982	0.00033											
1983	0.00042	0.912										
1984	0.00000											
1985	0.00015											
1986	0.00035	0.732										
1987	0.00000											
1988	0.00050	0.618										
1989	0.00012											
1990	0.00090	0.603										
1991	0.00053	0.749										
1992	0.00000											
1993	0.00032	0.819										
1994	0.00027	0.848										
1995	0.00010	1.165										
1996	0.00093	0.536	0.009	0.294								
1997	0.00172	0.666	0.016	0.461								
1998	0.00031	0.842	0.002	0.548								
1999	0.00021	0.781	0.091	0.312								
2000	0.00048	0.589	0.156	0.253								
2001	0.00150	0.603	0.148	0.302				1.250	0.479			
2002	0.00033	0.822	0.15	0.166				0.788	0.518			
2003	0.00183	0.577	0.102	0.181				2.742	0.450			
2004	0.00075	0.689	0.07	0.227				0.541	1.432			
2005	0.00254	0.517	0.048	0.373	5.464	0.529		0.625	0.538			
2006	0.00069	0.630	0.079	0.22	8.119	0.416		0.981	1.018			
2007	0.00079	0.778	0.168	0.171	1.976	1.128		1.952	0.533	0.171	0.423	
2008	0.00075	0.703	0.172	0.189	1.730	1.165		1.384	0.707	0.286	0.581	
2009	0.00095	0.560	0.163	0.2	3.482	0.654		7.298	1.383	0.000		
2010	0.00213	0.598	0.208	0.211	9.376	0.327		2.297	0.854	0.114	0.581	
2011	0.00091	0.563	0.159	0.201	3.876	0.372		1.487	0.540	0.113	0.307	
2012	0.00124	0.540	0.093	0.217	1.907	0.469		8.180	0.527	0.116	0.307	
2013	0.00484	0.428	0.129	0.215	2.052	0.427		4.058	0.451	0.090	0.423	
2014	0.00198	0.477	0.141	0.207	2.443	0.548		2.204	0.695	0.000		
2015	0.00283	0.565	0.068	0.252	1.158	0.554		0.969	0.616	0.020	0.581	
2016	0.00191	0.590	0.124	0.235	1.899	0.419		1.675	0.538	0.098	0.351	
2017	0.00041	0.775	0.184	0.2	1.123	0.519		6.808	0.341	0.000		
2018	0.00482	0.499	0.21	0.225	0.738	0.565		3.725	0.547	0.000		
2019	0.00248	0.514	0.176	0.265	1.029	1.175		3.305	0.423	0.021	0.581	

HMS Hammerhead Sharks

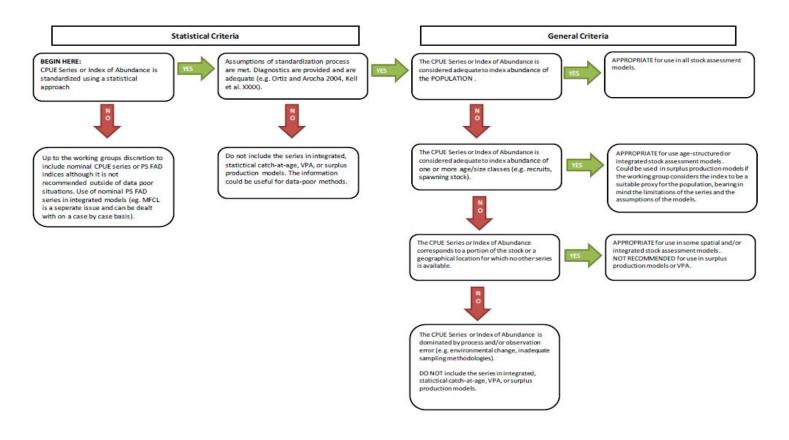
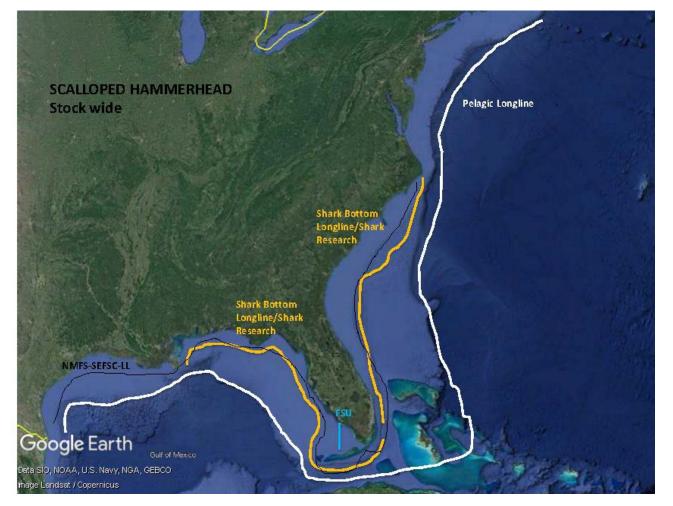

April 2022

Table 10. Recommended base stock wide indices of abundance for great hammerhead shark including index name and SEDAR document number CV is the coefficient of variation for the annual index value. Missing values in a given year correspond to zero catches (index value of 0 and no CV), where no sampling occurred (ns), or when the model did not converge (nc).

	Shark Bottom	Longline	Shark Rese	arch	FSU Longli	ne	RSMAS Drum	ine	SEFSC MS Bott	om Longline	SEAMAP BLL	survey
	SEDAR77-DW1	2	SEDAR77-D	DW12	SEDAR77-L	DW14	SEDAR77-DW	15	SEDAR77-DW2	24	SEDAR77-DV	/25
	sharks per 100	00 hooks	sharks per	10000 hooks	sharks per	100 hook hour	number of sha	arks per 10 drumlines per hour	number sharks per hook-hour		number sharks per hook-hou	
year	index	CV	index	CV	index	CV	index	CV	index	CV	index	CV
1994	1.071	0.478										
1995	5.908	0.206							0.016	0.518		
1996	6.749	0.229							0.018	0.556		
1997	9.424	0.303							0.007	0.497		
1998	10.140	0.246							ns			
1999	7.511	0.270							0.002	1.081		
2000	3.207	0.473							0.002	0.784		
2001	3.674	0.371							0.009	0.482		
2002	11.726	0.212							0.003	0.648		
2003	9.966	0.207							0.012	0.454		
2004	7.873	0.226							0.009	0.486		
2005	6.425	0.293							0.004	1.074		
2006	5.261	0.300							0.006	0.650	0.013	1.062
2007	9.718	0.272							0.006	0.782	0.045	0.525
2008			40.370	0.226					0.008	0.655	0.109	0.344
2009			29.215	0.244			0.027	0.707	0.011	0.519	0.039	0.728
2010			18.072	0.221			0.055	0.297	0.021	0.477	0.050	0.716
2011			26.748	0.190	0.001	0.291	0.053	0.265	0.004	0.648	0.000	
2012			43.110	0.308	ns		0.036	0.317	0.017	0.479	0.064	0.532
2013			52.307	0.199	0.001	0.734	0.039	0.268	0.006	0.651	0.142	0.456
2014			40.176	0.218	0.002	0.729	0.053	0.241	0.012	0.650	0.173	0.323
2015			57.252	0.174	0.002	0.598	0.048	0.255	0.011	0.489	0.051	0.421
2016			26.352	0.294	0.003	0.296	0.074	0.194	0.014	0.485	0.089	0.335
2017			47.025	0.193	0.004	0.293	0.055	0.180	0.023	0.414	0.081	0.451
2018			26.739	0.250	0.003	0.302	0.053	0.197	0.020	0.416	0.043	0.521
2019			43.489	0.220	0.002	0.519	0.053	0.184	0.036	0.372	0.088	0.449

4.9 Figures


Figure 1. Flowchart developed by ICCAT and used as a method to evaluate indices of abundance as an input to the stock assessment model

HMS Hammerhead Sharks

Figure 2. Approximate linear coverage of the stock wide base abundance indices for the Age 1+ scalloped hammerhead shark.

Colors of the labeled abundance series correspond to the linear coverage.

HMS Hammerhead Sharks

Figure 3. Approximate linear coverage of the Atlantic Ocean base abundance indices for the Age 1+ scalloped hammerhead shark. Colors of the labeled abundance series correspond to the linear coverage.

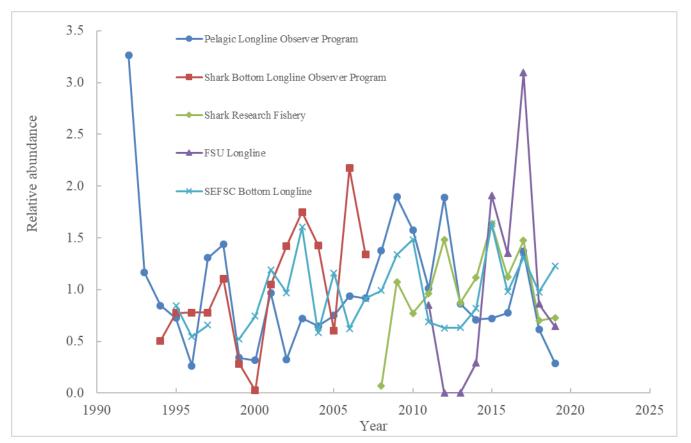
HMS Hammerhead Sharks

Figure 4. Approximate linear coverage of the Gulf of Mexico base abundance indices for the Age 1+ scalloped hammerhead shark. Colors of the labeled abundance series correspond to the linear coverage.

HMS Hammerhead Sharks

Figure 5. Approximate linear coverage of the sensitivity abundance indices for the Age 1+ scalloped hammerhead shark. Colors of the labeled abundance series correspond to the linear coverage.

HMS Hammerhead Sharks


Figure 6. Approximate linear coverage of the recruitment (Age 0) abundance indices for the scalloped hammerhead shark. Colors of the labeled abundance series correspond to the linear coverage.

SEDAR 77 SAR Section III

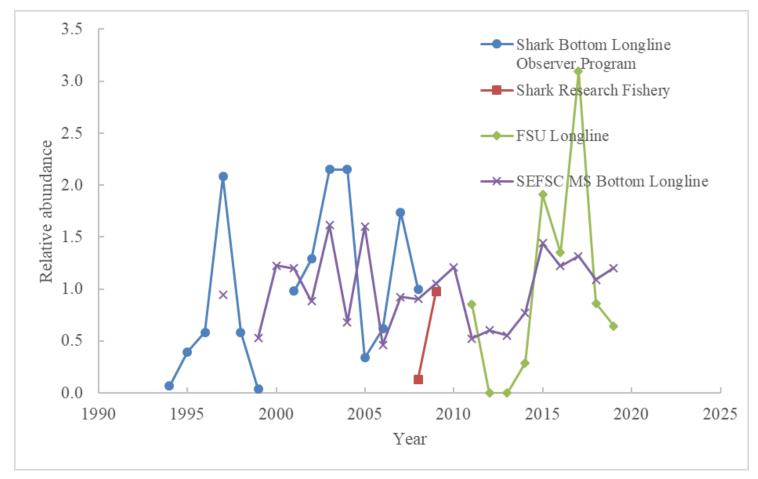

HMS Hammerhead Sharks

Figure 7. Plot of mean annual values of relative abundance for each stock wide base time series recommended for the Age 1+ scalloped hammerhead shark base run by the Indices Working Group. For each index, values were converted to a common scale for plotting purposes by dividing mean annual values for a time series by the average of all mean annual values for that specific time series.

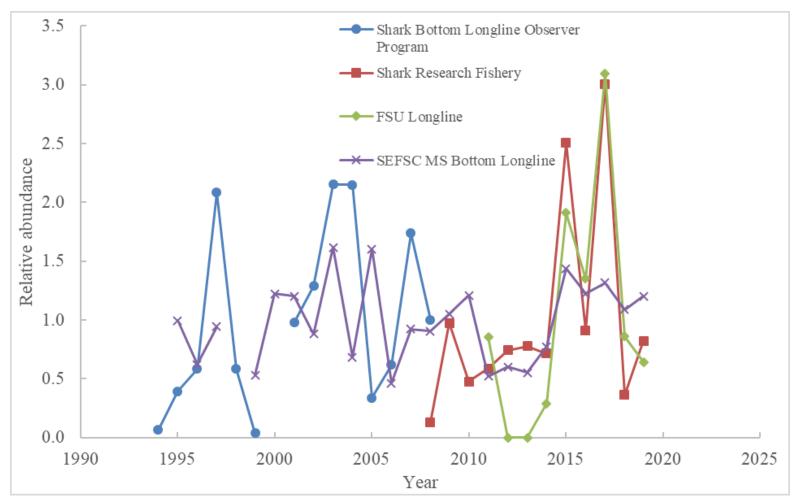
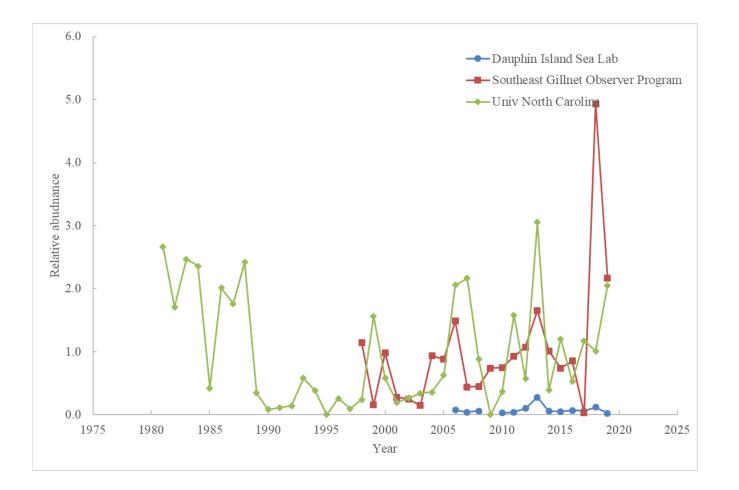

HMS Hammerhead Sharks

Figure 8. Plot of mean annual values of relative abundance for each Atlantic Ocean base time series recommended for the Age 1+ scalloped hammerhead shark base run by the Indices Working Group. For each index, values were converted to a common scale for plotting purposes by dividing mean annual values for a time series by the average of all mean annual values for that specific time series.



HMS Hammerhead Sharks

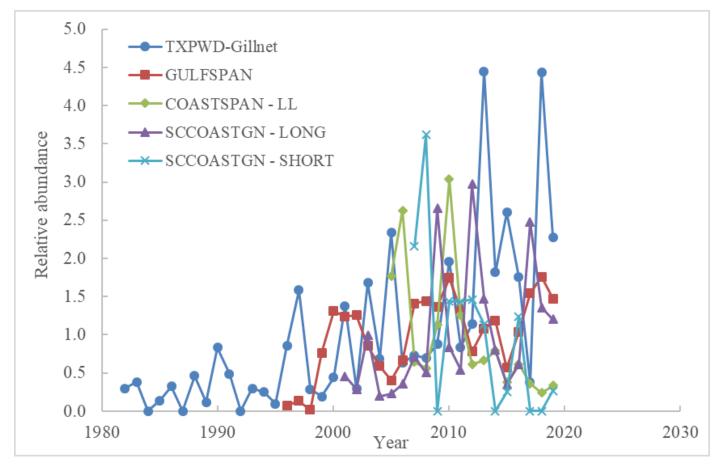

Figure 9. Plot of mean annual values of relative abundance for each Gulf of Mexico base time series recommended for the Age 1+ scalloped hammerhead shark base run by the Indices Working Group. For each index, values were converted to a common scale for plotting purposes by dividing mean annual values for a time series by the average of all mean annual values for that specific time series.

Figure 10. Plot of mean annual values of relative abundance for each sensitivity time series recommended for the Age 1+ scalloped hammerhead shark base run by the Indices Working Group. For each index, values were converted to a common scale for plotting purposes by dividing mean annual values for a time series by the average of all mean annual values for that specific time series.

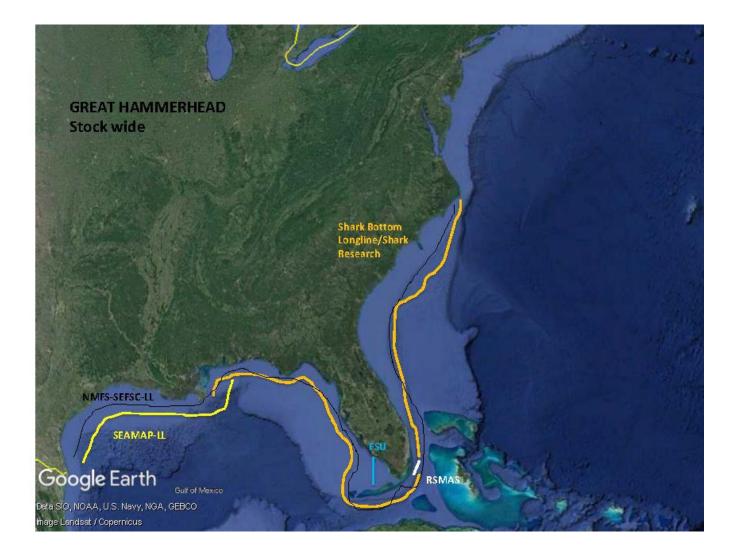


Figure 11. Plot of mean annual values of relative abundance for the recruitment (Age 0) time series recommended for the scalloped hammerhead shark base run by the Indices Working Group. For each index, values were converted to a common scale for plotting purposes by dividing mean annual values for a time series by the average of all mean annual values for that specific time series.

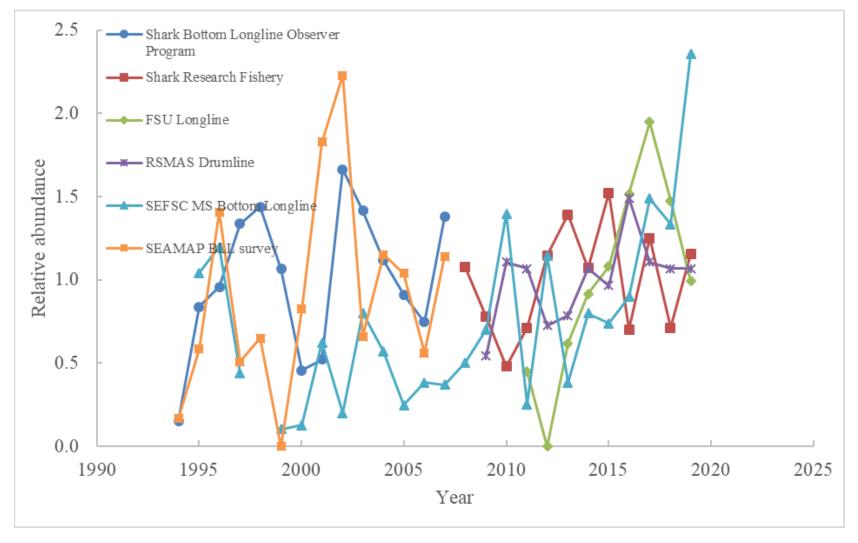

HMS Hammerhead Sharks

Figure 12. Approximate linear coverage of the stock wide abundance indices for the great hammerhead shark. Colors of the labeled abundance series correspond to the linear coverage.

HMS Hammerhead Sharks

Figure 13. Plot of mean annual values of relative abundance for time series recommended for the great hammerhead shark base run by the Indices Working Group. For each index, values were converted to a common scale for plotting purposes by dividing mean annual values for a time series by the average of all mean annual values for that specific time series.

4.10 Length Frequency

Summary

A complete overview of the length-frequency data is summarized in Kroetz and Courtney (2022).

Twenty-seven data sources were submitted for possible use in the assessment, many with multiple surveys for multiple gear types. Fishery-dependent (commercial and recreational surveys) contributed 13,084 records whereas fishery-independent surveys contributed 9,024 records of all four species. Scalloped hammerheads had the highest frequency of catches compared to the other species in commercial and recreational gears and Carolina hammerheads were captured the least. Bottom longline gear was the primary gear that captured hammerheads, and other gears included gillnets, pelagic longlines, hook and line/rod and reel, and trawls. Age 0 (young-of-the-year) scalloped hammerheads were primarily captured in fishery-independent gillnets, followed by bottom longlines whereas Age 1+ (juveniles to adults) scalloped hammerheads were primarily captured in bottom longline gear followed by gillnets. Great hammerheads were primarily captured in bottom longlines, while smooth hammerheads were captured primarily in bottom longlines. The few Carolina hammerheads captured were in gillnets and trawls.

5. Ecological Factors

Ecosystem Workgroup participants

Michelle Passerotti-Leader William Driggers Bryan Frazier	National Marine Fisheries Service, Narragansett, RI National Marine Fisheries Service, Pascagoula, MS South Carolina Department of Natural Resources
Jayne Gardiner	New College of Florida, Sarasota, FL
Kristin Hannan	National Marine Fisheries Service, Pascagoula, MS
Derek Kraft	National Marine Fisheries Service, HMS Division
Max Lee	Mote Marine Laboratory, Sarasota, FL
Heather Moncrief-Cox	National Marine Fisheries Service, Panama City, FL
David Portnoy	Texas A&M University, Corpus Christi, TX

Scalloped *Sphyrna lewini*, Carolina *Sphyrna gilberti*, great *Sphyrna mokarran* and smooth hammerheads *Sphyrna zygaena* are long-lived, highly migratory species that inhabit both coastal and oceanic environments. As such, throughout their ranges in the western North Atlantic Ocean and the Gulf of Mexico, they are subject to a wide range of environmental and ecological variables with the potential to affect their populations. Herein, we summarize available information to address the directives of Terms of Reference (TOR) #7, specifically, providing a general overview of known habitat, diet, species associations, and environmental envelopes for developing habitat suitability projections for each species, where available. We also provide broad considerations of ecological factors with the potential to affect these species and, hence, to affect ecosystem-based management of these species. Lists of co-occurring species from survey data are not provided, but an effort should be made in future assessments to develop a standardized way to capture this information. We also provide a list of research recommendations, in no particular order of importance, to address knowledge gaps with regard to the ecology of these species toward the development of an ecosystem based management approach.

5.1 Habitat

Established Essential Fish Habitat (EFH)

As documented most recently in Amendment 10 to the Consolidated Atlantic Highly Migratory Species Fishery Management Plan (NMFS 2017), essential fish habitat (EFH) was established for scalloped and great hammerheads in the Gulf of Mexico and western North Atlantic Ocean (Figures 1 and 2) based upon data available through 2015 in published scientific literature and from unpublished sources, such as scientific surveys and fisheries monitoring programs. Available environmental parameters associated with the occurrence of hammerheads, including, depth, dissolved oxygen, salinity and temperature ranges, were incorporated into the published EFH identification models (NMFS 2017) and are summarized here in Table 1 based on documentation in Amendment 10. There is currently no designated EFH for smooth or Carolina

SEDAR 77 Section III

hammerheads due to limited data for these two species. Updated environmental parameters available since 2015 are also provided herein, described below. Broad categorization of known habitat preferences for each species are provided in Table 6 from existing literature and unpublished sources.

5.2 Environmental envelopes

As an update and supplement to the data utilized for the Amendment 10 EFH designation (NMFS 2017), environmental parameters associated with catches of all four hammerhead species from fishery-independent and –dependent surveys that were submitted for use in the current assessment are provided in Tables 2-5. It is important to note that not all surveys were used to produce indices of abundance for inclusion in assessment models. For those that were used, associated environmental parameters may or may not have been found to influence abundance. Indices for which any environmental parameter was determined to be a significant factor are indicated in each table.

5.3 Diet

Broad categorization of known diet characteristics for each species are summarized in Table 6 from existing literature and unpublished sources.

5.4 Factors with potential to affect ecology and population dynamics of hammerheads

Climate:

- changes in oceanographic conditions and trends (e.g. current/circulation patterns, salinity, dissolved oxygen, pH, etc.)
- species distribution effects due to changing climate and resulting range shifts, expansions or contractions
- phenology
- prey distribution and abundance
- understanding potential for changes in life history characteristics (e.g. growth rate, age at maturity) as a result of climate change

Persistent environmental disturbances:

• anthropogenic sources, such as contaminants (e.g. industrial/agricultural runoff), with higher potential to impact nursery areas

Episodic events:

- harmful algal blooms (HABs)
- hypoxia events
- oil spills
- extreme weather events (e.g. hurricanes)

Habitat disruption:

- coastal development
- dredging
- energy production structures
- loss of seagrass or salt marsh (prey habitat)

5.5 Research recommendations

- Improve understanding of all aspects of biology of hammerheads, particularly with regard to smooth and Carolina hammerhead occurrence, life history, and diet
- Investigate Bulls Bay, SC as a Habitat Area of Particular Concern for Carolina hammerhead
- Increase genetic surveillance to not only identify Carolina hammerhead individuals in the Atlantic, but also as a means to study use of nursery habitats and potential philopatry among all four species, potentially using close-kin mark-recapture techniques.
- Improve understanding of sex- and life stage-critical habitat for all species, particularly with regard to identification of essential habitat for data-poor species and life stages (Carolina and smooth hammerhead as well as young-of-year great hammerhead).
- Investigate impacts of environmental changes on life history characteristics, such as growth and reproduction
- Increase efforts in tagging and tracking to evaluate potential climate-induced range shifts
- Develop habitat suitability models for projecting climate-induced shifts in species distributions over time
- Increase effort for collecting environmental/oceanographic data with occurrence and movement data to identify linkages
- Assess the levels of environmental contaminants in hammerhead species and how those impact physiology and reproductive success
- Study the response of hammerhead species to harmful algal blooms and how those phenomena affect behavior and physiology

5.6 Figures

Figure 1. Essential Fish Habitat for scalloped hammerhead *Sphyrna lewini* by life stage as designated by Amendment 10 to the HMS FMP (NMFS 2017). Map courtesy of J. Cudney, NOAA Fisheries.

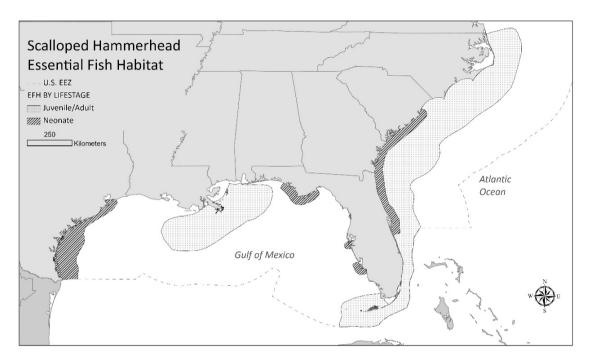
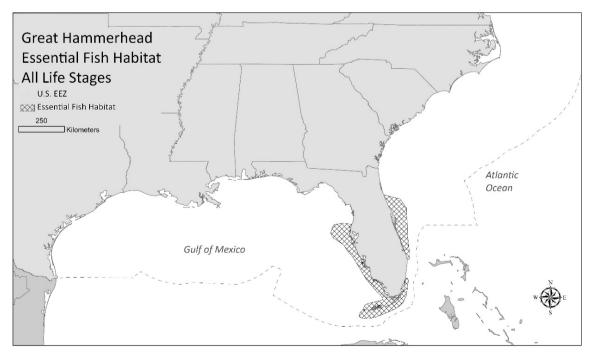



Figure 2. Essential Fish Habitat for great hammerhead *Sphyrna mokarran* as designated by Amendment 10 to the HMS FMP (NMFS 2017). Map courtesy of J. Cudney, NOAA Fisheries.

SEDAR 77 Section III

Data Workshop Report

5.7 Tables

Table 1. Environmental parameters associated with NMFS Essential Fish Habitat (EFH) delineation for scalloped hammerhead *Sphyrna lewini* and great hammerhead *Sphyrna mokarran* by species and life stage, as specified in the most recent EFH report (NMFS 2017). YOY=young of the year (age 1).

Species	Lifestage	Temp	Salinity	DO	Depth
Sphyrna lewini	Neonate/YOY (≤ 45 cm TL)	23.2-30.2°C	27.6-36.3 ppt	5.1-5.5 mL/L	5.0-6.0 m
Sphyrna mokarran	Neonate/YOY Juveniles (< 224 cm FL) Adults (≥ 224 cm FL)	23.9-31.5°C	20.8-34.2 ppt	5.3-7.6 mg/L	1.8-5.5 m

HMS Hammerhead Sharks

Table 2. Environmental variable ranges associated with positive catches of scalloped hammerhead *Sphyrna lewini* from fishery-dependent and –independent sources in the Gulf of Mexico (GOM) and western North Atlantic (ATL). Variable values in parentheses represent the observed range of each variable measured across all sets. For sources that were used to generate abundance indices for this assessment (in bold), an asterisk (*) denotes variables that were found to be significant factors for at least one final index model. LL = longline, GN = gillnet, 1+ = catches modeled for ages ≥ 1 , 0+ = catches modeled for ages ≥ 0 , YOY = catches modeled for young of the year (age 1) only.

Source (Ages modeled)	Region	Year range	Temperature (°C)	<u>Salinity (psu)</u>	<u>DO (mg/L)</u>	<u>Depth (m)</u>	Contact/Reference
SEFSC Bottom LL (1+)	GOM	1995-2019*	11.1-31.8	26.4-36.8	0.1-7.71	14.0-295.0	W. Driggers/SEDAR 77-DW24
			(6.8-31.9)	(17.9-26.4)	(0-10.6)	(7.0-375.0)*	
FSUCML Keys LL (0+)	GOM	2011-2021	18.5-30.9	35.3-36.8	5.2-7.36	11.3-75.0	R.D. Grubbs/SEDAR 77-DW14
			(17.1-33.9)	(5.56-45.3)	(0.2-10.19)	(0.9-75.1)	
GULFSPAN GN (YOY)	GOM	1996-2019	20.9-33.4	16.6-38.0	1.0-8.2	0.0-10.0	J. Carlson/SEDAR 77-DW17
			(9.8-34.2)	(0.19-40.0)	(0.0-14.0)	(0.0-21.0)	
Pelagic LL Observer Program (1+)	GOM/ATL	1992-2019	10.7-30.7			10.1-960.1	J. Carlson/SEDAR 77-DW8
			(-1.1-35.4)			(5.6-2520.1)	
Texas Parks & Wildlife GN (YOY)	GOM	1982-2019*	18.5-37.0	11.1-43.2	2.6-11.6		J. Carlson/SEDAR 77-DW16
			(6.0-38.0)	(0.0-70.8)	(0.0-26.0)		
Shark Bottom LL Observer Program (0+)	GOM/ATL	1994-2019*	7.8-33.8			2.9-110.0	J. Carlson/SEDAR 77-DW12
			(7.8-33.8)			(1.6-490.8)*	
SCDNR Red Drum LL (0+)	ATL	1997-2006*	20.0-31.0	25.0-34.0		3.4-16.2	C. McCandless/SEDAR 77-DW29
			(19.0-37.0)	(23.0-35.0)		(3.4-17.1)	
SCDNR SEAMAP LL (0+)	ATL	2008-2019*	18.7-30.2	24.4-36.7		4.6-17.7	C. McCandless/SEDAR 77-DW29
			(13.1-31.8)	(0.10-39.0)*		(3.0-22.4)	
SCDNR COASTSPAN Long GN (YOY)	ATL	2001-2018*	22.5-31.2	1.05-37.4		0.6-4.6	C. McCandless/SEDAR 77-DW31
			(20.4-31.3)	(15-38)		(0.6-5.4)	
SCDNR COASTSPAN Short GN (YOY)	ATL	2007-2019*	20.9-30.4	16.0-35.0		1.2-3.7	C. McCandless/SEDAR 77-DW32
			(18.9-31.2)	(16-37.2)		(1.2-3.7)	
COASTSPAN LL (YOY)	ATL	2005-2019*	20.2-38.2	14.6-37.3		1.2-15.5	C. McCandless/SEDAR 77-DW30
			(6.7-39.1)	(1.2-38.1)*		(1.1-17.2)*	
NEFSC LL (1+)	ATL	1996-2018*	17.7-26.2	31.1-36.7		10.5-67.8	C. McCandless/SEDAR 77-DW28
			(13.1-26.2)*	(29.2-37)		(10.4-67.8)*	
UNC LL (1+)	ATL	1981-2019*	16.1-31.0				C. McCandless/SEDAR 77-DW33
			(8.6-31.5)*				
New College of Florida LL	GOM	2015-2021	23.5-32.4	24.0-36.7	4.68-8.06	1.68-3.30	J. Gardiner/SEDAR 77-SID-05
			(14.5-33.2)	(14.5-37.4)	(3.12-10.3)	(0.48-8.40)	
GOM SEAMAP Bottom LL	GOM	2008-2021	13.2-30.7	24.0-37.4	1.2-7.8	5.5-332.2	E. Hoffmayer
			(12.2-32.1)	(4.9-38)	(0.1-12.3)	(1.4-332.2)	
FSUCML Deep Sea LL	GOM	2011-2018	7.93-15.04			195-504	R.D. Grubbs
			(4.12-19.6)			(90-2646)	

SEDAR 77 Section III

April 2022	HMS Hammerhead Sharks								
Table 2 Continued									
Source (Ages modeled)	Region	Year range	Temperature (°C)	Salinity (psu)	DO (mg/L)	Depth (m)	Contact/Reference		
FSUCML Big Bend GN/LL	GOM	2009-2021	16.4-31.4	27.4-34.4	2.5-7.92	2.3-5.9	R.D. Grubbs		
Texas A&M Marine Genomics GN	GOM	2015-2021	26.5-32.8	21.8-38.5	4.55-10.5	4.29-4.65	D. Portnoy		
			(21.9-32.8)	(10-39.9)	(1.55-10.5)	(2.33-4.74)			
Dauphin Island Sea Lab LL	GOM	2006-2019	17.2-30.1	23.9-37.6	1.2-7.4	2.7-104.0	M. Drymon/SEDAR 77-DW06		
			(12.7-32.0)	(0.03-38.0)	(0.2-10.6)	(1.5-111.0)			

Table 3. Environmental variable ranges associated with positive catches of Carolina hammerhead *Sphyrna gilberti* from South Carolina Department of Natural Resources fishery-independent surveys in the western North Atlantic (ATL). Values in parentheses represent the observed range of each variable measured across all sets for each source. Indices of abundance were not compiled due to lack of data.

Source	<u>Region</u>	Year range	Temperature (°C)	Salinity (psu)	DO (mg/L)	<u>Depth (m)</u>	Contact/Reference
SCDNR (all surveys)	ATL	1994-2021	19.0-30.4 (9.7-35.0)	22.7-36.3 (0.0-38.9)	4.3-7.1 (2.4-10.8)	1.5-15.8 (0.5-700)	B. Frazier

HMS Hammerhead Sharks

Table 4. Environmental variable ranges associated with positive catches of great hammerhead *Sphyrna mokarran* from fishery-dependent and –independent sources in the Gulf of Mexico (GOM) and western North Atlantic (ATL). Values in parentheses represent the observed range of each variable measured across all sets for each source. For sources that were used to generate abundance indices for this assessment (in bold), an asterisk (*) denotes variables that were found to be significant factors for indices modeling. LL = longline, GN = gillnet, 1+ = catches modeled for ages ≥ 1 , 0+ = catches modeled for ages ≥ 0 , YOY = catches modeled for young of the year (age 1) only.

Source (Ages modeled)	Region	Year range	Temperature (°C)	Salinity (ppt)	<u>DO (mg/L)</u>	Depth (m)	Contact/Reference
SEFSC Bottom LL (Age 1+)	GOM	1995-2019*	14.0-30.8	31.8-36.7	0.1-7.71	11.4-138.3	W. Driggers/SEDAR 77-DW24
			(6.8-31.9)	(17.9-26.4)	(0-10.6)	(7-375)*	
GOM SEAMAP Bottom LL	GOM	2008-2021*	21.3-31	22.3-38.2	1.4-8.2	3.7-14.9	E. Hoffmayer/SEDAR77-DW25
(Age 1+)			(12.2-32.1)	(4.9-38)*	(0.1-12.3)*	(1.4-332.2)	
Shark Bottom LL Observer	GOM/ATL	1994-2019*	14.8-32.7			2.0-66.7	J. Carlson/SEDAR 77-DW12
Program (0+)			(7.8-33.8)			(1.6-490.8)*	
FSUCML Keys LL (0+)	GOM	2011-2021*	18.5-31.2	32.5-39.7	3.82-7.36	2.1-72.0	R.D. Grubbs/SEDAR 77-DW14
			(17.1-33.9)	(5.56-45.3)*	(0.2-10.19)	(0.9-75.1)*	
New College of Florida LL	GOM	2015-2021	24.9-31.3	21.8-36.6	5.25-7.42	1.91-6.53	J. Gardiner/SEDAR 77-SID-05
			(14.5-33.2)	(0.30-37.4)	(3.12-10.3)	(0.48-8.4)	
SCDNR (all surveys)	ATL	1994-2021	20.7-30.7	27.8-35	4.2-7.7	2.1-21.0	B. Frazier
			(9.7-35.0)	(0.0-38.9)	(2.4-10.8)	(0.5-700)	
NEFSC LL	ATL	1996-2018	21.3-24.1	36.0-36.6		15.0-43.9	C. McCandless
			(6.1-26.0)	(29.2-37.0)		(6.6-67.8)	
FSUCML Deep Sea LL	GOM	2011-2018	11.49			297	R.D. Grubbs
			(4.12-19.61)			(90-2646)	
FSUCML Big Bend GN/LL	GOM	2009-2021	21.7-31.1	27.3-34.7	4.67-8.88	2.0-6.7	R.D. Grubbs

HMS Hammerhead Sharks

Table 5. Environmental ranges associated with positive catches of smooth hammerhead *Sphyrna zygaena* from South Carolina Department of Natural Resources fishery-independent surveys in the western North Atlantic (ATL). Values in parentheses represent the full range of each variable measured across all sets for each source. Indices of abundance were not compiled due to lack of data.

Source	<u>Region</u>	Year range	Temperature (°C)	Salinity (ppt)	<u>DO (mg/L)</u>	<u>Depth (m)</u>	Contact/Reference
SCDNR (all surveys)	ATL	1994-2021	23.2 (9.7-35.0)	35 (0.0-38.9)	6.8 (2.4-10.8)	91.2 (0.5-700)	B. Frazier

HMS Hammerhead Sharks

Table 6. General habitat and diet information for scalloped *Sphyrna lewini*, Carolina *Sphyrna gilberti*, great *Sphyrna mokarran*, and smooth *Sphyrna zygaena* hammerheads. References for studies outside the western North Atlantic/Gulf of Mexico were included when region-specific data were lacking.

Species	Habitat	Trophic level/Diet
Sphyrna Iewini	 Depth: shallow to ~275m, although documented to 1045m (Moore and Gates 2015) Exploit shallow estuaries for use as nursery grounds, with juveniles migrating offshore near adulthood (Stevens and Lyle 1989). Sub-adults/adults known to occupy deep waters potentially for foraging purposes, while also exploiting the mixed layer and shallower shelf habitats depending on location. Some evidence for preference for high relief/bottom structure (Wells et al. 2018) Vertical diel migrations are apparent, likely for foraging (Hoffmayer et al. 2013). 	 4.1 (Cortés 1999); YOY: Broad diet in comparison to other non- hammerhead species (SCDNR, unpublished) Juvenile prey items: mix of fish and crustaceans Adult prey items: larger/higher level prey (squid, teleosts); sexual segregation may lead to dietary differences (Klimley 1987)
Sphyrna gilberti	 Depth: unknown Center of young juvenile abundance in US waters: Bulls Bay, SC (nursery area; Quattro 2006; Barker et al. 2021); documented occurrences in Trinidad (D. Portnoy, TAMU, unpublished) 	 4.1 (from <i>S. lewini</i>, Cortés 1999; likely the same due to species similarities) YOY: Broad diet in comparison to other nonhammerhead species – similar to scalloped hammerhead (SCDNR, unpublished) Juvenile prey items: mix of fish and crustaceans (A. Galloway, SCDNR, unpublished)
Sphyrna mokarran	 Depth: near-surface to 300m (Ebert et al. 2013; Weigmann 2016) Shallow coastal waters, but migrate offshore to pelagic habitats; habitat use can be seasonal (Calich et al. 2018; Gardiner et al. 2021) and/or related to prey availability (Calich et al. 2021) Some evidence of philopatry to coastal habitats (Hammerschlag et al. 2011a, b; Graham et al. 2016; Guttridge et al. 2017; Gardiner et al. 2021) Evidence of pupping grounds off South Carolina and western Florida (Barker et al. 2017; Heuter & Tyminski 2007); young juvenile habitat off Miami, Florida (MacDonald et al. 2021) 	 4.3 (Cortés 1999); Prey items: teleost fishes, sharks and rays cephalopods are notably less prevalent in diet than in other hammerhead species (Smale & Cliff 1993; Raoult et al. 2019)
Sphyrna zygaena	 Depth: near-surface to 260m; in southern Atlantic, prefer < 50m (Kotas 2004; Vooren et al. 2005; Santos & Coelho 2018) Coastal, pelagic, and semi-oceanic waters off and on continental shelves (Compagno 2005) Salinity may play a role in habitat selection, especially in estuarine waters (Burgess, unpublished; Doño 2008; González Pestana 2018) 	 4.2 (Cortés 1999); Prey items: primarily cephalopods, but bony fishes, crustaceans, small elasmobranchs also documented (Bornatowski et al. 2014). Some evidence of ontogenetic diet shift (Gonzalez-Pestana et al. 2017) Low overlap with co-occurring scalloped hammerhead (Loor-Andrade et al. 2015)

Literature cited

Barker, A.M., Frazier, B.S., Adams, D.H., Bedore, C.N., Belcher, C.N., Driggers III, W.B., Galloway, A.S., Gelsleichter, J., Grubbs, R.D., Reyier, E.A. and Portnoy, D.S., 2021. Distribution and relative abundance of scalloped (*Sphyrna lewini*) and Carolina (*S. gilberti*) hammerheads in the western North Atlantic Ocean. Fisheries Research, 242, p.106039.

Barker, A.M., Frazier, B.S., Bethea, D.M., Gold, J.R. and Portnoy, D.S., 2017. Identification of young-of-the-year great hammerhead shark *Sphyrna mokarran* in northern Florida and South Carolina. Journal of Fish Biology, 91(2), pp.664-668.

Bornatowski, H., Braga, R.R., Abilhoa, V. and Corrêa, M.F.M., 2014. Feeding ecology and trophic comparisons of six shark species in a coastal ecosystem off southern Brazil. Journal of Fish Biology, 85(2), pp.246-263.

Calich, H.J., Rodríguez, J.P., Eguíluz, V.M., Hammerschlag, N., Pattiaratchi, C., Duarte, C.M. and Sequeira, A.M., 2021. Comprehensive analytical approaches reveal species-specific search strategies in sympatric apex predatory sharks. Ecography, 44(10), pp.1544-1556.

Calich, H., Estevanez, M. and Hammerschlag, N., 2018. Overlap between highly suitable habitats and longline gear management areas reveals vulnerable and protected regions for highly migratory sharks. Marine Ecology Progress Series, 602, pp.183-195.

Compagno, L.J.V. 2005. Sharks of the World. An annotated and illustrated catalogue of the shark species known to date. Volume 3: Carcharhiniformes. FAO, Rome.

Cortés, E., 1999. Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56(5), pp.707-717.

Doño, F. 2008. Identificación y caracterización de áreas de cría del tiburón Martillo (Sphyrna spp.) en las costas de Uruguay. Tesis de Licenciatura, Facultad de Ciencias, Universidad de la República de Uruguay.

Ebert, D.A. and Stehmann, M.F. 2013. Sharks, batoids and chimaeras of the North Atlantic. FAO, Roma (Italia).

Gardiner, Jayne M., Tonya R. Wiley, Susan K. Lowerre-Barbieri, Kim Bassos-Hull, and Krystan Wilkinson. 2021. Residency and movements of juvenile great hammerheads, *Sphyrna mokarran*, in the Tampa Bay area: preliminary results. SEDAR77-SID05. SEDAR, North Charleston, SC. 7 pp

González Pestana, A., 2018. Habitat suitability of juvenile smooth hammerhead shark (Sphyrna zygaena) off northern Peru. Master's thesis, James Cook University.

Gonzalez-Pestana, A., Acuna-Perales, N., Coasaca-Cespedes, J., Cordova-Zavaleta, F., Alfaro-Shigueto, J., Mangel, J.C. and Espinoza, P., 2017. Trophic ecology of the smooth hammerhead shark (*Sphyrna zygaena*) off the coast of northern Peru. Fishery Bulletin, 115(4).

Graham, F., Rynne, P., Estevanez, M., Luo, J., Ault, J.S. and Hammerschlag, N., 2016. Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Diversity and Distributions, 22(5), pp.534-546.

Guttridge, T.L., Van Zinnicq Bergmann, M.P., Bolte, C., Howey, L.A., Finger, J.S., Kessel, S.T., Brooks, J.L., Winram, W., Bond, M.E., Jordan, L.K. and Cashman, R.C., 2017. Philopatry and regional connectivity of the great hammerhead shark, *Sphyrna mokarran* in the US and Bahamas. Frontiers in Marine Science, 4, p.3.

Hammerschlag, N., Gallagher, A.J. and Lazarre, D.M., 2011a. A review of shark satellite tagging studies. Journal of Experimental Marine Biology and Ecology, 398(1-2), pp.1-8.

Hammerschlag, N., Gallagher, A.J., Lazarre, D.M. and Slonim, C., 2011b. Range extension of the Endangered great hammerhead shark *Sphyrna mokarran* in the Northwest Atlantic: preliminary data and significance for conservation. Endangered Species Research, 13(2), pp.111-116.

Heuter, R.E. and Tyminski, J.P., 2007. Species-specific distribution and habitat characteristics of shark nurseries in Gulf of Mexico waters off peninsular Florida and Texas. In American Fisheries Society Symposium (Vol. 50, p. 193). American Fisheries Society.

Hoffmayer, E.R., Franks, J.S., Driggers, W.B. and Howey, P.W., 2013. Diel vertical movements of a scalloped hammerhead, *Sphyrna lewini*, in the northern Gulf of Mexico. Bulletin of Marine Science, 89(2), pp.551-557.

Klimley, A.P. 1987. The determinants of sexual segregation in the scalloped hammerhead shark, *Sphyrna lewini*. Environmental Biology of Fishes, 18(1), pp.27-40.

Kotas, J.E. 2004. Dinâmica de populações e pesca do tubarão-martelo Sphyrna lewini capturado no mar territorial e zona econômica exclusiva do sudeste-sul do Brasil. Ciênciias da engenharia ambienta. Escola de Engenharia de São Carlos. CRHEA – USP.

Loor-Andrade, P., Galván-Magaña, F., Elorriaga-Verplancken, F.R., Polo-Silva, C. and Delgado-Huertas, A., 2015. Population and individual foraging patterns of two hammerhead sharks using carbon and nitrogen stable isotopes. Rapid Communications in Mass Spectrometry, 29(9), pp.821-829.

Macdonald, C., Jerome, J., Pankow, C., Perni, N., Black, K., Shiffman, D. and Wester, J., 2021. First identification of probable nursery habitat for critically endangered great hammerhead

Sphyrna mokarran on the Atlantic Coast of the United States. Conservation Science and Practice, 3(8), p.e418.

Moore, A.B. and Gates, A.R. 2015. Deep-water observation of scalloped hammerhead *Sphyrna lewini* in the western Indian Ocean off Tanzania. Marine Biodiversity Records, 8.

NMFS. 2017. Amendment 10 to the 2006 Consolidated HMS Fishery Management Plan: Essential Fish Habitat. NOAA, NOAA Fisheries, HMS Management Division. <u>https://media.fisheries.noaa.gov/dam-migration/final_a10_ea_signed_fonsi_092017.pdf</u>

Quattro, J.M., Stoner, D.S., Driggers, W.B., Anderson, C.A., Priede, K.A., Hoppmann, E.C., Campbell, N.H., Duncan, K.M. and Grady, J.M. 2006. Genetic evidence of cryptic speciation within hammerhead sharks (Genus Sphyrna). Marine Biology, 148(5), pp.1143-1155.

Raoult, V., Broadhurst, M.K., Peddemors, V.M., Williamson, J.E. and Gaston, T.F. 2019. Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. Journal of Fish Biology, 95(6), pp.1430-1440.

Santos, C.C. and Coelho, R., 2018. Migrations and habitat use of the smooth hammerhead shark (*Sphyrna zygaena*) in the Atlantic Ocean. PLOS One, 13(6), p.e0198664.

Smale, M.J. and Cliff, G. 1998. Cephalopods in the diets of four shark species (Galeocerdo cuvier, Sphyrna lewini, S. zygaena and S. mokarran) from KwaZulu-Natal, South Africa. South African Journal of Marine Science, 20(1), pp.241-253.

Stevens, J.D. and Lyle, J.M., 1989. Biology of three hammerhead sharks (*Eusphyra blochii*, *Sphyrna mokarran* and *S. lewini*) from northern Australia. Marine and Freshwater Research, 40(2), pp.129-146.

Vooren, C.M., Klippel, S. and Galina, A.B. 2005. Biologia e status conservação dos tubarãomartelo *Sphyrna lewini* e *S. zygaena*. In: C.M. Vooren and S. Klippel (eds), Ações para a conservação de tubarões e raias no sul do Brasil, pp. 97-112. Igaré, Porto Alegre.

Weigmann, S., 2016. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. Journal of Fish Biology, 88(3), pp.837-1037.

Wells, R.J., TinHan, T.C., Dance, M.A., Drymon, J.M., Falterman, B., Ajemian, M.J., Stunz, G.W., Mohan, J.A., Hoffmayer, E.R., Driggers III, W.B. and McKinney, J.A., 2018. Movement, behavior, and habitat use of a marine apex predator, the scalloped hammerhead. Frontiers in Marine Science, 5, p.321.

6. Length Composition Section

Length Composition Contributors

NMFS SEFSC, Panama City, FL
NMFS SEFSC, Panama City, FL
Texas A&M University, Corpus Christi, TX
El Colegio de la Frontera Sur, Campeche, México
NMFS SEFSC, Panama City, FL
NMFS SEFSC, Miami, FL
Mississippi State University, Biloxi, MS
Texas Parks and Wildlife Department, Port O'Connor, TX
South Carolina Department of Natural Resources, Columbia, SC
New College of Florida, Sarasota, FL
Florida State University, St. Teresa, FL
Rosenstiel School of Marine and Atmospheric Science, Miami, FL
University of Southern Mississippi, Ocean Springs, MS
NMFS SEFSC, Pascagoula, MS
NMFS SEFSC, Panama City, FL
NMFS NEFSC, Narragansett, RI
Mote Marine Laboratory, Sarasota, FL
NMFS SEFSC, Pascagoula, MS
Texas A&M University, Corpus Christi, TX
Recreational fisherman, Ocean City, MD

6.1 Length Composition Submitted For Use In The Assessment Workshop

Overview

This document details length composition data sources submitted for four species of hammerhead sharks during the SEDAR 77 Data Workshop for possible use in the SEDAR 77 HMS Hammerhead Sharks stock assessment. Great (*Sphyrna mokarran*), scalloped (*S. lewini*), smooth (*S. zygaena*), and Carolina (*S. gilberti*) hammerheads length composition data were submitted from commercial, recreational, and scientific surveys and summarized here. The goal for all of the data is to provide numbers of available length data (and their distribution) by species so that the assessment team can decide which stock assessment software to use for each species. Data were binned into 5 cm fork length increments by year (terminal year 2019) and matrices extracted for stock assessment model input. Length compositions were plotted for each species to show length-frequency histograms. Twenty-seven data sources (several with multiple surveys) were submitted for a total of 22,108 records collected for the four hammerhead species

between 1973 and 2019. Variability in years of data available, species, and the size distributions of recorded specimens was present among the different data sources. Fishery-dependent (commercial and recreational surveys) contributed 13,084 records of the four species whereas fishery-independent surveys contributed 9,024 records.

Introduction

The proposed analytical approach to be implemented in this assessment with these data is a length-based, age-structured statistical model (Stock Synthesis; Methot and Wetzel 2013; e.g., Wetzel and Punt 2011a, 2011b). Stock Synthesis utilizes an integrated modeling approach (Maunder and Punt 2013) to take advantage of the many data sources available, including length composition data. Once data are organized into 'fleets' based on similar length compositions, selectivity for each fleet can be estimated in the Stock Synthesis model from the time series of binned length data. Similarly, available length composition time series obtained for accepted CPUE indices will be reviewed during subsequent assessment webinars in order to determine if there are sufficient length data to represent the length composition distributions of each accepted CPUE index. Length-based selectivity for CPUE indices with representative length composition distributions will be estimated in the Stock Synthesis model from the time series of binned length data. Length-based selectivity for CPUE indices with representative length composition distributions will be estimated in the Stock Synthesis model from the time series of binned length data. Length-based selectivity for CPUE indices with representative length composition distributions will be set equal to (mirror) CPUE indices with representative length composition distributions.

Methods

Length composition data for great, scalloped, smooth, and Carolina hammerheads were submitted during the SEDAR 77 Data Workshop, which occurred from December 13-17, 2021. The goal for all of the data is to provide numbers of available length data (and their distribution) by species so that the assessment team can decide which stock assessment software to use for each species. The available length composition time series data were obtained from fisheriesindependent scientific surveys as well as from fishery-dependent sources from commercial and recreational catch data and were available from 1973-2019 (Table 1), depending on the data source. Data were recorded by fisheries research biologists, scientific observers, commercial, and recreational fishers from various surveys and fishing events. Length data from each dataset were omitted from analyses if it exceeded biologically plausible measurements for the species reported in SEDAR77-DW18. Fork length measurements (cm FL) were used if available and data were converted to cm FL from other measured length units with the equation for combined sexes given in SEDAR 77-DW03. Data were subset into three regions: Gulf of Mexico, Atlantic Ocean, and combined Gulf of Mexico and Atlantic Ocean. Recommendations from the Stock ID Final Report (SEDAR 2022) were followed as to how to treat each stock. Thus, scalloped hammerhead data were separated out into each of the three regions if data were available whereas great, smooth, and Carolina hammerheads were grouped into the combined regions only. Data were further subset into males, females, unknown sex, and combined sex for each

SEDAR 77 Section III

species and region. Scalloped hammerheads were further subset to create an Age 0 complex (\leq 61 cm FL, young-of-the-year) and an Age 1+ complex (\geq 62 cm FL, juvenile to adult) to match that of the Indices Working Group, as described in SEDAR77-DW24, which is consistent with the interpretation of the size at Age 0 of scalloped hammerheads among the various data sources. Length data were then binned by year into 5 cm FL increments and the matrices extracted for stock assessment model input (i.e., Stock Synthesis). Length-frequency histograms were created for each species and sex matrix with length at 50% maturity (L₅₀) denoted in each plot obtained from SEDAR77-DW18.

6.2 Fishery-Dependent Data Sources

<u>Recreational Catches: Marine Recreational Information Program (MRIP) and the Southeast</u> <u>Region Head Boat Survey (SRHS)</u>

Length composition data for hammerheads were available via the Marine Recreational Information Program (MRIP) and the Southeast Region Headboat Survey (SRHS) operated by the Southeast Fisheries Science Center (SEFSC) Beaufort Laboratory as described in the Catches Section of this report and in SEDAR77-DW04. MRIP and SRHS were combined to create one Recreational Survey category (n=430). Data were split into three regions: Gulf of Mexico, Atlantic Ocean, and combined Gulf of Mexico and Atlantic Ocean. Provided data ranged from 1981-2015 for Age 0 (n=85) and Age 1+ (n=203) scalloped hammerheads, combined ages of great (n=97) hammerheads, and for smooth hammerheads (n=45) (Table 2). No sex was recorded for these surveys so single matrices were created for each species in the Gulf of Mexico, Atlantic Ocean, and combined regions.

South Carolina Department of Natural Resources (SCDNR)

Commercial trawl and gillnet data were available through the South Carolina Department of Natural Resources (n=85) ranging from 2006-2019 for the Atlantic Ocean. Length data were provided for Age 0 (n=37) and Age 1+ (n=10) scalloped hammerheads and for Carolina hammerheads (n=13) collected using trawl gear. Age 1+ (n=12) scalloped hammerheads were collected in gillnet gear along with Carolina hammerheads (n=13) (Table 2).

Mexican Gulf of Mexico Artisanal Shark Fisheries

Intensive monitoring of the artisanal shark fisheries in the coastal waters of the Mexican Gulf of Mexico provided length data from 1982-2019 (n=1,637) to be considered for use in the assessment (Table 2; see SEDAR77-DW04 for further details). Artisanal gillnet and bottom longline gears provided length composition data in the Gulf of Mexico for Age 0 (n=778) and Age 1+ (n=797) scalloped hammerheads, and combined ages of great hammerheads (n=62).

<u>NOAA Fisheries Northeast Fishery Science Center (NEFSC) Cooperative Shark Tagging</u> <u>Program (CSTP)</u>

The Cooperative Shark Tagging Program, launched in 1962, is a collaborative effort among recreational anglers, the commercial fishing industry, and NOAA Fisheries to learn more about the life history of Atlantic Sharks. Most CSTP participants tag the sharks they catch with a rod and reel while fishing recreationally. Other participants include commercial anglers using longline and net gear, biologists, and NOAA fisheries observers. Length composition data were available from 1962-2019 (n=2,576) (Table 2). A large amount of data included estimated fork lengths, thus matrices were made for both measured and estimated lengths for the Gulf of Mexico, Atlantic Ocean, and combined regions. Gears included were commercial and recreational trawl, gillnet, bottom longline, rod and reel, and handline. Age 0 scalloped hammerheads were caught by trawl (n=6), gillnet (n=2), longline (n=1), and rod and reel (n=322) gears. Age 1+ scalloped hammerheads were caught by trawl (n=393), gillnet (n=18), longline (n=248), and rod and reel (n=1035) gears. Combined ages of great hammerheads were captured by longline (n=17) and rod and reel gears (n=276), smooth hammerheads by longline (n=34) and rod and reel gears (n=218).

Texas Shark Rodeo

Data collected from anglers targeting sharks participating in the Texas Shark Rodeo were available from 2014-2019 for the Gulf of Mexico (n=146). Age 0 (n=31) and Age 1+(n=50) scalloped hammerheads and all ages combined of great (n=65) had length information (Table 2).

Recreational Logbook

Personal logbooks of recreational charter Captain, Mark Sampson, are being archived in a database at Maryland Department of Natural Resources. These data were available from 2007-2019 (n=88) and provided length compositions for Age 1+ (n=30) scalloped hammerheads and for smooth hammerheads (n=58) in the Atlantic Ocean (Table 2).

Southeast Coastal Gillnet Observer Program (GNOP)

Observer coverage of the Florida-Georgia shark gillnet fishery began in 1992, and has since documented the many changes to effort, gear characteristics, and target species the fishery has undergone following the implementation of multiple fisheries regulations as described in SEDAR77-DW13. A large amount of data included estimated fork lengths, thus matrices were made for both measured and estimated lengths for the Gulf of Mexico, Atlantic Ocean, and combined regions (n=303). Length composition data were available from 1999-2019 and provided information for Age 0 (n=32) and Age 1+ (n=213) scalloped hammerheads, combined ages of great hammerheads (n=44), and for smooth hammerheads (n=14) (Table 2).

Shark Bottom Longline Observer Program (BLLOP)

SEDAR 77 Section III

Observations by at-sea observers of the shark-directed bottom longline fishery in the Atlantic Ocean and Gulf of Mexico have been conducted since 1994 as described in SEDAR77-DW12. Length composition data were available from 1994-2019 (n=4,219) and include data prior to the Shark Research Fishery that was run by the University of Florida. Length data were provided for Age 0 (n=13) and Age 1+ (n=2,782) scalloped hammerheads, all ages combined of great hammerheads (n=1,409), and for smooth hammerheads (n=15) (Table 2). Matrices were created for the Gulf of Mexico, Atlantic Ocean, and combined regions.

Pelagic Longline Observer Program (PLLOP)

In 1992, the National Marine Fisheries Service (NMFS) initiated scientific sampling of the U.S. large pelagic fisheries longline fleet, as mandated by the U.S. Swordfish Fisheries Management Plan and subsequently the Atlantic Highly Migratory Species Fishery Management Plan (1998). Scientific observers were placed aboard vessels participating in the Atlantic pelagic longline fishery as described in SEDAR77-DW08. Length composition data were available from 1992-2019 (n=3,600). A large amount of data included estimated fork lengths, thus matrices were made for both measured and estimated lengths for the Gulf of Mexico, Atlantic Ocean, and combined regions. Length data for Age 1+ (n=3,195) scalloped hammerheads, combined ages of great hammerheads (n=297), and for smooth hammerheads (n=108) (Table 2).

6.3 Fishery-Independent Data Sources

Northeast Gulf of Mexico (GULFSPAN) Gillnet Survey

Fishery-independent surveys of coastal shark populations have taken place since 1994 in the eastern and northern Gulf of Mexico. The cooperative GULFSPAN gillnet survey began in 1996 to examine the distribution and abundance of juvenile sharks in coastal areas as described in SEDAR77-DW17 and data were available from 1994-2019 (n=1,742). Length data were provided for Age 0 (n=1,530) and Age 1+ (n=187) scalloped hammerheads and combined ages of great hammerheads (n=25) in the Gulf of Mexico (Table 3).

Texas Parks and Wildlife Gillnet Survey

The Texas Parks and Wildlife Department, Coastal Fisheries Division runs a fishery-independent gillnet survey to monitor the relative abundance and size of organisms, their spatial and temporal distribution, species composition of the community, and selected environmental parameters known to influence their distribution and abundance. Surveys were conducted in 10 major bay systems along the Texas coast in the northwestern Gulf of Mexico from 1982 to 2019 as described in SEDAR77-DW16. Length composition data were provided for 662 animals consisting of Age 0 (n=569) and Age 1+ (n=81) scalloped hammerheads and combined ages of great hammerheads (n=25) (Table 3).

Florida State University Bottom Longline Survey

SEDAR 77 Section III

The Florida State University bottom longline survey was expanded in 2011 to include regular sampling in southwest Florida in an effort to capture smalltooth sawfish, *Pristis pectinata*, for research directed at promoting recovery of this endangered species. This work is concentrated in two areas, in Everglades National Park, mostly in northern Florida Bay, along the middle to lower Florida Keys, primarily along the shelf break as described in SEDAR77-DW14. Length composition data (n=219) were available from 2011-2019 for Age 1+ scalloped hammerheads (n=76) and combined ages of great hammerheads (n=143) in the Gulf of Mexico (Table 3).

NOAA Fisheries Southeast Fisheries Science Center Bottom Longline Survey

NOAA Fisheries SEFSC Mississippi Laboratories has conducted standardized bottom longline surveys in the western North Atlantic Ocean since 1995 as described in SEDAR77-DW24. Length compositions were provided for 703 animals from 1995-2019 consisting of Age 0 (n=9) and Age 1+ (n=598) scalloped hammerheads and combined ages of great hammerheads (n=96) (Table 3). Matrices were created for the Gulf of Mexico, Atlantic Ocean, and combined regions.

NOAA Northeast Fisheries Science Center Coastal Shark Bottom Longline Survey

The NOAA Fisheries NEFSC Apex Predators Program has conducted coastal shark bottom longline surveys from 1996-2018 along the Atlantic coast of the United States as described in SEDAR77-DW28. Length compositions were available for 259 animals consisting of Age 1+ (n=251) scalloped hammerheads and combined ages of great hammerheads (n=8) (Table 3).

Southeast Area Monitoring and Assessment Program Bottom Longline Survey

Fishery-independent bottom longline surveys have been conducted in coastal waters of the northern Gulf of Mexico by the Southeast Area Monitoring and Assessment Program (SEAMAP) via NOAA Fisheries SEFSC Mississippi Labs, the Dauphin Island Sea Lab, Gulf Coast Research Laboratory, Louisiana Department of Wildlife and Fisheries, and Texas Parks and Wildlife Department as described in SEDAR77-DW25. Surveys spanned from Texas to Alabama providing length compositions for 153 animals from 2008-2019: Age 0 (n=3) and Age 1+ (n=86) scalloped hammerheads and combined ages of great hammerheads (n=64) (Table 3).

NOAA Fisheries Cooperative Atlantic States Shark Pupping and Nursery Longline Survey

In an effort to examine the use of South Carolina's, Georgia's and northern Florida's estuarine and nearshore waters as nursery areas for coastal shark species, personnel from SCDNR, Georgia Department of Natural Resources (GADNR), and the University of North Florida (UNF) in collaboration with NMFS Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) program began sampling for sharks using longline and gillnet methods in several of their state's estuaries and nearshore waters as described in SEDAR77-DW30. Length composition from longline surveys were available from 2000-2019, providing data for 477 animals. Age 0 (n=439) and Age 1+ (n=37) scalloped hammerheads and one Carolina hammerhead were captured by longline gear on the Atlantic coast (Table 3).

South Carolina Department of Natural Resources, Cooperative Atlantic States Shark Pupping and Nursery Long-Gillnet Survey

In an effort to examine the use of South Carolina's estuarine waters as nursery areas for coastal shark species the SCDNR Marine Resources Division, in collaboration with NMFS COASTSPAN Survey began sampling for sharks using longline and gillnet methods in several estuaries within South Carolina as described in SEDAR77-DW31. Length composition data from long gillnet were available from 2001-2019 for 1,060 animals in the Atlantic Ocean. Age 0 (n=1,017) and Age 1+ (n=8) scalloped hammerheads and combined ages of Carolina (n=35) hammerheads were captured by gillnet gear (Table 3).

South Carolina Department of Natural Resources, Cooperative Atlantic States Shark Pupping and Nursery Short-Gillnet Survey

In an effort to increase sampling effort in South Carolina's estuarine waters SCDNR Marine Resources Division, in collaboration with NMFS COASTSPAN Survey added an additional survey gear (short gillnet) in 2006 to the established longline and gillnet methods that had been ongoing in several estuaries within South Carolina since 1998 as described in SEDAR77-DW32. Length composition data were available for short gillnet gear from 2007-2019 for Age 0 scalloped hammerheads (n=34) in the Atlantic Ocean (Table 3).

South Carolina Department of Natural Resources Red Drum Bottom longline

The SCDNR runs a long-term monitoring program for adult red drum, *Sciaenops ocellatus*, in the coastal waters of South Carolina as described in SEDAR77-DW29. Length composition data were available from 1995-2006 for Age 0 (n=52) and Age 1+(n=34) scalloped hammerheads in the Atlantic Ocean (Table 3).

South Carolina Department of Natural Resources SEAMAP Bottom Longline

Under SEAMAP, the SCDNR red drum longline survey was modified from a fixed-station survey to a random stratified multispecies survey in 2007 in response to the needs of stock assessment biologists and to increase coverage along the coast as described in SEDAR77-DW29. Length composition data were available from 2007-2019 for 53 animals. Age 0 (n=34) and Age 1+ (n=12) scalloped hammerheads and combined ages of great (n=7) hammerheads were captured by longlines in the Atlantic Ocean (Table 3).

South Carolina Department of Natural Resources Scientific Trawl

The SCDNR runs a scientific trawl survey that provided length composition data for 122 animals from 2006-2019. Age 0 (n=68) and Age 1+(n=21) scalloped hammerheads, combined ages of

SEDAR 77 Section III

great (n=5), and for Carolina (n=28) hammerheads were captured by trawl gear in the Atlantic Ocean (Table 3).

Texas A&M University Corpus Christi Gillnet and Longline Surveys

Texas A&M University Corpus Christi runs a longline and gillnet program in Corpus Christi Bay to sample shark assemblages within the bay. Length composition data were available for 12 Age 0 scalloped hammerhead collected between 2017-2018. Nine (n=9) were captured by gillnet gear and three were captured by longline gear for the Gulf of Mexico region (Table 3).

University of North Carolina Shark Longline Survey

A bi-weekly longline survey has been conducted at two fixed stations south of Shackleford Banks in Onslow Bay, North Carolina by the University of North Carolina (UNC), Institute of Marine Sciences starting in 1972 as described in SEDAR77-DW33. Length composition data were available for 506 scalloped hammerheads from 1972-2019. Eight Age 0 and 498 Age 1+ scalloped hammerheads were captured by longline gear in the Atlantic Ocean during this survey (Table 3).

Rosenstiel School of Marine and Atmospheric Science Drumline Survey

Shark drumline surveys have been conducted by the Rosenstiel School of Marine and Atmospheric Science from Miami through the middle Florida Keys to examine spatial, seasonal, and environmental patterns in shark occurrence, catch per unit effort, composition, and demographic structure as described in SEDAR65-DW15. Length composition data were available for 220 animals from 2008-2019. Age 1+ (n=17) scalloped hammerheads and combined ages of great (n=203) hammerheads were captured by drumline gear (Table 3). Matrices were created for the Gulf of Mexico, Atlantic Ocean, and combined regions.

Mote Marine Laboratory Surveys

Mote Marine Laboratory has conducted long-term sampling of shark assemblages in the eastern Gulf of Mexico utilizing longline, drumline, and gillnet gears. Length composition data were available for 337 animals from 1992-2019. Longline gear captured 79 animals comprised of Age 1+ (n=20) scalloped hammerheads and combined ages of great (n=59) hammerheads. Drumline gear captured 78 animals consisting of Age 1+ (n=8) scalloped hammerheads and combined ages of great (n=70) hammerheads. Gillnet gear captured 180 animals consisting of Age 0 (n=76) and Age 1+ (n=5) scalloped hammerheads and combined ages of great (n=99) hammerheads (Table 3). Matrices for each gear type were created for the Gulf of Mexico.

Dauphin Island Sea Lab (DISL) Bottom Longline Survey

Fishery-independent bottom longline surveys have been conducted out of the Dauphin Island Sea Lab by the University of South Alabama since 2006 as described in SEDAR77-DW06 and under SEAMAP as described in SEDAR77-DW25. Length composition data were available for 250 animals from 2006-2019. Age 1+ (n=182) scalloped and combined ages of great (n=68) hammerheads were captured in the Gulf of Mexico (Table 3). *Note: there are 31 animals (n=21 great hammerhead, n= 10 scalloped hammerhead) that were captured under the SEAMAP survey. These lengths were also included in the SEAMAP length composition summary described here to match the index development for SEAMAP, which included some of the DISL stations.*

Georgia Department of Natural Resources, SEAMAP Bottom Longline Survey

Under SEAMAP, the GADNR conducts a bottom longline survey off the Georgia coast in the Atlantic Ocean. Length composition data were available for 38 scalloped hammerheads from 2007-2019. Age 0 (n=31) and Age 1+ (n=7) animals were captured (Table 3).

NOAA Fisheries Cooperative Shark Tagging Program

The CSTP provided length composition data for 2,122 animals from 1962-2019 from six scientific gear types: trawl, gillnet, longline, rod and reel, drumline, and handline. A large amount of data included estimated fork lengths, thus matrices were made for both measured and estimated lengths for the Gulf of Mexico, Atlantic Ocean, and combined regions. Trawl gear captured Age 0 (n=5) and Age 1+ (n=7) scalloped hammerheads; gillnet gear captured Age 0 (n=168) and Age 1+ (n=19) scalloped hammerheads; longline gear captured Age 0 (n=168) and Age 1+ (n=1499) scalloped hammerheads, combined ages of great (n=72) and smooth (n=27) hammerheads; rod and reel gear captured Age 0 (n=6) and Age 1+ (n=13) scalloped hammerheads, combined ages of great (n=5) hammerheads; drumline gear captured 97 great hammerheads (combined ages); and handline gear captured 24 great hammerheads (combined ages) (Table 3).

6.4 Summary

Twenty-seven data sources were submitted for possible use in the assessment, many with multiple surveys for multiple gear types. Fishery-dependent (commercial and recreational surveys) contributed 13,084 records (Figure 1) whereas fishery-independent surveys contributed 9,024 records of all four species (Figure 2). Scalloped hammerheads had the highest frequency of catches compared to the other species in commercial and recreational gears and Carolina hammerheads were captured the least. Bottom longline gear was the primary gear that captured hammerheads, and other gears included gillnets, pelagic longlines, hook and line/rod and reel, and trawls (Figure 1). Age 0 (young-of-the-year) scalloped hammerheads were primarily captured in fishery-independent gillnets, followed by bottom longlines (Figure 2) whereas Age 1+ (juveniles to adults) scalloped hammerheads were primarily captured in bottom longline gear followed by gillnets (Figure 2). Great hammerheads were primarily captured in bottom longlines

and drumlines, while smooth hammerheads were captured primarily in bottom longlines. The few Carolina hammerheads captured were in gillnets and trawls (Figure 2).

Length composition for Age 0 scalloped hammerheads ranged from 21-61 cm FL (Figure 3) and from 62-400 cm FL for Age 1+ (Figure 4). Great hammerheads length composition ranged from 26-365 cm FL (Figure 5) and smooth hammerheads from 29-350 cm FL (Figure 6). Carolina hammerhead length composition ranged from 27-104 cm FL (Figure 7). Length compositions of each data source of males and females of each species were plotted to provide visualization of available data. Example plots of one fishery-dependent and one fishery-independent survey can are provided below.

Example length-frequency compositions for HMS hammerhead sharks submitted during the SEDAR 77 Data Workshop for possible inclusion in the SEDAR 77 stock assessment

- Length composition data for hammerheads were available via the Marine Recreational Information Program (MRIP) and the Southeast Region Headboat Survey (SRHS) operated by the Southeast Fisheries Science Center (SEFSC) Beaufort Laboratory (as described in the methods section of the main text and summarized in Table 2 above; Figures 8-10). MRIP and SRHS were combined to create one Recreational Survey (n=430) that includes all fishery-dependent recreational catches. Data were split into three regions: Gulf of Mexico, Atlantic Ocean, and combined Gulf of Mexico and Atlantic Ocean. Female length at 50% maturity are denoted by a red dashed line and males length at 50% maturity are denoted by solid blue lines for each region as described in SEDAR77-DW18.
- 2. Length compositions for hammerheads were available from NOAA Fisheries Southeast Fisheries Science Center (SEFSC) Mississippi Laboratories standardized fisheryindependent bottom longline survey (n=703, NMFS Longline; as described in the methods section of the main text and summarized in Table 3 above; Figures 11-16). Data were split into three regions: Gulf of Mexico, Atlantic Ocean, and combined Gulf of Mexico and Atlantic Ocean. Female length at 50% maturity are denoted by a red dashed line and males length at 50% maturity are denoted by solid blue lines for each region as described in SEDAR77-DW18.

References

Maunder, M. N. and A. E. Punt. 2013. A review of integrated analysis in fisheries stock assessment. Fisheries Research 142:61–74.

Methot R. D. and C. R. Wetzel. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research 142:86–99.

R Development Core Team. 2018. R: A language and environment for statistical computing, reference index version 3.5.0. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

SEDAR. 2022. SEDAR 77 HMS hammerhead sharks stock assessment report – stock ID process final report. SEDAR, North Charleston SC. 72 pgs.

Wetzel, C. R., and A. E. Punt. 2011a. Model performance for the determination of appropriate harvest levels in the case of data-poor stocks. Fisheries Research 110:342–355.

Wetzel, C. R., and A. E. Punt. 2011b. Performance of a fisheries catch-at-age model (Stock Synthesis) in data-limited situations. Marine and Freshwater Research 62: 927–936.

6.5 Tables

Table 1. Summary of available length composition data for scalloped (*S. lewini*), great (*S. mokarran*), smooth (*S. zygaena*), and Carolina (*S. gilberti*) hammerheads from 1973-2019. Data were broken into fishery-independent and fishery-dependent data sources and 'estimated' refers to fork lengths (FL cm) that were estimated and thus not exact measurements. Age 0 refers to scalloped hammerheads (<61 cm FL) and Age 1+ scalloped hammerheads refers to (>61 cm FL). If not noted, ages are combined for species. Abbreviations are as follows: SHH = scalloped hammerheads, GHH = great hammerheads, SMH = smooth hammerheads, and CHH = Carolina hammerheads.

Data Sources	Age 0 SHH	Age 1+ SHH	All GHH	All SMH	All CHH	Total
Fishery-Independent	4234	2216	981	30	64	7525
Estimated Fishery-Independent	0	1440	57	2	-	1499
Total	4234	3656	1038	32	64	9024
Fishery-Dependent	1191	5172	1820	269	26	8478
Estimated Fishery-Dependent	116	3814	453	223	-	4606
Total	1307	8986	2273	492	26	13084
Grand Total	5541	12642	3311	524	90	22108

April 2022

HMS Hammerhead Sharks

Table 2. Fishery-dependent data sources from commercial and recreational catches for possible use in the assessment. Age 0 refers to scalloped hammerheads (\leq 61 cm FL) and Age 1+ scalloped hammerheads refers to (\geq 62 cm FL). If not noted, ages are combined for species. Abbreviations are as follows: SHH = scalloped hammerheads, GHH = great hammerheads, SMH = smooth hammerheads, and CHH = Carolina hammerheads.

Data Source	Years of Coverage	Age 0 SHH	Age 1+ SHH	GHH	SMH	СНН
Recreational Catches				01111	01111	
MRIP, SRHS	1981-2015	85	203	97	45	0
South Carolina Department of Natural Resources						
Commercial trawl	2006-2019	37	10	0	0	13
Commercial gillnet	2006-2019	0	12	0	0	13
Mexican Gulf of Mexico Artisanal fisheries						
Gillnet	1982-2019	122	408	44	0	0
Longline	1982-2019	656	389	18	0	0
Cooperative Shark Tagging Program						
Commercial/recreational trawl	1962-2019	6	393	0	0	0
Commercial/recreational gillnet	1962-2019	2	18	0	0	0
Commercial/recreational longline	1962-2019	1	248	17	34	0
Commercial/recreational rod and reel	1962-2019	322	1035	276	218	0
Commercial/recreational handline	1962-2019	0	0	6	0	0
Texas Shark Rodeo	2014-2019	31	50	65	0	0
Recreational Logbook (Mark Sampson)	2007-2019	0	30	0	58	0
Southeast Coastal Gillnet Observer Program	1999-2019	32	213	44	14	0
Shark Bottom Longline Observer Program						
All vessels (includes UF BLL)	1994-2005	13	1056	418	8	0
Shark Research Fishery	2005-2019	0	1726	991	7	0
Pelagic Longline Observer Program	1992-2019	0	3195	297	108	0
	TOTAL	1307	8986	2273	492	26

Data Workshop Report

HMS Hammerhead Sharks

Table 3. Fishery-independent data for possible use in the assessment. Age 0 refers to scalloped hammerheads ($\leq 61 \text{ cm FL}$) and Age 1+ scalloped hammerheads refers to ($\geq 62 \text{ cm FL}$). If not noted, ages are combined for species. Abbreviations are as follows: SHH = scalloped hammerheads, GHH = great hammerheads, SMH = smooth hammerheads, and CHH = Carolina hammerheads.

Data Source	Years of Coverage	Age 0 SHH	Age 1+ SHH	GHH	SMH	СНН
Northeast Gulf of Mexico (GULFSPAN) Gillnet Survey	1994-2019	1530	187	25	0	0
Texas Park and Wildlife Gillnet Survey	1994-2019	569	81	12	0	0
NOAA Fisheries	1902 2019	207	01	12	Ū	Ū
Southeast Area Monitoring and Assessment Program						
(SEAMAP) Bottom Longline Survey	2008-2019	3	86	64	0	0
Northeast Fisheries Science Center (NEFSC) coastal shark	2000 2019	J	00	01	Ũ	Ũ
bottom longline survey	1996-2018	0	251	8	0	0
Southeast Fisheries Science Center (SEFSC) Bottom		-		Ū.	·	÷
Longline Survey	1995-2019	9	598	96	0	0
Cooperative Shark Tagging Program scientific trawl	1962-2019	5	7	0	0	0
Cooperative Shark Tagging Program scientific gillnet	1962-2019	173	19	0	0	0
Cooperative Shark Tagging Program scientific longline	1962-2019	168	1499	72	27	0
Cooperative Shark Tagging Program scientific rod and reel	1962-2019	6	13	7	5	0
Cooperative Shark Tagging Program scientific drumline	1962-2019	0	0	97	0	0
Cooperative Shark Tagging Program scientific handline	1962-2019	0	0	24	0	0
Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN)						
Long gillnet	2001-2019	1017	8	0	0	35
Short gillnet	2007-2019	34	0	0	0	0
Bottom longline	2000-2019	439	37	0	0	1
Georgia Department of Natural Resources (GADNR) SEAMAP	2007-2019	31	7	0	0	0
South Carolina Department of Natural Resources (SCDNR)						
Red drum longline	1995-2006	52	34	0	0	0
SEAMAP longline	2007-2019	34	12	7	0	0
Scientific Trawl	2006-2019	68	21	5	0	28
University of North Carolina Longline survey	1973-2019	8	498	0	0	0

Table 3. Continued.

Data Source	Years of Coverage	Age 0 SHH	Age 1+ SHH	GHH	SMH	СНН
Texas A&M University Corpus Christi						
Gillnet	2017-2018	9	0	0	0	0
Longline	2017-2018	3	0	0	0	0
Dauphin Island Sea Lab (DISL) Bottom Longline Survey	2006-2019	0	182*	68*	0	0
Florida State University Bottom Longline Survey	2011-2019	0	76	143	0	0
Rosenstiel School of Marine and Atmospheric Science Drumline Survey	2008-2019	0	17	203	0	0
Mote Marine Lab						
Longline	1992-2019	0	20	59	0	0
Drumline	1992-2019	0	8	70	0	0
Gillnet	1992-2019	76	5	99	0	0
	TOTAL	4234	3656	1038	32	64

Asterisk (*) indicates that 10 SHH and 21 GHH lengths from DISL were included in SEAMAP length composition summary to match the index development for SEAMAP, which included some DISL stations. Totals do not include these 31 animals.

6.6 Figures

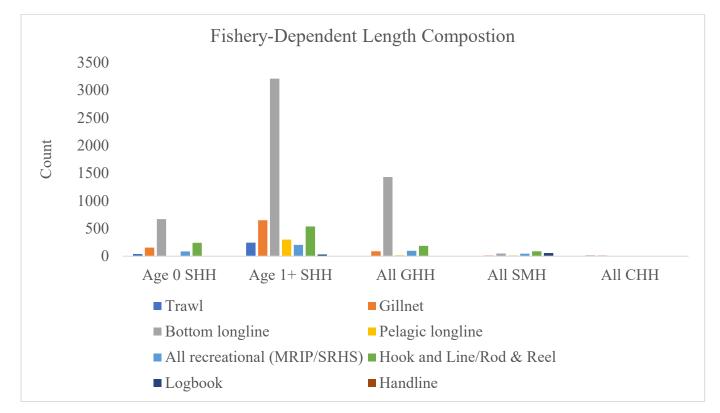


Figure 5. Length compositions for scalloped (SHH), great (GHH), smooth (SMH), and Carolina (CHH) hammerheads from fishery-dependent data sources. Gear types are summarized for combined Gulf of Mexico and Atlantic Ocean regions for each species. Ages are combined for GHH, SMH, and CHH.

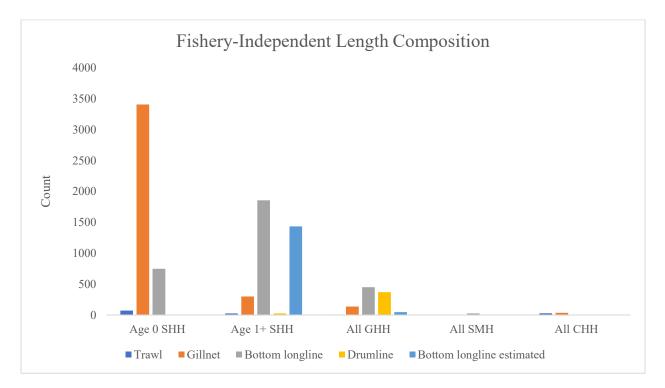
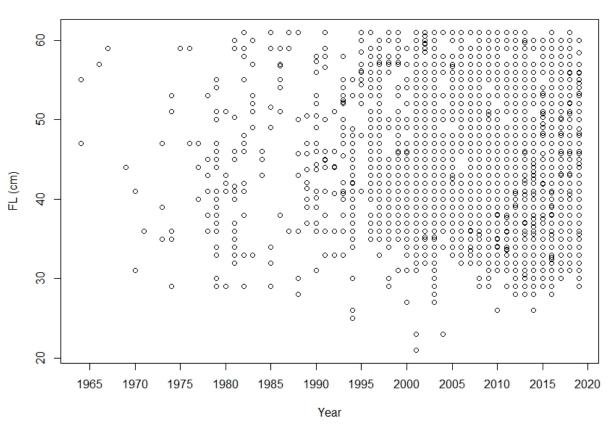
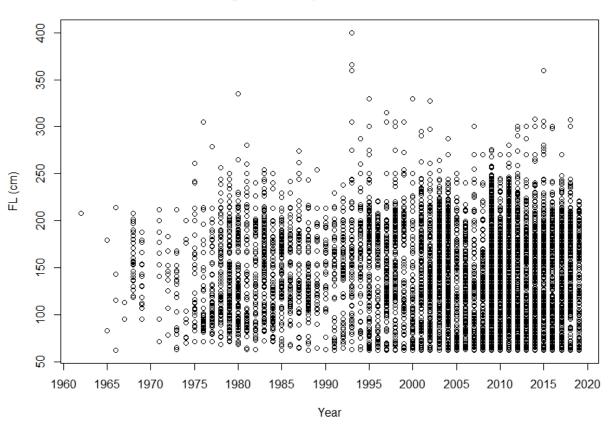




Figure 6. Length compositions for scalloped (SHH), great (GHH), smooth (SMH), and Carolina (CHH) hammerheads from fishery-independent data sources. Gear types are summarized for combined Gulf of Mexico and Atlantic Ocean regions for each species. Ages are combined for GHH, SMH, and CHH.

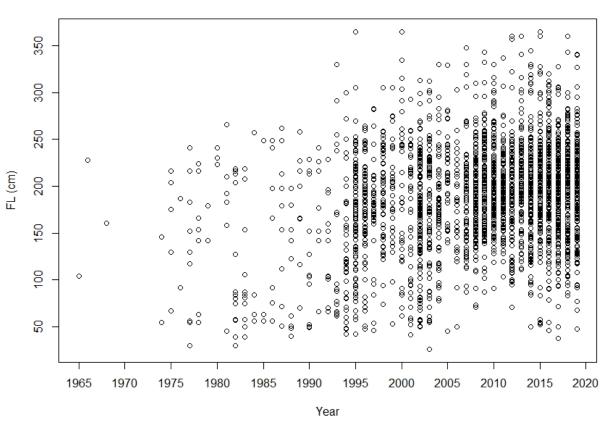

Age 0 Scalloped Hammerheads

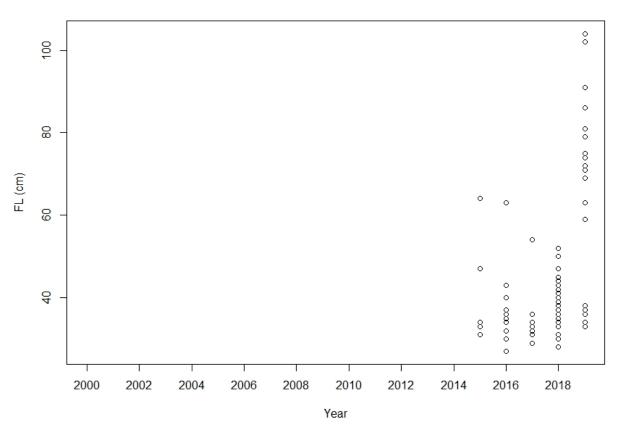
Figure 7. Length composition of Age 0 scalloped hammerheads across available years for potential use in the assessment. Fishery-dependent and independent data are combined.

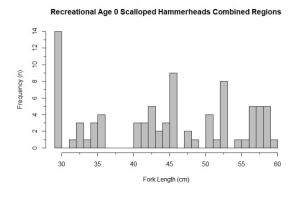
Age 1+ Scalloped Hammerheads

Figure 8. Length composition of Age 1+ scalloped hammerheads across available years for potential use in the assessment. Fishery-dependent and independent data are combined.

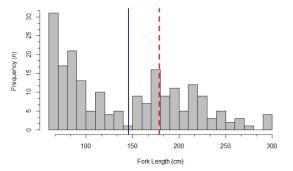
Great Hammerheads

Figure 9. Length composition of combined ages of great hammerheads across available years for potential use in the assessment. Fishery-dependent and independent data are combined.

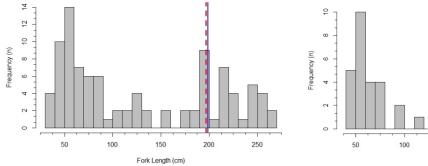



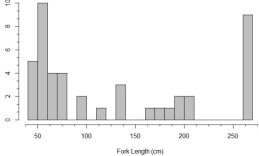

Figure 10. Length composition of combined ages of smooth hammerheads across available years for potential use in the assessment. Fishery-dependent and independent data are combined.

Smooth Hammerheads



Carolina Hammerheads


Figure 11. Length composition of combined ages of Carolina hammerheads across available years for potential use in the assessment. Fishery-dependent and independent data are combined.


Recreational Age 1+ Scalloped Hammerheads Combined Regions

Recreational Great Hammerheads Combined Regions

Recreational Smooth Hammerheads Combined Regions

Figure 8. Recreational length composition data for hammerheads for the combined Gulf of Mexico and Atlantic Ocean regions.

Atlantic Ocean Region

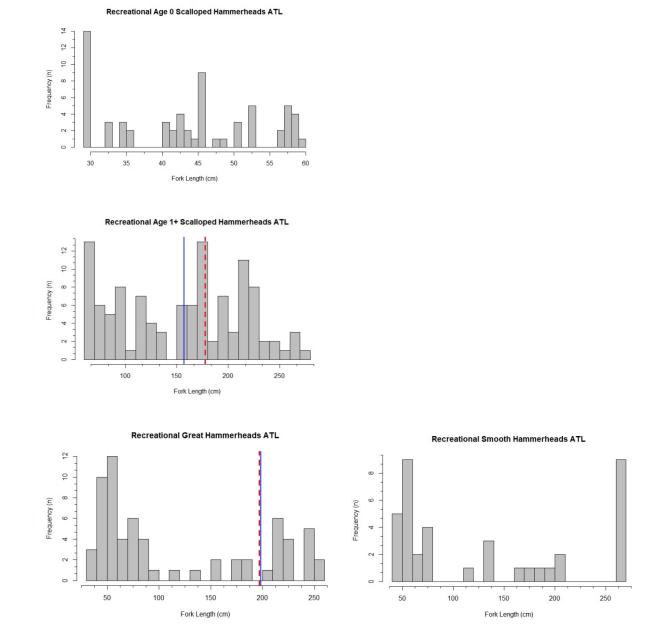
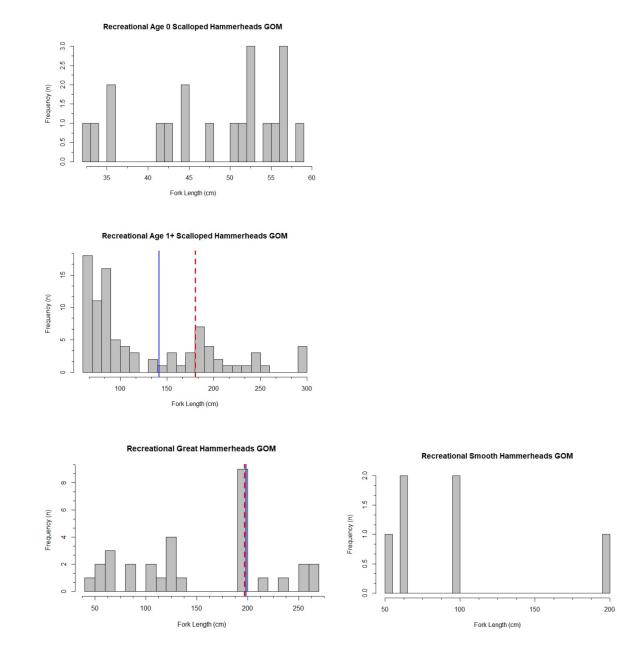
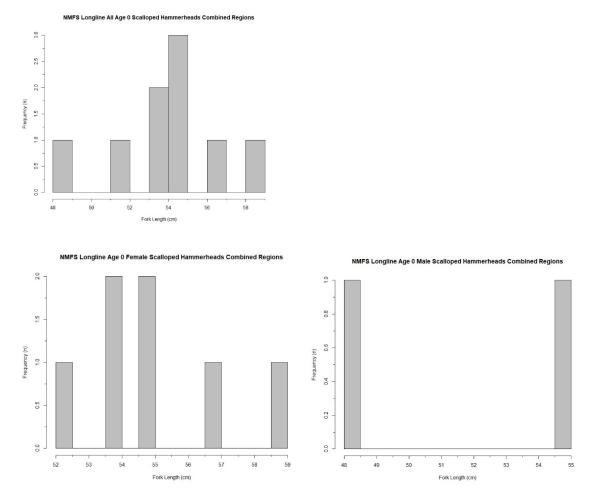
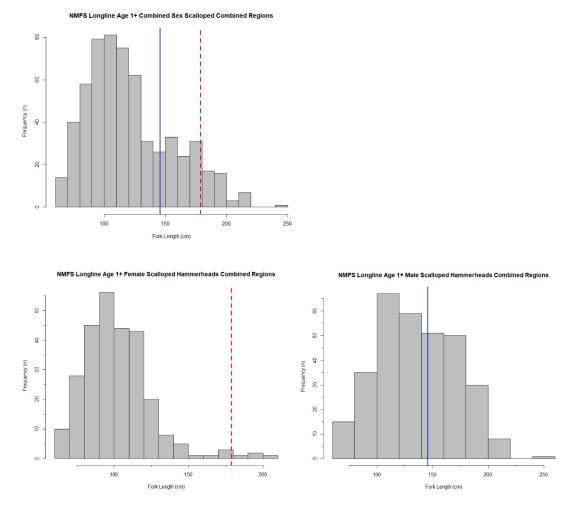
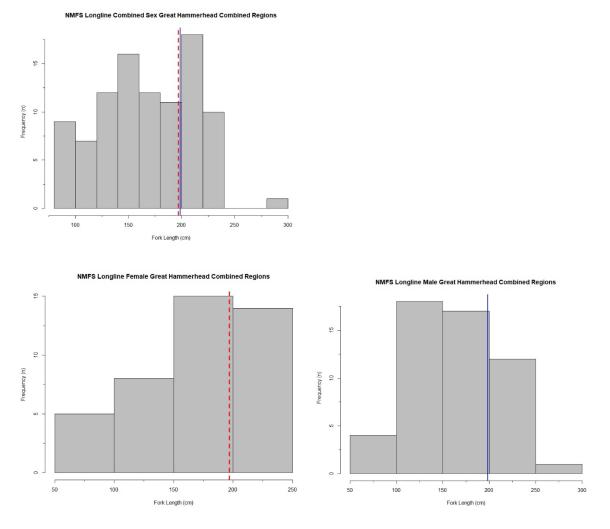




Figure 9. Recreational length composition data for hammerheads for the Atlantic Ocean region.


Gulf of Mexico Region


Figure 10. Recreational length composition data for hammerheads for the Gulf of Mexico region.

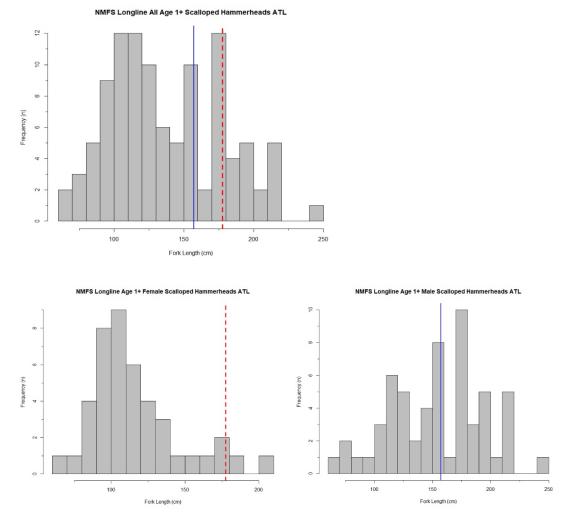

Figure 11. Fishery-independent bottom longline survey length composition data for Age 0 scalloped hammerheads for the combined Gulf of Mexico and Atlantic Ocean regions.

Figure 12. Fishery-independent bottom longline survey length composition data for Age 1+ scalloped hammerheads for the combined Gulf of Mexico and Atlantic Ocean regions.

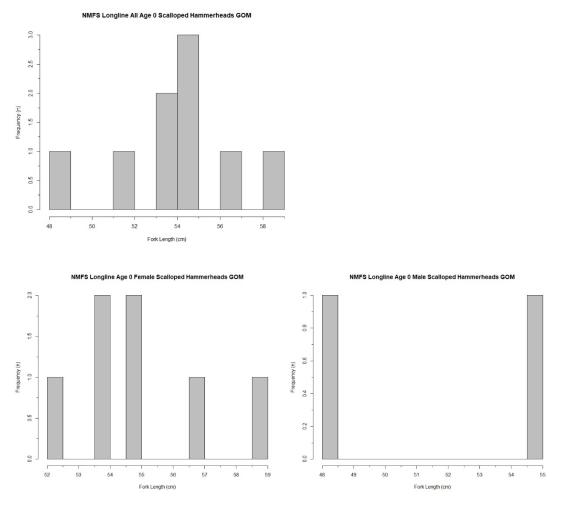


Figure 13. Fishery-independent bottom longline survey length composition data for great hammerheads for the combined Gulf of Mexico and Atlantic Ocean regions.

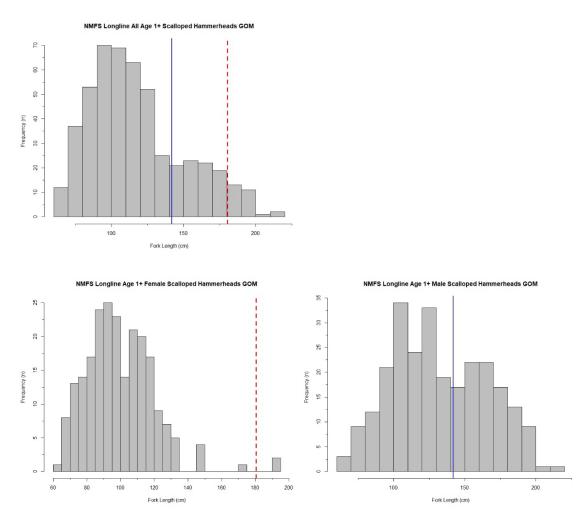

Atlantic Ocean Region

Figure 14. Fishery-independent bottom longline survey length composition data for Age 1+ scalloped hammerheads for the Atlantic Ocean region.

Gulf of Mexico Region

Figure 15. Fishery-independent bottom longline survey length composition data for Age 0 scalloped hammerheads for the Gulf of Mexico region.

Gulf of Mexico Region

Figure 16. Fishery-independent bottom longline survey length composition data for Age 1+ scalloped hammerheads for the Gulf of Mexico region.