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Introduction 
These analysis were adapted from (Latour and Peterson 2020), which previously evaluated the 
use of DFA for coastal shark species within SEDAR. 
 
Latour and Peterson (2020) noted that trends in relative abundance generated from fisheries-
independent and -dependent data are important inputs to stock assessments, as they are 
intended to represent an unbiased estimate of the underlying abundance pattern of a stock 
(Francis 2011).  This representation is based on the assumption that relative abundance indices 
are proportional to total abundance.  However, for species that are distributed over large 
spatial scales or that exhibit long range migrations, comprehensive population-wide relative 
abundance data are rarely available.  As a result, it is sometimes necessary to rely on several 
independent data sources derived from spatially distinct sampling programs to estimate the 
patterns of abundance of widely distributed or highly migratory species.  Operationally, 
multiple time-series of relative abundance are frequently included in a single stock assessment 
model, under the assumption that each provides representative information about the 
underlying abundance of the stock (Conn 2010, Cortés et al. 2015). 
 
Latour and Peterson (2020) also noted that many of the coastal shark species that inhabit the 
southeast Atlantic are geographically widespread and display large-scale seasonal migrations.  
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Accordingly, collection of relative abundance data across spatial scales that match the home 
range of sharks is logistically challenging and not necessarily of high priority given their low 
economic impact when compared to species that support high value fisheries (Stevens et al. 
2000).  The development of relative abundance indices for sharks is therefore constrained to 
localized data collection programs that sample spatial ranges that are often much smaller than 
the actual distributions of target species.  For the southeast Atlantic, there are several such 
data collection programs and it is not uncommon for the resulting indices of relative abundance 
to show conflicting trends over time.   
 
Latour and Peterson (2020) also noted that in past stock assessments of coastal sharks in the 
southeast Atlantic, efforts have been directed at applying statistical techniques to reconcile 
contrasting patterns in relative abundance indices.  In the previous sandbar shark assessment 
(SEDAR 2011), a hierarchical index compilation approach (Conn 2010) was used to develop a 
single time-series of relative abundance from the existing, disparate time-series derived from 
the localized sampling programs.  The idea was to synthesize the information contained in the 
collection of relative abundance indices (11 total for sandbar shark, Carcharhinus plumbeus) 
into a single composite time-series that presumably reflected the trend in abundance at a 
broader spatial scale.  Here, we build on that philosophy by introducing an alternative approach 
for the integration of multiple time-series, namely dynamic factor analysis (DFA).  DFA is a 
multivariate dimension reduction technique designed to detect common, latent trends from a 
collection of time-series.  This approach can accommodate short, non-stationary time-series 
like those commonly encountered in ecological data, input time-series with missing data, and 
covariation between time-series (Zuur et al. 2003a, 2003b, Holmes et al. 2020).   
 
Recently, DFA was used to reconcile conflicting indices of relative abundance for seven coastal 
shark species along the east coast of the United States (Peterson et al. 2017).  Subsequently, 
the performance of DFA for reconciling multiple indices of abundance that are in conflict was 
evaluated with an age-structured simulation model of two coastal shark species in the 
southeast United States (Peterson et al. 2021b).  The reconciled trends obtained from the 
simulation study of DFA were also evaluated as relative abundance input into stock assessment 
models (Peterson et al. 2021a). 
 
Consequently, we use the same DFA methods here for reconciling age-0 indices of relative 
abundance of the U.S. Atlantic and Gulf of Mexico scalloped hammerhead. Three DFA analyses 
were performed on time-series of relative abundance indices for age-0 individuals (Table 1): (a) 
combined Gulf of Mexico and Atlantic indices 1982-2019, (b) Gulf of Mexico indices 1982-2019, 
and (c) Atlantic indices 2001-2019.  
 

Methods 
Dynamic Factor Analysis 
The general form of a DFA model can be written as follows (Zuur et al. 2003a): 
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𝒚𝒚𝑡𝑡 = 𝜞𝜞𝜶𝜶𝑡𝑡 + 𝜺𝜺𝑡𝑡, where 𝜺𝜺𝑡𝑡~𝑀𝑀𝑀𝑀𝑀𝑀(0,𝑹𝑹) 
𝜶𝜶𝑡𝑡 = 𝜶𝜶𝑡𝑡−1 + 𝜼𝜼𝑡𝑡, where 𝜼𝜼𝑡𝑡~𝑀𝑀𝑀𝑀𝑀𝑀(0,𝑸𝑸) 

 
where 𝒚𝒚𝑡𝑡 is the vector (n x 1) of estimated z-scored index values from all time-series of relative 
abundance in year t, 𝜶𝜶𝑡𝑡 is the vector (m x 1) of common trends (m < n), 𝜞𝜞 is the matrix (n x m) 
of loadings on the trends which indicates the strength of each time-series in determining the 
resulting trend, and 𝑹𝑹 and 𝑸𝑸 denote the variance-covariance matrices associated with the 
observation error vector 𝜺𝜺𝑡𝑡 (n x1) and process error vector 𝜼𝜼𝑡𝑡 (m x 1), respectively.  Both 
observation and process error terms assume a multivariate normal distribution.  To ensure that 
the model is identifiable, 𝑸𝑸 is set to equal to the identity matrix while 𝑹𝑹 is free to take on 
various forms.  All factor loadings, common trends, and fitted values are unitless. 
 
Application of DFA to time-series of relative abundance requires some care to preserve the 
underlying error structure and the relative scale of the survey indices.  Accordingly, the 
following analytical approach was adopted (Peterson et al. 2021b): (1) all time-series of relative 
abundance were log-transformed, thereby normalizing the time-series error, (2) each time-
series was centered and demeaned by subtracting and dividing each by its mean, (3) the global 
standard deviation (GSD) was calculated for all relative abundance time-series after being log-
transformed and demeaned, (4) each time-series was then divided by the GSD, (5) the DFA 
model was fitted, (6) the resulting DFA-predicted common trend was then multiplied by the 
GSD and back-transformed.  Since the stock assessment model relies heavily on trend rather 
than magnitude of relative abundance indices, bias correcting will have little impact.  However, 
standard errors estimated by the DFA model for the annual indices were multiplied by the GSD 
to preserve scale of uncertainty relative to the trend.   
 
The above approach does not work well in situations where the log-transformed relative 
abundance mean was close to zero or negative, because the second step would essentially 
involve dividing by zero or a negative value, respectively.  Simulation analyses have also shown 
that DFA model fitting is fairly robust when the standard deviation of each time-series resulting 
from step four are approximately one (Peterson et al. 2021b).  Accordingly, the time-series of 
relative abundance were first multiplied by a survey-specific constant, c, to ensure that the 
resulting time-series approximately achieved these two general criteria.  Multiplying indices by 
a constant is comparable to redefining effort such that the scale of the index changes.  Best 
practices suggest that time-series be z-scored prior to DFA model fitting (Holmes et al. 2020), so 
in effect, the above analytical approach was developed in the spirit of maintaining consistency 
with that recommendation. 
 
The underlying assumptions of a DFA model are equivalent to those of a linear regression, 
which include normality, independence, and homogeneity of residuals (Zuur et al. 2003b).  
Model validation was therefore based on standard diagnostic tools (QQ plots, analysis of 
residuals).  Additionally, ‘fit ratio’ statistics were calculated as Σtyit2/ Σtεit2, where i denotes an 
individual time-series.  High fit ratios (i.e., ≳ 0.6) suggest that the DFA model poorly fits the 
time series, or a few years in the time series (Zuur et al. 2003b).  
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For application to scalloped hammerhead, within each analysis, a single common trend was 
estimated and each time-series was assumed to be independent with a unique value of 
uncertainty.  Therefore, the 𝑹𝑹 matrix of the DFA models each assumed a structure with the 
mean of the time-series-specific coefficients of variation (CVs) along the diagonal and zeros 
elsewhere.  CVs were chosen over estimated variances so that the magnitude of uncertainty 
across time-series would be similar.  Average CVs entered for TXPWD-Gillnet (Survey 1), 
GULFSPAN (Survey 2), COASTSPAN – LL (Survey 3), SCCOASTGN – LONG (Survey 4), and 
SCCOASTGN – SHORT (Survey 5) were CV1=0.665, CV2=0.255, CV3=0.618, CV4=0.663, and 
CV5=0.460, respectively.  DFA models were fitted using the state-space multivariate 
autoregressive modelling package ‘MARSS’ in R (Holmes et al. 2020) and all uncertainty was 
reported as 95% confidence intervals.  
 

Results/Discussion 
The constants chosen for rescaling are provided in Table 2 and resulted in a GSD of 0.14, 0.14, 
and 0.15 for (a) the DFA model for the combined Gulf of Mexico and Atlantic indices (1982-
2019), (b) the DFA model for the Gulf of Mexico indices (1982-2019), and (c) the DFA model for 
the Atlantic indices (2001-2019), respectively. Diagnostic plots are provided in Appendices. An 
outlier, which had a large influence on results, was removed from DFA trend (a) Gulf of Mexico 
and Atlantic indices and DFA trend (b) Gulf of Mexico indices to improve diagnostics.  
 
The DFA model for (a) the combined Gulf of Mexico and Atlantic indices (1982-2019) 
successfully converged and yielded a common trend that decreased from 1982-1995 and then 
generally increased from 1995-2019 (Figures 1-4).  Factor loadings on the common trend were 
positive and statistically significant for GULFSPAN (Survey 2, CI: 0.11, 0.39) and SCCOASTGN – 
LONG (Survey 4, CI: 0.10, 0.67).  Factor loadings on the common trend were negative and 
statistically significant for COASTSPAN – LL (Survey 3, CI: -0.82, -0.14) and SCCOASTGN – SHORT 
(Survey 5, CI: -0.93, -0.17).  The TXPWD-Gillnet (Survey 1, CI: 0.05, 0.28) showed a weakly 
positive and non-significant loading on the common trend.  Fit ratios of the common trend to 
age-0 relative abundance from GULFSPAN (Survey 2, fit ratio = 0.41), COASTSPAN – LL (Survey 
3, fit ratio = 0.42), and SCCOASTGN – SHORT (Survey 5, fit ratio = 0.43) were less than 0.6 
suggesting a reasonable fit to these indices (Appendix A).  However, fit ratios of the common 
trend to age-0 relative abundance from TXPWD-Gillnet (Survey 1) and SCCOASTGN – LONG 
(Survey 4) were greater than 0.6 suggesting a poor fit to these indices (Appendix A).  A steep 
increase in the common trend from about 1995-2000 followed by a slight decrease in the 
common trend around 2004-2006 appears to be driven by GULFSPAN (Survey 2) likely due to 
the mean CV of that survey being the lowest amongst the time-series.  However, the 
fluctuations also appear to be associated with significant autocorrelation in GULFSPAN (Survey 
2) (Appendix A).  
 
The DFA model for (b) the Gulf of Mexico indices (1982-2019) successfully converged and 
yielded a common trend that was very similar to that described above (Figures 5-8).  Factor 
loadings on the common trend were positive and statistically significant for TXPWD-Gillnet 
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(Survey 1, CI: 0.06, 0.38) and GULFSPAN (Survey 2, CI: 0.10, 0.47).  Fit ratios of the common 
trend to age-0 relative abundance from GULFSPAN (Survey 2, fit ratio = 0.30) was less than 0.6 
suggesting a reasonable fit to this index (Appendix B).  However, fit ratios of the common trend 
to age-0 relative abundance from TXPWD-Gillnet (Survey 1) were greater than 0.6 suggesting a 
poor fit to this index (Appendix B).  A steep increase in the common trend from about 1995-
2000 followed by a slight decrease in the common trend around 2004-2006 appears to be 
driven by GULFSPAN (Survey 2) likely due to the mean CV of that survey being the lowest 
amongst the time-series.  The fluctuations also appear to be associated with significant 
autocorrelation in GULFSPAN (Survey 2) (Appendix B).  
 
The DFA model for (c) the Atlantic indices (2001-2019) successfully converged and yielded a 
common trend that increased from 2001-2005 and then decreased from 2005-2019 (Figures 9-
12).  Factor loadings on the common trend were positive and statistically significant for 
COASTSPAN – LL (Survey 3, CI: 0.024, 0.579) and SCCOASTGN – SHORT (Survey 5, CI: 0.037, 
0.687).  The SCCOASTGN – LONG (Survey 4, CI: -0.356, 0.004) showed a weakly negative and 
non-significant loading on the common trend.  Fit ratios of the common trend to age-0 relative 
abundance from COASTSPAN – LL (Survey 3, fit ratio 0.378) and SCCOASTGN – SHORT (Survey 5, 
fit ratio 0.307) were less than 0.6 suggesting a reasonable fit to these indices (Appendix C).  
However, fit ratios of the common trend to age-0 relative abundance from SCCOASTGN – LONG 
(Survey 4) were greater than 0.6 suggesting a poor fit to this index (Appendix C).  Uncertainty in 
the back-transformed trend was greatest in the early years due to only one contributing 
relative abundance time-series but was reduced in more recent years. 
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Tables 
 
 
Table 1.  Raw time-series of scalloped hammerhead relative abundance indices for age-0 
individuals 1982-2019 for (a) Gulf of Mexico, and (b) Atlantic1.    
 

 TXPWD-Gillnet GULFSPAN COASTSPAN - LL SCCOASTGN - LONG SCCOASTGN - SHORT 
 SEDAR77 DW-16  SEDAR77 DW-17 SEDAR77-DW-30 SEDAR77-DW-31 SEDAR77 DW-32 
 Gulf of Mexico Gulf of Mexico Atlantic Atlantic Atlantic 
 Sharks per net per hour Sharks per net per hour Sharks per 100 hook hours Sharks per net hour Sharks per net hour 

Year  Index CV  Index CV  Index CV  Index CV  Index CV 
1982  0.00033               
1983  0.00042 0.912             
1984  0.00000               
1985  0.00015               
1986  0.00035 0.732             
1987  0.00000               
1988  0.00050 0.618             
1989  0.00012               
1990  0.00090 0.603             
1991  0.00053 0.749             
1992  0.00000               
1993  0.00032 0.819             
1994  0.00027 0.848             
1995  0.00010 1.165             
1996  0.00093 0.536  0.009 0.294          
1997  0.00172 0.666  0.016 0.461          
1998  0.00031 0.842  0.002 0.548          
1999  0.00021 0.781  0.091 0.312          
2000  0.00048 0.589  0.156 0.253          
2001  0.00150 0.603  0.148 0.302     1.2498 0.4793    
2002  0.00033 0.822  0.15 0.166     0.7881 0.5178    
2003  0.00183 0.577  0.102 0.181     2.7417 0.4496    
2004  0.00075 0.689  0.07 0.227     0.5413 1.4316    
2005  0.00254 0.517  0.048 0.373  5.464 0.529  0.6254 0.5384    
2006  0.00069 0.630  0.079 0.22  8.119 0.416  0.9807 1.0179    
2007  0.00079 0.778  0.168 0.171  1.976 1.128  1.9521 0.5328  0.1709 0.4233 
2008  0.00075 0.703  0.172 0.189  1.730 1.165  1.3839 0.7066  0.2857 0.5813 
2009  0.00095 0.560  0.163 0.2  3.482 0.654  7.2980 1.3825  0.0000   
2010  0.00213 0.598  0.208 0.211  9.376 0.327  2.2974 0.8537  0.1135 0.5813 
2011  0.00091 0.563  0.159 0.201  3.876 0.372  1.4874 0.5401  0.1129 0.3072 
2012  0.00124 0.540  0.093 0.217  1.907 0.469  8.1799 0.5273  0.1155 0.3072 
2013  0.00484 0.428  0.129 0.215  2.052 0.427  4.0580 0.4515  0.0897 0.4233 
2014  0.00198 0.477  0.141 0.207  2.443 0.548  2.2039 0.6955  0.0000   
2015  0.00283 0.565  0.068 0.252  1.158 0.554  0.9686 0.6158  0.0199 0.5813 
2016  0.00191 0.590  0.124 0.235  1.899 0.419  1.6754 0.5384  0.0978 0.3507 
2017  0.00041 0.775  0.184 0.2  1.123 0.519  6.8082 0.3406  0.0000   
2018  0.00482 0.499  0.21 0.225  0.738 0.565  3.7252 0.5473  0.0000   
2019  0.00248 0.514  0.176 0.265  1.029 1.175  3.3050 0.4230  0.0208 0.5813 

 
 

1 Recommended base indices of abundance for the age-0 scalloped hammerhead including index name, the value 
of catch per unit effort, the area sampled and SEDAR 77 Data Workshop document number, adapted from SEDAR 
77 HMS Hammerhead Sharks Data Workshop Final Report (draft April 2022, their Section 4 Table 9). See SEDAR 77 
HMS Hammerhead Sharks Data Workshop Final Report (draft April 2022, their Section 4 Table 3) for the regions 
recommended for base model and sensitivity analysis with each index. CV is the coefficient of variation for the 
annual index value. Zero index values in a given year (representing both ns=not sampled and nc=the model did not 
converge) were excluded from these DFA analyses (TXPWD-Gillnet Gulf of Mexico 1984,1987,1993; SCCOASTGN – 
SHORT 2009, 2014, 2017, 2018).   
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Table 2.  Vector of constants (c) obtained as described above.    
 

 TXPWD-Gillnet GULFSPAN COASTSPAN – LL SCCOASTGN - LONG SCCOASTGN - SHORT 
 SEDAR77 DW-16  SEDAR77 DW-17 SEDAR77-DW-30 SEDAR77-DW-31 SEDAR77 DW-32 
 Gulf of Mexico Gulf of Mexico Atlantic Atlantic Atlantic 
 Sharks per net per hour Sharks per net per hour Sharks per 100 hook hours Sharks per net hour Sharks per net hour 
  Multiplier   Multiplier   Multiplier   Multiplier   Multiplier  

c  1042950.5    18596.211   60.942394   108.56484   4126.1178  
  



   
 

9 
 

 
Table 3.  Back-transformed common trend (IndexBT on the nominal scale) and standard error 
(SEBT on the natural log scale) resulting from the DFA model fitted to the age-0 time-series of 
relative abundance for (a) combined Gulf of Mexico and Atlantic indices, (b) Gulf of Mexico 
indices, and (c) Atlantic indices (Table 1).   
 

 DFA   DFA   DFA  
 (a) Gulf of Mexico   (b) Gulf of Mexico  (c) Atlantic 
 and Atlantic     
      

Year  IndexBT SEBT     IndexBT SEBT     IndexBT SEBT 
1982  0.677 0.2287     0.708 0.2002       
1983  0.641 0.2306     0.676 0.1993       
1984  0.609 0.2348     0.646 0.2030       
1985  0.577 0.2319     0.616 0.1975       
1986  0.567 0.2313     0.613 0.1963       
1987  0.559 0.2330     0.611 0.1992       
1988  0.551 0.2274     0.609 0.1923       
1989  0.538 0.2235     0.596 0.1884       
1990  0.546 0.2207     0.614 0.1868       
1991  0.537 0.2187     0.604 0.1868       
1992  0.520 0.2171     0.583 0.1887       
1993  0.504 0.2065     0.562 0.1789       
1994  0.488 0.1940     0.540 0.1686       
1995  0.477 0.1771     0.522 0.1544       
1996  0.485 0.1507     0.530 0.1299       
1997  0.546 0.1438     0.595 0.1252       
1998  0.636 0.1506     0.688 0.1347       
1999  0.748 0.1363     0.806 0.1215       
2000  0.861 0.1280     0.938 0.1174       
2001  0.911 0.1160     1.022 0.1162     1.415 0.2146 
2002  0.895 0.1127     1.025 0.1158     1.479 0.2062 
2003  0.901 0.1113     1.019 0.1157     1.501 0.1963 
2004  0.802 0.1086     0.976 0.1157     1.583 0.1824 
2005  0.768 0.0976     0.977 0.1157     1.592 0.1594 
2006  0.794 0.0940     1.019 0.1157     1.523 0.1449 
2007  0.907 0.0823     1.115 0.1157     1.348 0.1255 
2008  0.933 0.0821     1.177 0.1157     1.291 0.1230 
2009  1.016 0.0918     1.224 0.1157     1.210 0.1323 
2010  0.965 0.0819     1.269 0.1157     1.212 0.1213 
2011  0.980 0.0809     1.231 0.1157     1.125 0.1187 
2012  1.065 0.0809     1.200 0.1157     0.996 0.1187 
2013  1.113 0.0819     1.240 0.1157     0.928 0.1213 
2014  1.133 0.0918     1.227 0.1157     0.868 0.1322 
2015  1.183 0.0821     1.193 0.1159     0.783 0.1226 
2016  1.152 0.0823     1.235 0.1164     0.784 0.1243 
2017  1.328 0.0937     1.286 0.1183     0.683 0.1406 
2018  1.452 0.0952     1.393 0.1245     0.628 0.1474 
2019  1.462 0.0944     1.409 0.1436     0.606 0.1524 
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Figures 
 
 
 

 
 

Figure 1.  Raw time-series of relative abundance indices for age-0 individuals for combined Gulf 
of Mexico and Atlantic indices (Table 1) along with back-transformed common trend resulting 
from the DFA model fitted to the age-0 time-series of relative abundance (Table 3). All indices 
are divided by their mean for plotting.  
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Figure 2.  Results of the DFA model fitted to age-0 combined Gulf of Mexico and Atlantic indices 
of relative abundance (Table 1) showing (upper left panel) the common trend (solid line) and 
95% CI (dashed lines) and fits to the time-series of relative abundance (remaining panels): 
TXPWD-Gillnet (Survey 1), GULFSPAN (Survey 2), COASTSPAN – LL (Survey 3), SCCOASTGN – 
LONG (Survey 4), and SCCOASTGN – SHORT (Survey 5).   
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Figure 3.  Results of the DFA model fitted to age-0 combined Gulf of Mexico and Atlantic indices 
of relative abundance (Table 1) showing factor loadings; values greater than 0.2 (horizontal 
dashed line) identify time-series that have a relatively strong influence on the common trend to 
the time-series of relative abundance: TXPWD-Gillnet (Survey 1), GULFSPAN (Survey 2), 
COASTSPAN – LL (Survey 3), SCCOASTGN – LONG (Survey 4), and SCCOASTGN – SHORT (Survey 
5).  
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Figure 4.  Back-transformed common trend resulting from the DFA model fitted to the age-0 
time-series of relative abundance for combined Gulf of Mexico and Atlantic (Table 3).  The 
shaded interval denotes the approximate 95% confidence interval. 
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Figure 5.  Raw time-series of relative abundance indices for age-0 individuals for Gulf of Mexico 
indices (Table 1) along with back-transformed common trend resulting from the DFA model 
fitted to the age-0 time-series of relative abundance (Table 3). All indices are divided by their 
mean for plotting.  
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Figure 6.  Results of the DFA model fitted to age-0 Gulf of Mexico indices of relative abundance 
(Table 1) showing (upper left panel) the common trend (solid line) and 95% CI (dashed lines) 
and fits to the time-series of relative abundance (remaining panels): TXPWD-Gillnet (Survey 1) 
and GULFSPAN (Survey 2).   
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Figure 7.  Results of the DFA model fitted to age-0 Gulf of Mexico indices of relative abundance 
(Table 1) showing factor loadings; values greater than 0.2 (horizontal dashed line) identify time-
series that have a relatively strong influence on the common trend to the time-series of relative 
abundance: TXPWD-Gillnet (Survey 1) and GULFSPAN (Survey 2).  
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Figure 8.  Back-transformed common trend resulting from the DFA model fitted to the age-0 
time-series of relative abundance for Gulf of Mexico (Table 3).  The shaded interval denotes the 
approximate 95% confidence interval. 
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Figure 9.  Raw time-series of relative abundance indices for age-0 individuals for Atlantic indices 
(Table 1) along with back-transformed common trend resulting from the DFA model fitted to 
the age-0 time-series of relative abundance (Table 3). All indices are divided by their mean for 
plotting.  
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Figure 10.  Results of the DFA model fitted to age-0 Atlantic indices of relative abundance (Table 
1) showing (upper left panel) the common trend (solid line) and 95% CI (dashed lines) and fits to 
the time-series of relative abundance (remaining panels): COASTSPAN – LL (Survey 3), 
SCCOASTGN – LONG (Survey 4), and SCCOASTGN – SHORT (Survey 5).   
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Figure 11.  Results of the DFA model fitted to age-0 Atlantic indices of relative abundance (Table 
1) showing factor loadings; values greater than 0.2 (horizontal dashed line) identify time-series 
that have a relatively strong influence on the common trend to the time-series of relative 
abundance: COASTSPAN – LL (Survey 3), SCCOASTGN – LONG (Survey 4), and SCCOASTGN – 
SHORT (Survey 5).  
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Figure 12.  Back-transformed common trend resulting from the DFA model fitted to the age-0 
time-series of relative abundance for Atlantic (Table 3).  The shaded interval denotes the 
approximate 95% confidence interval. 
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Appendix A – Diagnostics DFA (a) Gulf of Mexico and Atlantic Indices 
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Appendix B – Diagnostics DFA (b) Gulf of Mexico Indices 
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Appendix C – Diagnostics DFA (c) Atlantic Indices 
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