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Traps are among the most common gears used to capture fish and crustaceans. When traps are deployed in surveys, the data gathered are often used
to develop an index of abundance. However, trap catches are known to saturate over time for various reasons, such as space limitation of the gear or
intraspecific interactions, and these features can dissociate the catch from local abundance. In this study, we develop a hierarchical state-space
model of trap dynamics that is fit to data in a Bayesian framework. The model links trap catch to estimated local abundance, and additionally
provides direct estimates of capture probability. For demonstration, we apply the model to data on black sea bass (Centropristis striata), which
were collected using chevron traps combined with video cameras to give continuous-time observations of trap entries and exits. Results are con-
sistent with the hypothesis that trap catch is generally proportional to local abundance. The model has potential application to surveys where
animals not only enter a trap, but also may exit, such that the apparent trap saturation occurs because the system approaches equilibrium.

Keywords: abundance estimation, Bayesian analysis, black sea bass, fish traps.

Introduction
A basic challenge in marine fishery science and management is
to quantify fluctuations in animal abundance. This is typically
accomplished using stock assessment models, which are ideally
fitted (or tuned) to at least one index of abundance. Such an
index can be developed from fishery-dependent data on catch per
unit effort (Maunder and Punt, 2004; Campbell, 2015) or from
fishery-independent data collected through a sampling programme
(Pennington and Stromme, 1998; Kimura and Somerton, 2006).
Either way, a key assumption is that the index is proportional to
actual abundance.

Fish traps are used widely around the world to index the abun-
dance of various types of fish and invertebrates (Evans and Evans,
1996; Wells et al., 2008; Rudershausen et al., 2010). They are
common in both commercial fisheries (Miller, 1990) and in scien-
tific surveys (Bacheler et al., 2013a). For many species, trap gear is
advantageous for its ability to capture animals effectively, with rela-
tively minimal impact on local habitat. However, the number of

animals inside of a trap is known to saturate with soak time for a
host of reasons, including space limitation of the gear, interspecies
or intraspecies interactions, or the loss and degradation of bait
(Miller, 1979; Jury et al., 2001). This feature can result in a catch
that relates non-linearly to local abundance and, consequently,
can lead to bias of unknown and varying degrees in any index of
abundance derived from trap data (Robertson, 1989; Addison and
Bell, 1997; Fogarty and Addison, 1997).

Several studies have modelled trap saturation (e.g. Munro, 1974;
Addison and Bell, 1997; Fogarty and Addison, 1997). A common
recommendation is that traps should be hauled after a short soak
time, before the gear becoming saturated. That recommendation
attempts to address the non-linearity between local abundance
and the saturated catch of longer soak times, which is critical if
the resulting data are to be used to index abundance.

Here, we build on those previous studies, developing a hierarch-
ical state-space model (Royle and Dorazio, 2008) of trap dynamics
that relates local abundance to catch without the need for an

Published by Oxford University Press on behalf of International Council for the Exploration of the Sea 2015.
This work is written by (a) US Government employee(s) and is in the public domain in the US.

ICES Journal of

Marine Science
ICES Journal of Marine Science (2016), 73(2), 512–519. doi:10.1093/icesjms/fsv197

 at U
niversity of M

innesota - T
w

in C
ities on January 25, 2016

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

mailto:kyle.shertzer@noaa.gov
mailto:kyle.shertzer@noaa.gov
mailto:kyle.shertzer@noaa.gov
http://icesjms.oxfordjournals.org/


abbreviated soak time. In this model, animals not only enter the
trap, but may also exit. This two-way flow results in a trap catch
that saturates, not because of any gear effect, but because the
system approaches a steady-state equilibrium (Bacheler et al.,
2013b). In addition, the model yields estimates of capture probabil-
ity, a quantity that has received widespread attention in the sampling
of animal populations (Williams et al., 2002).

As an example system, we apply the model to black sea bass
(Centropristis striata) in Atlantic waters off the southeastern
United States. Black sea bass and other reef-associated species are
monitored through fishery-independent sampling conducted by
the SouthEast Reef Fish Survey (SERFS; see Bacheler et al., 2014),
which uses a combination of chevron traps and underwater video
gear. Traps are well suited for sampling reef fish because they can
fish unattended, can be deployed in many different habitat types,
are relatively inexpensive and robust, and catch fish alive so that
bycatch individuals can be released (Miller, 1990). Black sea bass
are an ideal species for this study because they readily enter and
exit the traps (Bacheler et al., 2013b). Furthermore, this application
has practical implications because SERFS trap data are used to
develop indices of abundance for stock assessments of black sea
bass (SEDAR, 2011).

The primary motivation behind our study was to investigate
the utility of trap data for monitoring abundance. Our model of
trap dynamics has potential application to systems with two-way
flow of individuals between areas outside and inside the gear.
Using black sea bass as a case study, we focus on the question of
whether the equilibrium catch in traps relates linearly to the unob-
served local abundance.

Methods
Trap and video sampling
Samples for this study were collected by SERFS off Georgia and
Florida on the southeastern United States continental shelf. All sam-
pling occurred during daylight hours between April and September
2012 and 2013, aboard the RV Savannah. The SERFS targets reef-fish
species that tend to associate with scattered patches of hard sub-
strates in the region. These hard substrates are diverse and can be
characterized by flat limestone pavement, ledges, rocky outcrop-
pings, or reefs, often colonized by various types of attached biota
(Schobernd and Sedberry, 2009; Fautin et al., 2010). The SERFS
deploys chevron traps with attached, outward-looking video
cameras using a simple random sampling design, whereby sampling
locations are randomly selected each year from a sampling frame of
�3000 hard-bottom stations.

Chevron traps used in this study were shaped like an arrowhead
that measured 1.7 m × 1.5 m × 0.6 m, and were made from plastic-
coated galvanized 12.5 G wire with a mesh size of 3.4 cm × 3.4 cm
(Figure 1a in Bacheler et al., 2013b). The funnel of each trap was
constructed from hexagonal wire mesh �3.4 cm in diameter, and
the mouth opening was shaped like a teardrop measuring 18 cm
wide and 45 cm long. Each trap was baited with 24 menhaden
(Brevoortia spp.), 16 of which were attached to four freely accessible
stringers and the other 8 placed loosely inside the trap. The
traps were deployed individually in groups of six with �400 m
(minimum, 200 m) between traps. This distance was far enough
apart that effective fishing areas did not overlap, thus avoiding the
potential for surplus gear deployment to affect catch per unit
effort (Groeneveld et al., 2003). Soak times were �90 min.

For this study, a video camera on each trap was turned inward to
monitor the trap itself, positioned so that reef fish entries and exits
through the mouth opening could be quantified (Figure 1b in
Bacheler et al., 2013b; see Supplementary material for an example
video segment). To do so, each trap was deployed with a high-
definition GoPro Herow video camera attached to the side of the
trap. Cameras were turned on before traps were deployed and
turned off after the traps were retrieved, so that video captured
the entirety of each gear deployment.

Data collection and treatment
We recorded the time of day when the trap reached the bottom and
the time when the trap retrieval process began. For all analyses, soak
time was defined as the time that elapsed between when the trap
reached the bottom (began fishing) and when its retrieval com-
menced (stopped fishing). In general, a soak time of 90 min was suf-
ficient for the catch of black sea bass to saturate (Bacheler et al.,
2013b). The times of each individual entry and exit for black sea
bass were recorded for the entire soak time. To qualify as an entry
or exit, an individual fish must have completely crossed the plane
of the trap mouth. We could not distinguish unique individuals
within a species, so the same individual may have entered and
exited the trap multiple times. The number of individuals in the
trap for each minute of soak time was calculated as the cumulative
number of entries minus the cumulative number of exits, and we
define the catch to be the terminal abundance inside the trap.

In all, 36 videos of chevron traps were collected in 2012/2013
documenting entries and exits of black sea bass; however, a subset
of those videos was appropriate for our analysis. Five videos were
excluded because few (,15) black sea bass were caught. Five were
excluded because black sea bass comprised ,80% of the total
catch; this criterion was applied because we did not attempt to
model interspecies interactions. Four were excluded because the
catch had not yet saturated during the soak time, and therefore,
these videos provided no information on local abundance. These
filters left 22 time-series of black sea bass trap dynamics, with
observed catches ranging from 18 to 188 fish. For fitting the
model to these data, we began each time-series in the first minute
when black sea bass entered the trap. Thus, our model does not
attempt to quantify search behaviour, but rather the process of
entries and exits once the trap has been discovered by fish on the
sampling site.

Model of trap dynamics
Our underlying model is a two-state, first-order Markov chain that
tracks the flow of animals between the local area outside of the trap
and inside the trap (Figure 1):

Xt+1 = −aXt + bYt, (1)

Yt+1 = aXt − bYt . (2)

Here, X is the unobserved local abundance outside of the trap, Y the
abundance inside the trap, t represents time, parameter a represents
the rate of entry into the trap, and parameter b represents the rate of
exit. We define X as the local abundance within the effective fishing
area of the trap, which could depend on a range of factors such as bait
efficiency, environmental conditions (e.g. temperature, current),
and ecological influences (e.g. prey and predator abundances).
Throughout, we refer to the “effective fishing area” as a “site.”
Given that animals on the site are either outside or inside the trap,
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the total abundance is N ¼ X + Y. Furthermore, we know the initial
conditions of the state variables, X(0) ¼ N and Y(0) ¼ 0. Thus, this
system is fully defined by three parameters: a, b, and N.

Equations (1) and (2) predict that abundance within the trap will
saturate over time. This occurs not because of any gear effect, but
simply because the system reaches equilibrium. As t increases, Y
approaches aN/(a + b). This asymptotic relationship reveals two
notable features of the model. First, if a and b are constant, and
given a long enough soak time, the catch relates linearly to total
abundance at the site. Second, the asymptotic relationship provides
an estimate of capture probability, a/(a + b), defined as the propor-
tion of total (local) abundance that is contained within the trap,
once the trap dynamics reach an equilibrium state.

We constructed a generalized version of the model in which local
abundance and entry and exit rates were all site-specific:

Xi,t+1 = −aiXi,t + biYi,t, (3)

Yi,t+1 = aiXi,t − biYi,t, (4)

with Ni ¼ Xi,t + Yi,t ¼ Xi,0 at site i. We used a compound
gamma-Poison mixture to model the unobserved total abundance
at each sampling location (Ni):

Ni � Poisson(li), with li � Gamma(aN ,bN ). (5)

We specified uniform hyperpriors for aN and bN :

aN � U(0, 20); bN � U(0, 2). (6)

We modelled expected entry (ai) and exit rates (bi) as normally dis-
tributed random effects on the logit scale:

logit(ai) � N(ma,s
2
a), (7)

logit(bi) � N(mb,s
2
b). (8)

We used normal and uniform hyperprior distributions for the
mean and standard deviations of the random effect distributions,
respectively:

ma � N 0,
1

3

( )
; mb � N 0,

1

3

( )
. (9)

sa � U(0, 6); sb � U(0, 6). (10)

Last, we modelled the number of entries (Ai,t) and exits (Bi,t) at each
time-step using binomial distributions:

Ai,t � Bin(Xi,t, ai). (11)

Bi,t � Bin(Yi,t, bi). (12)

Our model did not attempt to quantify observation error, which is
negligible because the observed entries, exits, and trap abundance
could be monitored accurately and with high precision. However,
Equations (11) and (12) account for process error, and since the
numbers of entries and exits depend on the current state of the
system, the approach naturally includes autocorrelation in the trap-
ping process.

Fitting the model to data
We fit the model to data in a Bayesian framework using JAGS version
3.4.0 (Plummer, 2003) and R version 3.1.1 (R Development Core
Team, 2014) with the package R2jags (Su and Yajima, 2015) to com-
municate between the two platforms. We ran three independent
chains, each for 50 000 iterations. Posterior distributions were com-
puted after discarding the first 10 000 iterations (burn-in). We
assessed convergence qualitatively by inspecting posterior density
plots and trace plots, and quantitatively using the Brooks–
Gelman–Rubin statistic (Brooks and Gelman, 1998). For all para-
meters, Brooks–Gelman–Rubin statistics were ,1.03, indicating
successful convergence.

Point estimates of parameters were taken as the median from the
posterior distributions, and credible intervals were represented by
the 2.5 and 97.5 percentiles. In addition, predicted time-series of
the catches were computed by simulation. For each set of parameter
values from the Markov chain Monte Carlo (MCMC) procedure,
stochastic trap dynamics were simulated using Equations (11) and
(12) to provide 120 000 predictions of each sampling event (i.e.
trap). From these predictions, we computed central tendencies
(medians) and credible intervals (2.5, 97.5 percentiles) of the trap
abundance over time.

Before fitting the model to actual data, we considered whether all
parameters were estimable. To test this, we fit the model to simulated
data that were similar in structure to our real dataset. We found that
the known, data-generating parameters could be estimated accurately.

Results
In general, the model matched well to the observed data (Figure 2).
For most traps, both predicted and observed trap abundance satu-
rated by the time the gear was extracted. Several instances of mis-
match were apparent early in the time-series, where observations
fell outside the credible intervals. This may have occurred because
of factors unaccounted for by the model, for example, spatial vari-
ability in search or schooling behaviour.

Point estimates of entry rates across sampling sites ranged from
0.003 to 0.138, with a mean value near 0.024 (Figure 3a). The corre-
sponding estimates of exit rates ranged from 0.005 to 0.047, with a
mean near 0.019 (Figure 3b). Point estimates of site abundance
ranged from 50 to 751 individuals, with large differences among
trapping sites in the level of precision, as indicated by 95% credible
intervals (Figure 3c).

Expected capture probabilities (Figure 3d) were not estimated by
the model directly, but instead were computed as a function of the
estimated parameters, ai/(ai + bi). The mean capture probability
was 0.43, but there was much variability across sites. The coefficient

Figure 1. Conceptual model of trap dynamics at a sampling location.
Individuals enter the trap at per capita rate a, and exit the trap at per
capita rate b. Assuming a closed system, the total abundance equals
abundance outside (X) and inside (Y ) the trap.
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of variation (CV) of capture probabilities was CV ¼ 0.63. Values
were negatively correlated with estimated abundance (Pearson
correlation ¼ –0.69; p , 0.01).

Estimated total abundance generally increased with trap catch
(Figure 4). A simple linear regression of observed trap catch on
point estimates of site abundance had a positive slope of 0.09

Figure 2. Observed (open circles) and predicted (solid lines: 2.5, 50, and 97.5 percentiles) abundances of fish within traps over time. Trap
identification number is shown in the upper left corner of each panel. Note differences of scale in the y-axes.
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(s.e. ¼ 0.04; Student’s t-test: t ¼ 2.05, p ¼ 0.05). Although this
linear relationship was a feature of the underlying deterministic
model, it need not have resulted from the fitted stochastic model

where entry and exit rates were treated as random effects. For
example, if the model predicted a pattern of smaller (or larger)
entry rates when observed catch was larger, we would expect a

Figure 3. (a) Model estimates of entry rates by trapping site. (b) Model estimates of exit rates by trapping site. (c) Model estimates of total
abundance at each site. (d) Expected capture probabilities at each site, computed from the point estimates of exit rates and the entry rate, as
described in the text. In (a)–(c), point estimates are represented by medians from posterior distributions, and credible intervals by 2.5 and 97.5
percentiles.
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non-linear relationship between trap catch and estimated site abun-
dance. To test for this type of potential non-linearity, we applied a
likelihood ratio test, comparing the simple linear regression with
a regression that had additional square, cubic, and quartic terms
(i.e. Y = b0 + b1N + b2N2 + b3N3 + b4N4). In this test, the
null model of simple linear regression was favoured (x2 ¼ 2.35,
p ¼ 0.50). Similar results were found when comparing the simple
linear regression with extended models that dropped the quartic
term (x2 ¼ 1.96, p ¼ 0.38) or dropped the cubic and quartic
terms (x2 ¼ 0.02, p ¼ 0.89). Although these results are not conclu-
sive evidence that trap catch relates linearly to abundance, they are
consistent with that hypothesis.

Discussion
A key feature of the model developed in this paper is that it relates
trap catch to local abundance. Without an approximately linear re-
lationship between catch and abundance, any index of abundance
derived from the data is likely to be variably biased. We say “approxi-
mately linear” because ecological systems are inherently stochastic.
However, we note that deviation surrounding an expected rela-
tionship can often be modelled through index standardization
techniques that account for influential factors such as bottom tem-
perature, depth, or latitude (Maunder and Punt, 2004).

Another feature of the model is that it provides direct estimates of
capture probabilities when soak time is sufficient for the system to
equilibrate. In fisheries applications, reliable estimates of capture
probability are frequently only possible with substantial investments
in capture–recapture studies. Here, we demonstrate the utility
of camera-based observations to obtain estimates of capture
probability for each trap deployment. Such fine-scale information
makes possible the analysis of the variability in capture probability,
which is rarely feasible in capture–recapture studies because
of small sample sizes. Future efforts could evaluate the effects
of various environmental, ecological, and physiological conditions
on capture probability by incorporating candidate covariate effects
into the modelling framework. For example, entry rates could be
made a function of water temperature.

Estimates of capture probability generated through fine-scale
camera observation studies could be useful in other applications,
such as defining prior distributions of capture probability for use

in N-mixture (Royle, 2004) or occupancy models (MacKenzie
et al., 2002; Coggins et al., 2014). Additionally, if coupled with
sufficient information on spatial distribution of the population,
estimates of capture probability could be paired with spatially rep-
resentative samples of trap catches to estimate abundance. Such in-
formation could be used both as an abundance index and as an
alternative assessment method. Clearly, estimating capture prob-
ability when conducting fisheries independent sampling increases
the utility and applicability of the information substantially.

Our dataset on black sea bass, through the use of inward-looking
video, provided a rare opportunity to fit models of trap dynamics.
For proof of concept, we chose to filter the dataset to include only
those traps that contained mostly our focal species (black sea
bass) and were without known predators. Future work might relax
these filters and attempt to elucidate potential species interactions.
However, for most surveys that catch multiple species, we would not
have the benefit of inward-looking cameras to quantify real-time
species interactions. When developing indices of abundance from
multispecies surveys, it might be worth considering filtered data
that are relatively clean for the species in question, unless the
effects of interactions are well understood.

In our model, we treated the entry rates and exit rates across traps
as random effects. Of course, other configurations of this model are
possible, such as treating one of the rates as a random effect and the
other as a fixed effect, or both rates as fixed effects. Indeed, we con-
sidered all four configurations during earlier stages of model devel-
opment, and we chose to focus on the model with both rates as
random effects because it provided the best (lowest) deviance infor-
mation criterion. In addition, our simulation study supported that
all parameters were estimable, so it seemed sensible a priori to fit the
full random effects model, allowing the variance component of
either transition rate to be estimated near zero if it displayed little
variation among trapping locations. We also considered different
configurations of prior and hyperprior distributions, and found
results to be insensitive to these model changes.

Catch of black sea bass reached steady-state equilibria at a wide
range of values (18–188 fish), suggesting that gear effects were
not the primary limiting influence. Furthermore, our model
demonstrates that the steady states are reached once entries and
exits balance (Bacheler et al., 2013b). This explanation is contrary
to the common assumption that trap catch asymptotes as a result
of diminishing entry rates, highlighting the importance of under-
standing the mechanism underlying the apparent saturation of
catches. The choice of modelling approach may differ if saturation
is known to result from a gear effect, such as space limitation or
bait degradation, or from interactions among different species or
individuals of the same species. For example, crabs and lobsters
are less likely to enter traps already containing conspecifics
(Miller, 1990; Addison and Bell, 1997; Jury et al., 2001). In those
cases, our model could be modified to account for entry (or exit)
rates that depend on abundance in the traps.

In addition, our model results are consistent with the hypothesis
that trap catch of black sea bass is generally proportional to local
abundance, as indicated by the model’s close fit to data. Even
so, we acknowledge that a good fit does not exclude the possibility
of other potential model structures performing well. In a recent as-
sessment of this stock, an index of abundance developed from
chevron traps was compared with multiple indices developed
from baited hooks (SEDAR, 2011). We would not expect these
indices to track each other if chevron traps provided a biased
index because of non-linearity between the catch and abundance.

Figure 4. Relationship between the point estimates of abundance on
the site and the trap catch (abundance in trap at time of haul). Solid line
shows a linear regression to the values (filled circles).
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However, they were strongly correlated, suggesting that the various
indices were all driven by the same causal signal (e.g. abundance).

Many different gears are used around the world to monitor
marine fish abundance and biodiversity, each with advantages and
shortcomings. In the southeast United States and elsewhere, video
surveys have become prevalent, primarily because they can be effect-
ive without causing appreciable harm to fish or habitat (Harvey
et al., 2012; Mallet and Pelletier, 2014; Schobernd et al., 2014).
Nonetheless, understanding trap dynamics remains important for
several reasons. First, traps are still a widely used survey gear, even
while other sampling methods are gaining popularity. Second,
even if all trapping were to cease today, historical trap data can
provide time-series of abundance signals for use in stock assess-
ments. For example in the southeast United States, trap monitoring
of Atlantic reef fish such as black sea bass started in 1990, whereas
videos were not used broadly until 2011. Third, traps are commonly
used by commercial fisheries, and if catch saturation is not due to a
gear effect, those data may be useful to infer relative abundance.
Fourth, traps are one of the few sampling gears that can be effective
in untrawlable habitats or where visibility for video or dive surveys
may be poor. Fifth, traps can provide biological samples (otoliths for
ageing, reproductive tissue, diet information, mercury content,
DNA) that can be invaluable for assessment and management.
Furthermore, approaches that combine multiple gears, such as
traps and videos, may prove to be the most effective means for mon-
itoring marine fish (Coggins et al., 2014).

Whether the catch from traps relates linearly to abundance
depends on the mechanism(s) underlying catch saturation. One
possible mechanism, explored here, is the balancing of entries and
exits. In the black sea bass example, the hypothesis that trap catch
was proportional to local abundance was consistent with our
model results, and it seemed well supported by additional lines of
evidence. For this and other species with similar trapping behaviour,
such a result supports the critical assumption in play when using
trap data to develop indices of abundance.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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