Microsatellite Variation Among Red Snapper (*Lutjanus campechanus*) from the Gulf of Mexico

John R. Gold, Elena Pak, and Linda R. Richardson

SEDAR74-RD69

March 2021

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

© 2001 Springer-Verlag New York Inc.

Microsatellite Variation Among Red Snapper (*Lutjanus campechanus*) from the Gulf of Mexico

John R. Gold, Elena Pak, and Linda R. Richardson

Center for Biosystematics and Biodiversity, Texas A&M University, College Station, TX 77843-2258, U.S.A.

Abstract: Allelic variation at a total of 20 nuclear-encoded microsatellites was examined among adult red snapper (*Lutjanus campechanus*) sampled from 4 offshore localities in the Gulf of Mexico. The number of alleles at the 20 microsatellites ranged from 5 to 20; average (\pm SE) direct count heterozygosity values ranged from 0.148 \pm 0.025 to 0.902 \pm 0.008. No significant departures from expectations of Hardy-Weinberg equilibrium were found for any locus within samples, and genotypes at pairs of microsatellites appeared to be randomly associated, i.e., in genotypic equilibrium. Tests of homogeneity in allele distributions among the 4 localities were nonsignificant for 19 of the microsatellites. Allele distribution at microsatellite *Lca* 43 was heterogeneous among localities before (but not after) Bonferroni corrections for multiple tests executed simultaneously. Tests of homogeneity in the distribution of individual alleles at *Lca* 43 gave similar results: one low frequency allele was distributed heterogeneously among samples before, but not after, Bonferroni correction. Molecular analysis of variance indicated that more than 99% of variation at each microsatellite was distributed within sample localities. These results generally are consistent with the hypothesis of a single population (stock) of red snapper in the northern Gulf of Mexico.

Key words: Gulf red snapper, Lutjanus campechanus, microsatellites, population structure.

INTRODUCTION

Gulf red snapper (*Lutjanus campechanus*) in the Gulf of Mexico (hereafter Gulf) have been managed intensively since 1990, when the Gulf of Mexico Fishery Management Council (GMFMC) Reef Fish Fishery Management Plan became operative. Gulf red snapper has been an important fishery in the southeastern United States for a number of years and currently is considered overfished owing to exploitation by directed (commercial and recreational) fisheries and by high bycatch mortality of juvenile fish in the

Received September 25, 2000; accepted January 16, 2001

shrimp fishery (Christman, 1997). Among other issues facing management planning, including stock assessment and allocation decisions, is whether Gulf red snapper comprise a single population (stock) across the northern Gulf (MRAG Americas Inc., 1997). Management planning for Gulf red snapper within the Gulf of Mexico Exclusive Economic Zone (EEZ) and adjoining Territorial Sea currently is based on a unit (single) stock hypothesis (GMFMC, 1989, 1991). However, few data addressing the stock structure of red snapper in the Gulf were available when the original management plan was drafted. Subsequent genetic studies (A.G. Johnson, 1987, unpublished results; Gold et al., 1997; Heist and Gold, 2000) have been consistent with the existence of a single stock of Gulf red snapper, but a study by Bortone and Chapman (1995) suggested that genetic heterogeneity in Gulf red snapper could arise over fairly small spatial, and perhaps temporal, scales.

In this communication we report development of 15 nuclear-encoded, hypervariable genetic markers (microsatellites) generated from a genomic library of Gulf red snapper DNA. Briefly, microsatellites are rapidly evolving, short stretches of DNA composed of di-, tri-, and tetranucleotide arrays inherited in a codominant fashion (Wright and Bentzen, 1994) that have proved to be useful genetic markers of population structure in numerous taxa, including fishes (Jarne and Lagoda, 1996; Ruzzante et al., 1996; Estoup and Angers, 1998). Because new alleles at microsatellite loci appear to arise rapidly (Schug et al., 1998), the spatial distribution of alleles in a population may reflect short-term gene flow (O'Connell and Slatkin, 1993), meaning that microsatellites may reveal population structure at small spatial and temporal scales (Ruzzante et al., 1996). Allele distributions at the 15 microsatellites were documented among samples of adult red snapper from 4 offshore localities spanning the northern Gulf. Data were combined with those in a previous study (Heist and Gold, 2000) that documented allele distributions at 5 microsatellites among these same samples. Tests of allele frequency homogeneity, including molecular analysis of variance, were employed to examine genetic diversity and to test the (null) hypothesis of genetic homogeneity among the 4 samples.

MATERIALS AND METHODS

To generate the microsatellites, genomic DNA libraries of red snapper DNA fragments (400-1000 bp in size) were constructed via standard procedures in our laboratory (Broughton and Gold, 1997; Turner et al., 1998; Heist and Gold, 2000). These included restriction enzyme digestion and fragment separation; ligation of fragments into a multicloning site in pBluescript II KS⁺; bacterial cell transformation; and insert identification via blue/white colony selection on LB agar plates with ampicillin, IPTG, and X-gal. Library screening employed a Beckman Biomek 2000 workstation. Individual colonies were spotted twice to eliminate false positives. We also employed approaches for producing "enriched" microsatellite libraries (Walbieser, 1994). These approaches involved binding genomic DNA fragments to biotinylated oligonucleotide probes that contained desired repeat motifs. Biotinylated probes with their attached genomic fragments were bound to streptavidin-coated paramagnetic particles that held the complexes in place; nonbound genomic fragments that lacked repeat motifs were washed away. The bound fragments were then chemically released and cloned into "enriched" libraries. These enriched libraries contained a high percentage of microsatellites, thereby increasing the efficiency of development and screening.

Radiolabeled di-, tri-, and tetranucleotide probes (including $[CA]_{15}$, $[GA]_{10}$, $[ATT]_7$, $[CCT]_7$, $[GCAC]_5$, $[GAGC]_5$, and $[GACA]_8$) were used to identify candidate microsatellites. Following size estimation of DNA inserts, 152 candidate microsatellites were sequenced using an Applied Biosystems (Perkin-Elmer, Foster City, Calif.) 377 automated DNA sequencer from either end or both ends by using standard M13 sequencing primers. Identification of primers from regions flanking microsatellites employed the OLIGO software package. Primers were designed according to preset criteria that would optimize both the ease of polymerase chain reaction (PCR) amplification and the potential for multiplexing. Criteria included product length, internal stability, proportion of GC content, and primer *Tm* difference.

PCR amplifications were performed under a variety of experimental conditions to optimize procedures that produced high yields of target sequence and minimized additional fragments ("stutter" bands). Experimental tractability (reproducibility, consistency, range in allele size, frequency of "stutter" bands, if present, and microsatellite polymorphism) of PCR-amplified microsatellites was evaluated by screening a panel of red snapper previously sampled from various localities in the Gulf. A total of 24 microsatellites were evaluated in this way. PCR primer sequences, the length (in base pairs) of the cloned allele, and the annealing temperature in PCR amplification for these 24 microsatellites and for 5 generated previously by Heist and Gold (2000) are given in Table 1. Nine of the microsatellites generated in this project were considered for one reason or another to be unsuitable for further use in genetic assays, leaving a suite of 20 microsatellites (including the 5 generated previously).

For assay of individual fish, genomic DNA was isolated from frozen tissues as described in Gold and Richardson (1991). Adult samples used were from among those reported in prior studies of red snapper mitochondrial DNA (Gold et al., 1997). Localities sampled (number of individuals assayed) were Panama City, Fla. (48), Dauphin Island,

	Primer Sequence $(5' \rightarrow 3')$	Length	Annealing
Microsatellite	(forward and reverse, respectively)	(bp)	temperature (^o C)
1. Lca 20*	CAA CCC TCT GGC TAG TGT CA	215	58
	ATC CTG AAG CCC TGG TTT AC		
2. Lca 22*	TCC ACA GGC TIT CAC TCT TTC AG	245	58
	TGC TCT TTT CTT TCC GTC ATT CC		
3. Lca 27	TGA GTG GCT GTG TTT TGC TG	178	58
	GTG CGT TGT GTT TGT TGG TC		
4. Lca 43*	ACT GAA ATG CTG CTC TCC TT	184	56
	CAC TGT TTA CTT CTT CTG TT		
5. Lca 59	AGA CAG CCT GAT AGA CTG	184	54
	CAA CTG CTT CTT ACT TCT ACT		
6. <i>Lca</i> 64*	CTC CAA TCC TCC TCT CAC CT	164	54
	AGT GCC CCT GAT ACA CTT GC		
7. <i>Lca</i> 91*	GCA TCC ACC CTA AAC ATT TT	138	56
	GTT CAT CAG AGC AGC ATC CT		
8. Lca 107	CAG TGG AAG ATG TGA GGA GTT A	111	54
	CTG CAC CAA CAG AAA CAA AGA A		
9. Prs 55	AGT TAG GGT TAG TCA GAG GAG	198	56
	TAA TGT CGT CAA AAA TAG TGG		
10. Prs 137	GCG TCT AAA CAC ACA GGA A	162	54
	TGT AGC TGT CAA TCA TCC A		
11. Prs 221	AGT TTG CTA ATG TCT GAG TCA CC	227	54
	CCA TTG TCT TCG CTT ACT T		
12. Prs 226	GCC TGC TGT CAC CTC TCC	243	58
	TGT TCC AGC CCT TGA TTA GT		
13. Prs 229	CAC ATT GAA CCG TTT AAC CC	129	56
	GAA ATG ATG ACC CAG CAC AG		
14. Prs 235	AGG GTG ACG ATG GGT GTG	241	54
	AAG TCT CTC AAA ACC CCG AA		
15. Prs 240	CAA GAG GGT GAT GAA TGA	202	54
	AAT GAA ATA CCC ACT GCT		
16. Prs 248	CCA TCA GCT CGA CCA GAC A	224	56
	AAA GAG ACA CGG CAC GGA C		
17. Prs 257	AAA GTT CTT GTG ATG TGT	135	54
	GAG AAA ATG TTG GAA TGA		
18. Prs 260	GGT AAA ATG CTC CCT TCC T	111	56
	GTG GTA GTG GGT GAA ATT CT		
19. Prs 275	CAC AGA TAC AAA CCC AGA CA	145	54
	AGT AGG TCT TTG GTC ATC A		
20. Prs 281	AAT CAG ACC AAA TGA GAT A	181	48
	GTC CAA TCT GTA ACA AAC T		
21. Prs 282	CAG AGG AGG CAG AAC AGA	123	54
	ACC ACA CTA ATG CAC ACA C		
22. Prs 291	TAA ACC CAA GGA AAC GCT CAT	126	54
	GCC GAG GGG TGA GTG AGG A		
23. Prs 303	ACT CTG GAG GAA TGG GTG GAA A	132	58
	TGA AGG GCT GAC AGG TGG A		

TABLE 1. Nuclear Microsatellites Developed from Red Snapper (Lutjanus campechanus)

Annealing	Length	Primer Sequence $(5' \rightarrow 3')$	
temperature (°C)	(bp)	(forward and reverse, respectively)	Microsatellite
56	130	ATG TCA TCC TGT GCT GTC	24. Prs 304
		CTA CCT GTC TGC ACT GTT	
56	169	CTG CAA TTA AGC CAA CTG TCA A	25. Prs 305
		TGA GAG GAC GCA ACA ATA CAA C	
54	202	AGG TCA TTG TGG TGG GTG TAT	26. Prs 328
		TTA CCG TCA CTT CCA GAA CAG	
58	149	CTA TTA GCA GGG CTC TGT GTG	27. Prs 333
		GAC TCC GAC TGA CAT TTT CAA	
58	195	CAG GGA ACG ACT GCT GCT AG	28. Prs 352
		GGA CGT GGG GTG TGA AGA TT	
56	141	TAC AGT GCC TTA TGC AAT AC	29. Prs 357
		CAT TCG TGA GAT GCA TGT	

 TABLE 1.
 Continued

*Microsatellites were generated previously (Heist and Gold, 2000)

Ala. (53), Galveston, Tex. (47), and Merida, Mexico (44). Genotypes at the 20 microsatellites were determined by PCR amplification and gel electrophoresis. Prior to amplification, one of the primers was kinase-labeled with γ^{32} P-ATP by T4 polynucleotide kinase (30 minutes, 37°C). PCR reactions contained approximately 5 ng of genomic DNA, 0.1 unit of Taq DNA polymerase, 0.5 µM of each primer, 800 µM dNTPs, 1-2 mM MgCl₂, 1X Taq buffer at pH 9.0 (Promega, Inc., Madison, Wis.), and sterile deionized water in a total volume of 10 µl. Thermal cycling was carried out in 96-well plates as follows: denaturation (45 seconds, 95°C), annealing (30 seconds, temperature as per Table 1), and polymerization (30 seconds, 72°C), for 30 cycles. Upon completion of thermal cycling, 5 µl of "stop" solution (Promega, Inc.) was added to each sample. Aliquots (3 µl) of each PCR reaction were then electrophoresed in 6% denaturing polyacrylamide ("sequencing") gels. Gels were dried and exposed to x-ray film. Alleles at individual microsatellites were scored as the size in base pairs of the fragment amplified by PCR. Genotypes at each microsatellite for each individual were scored and entered into a database.

Statistical analysis involved generation of allele frequencies and (direct-count) heterozygosity values, as well as significance testing of genotypic proportions relative to those expected under conditions of Hardy-Weinberg equilibrium. We followed recommendations in Ruzzante et al. (1996) and employed permutation tests (Manly, 1991) to estimate probability values for tests of Hardy-Weinberg equilibrium at each microsatellite within each sample. Significance levels for simultaneous tests were adjusted by using the sequential Bonferroni approach (Rice, 1989). Tests of genotypic equilibrium at pairs of microsatellites were carried out as a surrogate to assess whether any microsatellites were genetically linked. Probability values for tests of genotypic equilibrium were generated by 1000 iterations. Allele frequencies and heterozygosity values were obtained using BIOSYS-1.7 (Swofford and Selander, 1981). Tests of Hardy-Weinberg and genotypic equilibria employed the package GENEPOP (Raymond and Rousset, 1995).

Tests of genetic homogeneity among samples followed the approach used by Ruzzante et al. (1998). The underlying null hypothesis in each test (comparison) was that allele distributions are homogeneous among localities. Tests (analyses) included the Monte Carlo procedure of Roff and Bentzen (1989), as implemented in the restriction enzyme analysis package of McElroy et al. (1992), Fisher's exact tests, as implemented in GENEPOP (10,000 dememorizations, 50 batches, 1000 iterations per batch), and the molecular analysis of variance (AMOVA) of Excoffier et al. (1992). Significance of tests of genetic homogeneity also employed permutation tests (bootstrapping) with 1000 resamplings per individual comparison. Significance levels for simultaneous tests were adjusted by using the sequential Bonferroni approach (Rice, 1989). Tests of genetic homogeneity were carried out separately for each of the 20 microsatellites.

Results and Discussion

Descriptive statistics for 20 microsatellites, including allele frequencies, sample sizes, direct-count heterozygosity values, and results of tests of conformance of observed genotypes to expectations based on the Hardy-Weinberg equilibrium, for each sample locality, are given in Appendix Tables A1 and A2. Values for 4 of the microsatellites (Lca 20, Lca 22, Lca 64, and Lca 91) were reported in Heist and Gold (2000), as were values for Lca 43. During efforts to multiplex the microsatellites, we discovered that what initially had been dismissed as an artifact during scoring of alleles at Lca 43 was an allele (Lca 43-162) that was substantially smaller than the next-largest allele (Lca 43-174). Briefly, the sequence of allele 184 at *Lca* 43 is 5'-G(TG)₈GG- $GAC(GT)_5ATGGTGTTTAAGTGTAGAC GTGAG(TG)_3TT(TG)_4-3'; Lca$ 43-162 has the sequence 5'-(GT)₅ATGGTGTTTAAGTGTAGAC $GTGAG(TG)_3TT(TG)_4-3')$ and is lacking 22 bp relative to the 5' end of Lca 43-184. Consequently, all individuals were rescored for microsatellite Lca 43, accounting for the minor differences in allele frequencies between this study and Heist and Gold (2000).

The 9 microsatellites (repeat sequence of the cloned allele) not used in the survey were *Lca* 59, $[GATA]_{11}$; *Prs* 226, $[CA]_{16}$; *Prs* 235, $[AC]_{11}$; *Prs* 281, $[GT]_{21}$; *Prs* 291, $[AT]_{12}$; *Prs* 304, $[TG]_6$ TC $[TG]_7$; *Prs* 305, $[CA]_{16}$; *Prs* 352, $[CA]_{10}$; and *Prs* 357, $[GT]_{20}$. These microsatellites were omitted from the survey because of significant deviations from Hardy-Weinberg expectations in an initial survey, inconsistent amplification with the PCR primers employed, or too many alleles (or extreme size difference among alleles) for reliable scoring of phenotypes (genotypes).

Summary statistics for the 20 microsatellites are given in Table 2 and include the repeat sequence of the cloned allele, number of alleles detected, the average (direct-count) heterozygosity (\pm SE) observed among sample localities, and results of tests of conformance of observed genotype proportions to expectations of Hardy-Weinberg equilibrium. Virtually all of the microsatellites generated were CA (or complementary TG) dinucleotide repeats, with number of alleles per microsatellite ranging from 5 (*Lca* 20, *Prs* 260, and *Prs* 328) to 20 (*Prs* 240 and *Prs* 248). Direct-count heterozygosity, averaged over the 4 sample localities, ranged from 0.148 \pm 0.025 (*Lca* 20) to 0.902 \pm 0.008 (*Prs* 257). These results indicate that the 20 microsatellites generated from red snapper are typical of those found in other vertebrate organisms, including fishes (e.g., Turner et al., **Table 2.** Summary of Microsatellite Variation in Red Snapper(Lutjanus campechanus) Sampled from 4 Localities in the Gulf ofMexico

Micro- satellite	Repeat sequence	No. of alleles	Average heterozygosity ±SE	P _{HW} *
<i>Lca</i> 20†	[CA] ₉	5	0.148 ± 0.025	0/4
Lca 22†	[CA] ₁₈	14	0.765 ± 0.041	0/4
Lca 27	[TG] ₁₉	19	0.761 ± 0.022	0/4
<i>Lca</i> 43†	Complex msat 1‡	8	0.498 ± 0.029	0/4
<i>Lca</i> 64†	[CA] ₁₂	10	0.721 ± 0.037	0/4
<i>Lca</i> 91†	[CA] ₁₂	8	0.502 ± 0.034	0/4
Lca 107	[CA] ₁₆	12	0.759 ± 0.053	0/4
Prs 55	[TG] ₁₃	8	0.248 ± 0.052	0/4
Prs 137	[TG] ₁₃	13	0.681 ± 0.055	0/4
Prs 221	$[CA]_{10} CG [CA]_3$	16	0.815 ± 0.029	0/4
Prs 229	[CA] ₈	8	0.585 ± 0.037	0/4
Prs 240	[CA] ₂₁	20	0.827 ± 0.038	0/4
Prs 248	$[CT]_{6} [C]_{5} T [CA]_{12}$	20	0.844 ± 0.008	0/4
Prs 257	[AAG] ₁₅	17	0.902 ± 0.008	0/4
Prs 260	Complex msat 2§	5	0.371 ± 0.027	0/4
Prs 275	[CA] ₁₀	7	0.578 ± 0.040	0/4
Prs 282	[TG] ₂ CA [TG] ₉	12	0.608 ± 0.041	0/4
Prs 303	[CA] ₁₁	11	0.458 ± 0.025	0/4
Prs 328	[TG] ₉	5	0.529 ± 0.039	0/4
Prs 333	$[GT]_4$ TG $[GT]_8$	6	0.306 ± 0.028	0/4

*Proportion of samples where P < .05, following Bonferroni correction. †Microsatellites were developed by Heist and Gold (2000).

 $\label{eq:complex_msat_1} \ensuremath{^{+}\text{Complex}}\xspace{1}{}_{8}\ensuremath{^{-}\text{GGGAC}}\xspace{1}{}_{5}\ensuremath{^{-}\text{ATGGTGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{1}\ensuremath{^{-}\text{TT}}\xspace{1}{}_{1}\ensuremath{^{-}\text{GTG}}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{1}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{1}\ensuremath{^{-}\text{TT}}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{1}\ensuremath{^{-}\text{CTGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{1}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATGTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATTTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATTTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATTTTAAGTGTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATTTTAAGTGTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATTTTAAGTGTTAAGTGTTAAGTGTTAAGTGTTAAGTGTAGACGGTGAG}\xspace{1}{}_{2}\ensuremath{^{-}\text{ATTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTTAAGTGTTT$

 $Complex msat 2 = [TG]_4 AGTGCA [TG]_2 TA [TG]_6.$

1998). Following Bonferroni correction (Rice, 1989), genotype proportions at all 20 microsatellites in all 4 sample localities did not deviate significantly from proportions expected under Hardy-Weinberg equilibrium. This indicates that all 20 microsatellites should be suitable for a variety of studies on Gulf red snapper, from population structure to paternity and kinship.

Tests of genotypic equilibrium between pairs of loci were carried out both within samples and when samples were pooled across localities. Significant genotypic disequilibrium (following Bonferroni correction) within samples was found in 11 pairwise comparisons. Localities (microsatellite comparison) were Panama City, Fla. (none), Dauphin Island, Ala. (*Lca* 27–*Prs* 248, *Lca* 43–*Lca* 107, *Lca* 107–

Microsatellite	Panama City,	Dauphin Island,	Galveston,	Merida,	
pair	Fla.	Ala.	Tex.	Mexico	
Lca 22–Lca 27	0.171	0.196	0.926	0.950	
Lca 22–Prs 55	0.541	0.654	0.036	0.759	
Lca 22–Lca 107	0.784	0.408	0.589	0.313	
Lca 22–Prs 282	0.436	0.093	0.315	0.036	
Lca 27–Prs 275	0.819	0.716	0.621	0.534	
Lca 43–Lca 107	0.356	0.000*	0.365	0.269	
Lca 43–Prs 137	0.002	0.062	0.185	0.366	
Lca 64–Prs 240	0.588	0.632	0.765	1.000	
Lca 91–Prs 221	0.195	0.779	0.124	0.742	
Prs 229–Prs 257	0.044	0.979	0.976	0.730	

Table 3. Probability Values of Tests of Genotypic Disequilibrium Within Sample Localities for Those Pairs of Microsatellites Where Significant Genotypic Disequilibrium (following Bonferroni corrections) Was Detected When Samples Were Pooled Across Localities

*Significant probability value following Bonferroni correction.

Prs 240, *Prs* 257–*Prs* 303, *Prs* 282–*Prs* 333), Galveston, Tex. (*Lca* 64–*Lca* 107, *Prs* 248–*Prs* 303), and Merida, Mexico (*Lca* 27–*Lca* 64, *Lca* 43–*Prs* 257, *Lca* 64–*Prs* 333, *Prs* 229–*Prs* 328). Note that none of the significant comparisons was found at more than one locality. Tests carried out when samples were pooled across localities yielded 10 significant probability values following Bonferroni correction. In only one of these pairwise comparisons (between *Lca* 43 and *Lca* 107) was there a significant probability of genotypic disequilibrium within any single locality (Table 3). Collectively, these results indicate that genotypes at pairs of microsatellites appear randomly associated and suggest that all 20 microsatellites are inherited independently.

Tests of homogeneity in allele distributions among the 4 samples were nonsignificant before and after Bonferroni correction at 19 of the microsatellites (Table 4). Significant probability values at Lca 43 were obtained before Bonferroni correction with the Roff-Bentzen Monte Carlo method (P = .016) and Fisher's exact test (P = .005), but not with AMOVA ($\phi_{ST} = .008$, P = .078). Neither significant result remained after Bonferroni correction. To examine this further we carried out "V" tests (DeSalle et al., 1987) on arcsine square-root transformed frequencies of each allele at Lca 43. Only 1 allele (Lca 43-162) was distributed heterogeneously $(P \approx .027)$ among the 4 sample localities. Again, the result was significant before, but not after, Bonferroni correction. Lca 43-162 is not the most common allele at Lca 43 (frequencies range from 11.0% in the sample from Merida, Mexico, to 1.1% in the sample from Galveston, Tex.), and the distribution of Lca 43-162 among the sample localities

does not follow any sort of spatially linear trend (Appendix Table A1). This, along with the expectation that 1 in 20 (of the original) tests may be significant (at $\alpha = .05$) by chance alone, leads us to conclude that there is no biologically meaningful heterogeneity at Lca 43. We also employed the Fisher (1954) method of combining probabilities over (multiple) independent tests of significance for each of the three methods. Combined probability values were .092 (Roff-Bentzen procedure), .073 (exact tests), and .793 (from AMOVA). This supports further the hypothesis of genetic homogeneity among the 4 sampled localities and, interestingly, suggests that the AMOVA may be less powerful than the other two tests of genetic homogeneity. Finally, ϕ_{ST} values (derived from AMOVA), an index of the proportion of the genetic variation distributed among localities, ranged from 0 (including negative values) to 0.009, meaning that the overwhelming majority (>99%) of the variation at these microsatellites was distributed within localities.

Given that the samples of Gulf red snapper were from localities that span the northern Gulf (Panama City, Fla., to Galveston, Tex.) and include a sample from the northern Yucatan Peninsula, these results are consistent with the hypothesis of a single population (stock) of Gulf red snapper in the northern (and western) Gulf of Mexico. There are, however, caveats to this hypothesis. The first, generally acknowledged by most authors (e.g., Camper et al., 1993; Gold and Richardson, 1998), is that one cannot prove a null hypothesis; a finding that geographic samples do not differ in allele frequencies could mean simply that each sample has the same parametric allele frequency at each genetic

Table 4.	Results of Tests for Spatial Homogeneity in Allele Dis-
tributions	s at 20 Microsatellites Among 4 Samples of Red Snapper
(Lutjanus	campechanus) from the Gulf of Mexico

Microsatellite	$P_{\rm RB}{}^{*}$	$P_{\rm EXACT}^{\dagger}$	$\Phi_{\rm ST}$ ‡	Р
<i>Lca</i> 20	.317	.457	001	.470
Lca 22	.622	.538	003	.793
Lca 27	.159	.421	.002	.303
Lca 43	.016	.005	.008	.078
Lca 64	.295	.237	.001	.328
Lca 91	.306	.119	.001	.317
Lca 10	.275	.164	.002	.285
Prs 55	.127	.121	.009	.073
Prs 137	.321	.506	004	.783
Prs 221	.205	.221	004	.843
Prs 229	.796	.893	004	.773
Prs 240	.154	.283	.000	.425
Prs 248	.369	.402	.000	.424
Prs 257	.746	.736	001	.662
Prs 260	.768	.734	008	.865
Prs 275	.729	.654	005	.754
Prs 282	.244	.387	002	.618
Prs 303	.579	.545	007	.920
Prs 328	.037	.038	.001	.319
Prs 333	.398	.525	007	.902

 $*P_{RB}$: based on 1000 bootstrapped replicates (after Roff and Bentzen, 1987).

 $\dagger P_{\text{EXACT}}$: based on Fisher's exact tests, with 1000 permutations.

 $$\pm \Phi_{ST}$$: estimate of population subdivision based on molecular analysis of variance (AMOVA) after Excoffier et al. (1992); *P* represents the probability that Φ_{ST} differs significantly from 0 (5000 permutations).

marker. A second caveat is the possibility that the observed genetic homogeneity reflects past (historical), rather than present-day, population structure. As discussed by Gold and Richardson (1998), subpopulations (stocks) could be currently isolated, at least partially, yet have undergone sufficient gene flow in the recent past such that they remain indistinguishable in allele frequencies.

Both of the above caveats will accompany virtually any assessment of population structure that uses genetic markers. However, the number of independent genetic markers used and the rate at which new alleles appear at these markers affect the constraints imposed by each of the two caveats. Because each independent genetic marker represents a separate test of the null hypothesis, increasing the number of such markers is expected to increase the overall power to reject a false null. In this case we employed 20, putatively independent microsatellites and found only 1 microsatellite (*Lca* 43) at which 1 low-frequency allele might be distributed heterogeneously among the 4 geographic samples of Gulf red snapper. As to the caveat of confounding events in the recent past that might overshadow present-day population structure, microsatellites are considered to be among the best, co-dominantly inherited genetic markers to asses contemporaneous population structure because of their high rates of new allele formation relative to other genetic markers (O'Connell and Slatkin, 1993; Ruzzante et al., 1996). Thus, while we cannot falsify the potentially confounding effect of historical events, the use of 20 independently inherited microsatellites indicates that power to detect contemporaneous population structure is near optimal.

A third caveat to the inference, based on these microsatellite data, that Gulf red snapper comprise only a single population (stock) in the northern and western Gulf is that our samples undoubtedly included individuals from different cohorts (year classes). We attempted at the time to obtain similarly sized individuals (range, 35-45 cm in fork length) under the assumption that individuals primarily would be from one or two cohorts. Recent work by C.A. Wilson and D.L. Nieland (manuscript submitted), however, has demonstrated that age-length relationships in Gulf red snapper are not necessarily straightforward. Individuals in the size range of 35 to 45 cm in fork length primarily would be comprised of age 2 and age 3 fish but also could include individuals as old as age 8. Our sampling also was not restricted to individuals in the size range of 35 to 45 cm in fork length. The issue here is that movement of adults from one putative subpopulation (stock) to another could confound efforts to identify individuals of either subpopulation (stock), particularly if there is any tendency to natal philopatry. We currently are undertaking a study of age 0 Gulf red snapper to mitigate this problem. However, on the basis of the majority of genetic data at hand, including both mitochondrial DNA restriction sites (Camper et al., 1993; Gold et al., 1997) and microsatellites (Heist and Gold, 2000; this study), the best working hypothesis for management of the Gulf red snapper resource is that there is a single population (stock) of Gulf red snapper in the Gulf of Mexico.

ACKNOWLEDGMENTS

Acknowledgments for assistance in procuring specimens used in the project were given in previous papers (Gold et al., 1997). Work was supported by the Gulf and South Atlantic Fisheries Development Foundation (grant 70-04-20000/11824) and by the Marfin Program of the U.S. Department of Commerce (grant NA87FF0426). We thank C. Burridge for helpful comments on an early draft of the manuscript, and two anonymous reviewers for helpful suggestions. This paper is number 32 in the series "Genetic Studies in Marine Fishes" and is contribution 99 of the Center for Biosystematics and Biodiversity.

References

Bortone, S.A., and Chapman, R.W. (1995). Identification of stock structure and recruitment patterns for the red snapper, *Lutjanus campechanus*, in the Gulf of Mexico. Final report for Marfin Program Grant Number NA17FF0379-03. St. Petersburg, Fla.: SE Regional Office, National Marine Fisheries Service.

Broughton, R.E., and Gold, J.R. (1997). Microsatellite variation in northern bluefin tuna. *Mol Mar Biol Biotechnol* 6:308–314.

Camper, J.D., Barber, R.C., Richardson, L.R., and Gold, J.R. (1993). Mitochondrial DNA variation among red snapper (*Lutjanus campechanus*) from the Gulf of Mexico. *Mol Mar Biol Biotechnol* 3:154–161.

Christman, M.C. (1997). Peer review of red snapper (*Lutjanus campechanus*) research and management in the Gulf of Mexico: statistics review. Silver Spring, Md.: Office of Science and Technology, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.

DeSalle, R., Templeton, A., Mori, I., Pletscher, S., and Johnston, J.S. (1987). Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations of *Drosophila mercatorum. Genetics* 116:215–233.

Estoup, A., and Angers, B. (1998). Microsatellites and minisatellites for molecular ecology: theoretical and experimental considerations. In: *Advances in Molecular Ecology*, Carvalho, G.R. (ed.). The Netherlands: IOS Press, 55–86.

Excoffier, L., Smouse, P., and Quattro, J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial restriction data. *Genetics* 131:479–491.

Fisher, R.A. (1954) *Statistical Methods for Research Workers*. 12th ed. Edinburgh: Oliver & Boyd.

GMFMC (Gulf of Mexico Fishery Management Council). (1989). Amendment number 1 to the Reef Fish Fishery Management Plan. Tampa, Fla.: Gulf of Mexico Fishery Management Council.

GMFMC (Gulf of Mexico Fishery Management Council). (1991).

Amendment 3 to the Reef Fish Fishery Management Plan for the reef fish resources of the Gulf of Mexico. Tampa, Fla.: Gulf of Mexico Fishery Management Council.

Gold, J.R. and Richardson, L.R. (1991). Genetic studies in marine fishes, IV: an analysis of population structure in the red drum (*Sciaenops ocellatus*) using mitochondrial DNA. *Fish Res* 12:213–241.

Gold, J.R., and Richardson, L.R. (1998). Genetic homogeneity among geographic samples of snappers and groupers: evidence of continuous gene flow? *Proc Gulf Carib Res Inst* 50:709–726.

Gold J.R., Sun, F., and Richardson, L.R. (1997). Population structure of red snapper from the Gulf of Mexico as inferred from analysis of mitochondrial DNA. *Trans Am Fish Soc* 126:386–396.

Heist, E.J., and Gold, J.R. (2000) DNA microsatellites and genetic structure of red snapper (*Lutjanus campechanus*) in the Gulf of Mexico. *Trans Am Fish Soc* 129:469–475.

Jarne, P., and Lagoda, P.J.L. (1996) Microsatellites, from molecules to populations and back. *TREE* 11:424–429.

Manly, B.J.F. (1991). *Randomization and Monte Carlo Methods in Biology*. New York: Chapman and Hall.

McElroy, D., Bermingham, E., and Kornfield, I. (1992). REAP-the restriction enzyme analysis package. *J Hered* 83:157–158.

MRAG Americas Inc. (1997). Consolidated report on the peer review of red snapper (*Lutjanus campechanus*) research and management in the Gulf of Mexico. Report to the Office of Science and Technology, National Marine Fisheries Service.

O'Connell, M., and Slatkin, M. (1993). High mutation rate loci in a subdivided population. *Theoret Pop Biol* 44:110–127.

Raymond, M., and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact test ecumenism. *J Hered* 86:248–249.

Rice, W.R. (1989). Analyzing tables of statistical tests. *Evolution* 43:223–225.

Roff, D.A., and Bentzen, P. (1989). The statistical analysis of mitochondrial polymorphisms: chi-square and the problem of small samples. *Mol Biol Evol* 6:539–545.

Ruzzante, D.E., Taggart, C.T., and Cook, D. (1996). Spatial and temporal variation in the genetic composition of a larval cod (*Ga-dus morhua*) aggregation: cohort contribution and genetic stability. *Can J Fish Aquat Sci* 53:2695–2705.

Ruzzante, D.E., Taggart, C.T., and Cook, D. (1998). A nuclear DNA basis for shelf- and bank-scale population structure in NW Atlantic cod (*Gadus morhua*) stocks: Labrador to Georges Bank. *Mol Ecol* 7:1663–1680.

Schug, M.D., Hutter, C.M., Wetterstrand, K.A., Gaudette, M.S., Mackay, T.F.C., and Aquadro, C.F. (1998). The mutation rates of di-, tri-, and tetranucleotide repeats in *Drosophila melanogaster*. *Mol Biol Evol* 15:1751–1760.

Swofford, D.L., and Selander, R.B. (1981). BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. *J Hered* 72:281–283.

Turner, T.F., Richardson, L.R., and Gold, J.R. (1998). Polymorphic microsatellite DNA markers in red drum (*Sciaenops ocella-tus*). *Mol Ecol* 7:1771–1772.

Walbieser, G.C. (1994). PCR-based identification of AT rich triand tetranucleotide repeat loci in an enriched plasmid library. *Biotechniques* 19:742–744.

Wright, J.M., and Bentzen, P. (1994). Microsatellites: genetic markers for the future. *Rev Fish Biol Fish* 4:384–388.

Appendix Table A1. Allele Frequencies at 20 Microsatellites in Red Snapper (*Lutjanus campechanus*) Sampled from 4 Localities in the Gulf of Mexico

	Sample locality (adults)					
Microsatellite (allele*)	Panama City, Fla.	Dauphin Island, Ala.	Galveston, Tex.	Merida, Mexico		
Lca 20†						
207	.000	.000	.000	.011		
211	.000	.000	.021	.000		
213	.042	.047	.064	.045		
215	.938	.953	.883	.920		
217	.021	.000	.032	.023		
Lca 22†						
231	.020	.000	.011	.000		
233	.010	.000	.011	.000		
235	.449	.481	.415	.409		
236	.031	.019	.021	.034		
237	.000	.028	.043	.034		
239	.194	.217	.266	.205		
241	.143	.075	.074	.114		
243	.041	.057	.085	.068		
245	.031	.038	.043	.045		
247	.041	.019	.000	.057		
249	.020	.028	.000	.023		
251	.010	.038	.032	.000		
252	.000	.000	.000	.011		
255	.010	.000	.000	.000		
Lca 27						
160	.000	.010	.000	.000		
162	.041	.038	.044	.036		
164	.014	.000	.000	.012		

	Sample locality (adults)						
Microsatellite (allele*)	Panama City, Fla.	Dauphin Island, Ala.	Galveston, Tex.	Merida Mexico			
166	000	000	000	012			
168	.000	.000	.000	.012			
108	.000	.010	.000	.024			
170	203	125	100	.14.			
172	205	.123	.100	321			
174	.297	.423	.400	.52			
178	108	135	.122	.000			
180	.100	.155	.100	.07			
182	.001	.040	.044	.07.			
184	.014	.029	.022	.012			
104	.041	.000	.000	.000			
100	.000	.019	.033	.012			
100	.014	.019	.011	.000			
190	.027	.000	.000	.000			
192	.000	.000	.011	.000			
194	.014	.000	.000	.000			
196	.000	.010	.022	.012			
Lca 43	076	0.42	011	11(
162	.076	.043	.011	.11(
176	.011	.106	.011	.049			
178	.000	.000	.000	.012			
184	.174	.117	.133	.049			
186	.630	.670	.756	.67			
188	.087	.043	.056	.073			
190	.011	.000	.000	.012			
192	.011	.021	.033	.024			
Lca 64†							
158	.021	.010	.011	.000			
160	.000	.010	.011	.000			
162	.011	.010	.021	.000			
164	.287	.230	.309	.295			
166	.287	.210	.213	.216			
168	.245	.310	.330	.216			
170	.085	.100	.074	.159			
172	.032	.110	.011	.080			
174	.011	.000	.021	.023			
176	.021	.010	.000	.01			
Lca 91†							
130	.000	.000	.000	.01			
132	.000	.010	.011	.000			
134	.000	.038	.011	.023			
136	.413	.462	.511	.489			
138	.533	.490	.415	.398			
140	.033	.000	.053	.052			
142	.011	.000	.000	.011			

Appendix Table A1. Continued					Appendix Table A1. Continued				
	Sample lo	ocality (adult	s)			Sample locality (adults)			
Microsatellite (allele*)	Panama City, Fla.	Dauphin Island, Ala.	Galveston, Tex.	Merida, Mexico	Microsatellite (allele*)	Panama City, Fla.	Dauphin Island, Ala.	Galveston, Tex.	Merida, Mexico
144	011	000	000	011	235	250	304	223	279
I ca 107	.011	.000	.000	.011	233	074	078	.223	.279
97	034	010	011	012	239	.000	010	021	.012
99	052	040	068	081	241	.000	010	000	023
101	259	230	307	267	243	000	000	000	.023
101	310	410	273	360	249	.000	.000	021	.012
105	069	040	080	081	251	029	029	000	.000
107	.034	.130	.080	.070	255	.000	.010	.000	.000
109	.155	.040	.102	.093	257	.000	.000	.021	.000
111	.017	.010	.023	.035	259	.015	.000	.000	.000
113	.052	.080	.045	.000	Prs 229	.015	.000	.000	.000
115	.000	.000	.011	.000	121	.015	.000	.000	.000
117	.000	.010	.000	.000	123	.000	.010	.032	.012
119	.017	.000	.000	.000	127	.706	.692	.660	.605
Prs 55					129	.103	.154	.117	.140
192	.000	.010	.011	.000	131	.044	.038	.053	.081
194	.000	.000	.000	.012	133	.132	.087	.128	.140
196	.014	.038	.022	.071	135	.000	.010	.011	.023
198	.811	.894	.911	.857	137	.000	.010	.000	.000
200	.135	.029	.044	.048	Prs 240	1000	1010	1000	
202	.027	.019	.011	.000	184	.000	.000	.000	.012
204	.014	.010	.000	.000	186	.014	.000	.000	.000
210	.000	.000	.000	.012	188	0.57	.038	.043	.070
Prs 137					190	.043	.038	.111	.023
158	.000	.000	.011	.012	192	.029	.019	.022	.012
160	.000	.019	.011	.000	194	.100	.067	.043	.093
162	.109	.144	.174	.134	196	.000	.019	.011	.058
166	.000	.000	.033	.000	198	.057	.067	.054	.070
168	.031	.010	.033	.024	200	.029	.067	.011	.012
170	.453	.481	.435	.402	202	.271	.288	.370	.244
172	.000	.048	.011	.024	204	.086	.077	.098	.070
174	.297	.260	.217	.305	206	.100	.154	.087	.070
176	.063	.010	.043	.073	208	.043	.048	.076	.058
178	.016	.019	.033	.024	210	.029	.010	.076	.023
180	.016	.000	.000	.000	212	.029	.048	.011	.058
188	.016	.000	.000	.000	214	.071	.038	.033	.035
190	.000	.010	.000	.000	216	.000	.000	.011	.023
Prs 221					218	.029	.019	.000	.023
223	.029	.020	.043	.058	220	.000	.000	.011	.047
225	.103	.059	.096	.023	224	.014	.000	.033	.000
227	.176	.147	.160	.151	Prs 248				
229	.324	.324	.309	.349	218	.000	.010	.000	.000
231	.000	.010	.021	.023	220	.014	.010	.000	.000

	Sampla locality (adults)				Sample locality (adults)				
	Panama	Dauphin				Panama	Dauphin	- I	
Microsatellite	City,	Island,	Galveston,	Merida,	Microsatellite	City,	Island,	Galveston,	Merida,
(allele*)	Fla.	Ala.	1 ex.	Mexico	(allele*)	Fla.	Ala.	l ex.	Mexico
224	.114	.135	.044	.093	141	.014	.000	.011	.012
226	.029	.019	.000	.023	143	.071	.048	.096	.128
228	.229	.260	.322	.314	145	.571	.529	.521	.512
230	.171	.173	.100	.105	147	.300	.385	.309	.314
232	.057	.058	.033	.081	149	.029	.029	.064	.035
234	.129	.087	.122	.116	Prs 282				
236	.129	.038	.100	.047	115	.000	.029	.000	.035
238	.029	.048	.078	.105	121	.329	.231	.255	.209
240	.057	.048	.089	.058	123	.557	.510	.564	.535
242	.029	.029	.044	.035	125	.000	.019	.021	.058
244	.000	.010	.044	.000	127	.057	.096	.053	.035
246	.000	.019	.000	.000	129	.014	.058	.064	.081
248	.000	.010	.000	.000	131	.000	.010	.000	.023
250	.014	.019	.011	.012	133	.000	.000	.011	.000
252	.000	.000	.011	.000	135	.000	.029	.011	.012
256	.000	.010	.000	.000	137	.000	.000	.011	.000
258	.000	.000	.000	.012	139	.029	.019	.011	.012
Prs 257					141	.014	.000	.000	.000
108	.000	.000	.011	.023	Prs 303				
111	.114	.077	.053	.093	128	.015	.038	.096	.070
114	.057	.067	.085	.058	130	.765	.750	.734	.744
117	.243	.154	.149	.163	132	.162	.135	.138	.128
120	.057	.067	.074	.023	134	.015	.019	.011	.023
123	.114	.096	.096	.116	136	.029	.029	.000	.000
126	.029	.096	.053	.093	138	.000	.019	.011	.012
129	.043	.087	.096	.151	140	.000	.000	.011	.000
132	.100	.106	.106	.047	142	.015	.000	.000	.000
135	.043	.096	.053	.070	144	.000	.000	.000	.012
138	.114	.077	.074	.047	148	.000	.010	.000	.000
141	.043	.019	.053	.081	152	.000	.000	.000	.012
144	.029	.029	.043	.012	Prs 328				
147	.014	.010	.021	.012	200	.029	.000	.000	.000
150	.000	.019	.021	.000	202	.414	.412	.351	.476
153	.000	.000	.011	.000	204	.543	.510	.585	.464
156	.000	.000	.000	.012	206	.000	.078	.064	.036
Prs 260					208	.014	.000	.000	.024
111	.797	.800	.818	.767	Prs 333				
113	000	010	000	000	145	028	010	000	012
117	141	160	125	140	149	819	808	830	837
123	063	030	045	003	151	111	144	096	.007
129	000	000	011	000	153	028	019	053	.110
Prs 275	.000	.000	.011	.000	155	014	019	021	.000
123	014	000	000	000	155	000	.012	.021	.012
130	.014	.000	.000	.000	137	.000	.000	.000	.023

Appendix Table A1. Continued

Appendix Table A1. Continued

*Allele number represents the size in base pairs of the fragment amplified. †Reported previously in Heist and Gold (2000).

(Lutjanus campechanus) from the Gulf of Mexico				Sample locality (adults)				
Sample lo	cality (adults	3)			Panama City,	Dauphin Island,	Galveston,	Merida,
Panama	Dauphin			Microsatellite*	Fla.	Ala.	Tex.	Mexico
City,	Island,	Galveston,	Merida,	Prs 229				
Fla.	Ala.	Tex.	Mexico	п	34	52	47	43
				$H_{\rm DC}$	0.529	0.519	0.617	0.674
48	53	47	44	$P_{\rm HW}$	0.869	0.957	0.966	0.386
0.125	0.094	0.213	0.159	Prs 240				
1.000	1.000	0.253	1.000	n	35	52	46	43
				$H_{\rm DC}$	0.886	0.846	0.717	0.860
49	53	47	44	$P_{\rm HW}$	0.547	0.104	0.312	0.088
0.816	0.642	0.809	0.795	Prs 248				
0.926	0.161	0.746	0.519	n	35	52	45	43
				$H_{\rm DC}$	0.829	0.865	0.844	0.837
37	52	45	42	$P_{\rm HW}$	0.069	0.836	0.914	0.783
0.730	0.731	0.822	0.762	Prs 257				
0.064	0.247	0.222	0.019	n	35	52	47	43
				$H_{\rm DC}$	0.886	0.923	0.894	0.907
46	47	45	41	$P_{\rm HW}$	0.710	0.779	0.034	0.746
0.522	0.489	0.422	0.561	Prs 260				
0.403	0.483	0.025	0.504	п	32	50	44	43
				$H_{\rm DC}$	0.344	0.380	0.318	0.442
47	50	47	44	$P_{\rm HW}$	0.783	0.485	0.811	0.879
0.638	0.800	0.766	0.682	Prs 275				
0.058	0.274	0.363	0.083	п	35	52	47	43
				$H_{\rm DC}$	0.486	0.538	0.638	0.651
46	52	47	44	$P_{\rm HW}$	0.456	0.662	0.037	0.948
0.500	0.481	0.596	0.432	Prs 282				
0.368	0.157	0.779	0.023	п	35	52	47	43
				$H_{\rm DC}$	0.486	0.635	0.660	0.651
29	50	44	43	$P_{\rm HW}$	0.183	0.313	0.589	0.156
0.862	0.660	0.841	0.674	Prs 303				
0.072	0.078	0.096	0.035	п	34	52	57	43
				$H_{\rm DC}$	0.471	0.385	0.489	0.488
37	52	45	42	$P_{\rm HW}$	0.845	0.030	0.652	1.000
0.378	0.173	0.156	0.286	Prs 328				
1.000	0.134	0.278	1.000	n	35	51	47	42
				$H_{\rm DC}$	0.457	0.471	0.617	0.571
32	52	46	41	$P_{\rm HW}$	0.301	0.184	0.032	1.000
0.844	0.596	0.652	0.634	Prs 333				
0.789	0.389	0.125	0.765	n	36	52	47	43
				$H_{\rm DC}$	0.306	0.385	0.255	0.279
34	51	47	43	$P_{\rm HW}$	0.285	0.824	0.135	0.692
0.853	0.745	0.872	0.791					
	chanus) from Sample lo Panama City, Fla. 48 0.125 1.000 49 0.816 0.926 37 0.730 0.064 46 0.522 0.403 47 0.638 0.058 46 0.500 0.368 29 0.862 0.072 37 0.378 1.000 32 0.844 0.789 34 0.853	chanus) from the Gulf o Sample locality (adults Panama Dauphin City, Island, Fla. Ala. 48 53 0.125 0.094 1.000 1.000 49 53 0.816 0.642 0.926 0.161 37 52 0.730 0.731 0.064 0.247 46 47 0.522 0.489 0.403 0.483 47 50 0.638 0.800 0.058 0.274 46 52 0.500 0.481 0.368 0.157 29 50 0.862 0.660 0.072 0.078 37 52 0.378 0.173 1.000 0.134 32 52 0.844 0.596 0.789 0.389 34 51 0.853 0.745 <td>chanus) from the Gulf of Mexico Sample locality (adults) Panama Dauphin City, Island, Galveston, Fla. Ala. Tex. 48 53 47 0.125 0.094 0.213 1.000 1.000 0.253 49 53 47 0.816 0.642 0.809 0.926 0.161 0.746 37 52 45 0.730 0.731 0.822 0.644 0.247 0.222 46 47 45 0.522 0.489 0.422 0.403 0.483 0.025 47 50 47 0.638 0.800 0.766 0.058 0.274 0.363 46 52 47 0.500 0.481 0.596 0.368 0.157 0.779 29 50 44 0.862 0.660 0.841 0.072 0.078 0.173</td> <td>chanus) from the Gulf of Mexico Sample locality (adults) Panama Dauphin Galveston, Merida, City, Island, Galveston, Merida, Fla. Ala. Tex. Mexico 48 53 47 44 0.125 0.094 0.213 0.159 1.000 1.000 0.253 1.000 49 53 47 44 0.816 0.642 0.809 0.795 0.926 0.161 0.746 0.519 37 52 45 42 0.730 0.731 0.822 0.762 0.064 0.247 0.222 0.019 46 47 45 41 0.522 0.489 0.422 0.561 0.403 0.483 0.025 0.504 47 50 47 44 0.538 0.274 0.363 0.083 46 52 47 44 0.500 0.481 0.596 0.4</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c c } \hline begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td></td>	chanus) from the Gulf of Mexico Sample locality (adults) Panama Dauphin City, Island, Galveston, Fla. Ala. Tex. 48 53 47 0.125 0.094 0.213 1.000 1.000 0.253 49 53 47 0.816 0.642 0.809 0.926 0.161 0.746 37 52 45 0.730 0.731 0.822 0.644 0.247 0.222 46 47 45 0.522 0.489 0.422 0.403 0.483 0.025 47 50 47 0.638 0.800 0.766 0.058 0.274 0.363 46 52 47 0.500 0.481 0.596 0.368 0.157 0.779 29 50 44 0.862 0.660 0.841 0.072 0.078 0.173	chanus) from the Gulf of Mexico Sample locality (adults) Panama Dauphin Galveston, Merida, City, Island, Galveston, Merida, Fla. Ala. Tex. Mexico 48 53 47 44 0.125 0.094 0.213 0.159 1.000 1.000 0.253 1.000 49 53 47 44 0.816 0.642 0.809 0.795 0.926 0.161 0.746 0.519 37 52 45 42 0.730 0.731 0.822 0.762 0.064 0.247 0.222 0.019 46 47 45 41 0.522 0.489 0.422 0.561 0.403 0.483 0.025 0.504 47 50 47 44 0.538 0.274 0.363 0.083 46 52 47 44 0.500 0.481 0.596 0.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c } \hline begin{tabular}{ c c c c c c c c } \hline begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		

Appendix Table A2. Descriptive Statistics of Each of 20 Microsatellites Among 4 Geographic Samples of Adult Red Snapper (*Lutjanus campechanus*) from the Gulf of Mexico Appendix Table A2.

**n* = number of individuals; $H_{\rm DC}$ = heterozygosity (direct count); $P_{\rm HW}$ = probability of conformance to expected Hardy-Weinberg proportions, based on Fisher's exact test (1000 permutations).