Standardized Catch Rate Indices for Gag Grouper (Mycteroperca microlepis) during 1986-2019 by the U.S. Gulf of Mexico Charterboat and Private Boat Recreational Fishery

Gulf and Caribbean Branch, Sustainable Fisheries Division NOAA Fisheries - Southeast Fisheries Science Center

SEDAR72-WP-07

25 January 2021

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:
Gulf and Caribbean Branch, Sustainable Fisheries Division, NOAA Fisheries Service, Southeast
Fisheries Science Center. 2021. Standardized Catch Rate Indices for Gag Grouper (Mycteroperca microlepis) during 1986-2019 by the U.S. Gulf of Mexico Charterboat and
Private Boat Recreational Fishery. SEDAR72-DW-07. SEDAR, North Charleston, SC. 40 pp.

Standardized Catch Rate Indices for Gag Grouper (Mycteroperca microlepis) during 1986-2019 by the U.S. Gulff of Mexico Charterboat and Private Boat Recreational Fishery

Gulf and Caribbean Branch
Sustainable Fisheries Division
NOAA Fisheries - Southeast Fisheries Science Center
Corresponding Author Email (francesca.forrestal@noaa.gov)

Keywords

Catch, fishing effort, CPUE, recreational fisheries, private and charterboat, Gag and Black Grouper

Abstract

A delta-lognormal index of abundance for the Gulf of Mexico private and charterboat recreational fishery was constructed for the SEDAR72 Operational Gag Grouper stock assessment using data from the Marine Recreational Information Program. Two mode specific indices and a combined mode index were developed using species associations to subset the data and standardized with a two-stage delta-lognormal generalized linear model. The resulting standardized indices reveal similar index trends when compared to the SEDAR33 index. The SEDAR72 combined mode standardized index indicates catch rates were relatively high from 1995-2000, remained relatively low between 2000 and 2005, and have been decreasing since 2010 with a slight increase in 2017 and 2018.

Introduction

The recreational fishery in the Gulf of Mexico is surveyed by the Marine Recreational Information Program (MRIP) conducted by NOAA Fisheries (formerly the Marine Recreational Fisheries Statistics Survey, MRFSS), the Texas Marine Sport-Harvest Monitoring Program conducted by the Texas Parks and Wildlife Department (TPWD), and the Southeast Region Headboat Survey (SRHS) conducted by NOAA Fisheries. MRIP/MRFSS has monitored shore based, charterboat and private/rental boat angler fishing in the Gulf of Mexico since 1981. MRIP data were used to construct indices of Gag Grouper catch rates in the Gulf of Mexico following the same procedures used in SEDAR33. However, for SEDAR72 interviews were selected using the Stephens and MacCall (2004) method as opposed to the guild approach utilized in SEDAR33
and a combined index was developed in addition to the two mode-specific indices. The indices were constructed using a delta-lognormal generalized linear model.

Materials and Methods

MRIP Data

MRIP collects information on participation, effort, and species-specific catch. Data are collected to provide catch and effort estimates in two-month periods ("waves") for each recreational fishing mode (shore fishing, private/rental boat, charterboat, or headboat/charterboat combined prior to 1986) and for each area of fishing (inshore, state Territorial Seas, U.S. Exclusive Economic Zone), in each Gulf of Mexico state (except Texas). Total catch information is collected by MRIP on fish landed whole and observed by interviewers ("Type A"), fish reported as killed by the fishers ("Type B1") and fish reported as released alive by the fishers ("Type B2").

Data from the MRIP dockside interviews were used to characterize abundance trends of Gag Grouper in the Gulf of Mexico. Information on effort included hours fished and number of anglers as reported to the interviewer. Catch that was not observed by the interviewer (B1 and B2) was adjusted upwards by the ratio of non-interviewed to interviewed anglers in each group of anglers. The catch per unit effort was calculated on an individual group basis (i.e., by leader) and was equal to the number of fish caught $(\mathrm{A}+\mathrm{B} 1+\mathrm{B} 2)$ divided by the effort, where effort was the product of the number of anglers and the total hours fished. Due to species identification concerns, all reported fish identified as Black Grouper were considered and retained as Gag grouper.

MRIP Data Filtering

Data were filtered following the same steps as SEDAR33:

1. Data in the Gulf of Mexico were limited to interviews that took place in Florida (excluding Monroe County).
2. Only interviews associated with private and charterboat fishing modes fishing hook and line gear were retained.
3. Interviews that reported shore-based fishing or fishing in inshore waters were excluded.
4. Interviews with possible error in effort information or in catch amount were excluded.
5. Data prior to 1986 were excluded.

Subsetting Interviews: Species Association

The Stephens and MacCall (2004) approach was used to restrict the dataset to anglers that likely encountered Gag Grouper based on the catch species composition. This approach was applied separately for the Charterboat, Private, and Charterboat and Private combined due to potential differences in species compositions between fishing modes.

Standardization

A two-stage delta-lognormal generalized linear model (GLM; Lo et al. 1992) was used to standardize for variability and non-randomness in CPUE data collection methods not caused by the year effect (i.e., to factor out year to year variations in CPUE not due to changes in abundance). This method combines two separate generalized linear model (GLM) analyses of the proportion of leaders that caught at least one Gag Grouper (i.e., proportion of positive interviews) and the catch rates of the positive leaders to construct a single standardized index of abundance. In the first step, the proportion positive is modeled using a logit regression assuming a binomial distribution of the response variable. In the second step, the logarithm of CPUE on positive interviews (those that caught the target species) was used as the response variable assuming a normal distribution and an identity link function. The two models were then combined to provide the final standardized index of abundance. Parameterization of each model was accomplished using a GLM procedure. For the lognormal models, the response variable, $\ln (C P U E)$, was calculated:
$\ln (C P U E)=\ln (A+B 1+B 2) /($ anglers x hours fished $)$
A forward stepwise regression approach was utilized within the GENMOD procedure of SAS 9.2 (SAS Institute, 2008). In this procedure, factors were added to the base model one at a time based on the percent reduction in deviance per degree of freedom. With each run of the model, the factor that caused the highest reduction in deviance was added to the base model (assuming the factor was significant based on a Chi-Square test with probability ≤ 0.05) until no factor reduced the percent deviance by the pre-specified level of 1%. Once a set of fixed factors was identified, first level interactions were examined. The significance of these interactions was evaluated between nested models using the likelihood ratio test. Interactions were screened and were only retained if the model improvement was significant according to the likelihood ratio test ($\mathrm{p}<0.0001$). Significant interaction terms were modeled as random effects.

Results of the binomial (proportion positive) and lognormal (mean CPUE on successful trips) models were then multiplied to attain a single index of abundance based on the year effect. The final delta-lognormal model was fit using the SAS macro GLIMMIX (glmm800MaOB.sas: Russ Wolfinger, SAS Institute) and the SAS procedure PROC MIXED (SAS Institute Inc. 1997) following the procedures by Lo et al. (1992).

Results and Discussion

Species Associations - Stephens and MacCall (2004) Approach - Charterboat

The minimum difference between the predicted and the observed number of interviews that reported Gag Grouper occurred at the probability threshold of 0.41 (Figure 1A). Predicted interviews showed a general increasing trend until the 2000s then declined, and were overestimated at the end of the timeseries (Figure 1B). Interviews with a predicted probability greater than the critical threshold probability were considered as interviews that targeted Gag Grouper (Figure 1C). Nominal CPUE was relatively similar before and after applying the Stephens and MacCall (2004) approach, with the exception of the late-1980s and 1995 (Figure 1D). This method retained 32.6% of the total interviews, and 63.8% of interviews that reported

Gag. Prior to trip selection, there were 27,131 interviews and the proportion positive was 0.33 , and after selection there were 8,858 interviews and the proportion positive was 0.65 .

The Stephens and MacCall (2004) trip subsetting approach identified 48 species which were captured with Gag Grouper and reflected either positive or negative associations (Table 1). For example, Red Grouper, Red Snapper, White Grunt, Scamp, and Black Sea Bass are positively correlated to Gag Grouper while Spotted Seatrout, Remora Family, Tomtate, Bank Sea Bass, and Herring Family are negatively correlated.

Species Associations - Stephens and MacCall (2004) Approach - Private

The minimum difference between the predicted and the observed number of interviews that reported Gag Grouper occurred at the probability threshold of 0.26 (Figure 2A). Predicted interviews showed a general increasing trend until the 2000s then declined, and were overestimated at the beginning and end of the time series (Figure 2B). Interviews with a predicted probability greater than the critical threshold probability were considered as interviews that targeted Gag Grouper (Figure 2C). Nominal CPUE was relatively similar before and after applying the Stephens and MacCall (2004) approach, with the exception of the mid-1980s and the mid-2000s (Figure 2D). This method retained 10.7% of the total interviews, and 55.4% of interviews that reported Gag Grouper. Prior to trip selection, there were 119,035 interviews and the proportion positive was 0.1 , and after selection there were 12,759 interviews and the proportion positive was 0.49 .

The Stephens and MacCall (2004) trip subsetting approach identified 38 species which were captured with Gag Grouper and reflected either positive or negative associations (Table 2). For example, Red Grouper, White Grunt, Cobia, Gray Snapper, and Red Snapper are positively correlated to Gag Grouper while Red Drum, Spotted Seatrout, Gafftopsail Catfish, Hardhead Catfish, and Common Snook are negatively correlated.

Species Associations - Stephens and MacCall (2004) Approach - Charterboat and Private combined

The minimum difference between the predicted and the observed number of interviews that reported Gag Grouper occurred at the probability threshold of 0.33 (Figure 3A). Predicted interviews showed a general increasing trend until the 2000s then declined, and were overestimated at the beginning and end of the time series (Figure 3B). Interviews with a predicted probability greater than the critical threshold probability were considered as interviews that targeted Gag Grouper (Figure 3C). Nominal CPUE was relatively similar before and after applying the Stephens and MacCall (2004) approach, with the exception of the early 1990's and the early 2000s (Figure 3D). This method retained 14.5\% of the total interviews, and 59.1% of interviews that reported Gag Grouper. Prior to trip selection, there were 146,166 interviews and the proportion positive was 0.14 , and after selection there were 21,235 interviews and the proportion positive was 0.57 .

The Stephens and MacCall (2004) trip subsetting approach identified 46 species which were captured with Gag Grouper and reflected either positive or negative associations (Table 3). For example, Red Grouper, Red Snapper, Scamp, White Grunt, and Gray Snapper are positively correlated to Gag Grouper while Spotted Seatrout, Gafftopsail Catfish, Red Drum, Hardhead Catfish, and Sand Perch are negatively correlated.

Trends in Species Associations Between Fishing Modes for the Stephens and MacCall (2004) approach

Trends in species associations across modes was similar with the exception of several species in the Charterboat mode, which were not observed in the private, or the combined modes (Figure 4).

The derived probability threshold and proportion positive before applying the Stephens and MacCall (2004) were highest for Charterboat (Figure 5). This was also observed after Stephens and MacCall was applied; the percent of interviews retained and the proportion positive were higher in the Charterboat mode compared to the Private and Combined modes (Figure 5).

Variable Selection Charterboat, Private and Combined Modes

The following factors were treated as fixed effects and were examined as possible influences on the proportion of positive interviews and on the catch rates of positive interviews:

Name	Levels	Details
Year	34	1986-2019
Season	6	Dec-Jan, Feb-Mar, Apr-May, Jun-Jul, Aug-Sep, Oct- Nov
Hrsf*	5	$2,4,6,8,9+$
Area	2	State and EEZ

*Hours fished (Hrsf) was only explored as factor for modeling success.
Annual Abundance Indices for Charterboat
Final deviance tables are included in Table 4. The final models for the binomial (i.e., proportion positive) and lognormal (catch rate of positive interviews) components were:

ProportionPositive $=Y E A R+$ SEASON + HRSF $+Y E A R * S E A S O N$
$\ln (C P U E)=Y E A R+S E A S O N+Y E A R * S E A S O N$
For the binomial model, year, season, hours fished were significant variables, as was the interaction term year and season (Table 4).

Diagnostics for each component of the GLM are provided in Figure 6 and Figure 7. The binomial model consistently estimated the proportion of positive interviews (Figure 6A). The proportion positive ranged from 0.22 to 0.87 , and has generally remained between 0.44 and 0.78 . Residual analysis of the binomial model showed no obvious patterns in the residuals by year (Figure 6B), season (Figure 6C), or hours fished (Figure 6D).

The lognormal model results suggest a good fit to the data and indicated that the assumption of a lognormal distribution for positive catch rates was appropriate for the data (Figure 7A-B).
Residual analysis of the lognormal model also showed no obvious patterns in the residuals by year (Figure 7C) or season (Figure 7D).

Table 5 summarizes the standardized index, corresponding lower and upper 95% confidence limits, annual coefficients of variation, nominal CPUE, and number of interviews. Nominal CPUE values fell within the 95% confidence interval of the standardized index, with the exception of the values in years 1990 and 1996 (Figure 8). Relative abundance generally remained below the time series mean in the 1980s and early 1990s and increased to above the time series mean in the mid-1990s until 2005. The index showed a continuous decline from 2011 to the end of the time series. Relative abundance peaked in 1995, and was at the lowest value in 1988 (Figure 8).

Annual Abundance Indices for Private

Final deviance tables are included in Table 6. The final models for the binomial (i.e., proportion positive) and lognormal (catch rate of positive interviews) components were:

ProportionPositive $=Y E A R+$ SEASON
$\ln (C P U E)=Y E A R+S E A S O N+Y E A R * S E A S O N$
For the binomial model, year and season were significant variables (Table 6).
Diagnostics for each component of the GLM are provided in Figure 9 and Figure 10. The binomial model consistently estimated the proportion of positive interviews (Figure 9A). The proportion positive ranged from 0.19 to 0.7 , and has generally remained between 0.37 and 0.6 . Residual analysis of the binomial model showed no obvious patterns in the residuals by year (Figure 9B) or season (Figure 9C).

The lognormal model results suggest a good fit to the data and indicated that the assumption of a lognormal distribution for positive catch rates was appropriate for the data (Figure 10A-B). Residual analysis of the lognormal model also showed no obvious patterns in the residuals by year (Figure 10C) or season (Figure 10D).

Table 7 summarizes the standardized index, corresponding lower and upper 95% confidence limits, annual coefficients of variation, nominal CPUE, and number of interviews. Nominal CPUE values fell within the 95% confidence interval of the standardized index (Figure 11). Relative abundance remained below the time series mean in the first few years of the index and increased to above the time series mean during the mid-1990s until 2010. The index showed a continuous decline from 2010 to the end of the time series. Relative abundance peaked in 2008, and was at the lowest value in 1987 (Figure 11).

Annual Abundance Indices for Combined Modes
Final deviance tables are included in Table 8. The final models for the binomial (i.e., proportion positive) and lognormal (catch rate of positive interviews) components were:

ProportionPositive $=Y E A R+$ SEASON
$\ln (C P U E)=Y E A R+M O D E+S E A S O N+Y E A R * S E A S O N+S E A S O N * M O D E$
For the binomial model, year and season were significant variables (Table 8).

Diagnostics for each component of the GLM are provided in Figure 12 and Figure 13. The binomial model consistently estimated the proportion of positive interviews (Figure 12A). The proportion positive ranged from 0.26 to 0.82 , and has generally remained between 0.38 and 0.66 . Residual analysis of the binomial model showed no obvious patterns in the residuals by year (Figure 13B) or season (Figure 13C).

The lognormal model results suggest a good fit to the data and indicated that the assumption of a lognormal distribution for positive catch rates was appropriate for the data (Figure 13A-B). Residual analysis of the lognormal model also showed no obvious patterns in the residuals by year (Figure 13C), mode (Figure 13D) or season (Figure 13E).

Table 9 summarizes the standardized index, corresponding lower and upper 95\% confidence limits, annual coefficients of variation, nominal CPUE, and number of interviews. Nominal CPUE values fell within the 95% confidence interval of the standardized index, with the exception of the values in years 1986 (Figure 14). Relative abundance remained below the time series mean in the 1980s, increased to above the time series mean during most of the 1990s and 2000s. However, the index showed a continuous decline from 2011 to the end of the time series. Relative abundance peaked in 2005, and was at the lowest value in 2015 (Figure 14).

Comments on Adequacy for Assessment

The Charterboat and Private combined index presented in this working paper is based on improved methodology compared to the continuity approach for developing indices of abundance for Gulf reef fish stocks from the MRIP. The improved trip selection methodology yields similar indices for the charterboat (Figure 15 and Figure 16) and private modes (Figure 17 and Figure 18) used in SEDAR33. The index for Gag Grouper is associated with moderate variability with a mean CV of 0.18 (range: $0.12-0.39$), which is lower compared to other Gulf species (e.g., Red Grouper CV range: $0.49-0.8$; Sagarese and Rios 2018). Previous Gulf reef fish assessments have included this index because it contains one of the longest time series and has widespread spatial coverage compared to other indices.

Additional research is needed to explore alternative trip selection approaches which may be more appropriate for the Gulf of Mexico and South Atlantic recreational fisheries.

References

Lo, N.C., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49: 2515-2526.

Sagarese, S., and A. Rios. 2018. Standardized Catch Rates of Red Grouper (Epinephelus morio) from the U.S. Headboat Fishery in the Gulf of Mexico, 1986-2017. SEDAR61-WP-05. SEDAR, North Charleston, SC. 13 pp.

SAS Institute Inc. 1997, SAS/STAT Software: Changes and Enhancements through Release 6.12. Cary, NC: Sas Institute Inc., 1997. 1167 pp.

Stephens, A., and A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fish. Res. 70:299-310.

Tables

Table 1. Association coefficients of other species with Gag Grouper for the Charterboat recreational fishery. Positive numbers indicate a positive correlation.

Coefficient Common Name	Scientific Name
1.365 Red Grouper	Epinephelus morio
1.244 Red Snapper	Lutjanus campechanus
1.155 White Grunt	Haemulon plumieri
0.844 Scamp	Mycteroperca phenax
0.716 Black Sea Bass	Centropristis striata
0.641 Gray Snapper	Lutjanus griseus
0.547 Inshore Lizardfish	Synodus foetens
0.544 Gulf Flounder	Paralichthys albigutta
0.506 Amberjack Genus	Seriola spp.
0.483 Bluefish	Pomatomus saltatrix
0.339 Gray Triggerfish	Balistes capriscus
0.283 Southern Puffer	Sphoeroides nephelus
0.244 Greater Amberjack	Seriola dumerili
0.170 Wahoo	Acanthocybium solandri
0.167 Blackfin Tuna	Thunnus atlanticus
0.142 Almaco Jack	Seriola rivoliana
0.124 Banded Rudderfish	Seriola zonata
0.082 Requiem Shark Genus	Carcharhinus spp.
0.030 Cobia	Rachycentron canadum
0.024 Hardhead Catfish	Arius felis
-0.007 Sheepshead	Archosargus probatocephalus
-0.048 Requiem Shark Family	Carcharhinidae
-0.051 Red Drum	Sciaenops ocellatus
-0.075 Atlantic Thread Herring	Opisthonema oglinum
-0.078 Little Tunny	Euthynnus alletteratus
-0.089 Round Scad	Decapterus punctatus
-0.142 Crevalle Jack	Caranx hippos
-0.159 King Mackerel	Scomberomorus cavalla

Coefficient Common Name	Scientific Name
-0.167 Pinfish	Lagodon rhomboides
-0.177 Vermilion Snapper	Rhomboplites aurorubens
-0.195 Common Snook	Centropomus undecimalis
-0.225 Red Porgy	Pagrus pagrus
-0.257 Dolphin	Coryphaena hippurus
-0.262 Remora	Remora remora
-0.280 Blue Runner	Caranx crysos
-0.289 Whitebone Porgy	Calamus leucosteus
-0.299 Lane Snapper	Lutjanus synagris
-0.321 Spanish Mackerel	Scomberomorus maculatus
-0.389 Ladyfish	Elops saurus
-0.411 Littlehead Porgy	Calamus proridens
-0.411 Littlehead Porgy	Calamus proridens
-0.524 Great Barracuda	Sphyraena barracuda
-0.560 Sand Perch	Diplectrum formosum
-0.582 Herring Family	Clupeidae
-0.641 Bank Sea Bass	Centropristis ocyurus
-0.759 Tomtate	Haemulon aurolineatum
-0.793 Remora Family	Echeneidae
-0.932 Spotted Seatrout	Cynoscion nebulosus

Table 2. Association coefficients of other species with Gag Grouper for the Private recreational fishery. Positive numbers indicate a positive correlation.

Coefficient Common Name	Scientific Name
1.329 Red Grouper	Epinephelus morio
0.647 White Grunt	Haemulon plumieri
0.556 Cobia	Rachycentron canadum
0.509 Gray Snapper	Lutjanus griseus
0.485 Red Snapper	Lutjanus campechanus
0.438 Black Sea Bass	Centropristis striata
0.436 Gulf Flounder	Paralichthys albigutta
0.343 Gray Triggerfish	Balistes capriscus
0.312 Scaled Sardine	Harengula jaguana
0.239 Inshore Lizardfish	Synodus foetens
0.213 Greater Amberjack	Seriola dumerili
0.208 Southern Puffer	Sphoeroides nephelus
0.157 Requiem Shark Family	Carcharhinidae
-0.075 Pigfish	Orthopristis chrysoptera
-0.081 Remora Family	Echeneidae
-0.092 King Mackerel	Scomberomorus cavalla
-0.121 Tomtate	Haemulon aurolineatum
-0.150 Sheepshead	Archosargus probatocephalus
-0.168 Spanish Mackerel	Scomberomorus maculatus
-0.196 Bluefish	Pomatomus saltatrix
-0.219 Requiem Shark Genus	Carcharhinus spp.
-0.283 Pinfish	Lagodon rhomboides
-0.313 Blue Runner	Caranx crysos
-0.334 Lane Snapper	Lutjanus synagris
-0.362 Blacktip Shark	Carcharhinus limbatus
-0.416 Crevalle Jack	Caranx hippos
-0.430 Vermilion Snapper	Rhomboplites aurorubens
-0.453 Ladyfish	Elops saurus
-0.457 Stingray Genus	Dasyatis spp.

Coefficient Common Name	Scientific Name
-0.467 Little Tunny	Euthynnus alletteratus
-0.559 Sand Perch	Diplectrum formosum
-0.599 Bonnethead	Sphyrna tiburo
-0.638 Sand Seatrout	Cynoscion arenarius
-0.670 Common Snook	Centropomus undecimalis
-0.850 Hardhead Catfish	Arius felis
-0.875 Gafftopsail Catfish	Bagre marinus
-1.038 Spotted Seatrout	Cynoscion nebulosus
-1.057 Red Drum	Sciaenops ocellatus

Table 3. Association coefficients of other species with Gag Grouper for the Charterboat and Private combined recreational fishery. Positive numbers indicate a positive correlation.

Coefficient	Common Name	Scientific Name
1.396 R	Red Grouper	Epinephelus morio
1.019 R	Red Snapper	Lutjanus campechanus
0.924 S	Scamp	Mycteroperca phenax
0.775	White Grunt	Haemulon plumieri
0.592	Gray Snapper	Lutjanus griseus
0.525	Gulf Flounder	Paralichthys albigutta
0.466 B	Black Sea Bass	Centropristis striata
0.414	Gray Triggerfish	Balistes capriscus
0.354	Cobia	Rachycentron canadum
0.306 I	Inshore Lizardfish	Synodus foetens
0.293	Almaco Jack	Seriola rivoliana
0.293 G	Greater Amberjack	Seriola dumerili
0.265 S	Southern Puffer	Sphoeroides nephelus
0.235 S	Scaled Sardine	Harengula jaguana
0.142 B	Bluefish	Pomatomus saltatrix
0.036	Atlantic Thread Herring	Opisthonema oglinum
0.022 R	Requiem Shark Family	Carcharhinidae
-0.005 K	King Mackerel	Scomberomorus cavalla
-0.083 S	Sheepshead	Archosargus probatocephalus
-0.089 L	Little Tunny	Euthynnus alletteratus
-0.121 P	Pigfish	Orthopristis chrysoptera
-0.133 R	Red Porgy	Pagrus pagrus
-0.152 V	Vermilion Snapper	Rhomboplites aurorubens
-0.156 R	Remora	Remora remora
-0.161 S	Spanish Mackerel	Scomberomorus maculatus
-0.183 R	Requiem Shark Genus	Carcharhinus spp.
-0.215	Great Barracuda	Sphyraena barracuda
-0.268 B	Blacktip Shark	Carcharhinus limbatus
-0.270 L	Lane Snapper	Lutjanus synagris

Coefficient Common Name	Scientific Name
-0.289 Round Scad	Decapterus punctatus
-0.294 Blue Runner	Caranx crysos
-0.333 Pinfish	Lagodon rhomboides
-0.341 Dolphin	Coryphaena hippurus
-0.349 Crevalle Jack	Caranx hippos
-0.381 Stingray Genus	Dasyatis spp.
-0.414 Remora Family	Echeneidae
-0.439 Ladyfish	Elops saurus
-0.479 Bonnethead	Sphyrna tiburo
-0.511 Common Snook	Centropomus undecimalis
-0.569 Tomtate	Haemulon aurolineatum
-0.608 Sand Seatrout	Cynoscion arenarius
-0.614 Sand Perch	Diplectrum formosum
-0.763 Hardhead Catfish	Arius felis
-0.808 Red Drum	Sciaenops ocellatus
-0.834 Gafftopsail Catfish	Bagre marinus
-1.008 Spotted Seatrout	Cynoscion nebulosus

Table 4. Deviance tables for the regression models for Gag Grouper in the Charterboat recreational fishery. The table shows the order of the factors as they were sequentially added to each model. Fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the tables below.

Factor	DF	Deviance	Residual DF	Residual Deviance	AIC	Deviance Reduced	Log likelihood	Likelihood Ratio Test
Binomial								
Null	1	11,512	8,857	11,512	11,512	-	$-5,756$	-
Year	33	10,359	8,852	1,153	10,359	10%	$-5,179$	1153.4
Season	5	10,184	8,818	175	10,184	2%	$-5,092$	175
Hrsf	4	10,059	8,815	125	10,059	1%	$-5,029$	125.2
Year*Season	148	9,635	8,659	423	9,635	2%	$-4,817$	423.8
Lognormal								
Null	1	9,092	5,722	9,092	18,890	-	$-9,445$	-
Year	33	8,517	5,689	574	18,517	6%	$-9,258$	373.6
Season	5	7,851	5,684	666	18,050	8%	$-9,025$	466.4
Year*Season	148	7,339	5,536	511	17,665	4%	$-8,832$	385.6

SEDAR72-DWXX

Table 5. Numbers (N) of total and positive interviews, proportion of positive interviews (PPT), relative nominal CPUE, and standardized abundance index statistics for Gag Grouper in the Charterboat recreational fishery.

Year	N	Positive N	PPT	Relative Nominal CPUE	Relative Index	Lower $95 \% \mathrm{CI}$	Upper $95 \% \mathrm{CI}$	CV
1986	78	39	0.50	1.16	1.11	0.646	1.90	0.28
1987	43	22	0.51	0.51	0.49	0.246	0.96	0.35
1988	21	5	0.24	0.24	0.20	0.057	0.68	0.69
1989	33	20	0.61	0.58	0.41	0.211	0.80	0.34
1990	36	21	0.58	2.20	0.58	0.217	1.54	0.52
1991	14	4	0.29	0.44	0.56	0.149	2.07	0.74
1992	48	21	0.44	1.03	1.31	0.675	2.55	0.34
1993	42	19	0.45	1.22	1.34	0.689	2.62	0.34
1994	50	20	0.40	0.95	0.65	0.327	1.31	0.36
1995	32	28	0.88	3.39	3.13	1.872	5.23	0.26
1996	28	22	0.79	1.42	2.49	1.451	4.29	0.28
1997	112	77	0.69	1.14	0.86	0.555	1.34	0.22
1998	297	250	0.84	1.67	1.53	1.085	2.17	0.17
1999	474	383	0.81	1.33	1.42	1.005	1.99	0.17
2000	496	312	0.63	0.75	0.68	0.443	1.04	0.22
2001	406	305	0.75	1.02	0.91	0.615	1.35	0.20
2002	505	376	0.74	1.20	1.18	0.803	1.73	0.19
2003	689	565	0.82	1.45	1.60	1.119	2.29	0.18
2004	906	713	0.79	1.72	1.89	1.329	2.70	0.18
2005	726	619	0.85	1.62	2.07	1.449	2.96	0.18
2006	388	259	0.67	0.77	0.79	0.513	1.21	0.22
2007	350	165	0.47	0.48	0.52	0.317	0.86	0.26
2008	298	187	0.63	1.03	0.95	0.604	1.49	0.23
2009	277	169	0.61	0.96	1.06	0.661	1.70	0.24
2010	258	161	0.62	0.96	1.06	0.666	1.68	0.23
2011	325	173	0.53	0.65	0.65	0.404	1.05	0.24
2012	369	207	0.56	0.76	0.90	0.566	1.43	0.23
2013	141	73	0.52	0.71	0.57	0.309	1.04	0.31
2014	317	109	0.34	0.36	0.49	0.275	0.89	0.30

Year	N	Positive N	PPT Pelative Nominal CPUE	Relative Index	Lower $95 \% \mathrm{CI}$	Upper $95 \% \mathrm{CI}$	CV	
2015	241	70	0.29	0.36	0.38	0.199	0.72	0.33
2016	302	119	0.39	0.34	0.45	0.255	0.80	0.29
2017	216	79	0.37	0.50	0.47	0.254	0.88	0.32
2018	175	71	0.41	0.69	0.79	0.426	1.48	0.32
2019	165	60	0.36	0.42	0.50	0.250	0.98	0.35

Table 6. Deviance tables for the regression models for Gag Grouper in the Private recreational fishery. The table shows the order of the factors as they were sequentially added to each model. Fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the tables below.

Factor	DF	Deviance	Residual DF	Residual Deviance	AICDeviance Reduced	Log Likelihood likelihood Ratio Test
Binomial						
Null	1	17,685	12,758	17,685	$17,685-$	$-8,842-$
Year	33	16,598	12,725	1,087	$16,598 \quad 6 \%$	$-8,2991087.6$
Season	5	16,326	12,720	271	$16,3272 \%$	$-8,163271$
Lognormal						
Null	1	6,587	6,298	6,587	$18,157-$	$-9,078-$
Year	33	6,343	6,265	243	$17,9203 \%$	$-8,960237.2$
Season	5	6,249	6,260	94	17,826	1%
Year*Season	160	5,992	6,100	256	17,562	2%

Table 7. Numbers (N) of total and positive interviews, proportion of positive interviews (PPT), relative nominal CPUE, and standardized abundance index statistics for Gag Grouper in the Private recreational fishery.

Year	N	Positive N	PPT	Relative Nominal CPUE	Relative Index	Lower $95 \% \mathrm{CI}$	Upper $95 \% \mathrm{CI}$	CV
1986	101	38	0.38	0.84	1.12	0.60	2.09	0.32
1987	121	23	0.19	0.22	0.28	0.12	0.64	0.44
1988	56	21	0.38	0.68	0.66	0.28	1.55	0.44
1989	195	37	0.19	0.30	0.30	0.15	0.60	0.36
1990	149	40	0.27	0.88	0.66	0.35	1.26	0.33
1991	188	59	0.31	0.85	0.72	0.42	1.25	0.28
1992	324	110	0.34	0.81	0.65	0.43	1.00	0.21
1993	328	136	0.41	0.92	0.92	0.63	1.33	0.19
1994	339	161	0.47	1.11	1.10	0.78	1.56	0.17
1995	284	166	0.58	1.69	1.56	1.13	2.16	0.16
1996	288	155	0.54	1.05	1.21	0.86	1.69	0.17
1997	254	158	0.62	1.53	1.56	1.12	2.16	0.16
1998	460	298	0.65	1.61	1.59	1.22	2.07	0.13
1999	712	371	0.52	1.08	1.03	0.79	1.34	0.13
2000	480	259	0.54	0.96	0.97	0.72	1.29	0.14
2001	576	310	0.54	1.15	1.08	0.82	1.42	0.14
2002	604	323	0.54	1.19	1.12	0.85	1.47	0.14
2003	575	367	0.64	1.59	1.58	1.23	2.03	0.13
2004	705	455	0.64	1.60	1.56	1.23	1.98	0.12
2005	395	276	0.70	1.48	1.53	1.18	2.00	0.13
2006	243	168	0.69	1.53	1.34	0.99	1.83	0.15
2007	335	231	0.69	1.80	1.72	1.30	2.28	0.14
2008	574	382	0.67	1.89	1.83	1.43	2.33	0.12
2009	460	270	0.59	1.26	1.31	0.99	1.73	0.14
2010	358	205	0.57	1.16	1.34	0.98	1.83	0.16
2011	399	187	0.47	0.89	0.92	0.67	1.28	0.16
2012	363	136	0.38	0.61	0.59	0.40	0.86	0.19
2013	448	169	0.38	0.53	0.59	0.42	0.84	0.18
2014	637	209	0.33	0.42	0.49	0.35	0.68	0.17

Year	N	Positive N	PPT Pelative Nominal CPUE	Relative Index	Lower $95 \% \mathrm{CI}$	Upper $95 \% \mathrm{CI}$	CV	
2015	472	106	0.22	0.27	0.32	0.20	0.49	0.22
2016	406	105	0.26	0.40	0.48	0.31	0.74	0.22
2017	411	154	0.38	0.63	0.61	0.42	0.88	0.19
2018	274	127	0.46	0.59	0.73	0.50	1.07	0.19
2019	245	87	0.35	0.46	0.53	0.34	0.85	0.23

Table 8. Deviance tables for the regression models for Gag Grouper in the Charterboat and Private combined recreational fishery. The table shows the order of the factors as they were sequentially added to each model. Fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the tables below.

Factor	DF	Deviance	Residual DF	Residual Deviance	AIC	Deviance Reduced	Log likelihood	Likelihood Ratio Test
Binomial								
Null	1	29,067	21,234	29,067	29,067	-	$-14,533$	-
Year	33	26,789	21,201	2,277	26,789	8%	$-13,394$	2277.8
Season	5	26,295	21,196	494	26,295	2%	$-13,147$	494.4
Lognormal								
Null	1	17,142	12,017	17,142	38,373	-	$-19,186$	-
Year	33	16,489	11,984	653	37,907	4%	$-18,953$	466.8
Mode	1	15,453	11,983	1,036	37,126	6%	$-18,563$	780.2
Season	5	14,749	11,978	703	36,567	5%	$-18,283$	559.8
Year*Season	162	14,279	11,816	470	36,177	2%	$-18,088$	389.2
Season*Mode	5	14,112	11,811	166	36,036	1%	$-18,018$	141.2

SEDAR72-DWXX

Table 9. Numbers (N) of total and positive interviews, proportion of positive interviews (PPT), relative nominal CPUE, and standardized abundance index statistics for Gag Grouper in the Charterboat and Private combined recreational fishery.

Year	N	Positive N	PPT	Relative Nominal CPUE	Relative Index	Lower $95 \% \mathrm{CI}$	Upper $95 \% \mathrm{CI}$	CV
1,986	277	160	0.58	1.18	1.70	1.20	2.43	0.18
1,987	179	58	0.32	0.33	0.36	0.21	0.63	0.29
1,988	75	28	0.37	0.52	0.49	0.23	1.06	0.39
1,989	207	53	0.26	0.35	0.32	0.17	0.58	0.31
1,990	153	56	0.37	1.24	0.72	0.41	1.29	0.30
1,991	160	51	0.32	0.96	0.71	0.39	1.29	0.31
1,992	333	132	0.40	1.01	0.79	0.52	1.19	0.21
1,993	325	146	0.45	1.08	1.00	0.68	1.48	0.20
1,994	301	150	0.50	1.29	1.10	0.76	1.60	0.19
1,995	277	174	0.63	1.82	1.58	1.12	2.21	0.17
1,996	256	157	0.61	1.37	1.36	0.96	1.92	0.17
1,997	330	223	0.68	1.38	1.23	0.90	1.69	0.16
1,998	710	518	0.73	1.64	1.57	1.21	2.03	0.13
1,999	1,134	754	0.66	1.23	1.24	0.96	1.60	0.13
2,000	921	545	0.59	0.86	0.90	0.68	1.20	0.14
2,001	898	589	0.66	1.08	1.08	0.82	1.41	0.14
2,002	1,023	666	0.65	1.21	1.23	0.94	1.60	0.13
2,003	1,224	917	0.75	1.55	1.77	1.39	2.27	0.12
2,004	1,631	1,196	0.73	1.61	1.69	1.33	2.15	0.12
2,005	1,100	892	0.81	1.54	1.86	1.46	2.38	0.12
2,006	632	424	0.67	1.01	1.08	0.81	1.44	0.14
2,007	745	415	0.56	1.08	1.12	0.83	1.51	0.15
2,008	898	599	0.67	1.63	1.57	1.21	2.05	0.13
2,009	748	455	0.61	1.19	1.20	0.90	1.61	0.14
2,010	642	374	0.58	1.05	1.19	0.88	1.62	0.15
2,011	766	380	0.50	0.79	0.84	0.62	1.15	0.16
2,012	755	375	0.50	0.74	0.77	0.56	1.07	0.16
2,013	584	230	0.39	0.54	0.54	0.38	0.78	0.18
2,014	930	320	0.34	0.39	0.45	0.32	0.63	0.17

Year	N	Positive N			Relative Pominal CPUE	Relative Index	Lower $95 \% \mathrm{CI}$	Upper $95 \% \mathrm{CI}$
2,015	745	175	0.23	0.27	0.30	0.20	0.45	0.21
2,016	757	225	0.30	0.33	0.45	0.30	0.66	0.20
2,017	655	240	0.37	0.64	0.57	0.39	0.82	0.18
2,018	452	198	0.44	0.64	0.66	0.45	0.96	0.19
2,019	412	144	0.35	0.45	0.53	0.34	0.82	0.22

Figures

Figure 1. Stephens and MacCall (2004) trip selection diagnostics for the Charterboat recreational fishery. (A) The difference between the number of records in which Gag Grouper are observed and the number in which they are predicted to occur for each probability threshold; (B) the number of actual and predicted interviews; (C) Histogram of probabilities generated by the species-based regression; and (D) Nominal CPUE before ("Before SM") and after ("After SM") Stephens and MacCall (2004) trip selection ("After SM + Tar" = also includes all interviews where the target species was caught). The dashed vertical line indicates the critical value where false prediction is minimized.

Figure 2. Stephens and MacCall (2004) trip selection diagnostics for the Private recreational fishery. (A) The difference between the number of records in which Gag Grouper are observed and the number in which they are predicted to occur for each probability threshold; (B) the number of actual and predicted interviews; (C) Histogram of probabilities generated by the species-based regression; and (D) Nominal CPUE before ("Before SM") and after ("After SM") Stephens and MacCall (2004) trip selection ("After SM + Tar" = also includes all interviews where the target species was caught). The dashed vertical line indicates the critical value where false prediction is minimized.

Figure 3. Stephens and MacCall (2004) trip selection diagnostics for the Charterboat and Private combined recreational fishery. (A) The difference between the number of records in which Gag Grouper are observed and the number in which they are predicted to occur for each probability threshold; (B) the number of actual and predicted interviews; (C) Histogram of probabilities generated by the species-based regression; and (D) Nominal CPUE before ("Before SM") and after ("After SM") Stephens and MacCall (2004) trip selection ("After SM + Tar" = also includes all interviews where the target species was caught). The dashed vertical line indicates the critical value where false prediction is minimized.

Figure 4. Association coefficients of other species with Gag Grouper across recreational fishing modes in the Gulf of Mexico. Positive numbers indicate a positive correlation.

Figure 5. Stephens and MacCall (2004) statistics across recreational fishing modes for associations with Gag Grouper.

Figure 6. Diagnostic plots for the binomial model for Gag Grouper for the Charterboat recreational fishery. Shown here are the predicted (solid line) and observed proportion of positive interviews by year (A) and the residuals from the binomial model by year (B), season (C), and hours fished (D).

Figure 7. Diagnostic plots for the lognormal model of catch rates on positive interviews for Gag Grouper for the Charterboat recreational fishery. Shown here are the frequency distribution of catch rates (A), the cumulative normalized residuals (B), and the distribution of residuals by year (C) and season (D). The red lines represent the expected normal distribution.

Figure 8. Standardized index with 95% confidence interval, and nominal CPUE for Gag Grouper for the Charterboat recreational fishery. The index was scaled to the mean value of the entire time series.

Figure 9. Diagnostic plots for the binomial model for Gag Grouper for the Private recreational fishery. Shown here are the predicted (solid line) and observed proportion of positive interviews by year (A) and the residuals from the binomial model by year (B) and season (C).

Figure 10. Diagnostic plots for the lognormal model of catch rates on positive interviews for Gag Grouper for the Private recreational fishery. Shown here are the frequency distribution of catch rates (A), the cumulative normalized residuals (B), and the distribution of residuals by year (C) and season (D). The red lines represent the expected normal distribution.

Figure 11. Standardized index with 95% confidence interval, and nominal CPUE for Gag
Grouper for the Private recreational fishery. The index was scaled to the mean value of the entire time series.

Figure 12. Diagnostic plots for the binomial model for Gag Grouper in the Charterboat and Private combined recreational fishery. Shown here are the predicted (solid line) and observed proportion of positive interviews by year (A) and the residuals from the binomial model by year (B) and season (C).

Figure 13. Diagnostic plots for the lognormal model of catch rates on positive interviews for Gag Grouper in the Charterboat and Private combined recreational fishery. Shown here are the frequency distribution of catch rates (A), the cumulative normalized residuals (B), and the distribution of residuals by year (C), mode (D), and season (E). The red lines represent the expected normal distribution.

Figure 14. Standardized index with 95% confidence interval, and nominal CPUE for Gag Grouper for the Charterboat and Private combined recreational fishery. The index was scaled to the mean value of the entire time series.

Figure 15. Standardized index for Gag Grouper from the Charterboat recreational fishery for SEDAR72 compared to the index provided during SEDAR33U. For comparison, both indices have been normalized by their respective means.

Figure 16. Comparison of index for Gag Grouper from the Charterboat recreational fishery for SEDAR72 compared to the index provided during SEDAR33U with confidence intervals.

Figure 17. Standardized index for Gag Grouper from the Private recreational fishery for SEDAR72 compared to the index provided during SEDAR33U. For comparison, both indices have been normalized by their respective means.

Figure 18. Comparison of index for Gag Grouper from the Private recreational fishery for SEDAR72 compared to the index provided during SEDAR33U with confidence intervals.

