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Introduction 

 

Historically, three different stationary video surveys were conducted for reef fish in the northern 

Gulf of Mexico (GOM). The NMFS SEAMAP reef fish video survey, carried out by NMFS Mississippi 

Laboratory (Pascagoula), has the longest running time series (1993-1997, 2002, and 2004+), followed by 

the NMFS Panama City lab survey (PC; 2005+), with the most recent survey being the Florida Fish and 

Wildlife Research Institute video survey (FWRI, starting year 2100; Table 1). While the surveys use 

standardized deployment, camera field of view, and fish abundance methods to assess fish abundancies 

on reef or structured habitat, there are variations in survey design and habitat characteristics collected 

in addition to the time period and area sampled. Traditionally the surveys have submitted independent 

indices for each survey, however, combining indices across datasets likely increases predictive 

capabilities by allowing for the largest possible sample sizes in model fitting and encompassing a greater 

proportion of the distribution of the stock. Previous research has indicated that combining data across 

changing spatial areas and surveys and using a year only model, can yield spurious conclusions regarding 

stock abundance (Campbell 2004; Ye et al. 2004).  

The standardization methods used in developing the index described in this paper have now 

been used in several SEDARs for the Gulf of Mexico (Thompson et al 2017; 2018; 2019). Specifically, for 

Greater Amberjack, the last benchmark assessment (SEDAR 2014) incorporated only the NMFS 

Pascagoula SEAMAP survey and the subsequent Update assessment (SEDAR 33 Update) combined the 

Pascagoula SEAMAP (Pascagoula), Panama City Laboratory (PC) surveys (SEDAR 2016).  The SEDAR 33 

Benchmark Assessment recommended to not use the FWRI survey at that time due to the short time 

series.  The 2016 Update assessment specifically recommends investigation of methods to incorporate 

FWRI data as more years become available with the already used Pascagoula and PC datasets. As such, 

we used a habitat-based approach to combine relative abundance data for generating annual trends for 

Greater Amberjack (Seriola dumerili) throughout the GOM.  

Survey Comparisons 

Survey design 



The Pascagoula survey primarily targets high-relief topographic features along the continental 

shelf from south Texas to south Florida (Table 2; Fig. 1). Sites are selected using a stratified, random 

design with strata determined by region and total proportion of reef area in a sampling block (10 minute 

latitude X 10 minute longitude blocks). Sites are selected at random from known reef areas identified 

through habitat mapping (multi-beam and side-scan sonar). This survey uses the Mississippi river delta 

as a geographic feature separating the west and east regions of the GOM (Campbell et al. 2017). 

Because of differences in spatial extent, habitat types and availability, and potential variation habitat 

association across regions, the east and west regions of this survey were treated as two surveys. This 

was done to yield more appropriate habitat models as well as appropriate weighting values in the final 

index values.  

The Panama City video survey targets the inner shelf of the northeast GOM (5-60 m depth) 

ranging from NMFS, SEFSC statistical zone 6 through 10 (Table 2; Fig. 1). Survey design has changed 

through time, but since 2010 a two-stage unequal probability design has been used. Blocks are 5 

minutes x 5 minutes in size with sites randomly, proportionally allocated by region, sub-region and 

depth. Two known reef sites, a minimum of 250 m apart within each selected block are randomly 

selected. This survey is broken up into eastern and western regions by Cape San Blas in the Florida 

Panhandle. Sites are described using side-scanning before video deployment (Gardner et al. 2017).  

The FWRI survey initially focused on the regions offshore of Tampa Bay and Charlotte Harbor, FL 

(NMFS statistical zones 4 and 5) with habitats either inshore (10-36 m depth) or offshore (37-110 m 

depth). The survey has since expanded to also include NMFS, SEFSC statistical zones 9 and 10 off the 

Florida Panhandle in 2014 with additional sites added in 2016 to cover the entirety of the West Florida 

Shelf from statistical zones 2-10, although only data from statistical zones 4 and 5 are included in these 

analyses due to the short time series available (Table 2; Fig. 1). Sites are initially randomly selected and 

mapped using side scan sonar over a 2.1 km2 area (Switzer et al. 2020). Video deployment sites are then 

randomly assigned proportionally across region and depth zones (Thompson et al. 2017). 

Video reads 

All three surveys use paired stereo-imaging cameras at each site. All videos are read to identify 

the maximum number of individuals of each species viewed in a single frame within a 20-minute time 

frame (i.e. MaxN, MinCount). Habitat characteristics on video are also noted with the percentage or 

presence/absence of abiotic and biotic habitat types that may contribute to fish biomass (e.g. sponge, 

algae, and corals), although some categories are not shared among all labs (Campbell et al. 2017; 

Gardner et al. 2017; Thompson et al. 2017).  

Fish length measurement  

Fish length measurements have varied through time for the surveys, starting with the 

Pascagoula survey in 1995 fish lengths were measured from video using lasers attached on the camera 

system with known geometry (Campbell et al. 2017). Panama City survey also used this laser-based 

approach from 2007 to 2009. However, the frequency of hitting targets with the laser is low and to 

increase sample size any measurable fish during the video read was measured (i.e. not just at the 



mincount), and fish could have potentially been measured twice. Subsequent years from (2008 in 

Pascagoula and 2010 in Panama City) used a stereo-video approach, which is the only method used in 

the entirety of the FWRI dataset. Vision Measurement System (VMS, Geometrics Inc.) was used to 

estimate size of fish up to 2014 for all three surveys and all switched to SeaGIS software (SeaGIS Pty. 

Ltd.) and have used them for the remainder of the timeseries.  

 Some species assessed with this combined approach have shown highly similar length 

compositions across the surveys (e.g. Red Grouper, Thompson et al. 2018). However, in some species, 

the ontogenetic shift from inshore to offshore is captured with variations in lengths by survey, with 

FWRI and Panama City capturing inshore, potentially younger and smaller individuals than the more 

offshore focused Pascagoula survey (Fig. 1; Carruthers et al. 2015; Switzer et al. 2015). In Greater 

Amberjack, this length variation across surveys is observed with higher frequency of smaller fish in 

Panama City and FWRI surveys (Fig. 2). As such, one previous assessment with a similarly disparate size 

compositions across surveys, for Vermilion Snapper used a multinomial approach to generate length 

compositions (Walter et al. 2020). The use of this method was initially investigated for Greater 

Amberjack, however the large size range of the species observed in the videos (Fig. 2) combined with 

the sample sizes of measurements and the bin size used in the assessment model yielded too many zero 

observations for models to be fit. Therefore, to account for variation in sample sizes in the surveys 

across the years of the index, the relative proportional contribution of each survey in terms of sample 

size, or number of video’s analyzed, was used to adjust the overall length composition for this index 

over the time period from 1995-2018.   

Data reduction 

 For all surveys, video reads were excluded if they were unreadable due to turbidity or 

deployment errors. For the Pascagoula survey, data included in this index are from 1993 and on, due to 

different counting methods in 1992. The entire spatial extent of the Panama City data was used from 

2006 on with 2005 excluded because of an incomplete survey. For the FWRI data from prior to 2010 was 

excluded due to the earlier year’s not including side-scan geoform as a variable which was determined 

to be potentially important as an explanatory variable in the analyses. FWRI data were spatially limited 

to zones 4 and 5 due to the other areas of the WFS not having enough years of sampling (Table 2).  

Index Construction 

Habitat models 

To develop a single index of abundance for Greater Amberjack the data from all three surveys 

was, a habitat variable was created that included each of the separate survey individual variables that 

could be applied to all the data. This was done so final index models can account for changing sampling 

effort and habitat allocation through time rather than limiting the model to be predicted only by year 

and survey. We first determined the percentage of sites that occurred on good, fair, or poor (G, F, P) 

habitats for each survey independently. For this we used a categorical regression tree approach (CART) 

because this method accounts for correlations among variables and allows both continuous and 

categorical data to be included. It has been previously demonstrated to be a useful tool in fisheries 



ecology and specifically in describing fish-habitat associations (De’Ath and Fabricus 2000; Yates et al. 

2016).  

For these initial analyses, MaxN for each site was reduced to a presence and absence variable 

and was used as the response variable for habitat designations. Predictor variables included the habitat 

metrics coded on the video reads (reduced to presence/absence), the latitude and longitude of each site 

and depth for all three survey sets. For FWRI and Panama City’s data, side-scan geoform was also 

included as a landscape-level habitat variable, with values derived using a modified version of the 

Coastal and Marine Ecological Classification Standard (CMECS) classification approach (habitats used in 

these analyses are in Table 3). Geoform was not included as a predictor variable for the analysis of MS 

survey data because the habitat mapping for that survey has primarily been conducted utilizing 

multibeam sonar, and at present, comparable habitat classification is not possible using the MS survey 

multibeam data. We first used a random forest approach to reduce the number of potential variables to 

be selected from in the final model for each lab’s dataset to reduce redundant or correlated variables 

used in the final indexing model. For the random forest analysis, each survey was modeled separately 

for the entirety of that dataset. The random forest analysis fitted 2000 CARTS to the data and then 

determined each variables importance, a scale-less number used to indicate the number of final models 

each variable occurred in and its significance therein.  An example of output is given in Fig. 3 for the 

FWRI survey dataset. 

From the random forest analysis, approximately 50% of the potential variables were retained for each 

survey given by the importance values for a final CART model. The final model was created by fitting the 

presence of Greater Amberjack at site to the independent variables for a training dataset of 80% of the 

data. The remaining 20% of the data were retained in a test dataset to determine misclassification rates 

for each of the three models. The proportion of sites with positive Greater Amberjack catches at each 

terminal node was then evaluated to determine the habitat characteristics defining good, fair or poor 

habitat. Terminal nodes with double (2X) the overall proportion of positive catches for a dataset were 

assigned a good habitat code. Poor sites were identified as those determined by proportion positives 

that were at least half (50%) of the overall proportion positive and were generally approaching zero. The 

remaining sites were deemed fair and included the range of the overall proportion positive. All analyses 

were carried out using R version 3.0.2 (R Core Team 2014) and the Party package for CART (Hothorn et 

al. 2006).  

CART results varied by survey with respect to the final variables chosen. Greater Amberjack habitat 

models indicated less of an association with factors commonly attributed to reef or rugose habitats, 

including rock and relief, as seen previously in other species (Thompson et al 2017; 2018; 2019). 

Primarily, the predictor variables were spatial (longitude, and latitude), related to the landscape 

Geoform (as for the PC survey), but did include some site-specific habitats for the PC  survey data and 

the two Pascagoula regions (sponge, unknown sessile organisms, and seawhips) (Figs. 4-7). Greater 

Amberjack were found to be in a relatively low proportion of sites for FWRI survey (5.9%), moderate 

occurrence rates for PC (19.15%) and Pascagoula east (14.7%), and the highest in the Pascagoula west 

data (23.0%). The FWRI and Pascagoula west habitat models yielded only Fair and Good habitats, with 

the occupancy of Greater Amberjack not varying enough to predict Poor habitats with the variables 



used. These patterns are likely related to Greater Amberjack not being as specifically reef-obligates in 

comparison to previously assessed snappers and groupers (see CART models in Thompson et al. 2017, 

2018).    

The site characteristics that define each node and habitat code were then used to create a habitat 

variable (i.e., ‘hab’ and coded as: G or F or P) that was then back applied to each site for each of the 

three survey datasets. The datasets were then combined for the index model. The final proportion of 

sites in the three habitat categories for each individual survey set and year are shown in Table 4.  

Index model fitting and diagnostics 

The final model used to index abundance was fit using a negative binomial distribution with the formula: 

MaxN = Y*Hab *Survey 

Where Hab is the CART derived habitat code and survey represents the survey that collected the data 

for each site.  Backwards variable selection was used and indicated that the full model performed best, 

given by AIC, compared to models with only one or two of the potential variables.  

Model diagnostics indicated no discernible patterns of association between Pearson residuals and fitted 

values or the fitted values and the original data (Fig. 9), indicating correspondence to underlying model 

assumptions (Zuur et al. 2009).   

The index was fit in SAS using the Proc GLIMMX procedure. To account for the variation in survey area, 

differences in area mapped with known habitat, and the distribution of Fair, Good, and Poor habitats by 

survey by year, the estimated MaxN means provided by the GLM were adjusted. The known potential 

survey universe for each of the three was first multiplied by the proportion of habitat mapping grids that 

had reef habitat to provide an area weight. This was then multiplied by each year x Survey X hab 

combination (up to 12 for the final years with three surveys and three habitat levels), providing a 

weighting factor for each of the mean estimates.  Area weighting factors are provided in Table 3. 

Weighted index values were then standardized to the grand mean.  

 

Results and Discussion: 

Annual standardized indices for Greater Amberjack in the Gulf of Mexico, including coefficients of 

variation, are presented in Table 5.  The model CV’s indicate a good model fit, with highest values in 

earlier years ~20-35%, but somewhat decreasing CV’s as additional surveys are added and continue. 

However, CVs and confidence limits were found to be high in 1997 compared to other years. Trends in 

standardized abundance for Greater Amberjack in the GOM show a relatively stable trend through time 

with small to moderate variation year-to-year with peaks in 1994, 1997 and 2009. The last five years of 

data show or predict a slightly negative overall trend (Table 5; Fig. 10). Given the utility of fishery-

independent data in assessment and the potential increase in weight in the final assessment model of 

combined indices versus individual indices with smaller sample sizes and potentially divergent trends, 



we believe this approach is the most appropriate use of these video data. Furthermore, it is the most 

potentially representative of the entire GOM region, a priority discussed in previous SEDAR 33 Update 

assessment for this species (SEDAR 2016).  
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Table 1. Summary of sample sizes by year for each of the three included video surveys, Florida Fish and 

Wildlife Research Institute (FWRI), NMFS Pascagoula, East and West regions, and NMFS Panama City. No 

data were available or used from any survey from 1998-2001; 2003.   

Year FWRI 
Panama 

City 
Pascagoula-

East 
Pascagoula-

West Total 

1993   120 57 177 

1994   99 61 160 

1995   69 56 125 

1996   140 172 312 

1997   162 134 296 

2002   152 108 260 

2004   149 51 200 

2005   274 140 414 

2006  95 288 162 545 

2007  59 330 192 581 

2008  86 208 131 425 

2009  108 263 183 554 

2010 158 144 223 114 639 

2011 222 158 349 105 834 

2012 237 150 283 202 872 

2013 185 97 167 145 594 

2014 287 163 235 113 798 

2015 224 168 152 59 603 

2016 195 171 206 178 750 

2017 154 150 222 211 737 

2018 127 101 214 201 643 

Total 1789 1650 4305 2775 10519 

 

 

 

 

 

 

 

 

 



Table 2. Summary of sample sizes for each survey by SEAMAP statistical zone by year. 

 Pascagoula East  Pascagoula West 
 Statistical Zones  Statistical Zones 

Year 1 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 17 18 19 20 21 

1993  14 4  13 60  13 8 8       24 33     

1994  22  9  41  17 5 5  9     17 24 11    

1995 4 18   5 23  11 4 4  4    6 15 31     

1996  34   7 53  14 12 20      8 49 97   13 5 

1997  33 8  13 67  29 12       23 19 58 12  22  

2002  34 6  8 58  24 7 15  16  7  26 21 34   2 2 

2004  26    59  28 17 19      3 4 33 10  1  

2005  57 10  10 71  61 18 47      17 44 42 24  13  

2006  52 22  10 79  32 36 57  10    15 41 48 20  10 18 

2007  80 20  10 50  50 40 80  15    20 60 70   17 10 

2008  48 23  8 66  11 12 40  6    12 45 52 5  11  

2009  61 13  6 87  25 28 43  9    25 64 57 8  20  

2010  61 18   33  30 37 44  9    7 8 46 15  22 7 

2011  67 25  10 77  54 46 70      12 26 59 8    

2012  69 30  6 73  38 36 31    10  28 55 65 17  25 2 

2013  4 31  9 47  18 19 39      8 42 54 17  16 8 

2014  30 38  10 60  20 29 48     7 16 29 44 17    

2015  2 16 8 9 57  10 16 34  3  4 6 8 5 17 8   8 

2016  39 34 10 10 48  10 20 35    8 13 25 16 59 12  9 36 

2017  56 24 33 12 38  17 12 30  2   12 24 35 53 31  22 32 

2018   46 12 13 23 46     22 52  10     10 6 34 47 39 10 10 35 
 FWRI  Panama City  

 Statistical Zones  Statistical Zones  

Year 1 2 3 4 5 6 7 8 9 10  6 7 8 9 10            

2006            17 52 13 13        

2007            13 28 8 10        

2008            16 38 11 20 1       

2009            11 63 12 22        

2010    82 76       15 59 27 43        

2011    80 142       20 74 25 38 1       

2012    107 130       20 79 23 28        

2013    70 115       19 45 9 23 1       

2014    142 152    68 22  23 82 13 44 1       

2015    92 182    99 55  25 81 23 39        

2016  83 74 83 142 87 69 67 68 56  25 86 19 41        

2017  66 87 86 96 70 79 44 69 32  27 69 11 43        

2018  103 85 68 112 95 68 66 113 60  19 52 12 18        

 



Table 3. Proportion of sites for each habitat level (Fair, Good, Poor) as determined by individual survery 

categorical regression trees (CARTs) for Greater Amberjack presence. Note the gap in sampling for the 

Pascagoula lab (1998-2002 and 2003).  

  Pascagoula East     Pascagoula West 

Year F G P   Year F G 

1993 0.78 0.03 0.18  1993 1.00 0.00 

1994 0.65 0.05 0.30  1994 0.82 0.18 

1995 0.68 0.00 0.32  1995 0.93 0.07 

1996 0.75 0.04 0.21  1996 0.94 0.06 

1997 0.73 0.02 0.25  1997 0.81 0.19 

2002 0.57 0.19 0.24  2002 0.74 0.26 

2004 0.77 0.06 0.17  2004 0.82 0.18 

2005 0.72 0.07 0.22  2005 0.73 0.27 

2006 0.73 0.01 0.26  2006 0.80 0.20 

2007 0.68 0.03 0.29  2007 0.78 0.22 

2008 0.66 0.01 0.33  2008 0.81 0.19 

2009 0.70 0.02 0.28  2009 0.89 0.11 

2010 0.64 0.01 0.35  2010 0.89 0.11 

2011 0.72 0.03 0.25  2011 0.77 0.23 

2012 0.62 0.03 0.35  2012 0.76 0.24 

2013 0.77 0.05 0.19  2013 0.81 0.19 

2014 0.70 0.01 0.29  2014 0.77 0.23 

2015 0.80 0.05 0.16  2015 0.76 0.24 

2016 0.59 0.03 0.38  2016 0.79 0.21 

2017 0.54 0.00 0.46  2017 0.80 0.20 

2018 0.64 0.01 0.35  2018 0.77 0.23 

  Panama City      FWRI 

Year F G P   Year F G 

2006 0.29 0.44 0.26     

2007 0.41 0.54 0.05     

2008 0.28 0.47 0.26     

2009 0.45 0.53 0.02     

2010 0.52 0.46 0.02  2010 0.84 0.16 

2011 0.34 0.40 0.26  2011 0.92 0.08 

2012 0.59 0.39 0.02  2012 0.96 0.04 

2013 0.01 0.99 0.00  2013 0.94 0.06 

2014 0.25 0.52 0.24  2014 0.94 0.06 

2015 0.33 0.40 0.26  2015 0.89 0.11 

2016 0.32 0.46 0.23  2016 0.94 0.06 

2017 0.28 0.34 0.38  2017 0.96 0.04 

2018 0.31 0.02 0.67   2018 0.91 0.09 

 



Table 4. The habitat weighting used with the annual distribution of Fair, Good, Poor habitats to adjust 

estimated model means to account for sampling variation across surveys. 

Survey 

Total 
Universe 

Area 
(km2) 

Proportion 
of grids 

with 
habitat 

Total 
Universe 

Area X 
Prop 

transects 

Area 
Weighting 

values 
(1993-
2005) 

Area 
Weighting 

values 
(2006-
2009) 

Area 
Weighting 

values 
(2010-
2017) 

Pascagoula E 34490 0.81 27936.9 0.707 0.514 0.429 

Pascagoula W 31258 0.37 11565.46 0.293 0.213 0.177 

PC 22104 0.67 14860.9 0.000 0.273 0.228 

FWRI 37290 0.29 10814.09 0.000 0.000 0.166 

 

 

Table 5.  Number of stations sampled (N) by survey and year, proportion of positive sets, standardized 

index, and CV for the annual FWRI Greater Amberjack video index of the Gulf of Mexico.  

year N 

Proportion 
positives 
present 

Std 
Nominal 

Std 
Index CV 

1993 177 0.062 0.671 0.621 0.282 

1994 160 0.206 1.113 1.200 0.593 

1995 125 0.248 1.013 0.738 0.292 

1996 312 0.160 0.704 0.642 0.240 

1997 296 0.142 0.842 1.011 0.731 

2002 260 0.338 2.329 2.295 0.220 

2004 200 0.180 0.900 0.788 0.243 

2005 414 0.210 1.109 1.097 0.227 

2006 545 0.125 0.890 0.744 0.192 

2007 581 0.160 1.005 0.972 0.220 

2008 425 0.160 0.973 0.922 0.252 

2009 554 0.227 1.364 1.336 0.168 

2010 639 0.156 0.771 0.756 0.215 

2011 834 0.158 0.909 0.919 0.191 

2012 872 0.211 1.119 1.150 0.155 

2013 594 0.189 0.999 1.103 0.201 

2014 798 0.153 1.118 1.183 0.229 

2015 603 0.159 1.208 0.974 0.152 

2016 750 0.156 0.839 1.037 0.381 

2017 737 0.140 0.811 0.765 0.160 

2018 643 0.137 0.742 0.745 0.323 



 

 

Figure 1. Map of all video sites included in the index for each survey (by laboratory) across all years 1993-2018.  

 



 

Figure 2. Nominal length compositions of the three surveys used in the combined index for Greater Amberjack.  



 

Figure 3. Random Forest generated variable importance for Greater Amberjack presence using FWRI survey data. 



 

Figure 4. CART results for Greater Amberjack for Pascagoula’s video survey for the eastern Gulf region. Shaded portion of the plots indicate 

proportion of sites given by a node where Greater Amberjack were observed (16.3% of sites had Greater Amberjack present overall). 



 

Figure 5. CART results for Greater Amberjack for Pascagoula’s video survey for the western Gulf region. Shaded portion of the plots indicate 

proportion of sites given by a node where Greater Amberjack were observed (23.0% of sites had Greater Amberjack present overall). 



 

Figure 6. CART results for Greater Amberjack for Panama City’s video survey. Shaded portion of the plots indicate proportion of sites given by a 

node where Greater Amberjack were observed (19.2% of sites had Greater Amberjack present overall) 



 

Figure 7. CART results for Greater Amberjack for FWRI’s video survey. Shaded portion of the plots indicate proportion of sites given by a node 

where Greater Amberjack were observed (13.4% of sites had Greater Amberjack present overall).   



 

 

Figure 8.  MaxN count distribution for Greater Amberjack observed in all three video surveys on the 

West Florida Shelf used for the combined index.  

 

 



 

Figure 9.  Model diagnostic plots showing fitted best model values against Pearson residuals (left 

panel) and fitted values plotted against original data values (right panel). 

 

 

 

 



 

Figure 10.  Standardized index (solid red line) with 2.5% and 97.5% confidence intervals (black 

dotted lines) and nominal index (solid blue line) for Greater Amberjack CPUE (MaxN) using the 

integrated West Florida Shelf video data. 
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