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Using simple illustrative examples, this note highlights some of the caveats with gradient-based algorithms. This class of algorithms underpins
the state-of-the-art modelling platform in fisheries science. The goal is to sound a cautionary note about an increasing trend in fisheries
science, where blind faith is being invested in results obtained from algorithms that are fast, and proven to have machine precision.
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Introduction
In fisheries science and ecology, models have become standard

tools for the study and understanding of complex ecosystem phe-

nomena, and to aid in management decisions (see e.g. Munch

and Kottas, 2009; Subbey et al., 2014; Collie et al., 2016; Storch

et al., 2017). The Automatic Differentiation Model Builder

(ADMB)/Template Model Builder (TMB) platform (Fournier

et al., 2012; Kristensen et al., 2015) has made it possible to esti-

mate the parameters of high-dimensional complex models, and

to quantify model and parameter uncertainties. The underlying

parameter estimation algorithm is fast, stable, and accurate, and

has been described as capable of handling several hundreds of

parameters. In fisheries science, the majority of end-users (of

complex models and sophisticated algorithms) of the ADMB/TB

platform consist of scientists with varying computational back-

grounds. It is therefore unfair to expect that there will be unifor-

mity across the scientific community in understanding the

verbiage used (mathematical/statistical terminologies), and the

functioning (including caveats) of the underpinning computa-

tional algorithms. The goal of this article is to contribute to re-

ducing this non-uniformity. The approach is to present some of

the general characteristics of the optimization algorithm used by

ADMB and TMB, in a language that is understandable to fisheries

scientists, independent of quantitative background. Mathematical

details will therefore be kept to the barest essentials, in order to

effectively communicate key issues.

This article has been motivated in part, by the author’s feeling

that very often, explanations for inconsistent parameter estimation

results have been inadequate, or in some extreme cases, grossly mis-

leading. A commonly reported experience is that small changes in

initial guess values of parameters; result in disproportionate varia-

tion in the model results. As this article will later show, ignoring

such inconsistencies may result in the acceptance of wrongly cali-

brated models. This also implies that model predictions and any in-

ference based on the calibrated model will be uncertain, and

uncertainty envelopes (or confidence intervals) generated on the ba-

sis of the calibrated model may fail to encapsulate true values. For

stock assessment models, this may lead to erroneous inference about

population size, and wrong estimates of parameters that are central

to management. As a consequence, management decisions may re-

sult in non-sustainable fisheries, or misguided recovery plans.

A growing trend in fisheries science is the increasing use of the

ADMB/TMB platform to develop stock assessment models of

varying functional complexity and degrees of parameterization.

The attraction with ADMB/TMB platform is the ease of use (flex-

ibility and modularity) that enables a scientist, irrespective of
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quantitative background, to develop a (complex and computa-

tionally demanding) model within days, which several years ago,

would have taken a statistician/mathematician several months or

even years to develop. Unfortunately, this same input-output ease

of use enables the platform to be treated as a modelling black-

box, where the criteria for validation of results is limited to two

expressions—“iteration has converged”, and “the Hessian is posi-

tive definite”. Fisheries scientists with background in mathemat-

ics/statistics may recognize that these expressions are necessary,

but not sufficient conditions for accepting model results. Other

scientists, on the other hand, may need to be made aware of the

inherent limitations of the computational algorithm that sup-

ports the ADMB/TMB platform, so that caution will be applied

in interpreting model results. This knowledge is also fundamental

to understanding the extended consequences of inconsistent

model results.

The caveats discussed in this article are far from exhaustive;

that has not been the goal. The aim is to provide information that

facilitates admission of biologists and other non-quantitative fish-

eries scientists into the fold, when discussing the credibility of pa-

rameter estimation and uncertainty quantification results.

The author will consider his quest fulfilled, if this article lowers

the threshold for such inclusive discussion.

Mathematical and statistical models
Mathematical/statistical concepts and language are usually

employed to describe our conception of complex systems and

how their dynamics evolve. The concepts may describe relation-

ships (e.g. linking biological processes such as age and weight),

while the language may consist of abstract codes, which represent

antecedent or future events and concepts, Carnie (2013). The col-

lection of the concepts and language define what is referred to as

a mathematical/statistical model. When the language is mathe-

matical/statistical, the model is referred to as a mathematical/sta-

tistical model. Whether mathematical or statistical, models are

defined in terms of some observations, and unknown variables of

the system. The variables are referred to as parameters.

Application of a model, either to understand the system being

modelled or for predicting its future behaviour, requires knowl-

edge of the model parameters. For ecological and fisheries mod-

els, the parameters are estimated on the basis of observed data.

When, as is customary, the data is sampled over some discrete

time, it is referred to as time series. The goal of optimization is to

find appropriate parameter values of the model, so that it is able

to replicate the observations as closely as possible. Figure 1 illus-

trates the process. Note that the discrepancy (hatched area in

Figure 1) can represent differences in time series, sets of parame-

ters, or even matrices (e.g. survey indices or commercial catch

statistics).

If we assume, for the sake of discussion, that our conceptual

model and its parameters are based on perfect knowledge, then

the discrepancy will simply be the observation errors.

Unfortunately, these assumptions are unrealistic. In practice, we

usually have imprecise observations, while our models, because

they are built on partial knowledge, are usually uncertain. This is

particularly true because functions used to represent complex bi-

ological and ecological phenomena may be oversimplified and in-

appropriate (structural uncertainty). Furthermore, large

uncertainties may be associated with the model parameters (para-

metric uncertainty). These (data and model) uncertainties imply

that there will always exist a discrepancy (hatched region in

Figure 1) between our observations and those produced by the

model.

In mathematics, one uses a function to define a merit number

that represents the discrepancy between observations, and their

corresponding modelled values. This function is referred to as the

objective function. In statistics, this merit number is usually

expressed in terms of probability, and referred to as the likelihood

value. In the simplest approach, we can define the (least-squares)

objective function by the sum of squared deviations of the obser-

vations from their corresponding modelled values. There are

however, other possible ways of expressing the objective function,

such as the sum of absolute deviations (see Uncini, 2015; Berry

et al., 2016). Irrespective of the definition form of the objective/

likelihood functions, the optimization (parameter estimation)

problem involves using a set of computational (mathematical/sta-

tistical) rules and procedures (collectively referred to as optimiza-

tion algorithms), to find the best parameter set, so that the

objective function value (merit number) is almost zero. In simple

terms, operations of optimization algorithms can be likened to

searching a mountainous terrain to identify the lowest lying valley,

and the co-ordinate of the lowest point in this valley. This lowest

point is called the global minimum.

There are two main classes of algorithms for identifying the

global minimum. Stochastic algorithms (SAs) iteratively try new

candidate solutions in the region that defines the parameter

O
bserved

Modeled

Discrepancy

(a) (b) (c)

Figure 1. The goal of optimization is to find the correct set of parameters that minimize the size (area) of the hatched space (the
discrepancy) between observations (inner figure) and their corresponding values from the model (outer figure). The process could be
iterative (from a to c), and the optimal parameter set is that associated with the least possible discrepancy computed by the procedure.
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space, based on a probability rule. This class of algorithms

includes Monte Carlo sampling, Genetic, and Simulated anneal-

ing algorithms (see e.g. Li and Jiang, 2000). Because they attempt

to sample the whole parameter space, SAs are in general very slow

and computationally ineffective for problems involving high

number of model parameters. A viable alternative to SAs are

Gradient Descent Algorithms.

Gradient descent algorithms
When implemented as computer procedures, this class of algo-

rithms need input information (see Figure 2) about (i) start

point, A, (ii) the number of steps, n, to perform, (iii) a procedure

(rule) for how to transition from one point to the another (e.g.

A! B), and (iv) a criterion to determine whether the global

minimum point (the point D in Figure 2) has been identified.

In most practical applications (especially for high-dimensional

parameter problems), the choice of starting point and number of

steps, is usually arbitrary. The guiding rule is to ensure that the

starting point lies within the region defined by the parameter

ranges, and large enough number of steps so that the algorithm

does not terminate prematurely. The rule for moving from one

point to another (A to B, say) is critical to the performance of

Gradient Descent algorithms. Recall that the algorithm moves on

a surface (referred to as the misfit surface) defined by the horizon-

tal plane (parameters), and altitude (hills and troughs), whose

values are determined by the objective function. Movement from

one point to another on this surface involves a two-step decision

namely, determining the direction in which to move (A! B or

A! C), and the step size in the chosen direction. The direction

in which to move is motivated by the need to move along a de-

scent path to the lowest point (global minimum) on the misfit

surface. The following analogy illustrates the search philosophy.

Suppose you are located on top of a mountain, in a poorly con-

versant terrain. However, you know there is a lake down the val-

ley, and being extremely thirsty, you need to navigate your way

down to the lake for a drink. The task come with the caveat that

it is pitch dark, and visibility is practically zero. A practical solu-

tion will be to take a step at a time, and feel the ground near you,

to identify which direction the terrain tends to descend. If this is

done one step at a time (iteratively), you will eventually reach the

valley. If the starting point is A in Figure 2, there will be a bigger

propensity to move from A in the direction of C, than towards B.

This is because the steepness from A to C is bigger than from

A to B. Gradient algorithms move in the direction of steepest de-

scent. The speed and accuracy in arriving at the global minimum

is dependent therefore, on precision of the steepness (gradient)

information. Automatic differentiation (AD), (also known as

algorithmic-, or computational differentiation) is a technique for

numerically determining the steepness (degree of descent or gra-

dient) of a function specified by a computer programme. The AD

technique allows for exact calculation of the gradient at any point

in the misfit surface, to machine precision. For most effective

implementations, the step size is adaptive; getting smaller as the

algorithm approaches the global minimum.

The algorithm is considered to have converged, when the dif-

ference in the objective function (heights) of two consecutive

points is less than a user-defined precision level. This value is

known as the convergence criterion, and in practice, it is usually

set close to machine precision. A stronger convergence criterion

can be set by requiring that in addition, the surface in the vicinity

of the identified optimal point also satisfies some curvature con-

ditions. This curvature determines whether the point identified as

global optimum lies in a trough (as would be expected) or other-

wise (see Thacker, 1989). The curvature is calculated using a met-

ric that is based on the Hessian matrix. In mathematics, the

Hessian matrix is used to calculate the local curvature of a func-

tion (e.g. objective function) of many variables (parameters).

When the curvature is concave-up (i.e. in a trough, such as at

point D in Figure 2), the surface curvature is referred to as having

a positive-definite Hessian. On the other hand, the surface curva-

ture in the vicinity of e.g. point A, is said to have a negative-defi-

nite Hessian.

Fast, stable, and accurate algorithms
Though implementation details may differ (e.g. adaptive, rather

than fixed step size) the principal rule for moving from one point

Pi to the next, Piþ1, is given by

Piþ1 ¼ Pi � S � G; (1)

where S is the step size, and G is a measure of the gradient. The

most challenging part of this implementation is obtaining accu-

rate values for G. When information about G is available, the

algorithms behave much the same way as descending down a hill

where, at every step along the way, there is precise information

about the shortest (steepest) path to take. Most algorithms are

slow, unstable or inaccurate because the value of G is obtained by

approximation. Thus the algorithms perform a large number of

“detours” that result in prolonged computation time, and round-

off (approximation) errors pile up to make the algorithms unsta-

ble and inaccurate. AD (Corliss et al., 2002) uses computer alge-

bra (see e.g. Von Zur Gathen and Gerhard, 2013) to derive

computer codes from which values of G can be obtained with ma-

chine precision. The resulting gradient-based algorithm is there-

fore usually fast, stable and accurate.

Figure 2. An illustrative misfit surface.
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The gradient algorithm underpinning the ADMB/TMB plat-

form uses the AD technique to obtain precise gradient informa-

tion, and the global minimum is assumed to have been identified

when both conditions of minimum convergence criterion, and

positive-definiteness of the surface around the identified global

minimum are fulfilled.

Caveats
In this section, I discuss six caveats associated with the class of

algorithms discussed in the previous section. When they are

deemed to simplify the discussion, graphical illustrations will be

used to emphasize key points.

Caveat 1. The misfit surface is non-unique
The surface depends on our assumptions of the error structure

(correlated or uncorrelated) in the observations and their as-

sumed statistical distribution. In the literature, the functional de-

scription of the error structure is often referred to as the error

model, see Fuller (2009). The error model is termed Gaussian,

when errors are assumed to be independently and normally dis-

tributed about an average value Fuller (2009). On the other hand

when the errors are assumed to be distributed about a median

value, the error model is termed Laplacian, Norton (1984).

Figure 3 (Gaussian) and Figure 4 (Laplacian) show how the likeli-

hood surfaces differ, depending on the error model assumed. The

volume of a sphere V ¼ 4p
3

r3
� �

with radius r ¼ 2 represents the

truth. Next, I assumed that the constant 4p
3

� �
and exponent of the

radius (3) are unknown. This exemplifies a model with two

unknowns, h1 and h2, whose true values are respectively, 4p
3

and 3.

Figures 3 and 4 show the misfit surfaces for different combina-

tions of h1 and h2, and for different error distribution assump-

tions. For data that has long tailed distributions or outliers,

defining the objective function in terms of absolute deviations is

known to be superior to least squares (see e.g. Alarcon-Aquino

et al., 2005). However, partly because of mathematical conve-

nience and computational ease, and also because least squares

approaches (and generalizations) have well known properties,

this definition of the objective function has enjoyed unparalleled

popularity in statistics and fisheries science (Subbey, 2017).

In the rest of the article, two benchmark (objective) functions

will be used to better highlight the caveats to be discussed. These

functions are the Branin (Jones et al., 1998) and the Three-hump

camel function (Thcf) (Liu, 2002). Detailed mathematical infor-

mation about these functions can be found in the literature cited,

though such details have been intentionally omitted in this article,

given the target audience, and also to focus the discussion.

Caveat 2. An appropriate starting point may be crucial
There is no uniquely established method for choosing an appro-

priate starting point that guarantees convergence of the algorithm

to a global minimum. The rule of the thumb is to ensure that the

starting point is within the space defined by the parameter ranges.

For convergence to the global minimum irrespective of starting

point, the misfit surface must obey specific mathematical condi-

tions that seldom apply in practice. We use the Thcf in Figure 5

to illustrate the disproportionate consequence of an insignificant

variation in the starting point. The only difference between the

starting points Að�0:85; 2:00Þ and Bð�0:80; 2:00Þ lies in the

x-axis coordinates. If one starts from point B, the algorithm con-

verges to the desired optimal point. However, a 6.25% perturba-

tion in the x-axis coordinate of B (resulting in A) causes

convergence to the wrong point A�ð�1:75; 0:87Þ.

Caveat 3. Satisfaction of convergence criteria is no
guarantee for global minimum
The Thcf (as in Figure 6) is used here to illustrate this caveat.

The algorithm was run with identical convergence criteria

Figure 3. Sum of squared deviations. Figure 4. Sum of absolute deviations.
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(maximum convergence error of 10–6, and surface curvature—

positive definite—conditions) for both points. Observe however,

that though gradient values to machine precision were used, and

despite meeting the convergence criteria, none of the points con-

verged to the correct global minimum at the origin.

Caveat 4. Multi-start approaches have limited
application in practice
Multi-start approaches (see e.g. Martı́ et al., 2013) involve initiat-

ing the optimization algorithm from different points within the

search region, thus increasing the probability of hitting the abso-

lute minimum. Unfortunately, this approach still suffers from

observations made under Caveat 3. For high-dimensional prob-

lems, the approach can be time and computationally expensive,

while offering no guarantee of success. Depending on the nature

of the misfit surface, multi-start points that are thought to be

wide apart may in fact, lie in the same neighbourhood, but con-

verge to points that are widely separated in the parameter space.

The set of all converged points may also fail to capture the global

optimum point, and the point with the least objective function

value therefore, may not represent the global minimum. In sum-

mary, even for low-dimensional problems (see Figure 6) a multi-

start approach offers no guaranteed of identifying the optimal

parameter set. This consideration becomes even poignant, when

one considers that the arbitrary surface presented by Figure 7,

may be representative of misfit surfaces for high-dimensional

problems, and entrapment in a local minimum point is a realistic

scenario.

Caveat 5. Limitations posed by single
optimum identification
According to the literature (see e.g. Hagstrom and Levin, 2017),

complex adaptive systems provide a unified framework for

explaining marine ecosystem phenomena. The inherent high

complexity is expressed by the exhibition of both randomness

and regularity, resulting from organized and structured interac-

tions among ecosystem components. Thus ecosystems have the

possibility of existing in multiple alternative states of equilibrium

(Petraitis and Dudgeon, 2004; Schröder et al., 2005). It is there-

fore natural to expect that observations (e.g. time series) from

ecosystem observations may contain information from different

states. The proportion of time the system spends in each of the

state may be used to assign probabilities to the states. A measure

of complexity of the system may then be defined, based on these

probabilities. For marine systems to have high statistical complex-

ity, they must have a large number of approximately equiprobable

possible states, Ladyman et al. (2013). In terms of modelling, this

translates to the possibility of different sets of model parameters,

with approximately identical likelihood/objective function values.

Using a misfit surface defined by the Branin function, Figure 8

illustrates the drawback with gradient-based algorithms, when

Figure 5. Trajectory of the search algorithm starting from two close,
but different points (A and B) on the surface. The circular patch in
the surface marks the absolute minimum point, located at the origin
(0, 0), and its neighbourhood.

Figure 6. Trajectories of the search algorithm starting from two
different points in the surface. The circular patch marks the
absolute minimum point, the origin (0, 0), and its
neighbourhood. The identical convergence criteria are fulfilled
for each search result. However point Að�0:85; 2:00Þ converged
to ð�1:75; 0:87Þ, while Bð1:55; 1:90Þ converged to ð1:75;�0:87Þ,
none of which is the global minimum.

Figure 7. An arbitrary misfit surface with multiple local minima. It is
non-trivial and inconceivable, without a priori knowledge of the
surface, how a multi-start search may be developed for such a misfit
surface.

Parameter estimation in stock assessment modelling 5

Downloaded from https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsy044/4973625
by Cornell University Library user
on 06 June 2018



faced with multiple, equiprobable solutions, such as are assumed

to characterize marine ecosystems.

Caveat 6. Non-convergence of the algorithm may be due
to control parameters
We use Figure 9 to illustrate an example of this caveat, which

involves the effect of step-size on the performance of the algorithm.

The algorithm was executed using the same parameters as previ-

ously (for the Thcf), except that the step size (from one point to

the next) was multiplied by a factor of 10. This particular example

shows that too large time-steps lead to non-convergence of the al-

gorithm. On the other hand, choosing too small time-steps means

the algorithm will take a long time to converge, making it imprac-

tical for models with large throughput and number of parameters.

Discussion
This article has demonstrated some of the drawbacks with

gradient-based algorithms, using analytical functions to represent

the misfit surfaces. For these surfaces, gradients can be calculated

(as with AD) to machine precision. It becomes poignant to think

that for real problems, Figure 7 may be more representative of the

misfit surfaces that have to be explored by the optimization algo-

rithms. The caveats discussed for the 2D problems become exac-

erbated since such surfaces are usually characterized by multiple

optima, existence of infeasible regions, flat or nearly flat spots,

discontinuities, and infinitesimal area containing the global mini-

mum/minima, compared with total misfit surface. A full discus-

sion and illustration of how gradient-based algorithms might fare

on surfaces with such characteristics is infeasible. However, exam-

ples presented in this note enable us to conjecture the possible

outcomes. It is worth noting that some of the caveats raised in

this article have been reported in different stock assessment and

modelling fora. Unfortuntely, the discussion has never lasted lon-

ger than a usual stock assessment meeting. When optimal param-

eters are missed or wrongly identified, model performance

predictions and associated uncertainties become exercises in futil-

ity. It is therefore hoped that the issues raised in this article will

serve as caution, in an ever growing trend of almost blind faith in

models, optimization algorithms, and in modelling frameworks

that are based on such algorithms.

A sequel of (quantitative) papers will examine an alternative,

and more robust approach to the parameter estimation problem.

The approach integrates parameter space partitioning, a meta-

heuristics strategy (Blum and Roli, 2003) to guide a global explo-

ration of the misfit surface, and a local (gradient-based) search of

the parameter space. The sequel papers will also discuss choices

of optimization algorithms for specific classes of problems in fish-

eries science, highlight issues connected to parametric complex-

ity, and limitations in approaches (e.g. likelihood profiling) to

escape entrapment in local minima.
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