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Natural mortality (M ) rates are difficult to measure empirically and are often specified in stock assessments based on life history character-
istics. More recently, these specifications have included M as a function of the size or age of a fish. However, natural mortality is a dynamic
parameter that will change with the suite of predators and, thus, indirectly with cohort size and age. As an alternative, a density-dependent
M rate function is derived and compared with the commonly used Lorenzen model, where M at age forms an allometric relationship with
weight-at-age. The density-dependent model expresses M as a function of two parameters: one density dependent and one density
independent. Properties of the two models (size-based vs. density-dependent) were explored to indicate conditions where the results
are and are not similar. Associated catch equations, equilibrium analyses, and non-linear replacement lines in stock–recruitment
theory are examined. Just as with density-independent values of M, most assessment data are not sufficient to provide precise estimates
of density-dependent M parameters. However, the density-dependent model provides a basis for incorporating ecological variability into
single-species assessments, noting the differing dynamics between short- and long-lived species. The incorporation of dynamic natural
mortality has implications when estimating abundance trends and stock status, and ultimately setting management reference points.

Keywords: age-structured model, density-dependence, ecological variability of natural mortality, Lorenzen relationship, mathematical model,
stock assessment analyses.

Introduction
Implementation of ecosystem-based marine fishery management
implies that ecological effects are acknowledged and addressed
when evaluating fish stock status and developing management strat-
egies (Link, 2002, 2005; Livingston et al., 2005). However, incorpor-
ation of ecologically related data and model structures into
single-species assessment models has traditionally been limited
(Trites et al., 1999; Mace, 2001). Despite this, single-species assess-
ment methods have been the primary scientific tool for understand-
ing current status and guiding management (NMFS, 1999), and
these methods supply estimates of stock dynamics and status that
are useful both scientifically and for management (Hall and
Mainprize, 2004; Quinn and Collie, 2005). One reason for this is
that assessment model fitting is a statistical interpolation process
within the confines of existing dataseries, and thus simple model
structures still provide stock status estimates of useful precision.
However, concerns about ecological interactions and the extrapola-
tion of assessment results beyond current data time-series suggest

that improvements are needed in estimating those
ecological impacts within single-species assessments. One import-
ant step in integrating ecological concepts into assessments
would be through more complex modelling of natural mortality
(M) rates.

The specification or estimation of the M rate in fishery stock
assessments remains an important aspect in evaluating a stock’s
status (Vetter, 1988; Mertz and Myers, 1997; Williams and
Shertzer, 2003). Direct estimates of the instantaneous M rate can
be made in some circumstances from controlled studies
(Lorenzen, 1996). Additionally, M can sometimes be estimated
within an assessment model when data from tagging or closed
area studies provide information on M independent of fishing
mortality rates (Haist, 1998; Fu and Quinn, 2000; Maunder, 2001;
Pine at al., 2003). However, in most instances, the M rates used
are based on life history characteristics (e.g. Gunderson, 1980;
Pauly, 1980; Hoenig, 1983; Gunderson and Dygert, 1988; Hewitt
and Hoenig, 2005).
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Assessments have attempted to incorporate the consequences of
age-specific M into the analysis (Methot, 1990; Hampton, 2000).
This has become especially important since the need to evaluate eco-
system effects on stocks has been emphasized (Fu and Quinn, 2000;
Murawski, 2000; Yodzis, 2001; Gaichas, 2008). In many stocks, an
important ecosystem effect on a fish stock is likely to be predator
signals, which, in turn, are translated into M. However, it is unlikely
that this mortality would be constant over the lifespan of a cohort
(Clark, 1999; Hollowed et al., 2000). To address this, meta-analyses
have been used to derive empirical relationships between size and M
(Myers and Doyle, 1983; Peterson and Wroblewski, 1984; McGurk,
1986; Chen and Watanabe, 1989). In particular, relationships devel-
oped by Lorenzen (1996, 2000) are now being commonly used in
stock assessments.

It has long been noted that M rates are inversely related to the size
of animals at the species level (e.g. Pauly, 1980). However, natural
mortality-at-age does not arise from a fish’s age itself but rather
from factors such as predation. As fish get older, the suite of preda-
tors shifts both in terms of abundance and the species involved, and
the impact declines with age. One assumption that addresses this is
that the mortality rate decline is fixed over age.

The Lorenzen relationship (Lorenzen, 1996) extends this to relate
mortality to the size of individuals within a species. An alternative as-
sumption is that the mortality rate is a function of the abundance of a
cohort. One such model is the density-dependent mortality model
used to derive the Beverton–Holt stock–recruitment model
(Beverton and Holt, 1957; Brooks and Powers, 2007). Other density-
dependent models, such as Ricker (1958), might also be applied, but
these are not examined here.

There are several implications of density-dependent mortality.
One implication is that the suite of predators changes with the abun-
dance of the cohort. Over the lifespan of the cohort, this is generally
true. There are fewer older fish, and if the mortality rate is lower for
older fish, then one explanation is that the abundance of the fish in
the cohort is related. Another implication is that there is some form
of prey switching as the fish gets older and larger. This is the basis for
assuming density-dependent mortality during recruitment. Thus, it
may well continue into post-recruitment stages. Other sources of
mortality, such as competition for resources, may also be important
density-dependent factors. However, the nature of this kind of
density dependence is that just like recruitment processes, stronger
cohorts experience higher M. Therefore, the debate becomes not
about whether there is density dependence, but about when in the
post-recruitment stage it stops. Of course, neither density-
dependent models nor fixed-mortality-at-age models are correct;
neither the size nor the number of individuals is the causative
agent of mortality. Both models are pragmatic relationships result-
ing in declining mortality-at-age, which may be useful in the assess-
ment process, although neither model addresses senescence that
might occur in some stocks, and those effects are not addressed in
this analysis. Effects of senescence can be examined separately
with alternative models for ages where it is expected to occur.

The objective of this paper is to compare the properties of the two
modelling approaches—size-based relationships vs. a cohort-based,
density-dependent relationship—by examining parameter sets of
the two models and the resulting population responses. The paper
does not address estimation of M rate parameters using assessment
data, as that is outside the scope of this investigation. The first
section of the report presents the Lorenzen relationship and the
density-dependent differential equation, its solution, and the asso-
ciated density-dependent catch equation and compares this for the

models. The second section presents the properties of parameter
alternatives on abundance, yield and production. Finally, the
choice and implementation of the models into stock assessments
is discussed.

Mortality models
Lorenzen
Lorenzen (2000) noted that theoretical and empirical studies point
to the existence of an allometric relationship between M and body
weight in fish of the form:

MW = MuWd, (1)

where MW is M at weight W, Mu is M at unit weight, and d is an allo-
metric exponent from empirical relationships shown to range from
–0.3 to –0.37. He also noted that since weight is approximately pro-
portional to the third power of length, d values of approximately
–1/3 imply that M is inversely proportional to body length.
Following Lorenzen (1996, 2000), current applications of equation
(1) in stock assessments often use the relationship

Mt/W−0.305
t = M1 Wt/W1

( )−0.305
, (2)

where Mt is the instantaneous M rate per year at age t and M1 is the
asymptotic M rate at the asymptotic weight W1. By a von Bertalanffy
growth curve, (Lt ¼ L1{1–exp[–K(t–t0)}]), then

Mt = M1 1 − e−K t−t0( )( )−b (0.305)
, (3)

where K is the growth rate, t0 is the age at which length is zero for the
von Bertalanffy model, and the allometric relationship is W ¼ a Lb.
Given that the von Bertalanffy and length–weight parameters are
known, then the mortality rate schedule is defined by the
Lorenzen parameters M1 and d ¼ 20.305. Note that the scale of
the mortality rate schedule in equation (3) is provided by the para-
meter M1, where M1 is based on maximum age (Hoenig, 1983;
Hewitt and Hoenig, 2005) or other life history characteristics
(Pauly, 1980).

Density-dependent
The density-dependent (DD) mortality model for a cohort that was
examined here is:

dNt/dt = −M1Nt − FtNt − AN2
t (4)

where abundance (Nt) declines with age (t). The rates of mortality
include a density-independent component (M1), a DD component
(A), and age-specific fishing mortality rates (Ft). As t (age) increases,
the M rate asymptotically decreases towards M1, as before.
The integral solution to equation (4) over one time-step is

Nt+1 = Nt exp −M1 − Ft[ ]

1 + Nt
A

M1 + Ft
1 − exp −M1 − Ft[ ]
{ }

Nt =
Nt+1 exp M1 + Ft[ ]

1 − Nt+Dt
A

M1 + Ft
exp M1 + Ft[ ] − 1
{ } (5)

(Forrest et al., 2013). As t approaches infinity with no fishing, the
exponential term approaches zero, the denominators of equation(5)
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approach 1, and the model simplifies to the exponential decay model
Nt+1 ¼ Nt exp(–M1). Also, when A ¼ 0, the model reduces to
exponential decay.

Ct =
Ft

A
ln 1 + Nt

A

M1 + Ft
1 − exp −M1 − Ft( )
[ ][ ]

= − Ft

A
ln 1 − Nt+1

A

M1 + Ft
exp M1 + Ft( ) − 1
[ ][ ]

(6)

Equations (5–6) can be computed either backwards or forwards
(Powers and Brooks, 2005), as one would do with the standard
density-independent catch equation noting that Mt and M1 are
not the same.

Fishing mortality rates for individual ages within an
age-structured assessment model are usually estimated using nu-
merical methods. These methods require that there is an observed
catch and abundance at the beginning or end of an interval, and
that M parameters are known. Fishing mortality rates by age can
be estimated numerically using equations (5–6), the observed
catch, an abundance estimate at the beginning or end of an age inter-
val, and parameters M1 and A for that age interval.

All such methods select an F that results in a model catch-at-age
that is numerically equal to the observed catch-at-age. Therefore,
implementation of DD within existing F-estimation schemes
requires that function evaluations (Cmodel – Cobserved ¼ 0) use equa-
tion (6) rather than the density-independent form. Also, some esti-
mation methods, such as Newton-Raphson, require evaluations of

derivatives. In that case, the derivative dCmodel/dF also uses equa-
tion (6). Thus, implementation of the DD model within an
F-estimation module usually requires the simple modifications
mentioned.

Properties
Equilibrium properties of a cohort described by Lorenzen and the
DD models were examined by evaluating a suite of Lorenzen mor-
tality rates at age vectors based on an exponent of the weight–
length relationship being 3.0 and alternative values of the von
Bertalanffy parameters K and t0 and the asymptotic mortality at
age M1 [equation (3)]. Then, a per-recruit analysis was conducted.
These parameter sets were chosen to provide a range of behaviours.
Noting the importance of M/K ratios (Lorenzen, 1996 and others),
that ratio was used to categorize model outcomes. This allowed the
analysis to explore a range of behaviour and life history character-
istics with a single value of K. In order to compare the survival con-
sequences with and without the DD model, a “realized” M-at-age
was computed based on the survival rate. This is denoted by
Mt’ ; ln(Nt/Nt+1) – Ft, from both mortality models.

In the first example, Lorenzen vectors were compared with the
DD model with the same M1 and with no fishing. In both
models, recruitment was specified to occur at age 1, and recruitment
strength was set at unity (N1 ¼ 1). In the case of the DD model, the
density-dependence is manifested through scaling of the parameter
Awith cohort strength N1. Therefore, by setting recruitment equal to
unity, the DD parameter is expressed in units of AN1.

Figure 1. Upper and lower left quadrants: demonstration of equivalence of Lorenzin and density- dependent equilibrium models when M1/K¼ 1
for three examples with no fishing. Lower right quadrant: relationship between AN1

* and M1 for specified values of t0 when M1/K ¼ 1.

Age-specific natural mortality rates in stock assessments: size-based vs. density-dependent Page 3 of 9

 at L
ouisiana State U

niversity on July 18, 2014
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://icesjms.oxfordjournals.org/


Numbers at age were computed using the appropriate equation
and parameters. Additionally, the value of AN1 that provided the
best fit between the numbers at age for the two models was found
using simple minimum squared deviances as the criterion. This
value is denoted as AN 1

*.
Interestingly, for M1/K¼ 1 and specific values of t0 and M1, the

equilibrium DD model with parameter AN1
* provides a virtually

exact match with the equilibrium Lorenzen model (Figure 1). The
parameter AN1

* that produces the same equilibrium mortality
schedule as the Lorenzen model for M1/K ¼ 1 can be predicted
from M1 and t0 (Figure 1). But when M1/K .1, the two equilib-
rium models deviate from one another to some degree, with the
DD schedule exhibiting somewhat lower survival rates (Figure 2).

The DD catch model [equation (6)] results in the same
catch-at-age for different years (Ct) for a given fishing mortality
rate (Ft) as the density-independent model, provided that the rea-
lized Mt’ are the same in both models. However, cohorts of the
same age with the same catch or fishing mortality rate will have dif-
ferent realized values of Mt based on their prior abundance history.

The properties of the DD M rate model were explored using an
artificial cohort, whose parameters are given in Table 1. The
cohort recruits at age 1 with an initial cohort abundance of N1 ¼

R ¼ 1. The fish of this cohort live until age 50, an age sufficient to
encompass the dynamics of most fish life histories. Spawning pro-
duction at age (Pt) was computed by Pt ¼Matt(L1{1–exp[–K(t–
t0)]}3), which uses the common assumption that spawning produc-
tion (per capita egg production) is proportional to biomass. Since
maturity simply scales the reproductive output, it was chosen to

mimic common groundfish and tuna maturity schedules.
Likewise selectivity at age (Sela) from a single fishery was specified
(Table 1). The fishing mortality for an age is Ft,a ¼ Ft Sela for the
F-multiplier Ft. As with maturity, the selectivity schedule simply
scales the outcomes to a schedule typical in many fisheries, where
fish initially recruit starting at age 1 and have full recruitment
at age 5.

In order to demonstrate the properties of a DD M rate, alternative
values of A, M1, and N1 were used with equations (3–5) to compute
quantities of cohort abundance Nt, realized M rate (Mt’), and equi-
librium replacement lines.

The equilibrium replacement line has a slope of Rrep/S and is the
number of recruits per spawning individual needed for a population
in equilibrium to replace itself under a particular fishing regime.
When there is no fishing, S ¼ S0 and R ¼ R0, and the replacement
line slope is equal to the inverse of S0/R0. When mortality rates are
density-independent, the replacement line is linear, i.e. Rrep¼ S/
(S0/R0). However, DD mortality rates result in a curvilinear replace-
ment line (Figure 3). Replacement lines are important in determining
excess recruitment, which is the “surplus” of recruits that will be pro-
duced in order for a population to maintain itself at a fixed stock size.
Maximum excess recruitment (MER) occurs at the stock size where
the difference between recruits from the stock–recruitment curve
and recruits from the replacement line is the largest, and occurs
where their derivatives relative to S are equal (Figure 3). MER has im-
portant implications in determining biological reference points, such
as maximum sustainable yield (Goodyear, 1980; Brooks et al., 2009;
Rothschild and Jiao, 2009). In the case where stock–recruitment

Figure 2. Examples of the realized M’-at-age derived from Lorenzen and DD models when M1/K . 1 with no fishing.
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has a monotonically decreasing derivative (as in Beverton–Holt
S–R curves) and post-recruitment density-dependence is governed
by an increasing derivative [equation (5)], MER is larger and
occurs at higher stock sizes than that coming from the Lorenzen rela-
tionship (Figure 3). Additionally, the DD stock size that produces an
excess recruitment equal to the Lorenzen MER occurs at a lower stock

Table 1. Population parameters of hypothetical Lorenzen and DD
populations.

Stock – recruit Growth

R0 106 a 1027

h 0.9 b 3.00
L1 10
K 0.2
t0 –0.5

Mortality
M1 0.2
A 2.052 × 1027

d –0.305

Age Maturity-at-age Selectivity-at-age
1 0.0 0.1
2 0.1 0.3
3 0.3 0.5
4 0.5 0.8
5 1.0 1.0
6 1.0 1.0
. . .
. . .
50 1.0 1.0

Parameter A was chosen such that equilibrium-realized natural mortality rates
at age with no fishing are the same between the two models.

Figure 3. Top panel: replacement lines with no fishing from Lorenzen
and selected DD models compared with an arbitrary Beverton–Holt
stock–recruitment model (S-R; dashed line). Bottom panel: Maximum
Excess Recruitment (MER, dotted brackets) where the slope of the S-R
curve equals the slope of the replacement line for Lorenzen (Lor) and a
DD model (AN1 ¼ 1).

Figure 4. Equilibrium yield of Lorenzen and DD populations defined in
Table 1. Vertical lines denote spawning biomass and F at maximum
sustainable yield. Lower panel compares M’t
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size (Figure 3). These relationships hold for both the Beverton–Holt
and Ricker stock–recruit models. The implications of the curvilinear
replacement lines are that there will be a broader range of stock sizes at
which productivity (excess recruitment) is high compared with the
density-independent model.

However, the comparisons in Figures 1–3 are for equilibrium
conditions, i.e. fixed recruitment. Therefore, the equivalence of
the two models relates to “average” recruitment conditions when
there is no fishing. But, recruitment in fish stocks is highly variable
even for unexploited stocks. Therein is the difference between the
two models. The Lorenzen relationship, as it is used in assessments,
fixes the mortality rate vector regardless of year-class strength,
whereas the DD model results in a modified mortality rate vector
that is higher with larger recruitments.

When there is no fishing, a cohort that has twice the original
abundance, but half the density-dependence (A), will result in the
same DD mortality rate schedule as the original. For example, if A
is 20% of the cohort strength N1, the additional M rate at the begin-
ning of age 1 is 0.2 with a total M rate of 0.2 + M1. As the cohort
ages, the mortality rate reduces toward the asymptote M1; hence,
the effect of density-dependence diminishes with age. Variation in
cohort strength results in variation in mortality-at-age, all else
being equal.

Example of age-structured model
Artificial populations were created using the selected growth, ma-
turity, and fishery selectivity parameters as listed in Table 1, with
the addition of a stock–recruitment relationship. The populations
were specified to have 106 recruits when in equilibrium with no
fishing (R0). A Beverton–Holt stock–recruitment relationship
was assumed:

R = 0.8 R0hS/[0.2S0(1 − h) + (h − 0.2)S], (7)

where spawning–stock biomass S and S0 were computed from the
weight-at-age and maturity schedules (Table 1). A steepness of
h ¼ 0.9 was assigned. While steepness is notoriously difficult to es-
timate, the value of 0.9 is commonly used. The specific value of h did
not change the basic relationship of results obtained from the two
models, only the degree of difference. Therefore, only one value of
h was presented. Given h, S0 and R0, the stock–recruitment relation-
ship was fully specified (Table 1). Note the parameters a and L1 were
given an arbitrary scale since the choice of these parameters simply
defines the units of biomass.

Two populations were defined which were identical under unf-
ished equilibrium conditions. Both assumed mortality and
growth parameters M1 ¼ 0.2 ¼ K, as in Table 1. M-at-age for the

Figure 5. Equilibrium yield of Lorenzen and DD populations where K ¼ 0.4, A ¼ 1.5 × 10-7 and all else as defined in Table 1. Vertical lines denote
spawning biomass and F at maximum sustainable yield.
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Lorenzen population was computed using equation (3). The mor-
tality schedule for the DD population was computed by numerically
selecting the parameter A such that the equilibrium M’t wasthe same
for both populations, then each population’s response to fishing
was compared. This scenario tested the difference between DD
and density-independent mortality rates when other biological
characteristics of the two populations in equilibrium were the
same (Figure 4).

As an alternative scenario, assume that the two populations had
the same equilibrium mortality schedules during a period when the
populations were near full exploitation. This scenario might occur if
the M schedule was, indeed, imposed by DD factors, but the popu-
lation was modelled as if the Lorenzen schedule were true.
Additionally, perceptions of the M schedule were based on the ex-
perience during a period of full exploitation. This scenario was
implemented by specifying K ¼ 0.4, A ¼ 1.5 × 1027 when F ¼
0.5 and all else as in Table 1 (Figure 5). A third scenario compares
a Lorenzen population with another population with a constant
Mt ¼ 0.2 for all ages (Figure 5).

Finally, 50-year projections were made for the two populations
(Lorenzen and DD) when they experienced the same recruitment
and fishing mortality rates (Figure 6). The DD M rates are
manifested through scaling of the parameter A with cohort strength
N1, i.e. through the product AN1. When there is no fishing,
a cohort that has twice the original abundance, but half the

density-dependence (A), will result in the same DD M-at-age
contribution as the original. For example, if A is 20% of the
cohort strength N1, the additional M rate at the beginning of age 1
is 0.2 with a total M rate of 0.2 + M1. As the cohort ages, the M
approaches a constant M1 (Figure 1); hence, the effect of density-
dependence diminishes with age. Variation in cohort strength
results in variation in M-at-age, all else being equal. The DD catch
model [equation (6)] results in the same catch-at-age Ct for a
given fishing mortality rate Ft as the density-independent model,
provided that the realized Mt

′ is the same in both models.

Discussion
The DD model [equation (6)] is a simple mechanism to imple-
ment age-specific M rates within a stock assessment by incorpor-
ating density-dependence throughout a fish’s life history. It is an
alternative to methods based on life history meta-analyses
(Lorenzen, 1996) or to modelling M as a function of age, e.g., by
an inverse logistic function. However, density-dependence, as
implemented here, is not equivalent to simple age-specific
values of M. The DD model maintains variability in M-at-age
through year-class variability. In many assessments of stocks
with low M, the implications of density-dependence to the estima-
tion are likely to be small relative to equivalent M-at-age from
other methods (see example). However, stocks with high recruit-
ment variability would result in high variation in M that would

Figure 6. Comparison of Lorenzen and DD population projections using the same initial abundance-at-age, fishing mortality rates and recruitment
history. Horizontal lines are the associated maximum sustainable yield reference points for fishing mortality rate F, spawning biomass and yield. The
lower right quadrant compares realized M’ at ages 1, 3 and 5 between the DD and Lorenzen models (Lorenzen Ms are the horizontal lines).
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influence both abundance trends and status. Therefore, applying
M models should always be preceded by asking the following
questions: Is density-dependence likely? What evidence exists
for it external to the assessment? Are there diagnostics within
the assessment that provide guidance?

While density-dependence through equations (4–6) incorpo-
rates notions of both age-specific M and year-class variability, the
model is still based on overall life history characteristics and
“average” effects of the ecosystem on a cohort. Thus, density-
dependence is being evaluated relative to cohort strength, rather
than the abundance of all fish in the stock or groups of adjacent
cohorts. To address this, implementations of equations (5–6)
might include year effects in which density-dependence within the
assessment is modelled as A’ ¼ Aexp(Iyear), where a year effect Iyear

is a normal deviate from zero. This could be done for appropriate
blocks of years, as indicated by external ecological information.
Similarly, A could be modelled for different life stages. For
example, A may differ before and after movement from inshore to
offshore environments that occur at specific ages.

The estimation of A and M1 will suffer similar difficulties to
those encountered in the estimation of M in stock assessments (Fu
and Quinn, 2000). Correlations between catchability coefficients
and M1 and limited age-specific index or tagging data are expected
to be factors limiting the ability to estimate M rates. Therefore,
life-history-based estimates of M1 using, e.g., Pauly (1980) or
Hoenig (1983), may still be required, as currently done with
density-independent assessments. If A is estimated, a likelihood
ratio test or model selection criterion might be used to determine
if the DD mechanism is plausible. Additionally, meta-analysis
approaches, similar to Lorenzen (1996), should be useful in defining
Bayesian priors on the A parameter. Nevertheless, further work is
needed to explore estimation properties. Of particular interest
would be estimates of A and d obtained within the assessment
model when M1 is fixed.

Incorporating density-dependence into current assessment
models is relatively simple. Equation (2) is a general case of the
usual exponential population model in which A ¼ 0. Therefore,
the same likelihood functions can be constructed for maximum
likelihood estimations for any current assessment modelling. For
example, catch-at-age can be modelled with error. Separate fisheries
and selectivities can be modelled, and a stock–recruitment function
may be incorporated. The major difference in coding is in the DD
catch [equation (6)]. Estimates of fishing mortality rates, given
catches in equation (6), require separate solution code (and deriva-
tives) from that used for equation (4). Also, when an index of abun-
dance monitors abundance throughout the year rather than at a
particular time within the year, the appropriate equation for that
index is based on equation (6).

An assessment model in which density-dependence extends
into post-recruitment ages provides a flexible modelling approach
for estimating M-at-age and variability in the rate, particularly in
younger ages. As with most assessment approaches, indices of
abundance and catch-at-age information will often not be sufficient
to fully estimate M. Nevertheless, equations (5–6) are the mechan-
isms for incorporating dynamic values of M into assessments.
As with any assessment approach, model fits and diagnostics
should be critically examined to determine whether the inclusion
of a parameter into the model is warranted, as is the case for inclu-
sion of the DD parameter A. However, the inclusion of A provides
a framework for interpreting ecological effects on single-species
dynamics.
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