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SUMMARY 

 

Stock Synthesis model sensitivity was evaluated to data weighting with a case study provided 

from preliminary Stock Synthesis model runs conducted for North Atlantic blue sharks. A two 

stage data weighting approach was investigated to iteratively tune (re-weight) variance 

adjustment factors for fleet-specific size data distributions (length composition) and fleet-

specific relative abundance indices (CPUE) within a Stock Synthesis model. An example 

implementation of the approach is provided from preliminary model runs previously completed 

for North Atlantic blue sharks with Stock Synthesis. The two stage data weighting approach 

outlined here provides an example of a possible data weighting approach within an integrated 

stock assessment model that may be useful to explore in the upcoming shortfin mako 

assessment. 

RÉSUMÉ 

 

La sensibilité du modèle de Stock Synthèse à la pondération des données a été évaluée avec une 

étude de cas provenant de scénarios préliminaires du modèle de Stock Synthèse exécutés pour 

le requin peau bleue de l'Atlantique Nord. On a examiné une approche de pondération des 

données en deux étapes afin de calibrer selon un mode itératif (repondération) des facteurs 

d'ajustement de la variance pour des distributions de données de taille spécifiques à la flottille 

(composition par taille) et pour des indices d'abondance relative spécifiques à la flottille 

(CPUE) au sein d'un modèle de Stock Synthèse. Un exemple de mise en œuvre de l'approche est 

fourni à partir des scénarios préliminaires du modèle exécutés pour le requin peau bleue de 

l'Atlantique Nord avec Stock Synthèse. L'approche de pondération des données en deux étapes 

décrite dans le présent document fournit un exemple d'une approche possible de pondération 

des données au sein d'un modèle d'évaluation intégrée des stocks qu'il pourrait être utile 

d'explorer dans la prochaine évaluation du requin-taupe bleu. 

 

RESUMEN 

 

Se evaluó la sensibilidad del modelo Stock Synthesis a la ponderación de los datos con un 

estudio de caso proporcionado a partir de los ensayos del modelo Stock Synthesis llevados a 

cabo para la tintorera del Atlántico norte. Se investigó un enfoque de ponderación de los datos 

en dos etapas para ajustar iterativamente (reponderar) los factores de ajuste de la varianza 

para la distribución de los datos de talla específicos de la flota (composición por tallas) y los 

índices de abundancia relativa (CPUE) específicos de la flota dentro de un modelo stock 

synthesis. Se facilita un ejemplo de implementación del enfoque a partir de ensayos del modelo 

preliminar previamente llevado a cabo para la tintorera del Atlántico norte con stock synthesis. 

El enfoque de ponderación de datos de dos etapas descrito aquí proporciona un ejemplo de un 

posible enfoque de ponderación de datos dentro de un modelo de evaluación de stock integrado 

que podría ser útil explorar en la próxima evaluación de marrajo dientuso. 
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1. Introduction 

 

This working document addresses stock assessment research recommendations related to data weighting within 

an integrated stock assessment model that resulted from the last Shark Working Group meeting report (See 

Anon. 2016, their section 6.1 Research and statistics): “More guidance should be developed by the SCRS on the 

relative reliability and consistency of different data streams with each other, and with knowledge of the species 

biology and fisheries; and WGSAM  [Working Group on Stock Assessment Methods] should develop guidelines 

on how SCRS species WGs should implement alternative hypotheses with Stock Synthesis. More specifically, 

the WGSAM should consider providing guidance to the Groups on how to assign variance adjustment factors 

and relative weights (lambdas) to the different data inputs to Stock Synthesis (fleet-specific size data 

distributions, relative abundance indices, etc.). Guidelines on appropriate diagnostics (e.g. likelihood profiles for 

R0 for each data component, convergence criteria, sensitivity to variance adjustment scheme, etc.) for Stock 

Synthesis should also be developed by the WGSAM.” 

 

Francis (2011) describes a two stage approach to assign variance adjustment factors to different data inputs (e.g., 

fleet-specific size data distributions and fleet-specific relative abundance indices) within an integrated stock 

assessment model. In stage one, variance adjustment factors are applied to the fleet-specific relative abundance 

indices externally to the integrated stock assessment model. In stage two, variance adjustment factors are applied 

to fleet-specific size data distributions within the integrated stock assessment model, for example based on fit to 

the fleet-specific size data distributions obtained and a resulting estimate of effective sample size, as described 

below. 

 

A two stage Francis (2011) data weighting approach was investigated here to iteratively tune (re-weight) 

variance adjustment factors for fleet-specific size data distributions (length composition) and fleet-specific 

relative abundance indices (CPUE) within a Stock Synthesis model. This approach was investigated because it 

provides an example of a possible data weighting approach within an integrated stock assessment model that 

may be useful to explore in the upcoming shortfin mako assessment. An example implementation of the 

approach is provided from preliminary model runs previously completed for North Atlantic blue sharks with 

Stock Synthesis (Courtney 2016). The blue shark model was chosen as an example because the previous 

preliminary model runs were sensitive to the weighting assigned in the model likelihood to length composition 

data. In addition, the previous preliminary model runs used an ad hoc approach to scale the inverse CV 

weighting for some CPUE time series. For example, standardized CPUE time series resulted in unrealistically 

small annual CVs for some time series. These CVs were then scaled up to a fixed CV value of 20% in order to 

match the range of CVs estimated for other input CPUE time series. Model details for the previously conducted 

preliminary model runs are provided separately in Courtney (2016).  

 

 

2. Materials and methods 

 

Two examples of a two stage Francis (2011) data weighting approach are provided. In stage one of both 

examples we assume a minimum average standard error (SE; on the natural log scale) for each CPUE series. The 

minimum was based on fitting a simple smoother to the CPUE data (on the natural log scale) outside the model 

and estimating the residual variance1 (e.g., Francis 2011; Lee et al. 2014a, 2014b). In stage two, the examples 

differ. In example one, the Francis (2011) method is applied to estimate the effective sample size of each length 

composition data set from the residuals of the Stock Synthesis model fit to the data. In example two, the 

McAllister and Ianelli (1997) method (using the harmonic mean) is applied to estimate the effective sample size 

of each length composition data from the residuals of the Stock Synthesis model fit to the data.  

 

For comparison, example results obtained with the data weighting approaches described above are compared to 

those obtained previously for North Atlantic blue sharks with Stock Synthesis (See Preliminary Run 6 in 

Courtney 2016).  

 

2.1 Example model runs 

 

As described for the preliminary model runs previously completed for North Atlantic blue sharks with Stock 

Synthesis (Courtney 2016), the CVs for each CPUE time series were obtained externally to the stock assessment 

model from the standardized fit obtained independently for each CPUE series (surveys S1 – S10; Tables 1 and 

                                                           
1 Carvalho, F. and H. Winker. 2015. Stock assessment of south Atlantic blue shark (Prionace glauca) through 2013. ICCAT Document 

 SCRS/2015/153 (withdrawn).  
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2, and Figure 1). The CVs obtained for each CPUE time series were assumed to be equal to the SE on the log 

scale. The observed sample sizes for length composition data were obtained as the number of sharks measured 

(fleets F1 – F5; Tables 1 and 3, and Figure 1). 

 

2.1.1 Example Model Run 1 

 

Stage 1. The CVs for each CPUE series were obtained externally to the Stock Synthesis model and adjusted 

externally to the model before being input in Stock Synthesis as follows. The annual CVs for each CPUE series 

were assumed to be equal to the SE on the log scale and adjusted based on our expectation that the stock 

assessment model would fit each CPUE data at best as well as a smoother (e.g., Francis 2011; Lee et al. 2014a, 

2014b). The average annual SE (SE.in; on the log scale) was calculated for each CPUE series. The square root of 

the residual variance was calculated based on the fit of a simple smoother to each CPUE series on the log scale 

as  

 

 

 

 

 

 

where tY is the observed CPUE in year t on the log scale, ˆ
tY is the predicted CPUE in year t from the smoother 

fit to the data on the log scale, and N is the number of CPUE observations—rather than the degrees of freedom 

used in the estimation of the smoother fit— (e.g., Francis 2011; Lee et al. 2014a,  2014b). For these examples, a 

LOESS smoother was fit here to each CPUE data on the log scale. If  SE.in for a CPUE series was less than 

RMSEsmoother  for that CPUE series, then the input SE for the CPUE series was adjusted (SE.adj) in Stock 

Synthesis before running the model so that the new average SE was equal to RMSEsmoother  (SE.in + SE.adj =

RMSEsmoother ). If SE.in for a CPUE series was greater than or equal to the RMSEsmoother  for that CPUE 

series then the SE of the CPUE series was not adjusted in the Stock Synthesis model. 

 

 

Stage 2. After an initial model run with the input CVs adjusted for each CPUE as described above, the input 

sample sizes for the length composition data for fleets F1 – F5 were adjusted one time with variance adjustment 

multiplication factors so that the sample size entered for each length composition data set (fleets F1 – F5) was 

equal to the effective sample size obtained using the Francis (2011) method. In this example, the resulting 

variance adjustment factors for fleets F1 – F5 were 0.0019, 0.0047, 0.0046, 0.0573, and 0.0403, respectively, 

based on Stock Synthesis output (Methot and Wetzel 2013; Methot 2015) obtained with the program r4ss 

(Taylor et al. 2014). 

  

2.1.2 Example Model Run 2 

 

Stage 1 was the same as in Example Model Run 1.  

 

Stage 2. After an initial model run with the input CVs adjusted for each CPUE as described above, the input 

sample sizes for the length composition data for fleets F1 – F5 were adjusted one time with variance adjustment 

multiplication factors so that the sample size entered for each length composition data set (fleets F1 – F5) was 

equal to the effective sample size obtained using the McAllister and Ianelli (1997) method (with a harmonic 

mean). In this example, the resulting variance adjustment factors for fleets F1 – F5 were 0.0094, 0.0251, 0.0142, 

0.0963, and 0.1710, respectively, based on Stock Synthesis output (Methot and Wetzel 2013; Methot 2015). 

 

2.2 Previously conducted preliminary model runs 

 

2.2.1 Previously conducted Preliminary Run 6 

 

The annual CVs for each CPUE time series, assumed to be equal to the SE on the log scale and obtained 

externally to the stock assessment model, were input in Stock Synthesis and used in the model likelihood as 

inverse CV “weights” for each annual abundance index, except for survey S9 (ESP-LL-N). For survey S9 (ESP-

LL-N), the standardized CPUE obtained externally resulted in unrealistically small annual CVs (ESP-LL-N; 

Table 2; See Preliminary Run 6 in Courtney 2016). Consequently, a constant CV of 20% was input in Stock 

Synthesis for survey S9 (ESP-LL-N) in order to scale up its CV to match the range of CVs estimated for other 

   
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input CPUE time series. The observed sample sizes for length composition data, obtained externally to the stock 

assessment model as the number of sharks measured, were input in Stock Synthesis and used in the model 

likelihood as the initial estimate of effective sample size for length composition data (fleets F1 – F5; Tables 1 

and 3). 

 

After an initial model run with CVs assigned to CPUE and sample sizes assigned to length composition data as 

described above, the input sample sizes for the length composition data for fleets F1 – F5 were adjusted one time 

with variance adjustment multiplication factors so that the sample size entered for each length composition data 

set (fleets F1 – F5) was equal to the effective sample size obtained using the Francis (2011) method. In this 

example, the resulting variance adjustment factors for fleets F1 – F5 were 0.0019, 0.0047, 0.0046, 0.0573, and 

0.0403, respectively, based on Stock Synthesis output (Methot and Wetzel 2013; Methot 2015) obtained with the 

program r4ss (Taylor et al. 2014), which were the same as those obtained for Example Model Run 1. 

 

2.2 Model convergence and diagnostics 

 

Model convergence was based on whether or not the Hessian inverted (i.e., the matrix of second derivatives of 

the likelihood with respect to the parameters, from which the asymptotic standard error of the parameter 

estimates is derived). Other convergence diagnostics were also evaluated. Excessive CVs on estimated quantities 

(>> 50%) or a large final gradient (>1.00E-05) were indicative of uncertainty in parameter estimates or assumed 

model structure. The correlation matrix was also examined for highly correlated (> 0.95) and non-informative (< 

0.01) parameters. Parameters estimated at a bound were a diagnostic for possible problems with data or the 

assumed model structure.  

 

2.3 Evaluating model sensitivity 
 

2.3.1 CVs of estimated parameters. 

 

Model sensitivity was evaluated by comparing the CVs of estimated parameters. 

 

2.3.2 Density plots 

 

Model sensitivity was also evaluated by comparing density plots (based on standard error of parameter estimates 

obtained from the inverted Hessian matrix with r4ss; Taylor et al. 2014). Density plots were compared for the 

main scaling parameter in the model (equilibrium recruitment; SR_ln (R0)), and the resulting equilibrium 

unfished spawning output (SPB_Virgin). Spawning output for the North Atlantic blue shark Stock Synthesis 

model (Courtney 2016) was calculated as the sum of female numbers at age multiplied by pup production (males 

and females) at age at the beginning of each calendar year and defined as spawning stock fecundity (SSF). SSF 

was input in the assessment with the assumed fraction female fixed at 0.5.  

 

2.3.3 Time series plots 

 

Model sensitivity was also evaluated by comparing time series plots of predicted CPUE indices and estimated 

recruitment deviations obtained with the program r4ss (Taylor et al. 2014). 

 

3. Results 

 

3.1 Example model runs 

 

For Example Model Run 1 and Example Model Run 2, the CVs for each CPUE series were adjusted based on the 

RMSE obtained from a LOESS smoother as described above (Figure 2). 

 

3.1.1 Example Model Run 1 

 

Example Model Run 1 (sensitivity run 1) differed from the previously conducted Preliminary Run 6 (Courtney 

2016) only in stage one. In Example Model Run 1, the input CVs for each CPUE series were adjusted externally 

to the model based on our expectation that the stock assessment model would fit each CPUE data at best as well 

as a smoother. In contrast, in the previously conducted Preliminary Run 6, the input CVs for each CPUE series 

were not adjusted externally, except for survey S9 (ESP-LL-N) which were fixed at 20%. In stage two, both 

Example Model Run 1 and the previously conducted Preliminary Run 6 applied the Francis (2011) method to 

estimate the effective sample size of each length composition data set.  
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The Hessian matrix inverted and was presumably positive definite, no parameters were estimated above the 

maximum correlation threshold (cormax = 0.95), and no parameters were estimated at boundary conditions. 

However, the final gradient (3.68E-04) was relatively larger than that obtained for the previously conducted 

Preliminary Run 6. Two parameters were also estimated below the minimum correlation threshold (cormin = 

0.01) (SizeSel_5P_3_F5 = 0.004776370; and SizeSel_5P_4_F5 = 0.000173253). The CVs of four of the 

selectivity parameters for fleet 4 and one selectivity parameter for fleet 5 were all >> 50% (Table 4).  

 

3.1.2 Example Model Run 2 

 

Example Model Run 2 (sensitivity run 2) differed from the previously conducted Preliminary Run 6 (Courtney 

2016) in both stage one and stage two. Stage one of Example Model Run 2 was the same as Example Model Run 

1. In stage two of the Example Model Run 2, the effective sample size of each length composition data set was 

estimated from the residuals of the integrated stock assessment model fit to each length composition data set 

using the McAllister and Ianelli (1997) method (harmonic mean). In contrast, in the previously conducted 

Preliminary Run 6, the effective sample size of each length composition data set was estimated using the Francis 

(2011) method. 

 

The Hessian matrix inverted and was presumably positive definite, no parameters were estimated below the 

minimum correlation threshold (cormin = 0.01), and no parameters were estimated at boundary conditions. 

However, the final gradient (5.63E-04) was relatively larger than that obtained for the previously conducted 

Preliminary Run 6. Two parameter pairs were above the maximum correlation threshold (cormax=0.95) 

(InitF_1F1 and SR_LN(R0) corr = -0.977152; and SizeSel_1P_2_F1 and SizeSel_1P_1_F1 corr = -0.961405). 

The CVs of four of the selectivity parameters for fleet 4 were all >> 50% (Table 5).  

 

3.2 Previously conducted preliminary model runs 

 

For the previously conducted Preliminary Run 6 (Courtney 2016), the Hessian matrix inverted and was 

presumably positive definite. The final gradient was relatively small (9.03E-06) and no parameters were 

estimated above the maximum correlation threshold (cormax = 0.95) or below the minimum correlation 

threshold (cormin = 0.01), and no parameters were estimated at boundary conditions. The CV of the parameter 

SizeSel_4P_3_F4 (360%) was >> 50%. However, Preliminary Run 6 model results did not appear to be sensitive 

to the value estimated for this parameter (Table 6; Courtney 2016). 

 

3.3 Evaluating model sensitivity 

 

3.3.1. CVs of estimated parameters. 

 

Several estimated selectivity parameters for Example Model Run 1 (Table 4) and Example Model Run 2 (Table 

5) had excessive CVs (>> 50%); some parameters were estimated either below the minimum correlation 

threshold (cormin = 0.01; Example Model Run 1) or above the maximum correlation threshold (cormax=0.95; 

Example Model Run 2); and the final gradients of both examples were relatively larger than that of previously 

conducted Preliminary Run 6. The excessive CVs for fleet 4 selectivity parameters (Tables 4 and 5) resulted in 

unreasonable uniform full selectivity for all lengths for fleet 4 (Figure 3). These results indicate that the 

previously conducted Preliminary Run 6 is sensitive to two stage data weighting.  

 

The excessive CVs and unreasonable uniform full selectivity for fleet 4 indicate that an investigation of 

alternative selectivity parameterizations for fleet 4 would be required before the parameter estimates and model 

results from Example Model Run 1 and Example Model Run 2 could be examined in any more detail. For 

example, during an assessment the implementation of selectivity would probably have been changed if the CVs 

of estimated selectivity parameters were excessive >> 50% or if some selectivity parameters were above or 

below the specified correlation thresholds. Consequently fits to length compositions, and R0 profiles were not 

investigated for any of the model runs conducted with two stage data weighting. 

 

 

 

 

 

 

 

 



2865 

3.3.2. Density plots  

 

Density plots of equilibrium recruitment SR_ln(R0) (Figure 4) and the resulting equilibrium unfished spawning 

output (SPB_Virgin) (Figure 5) differed substantially among model runs. This result indicates that the absolute 

scale of the population is sensitive to the two stage data weighting. However, the densities were also affected by 

the excessive CVs and uniform selectivity for fleet 4 (Tables 4 and 5, and Figure 3). Consequently, an 

investigation of alternative selectivity parameterizations for fleet 4 would be required before a more accurate 

model comparison of SR_ln(R0) and SPB_Virgin could be conducted. 

 

3.3.3. Time series plots 

 

Time series plots of recruitment deviations estimated with Stock Synthesis using two stage data weighting did 

not differ substantially from those obtained in the previously conducted Preliminary Run 6 (Figure 6). Few of 

the recruitment deviations obtained with two stage data weighting (e.g., 2010) were outside the approximate 

95% confidence intervals obtained for recruitment deviations in the previously conducted Preliminary Run 6 

(Figure 6).   

 

Similarly, time series plots of Stock Synthesis model fits to CPUE obtained with two stage data weighting did 

not differ substantially from those obtained in the previously conducted Preliminary Run 6 (Figures 7 – 16). As 

expected, fits to some CPUE time series obtained with two stage data weighting were less jagged than fits 

obtained in the previously conducted Preliminary Run 6 (Figure 12) as would be expected by increasing the 

input CVs in Stock Synthesis. Fits to CPUE time series for Fleet S9 did differ somewhat among the model runs 

compared here, especially in the stock trajectory of the most recent years (Figure 15). This is important because 

an ad hoc approach had been used previously to fix the annual CVs for survey S9 (ESP-LL-N) at 20% in the 

previously conducted Preliminary Run 6 (Courtney 2016). 

 

 

4. Discussion 

 

The two stage data weighting approach outlined here provides an example of a possible data weighting approach 

within an integrated stock assessment model that may be useful to explore in the upcoming shortfin mako 

assessment. For example, the two stage data weighting approach outline here revealed that the previously 

conducted Preliminary Run 6 (Courtney 2016) appeared to be sensitive to both the variance adjustment factors 

applied to CPUE CVs in stage one as well as to the variance adjustment factors applied to length composition 

data in stage 2. These results may be a useful diagnostic of model miss-speciation in the previously conducted 

Preliminary Run 6. Consequently, the two stage data weighting approach implemented here may also provide a 

useful model diagnostic for the upcoming shortfin mako assessment. 
 
As previously discussed (Courtney 2016), the blue shark model was sensitive to the variance adjustment factors 
applied to length composition data. In Stock Synthesis, the input sample sizes for composition (age or length) 
data should reflect the effective sample size for length composition data (Methot and Wetzel 2013: their equation 
A.3.5)-i.e., the actual number of fish in the (age or length) sample if the multinomial error model was strictly 
correct (Methot 1990: their equation L3). For example, it has been noted that a maximum sample size of 200 in 
Stock Synthesis applications would produce an expected CV of approximately 20% for a bin with 10% of the 
distribution’s mass (Methot 2000: their equation 35). McAllister and Ianelli (1997) and the Francis (2011) 
developed approaches for automatically re-weighting compositional data within integrated models based on the 
residuals of integrated model fits to the composition data. Punt (in press) evaluated these approaches, among 
others, using simulated data sets and found that integrated model results were sensitive to which approach was 
used for tuning variance adjustment factors for composition data. Importantly, the choice of method used for 
tuning variance adjustment factors to composition data was most consequential when there was model miss-
specification imposed within the simulated data sets Punt (in press).  
 

We anticipate that the model sensitivity identified here for the previously conducted Preliminary Run 6 would be 

reduced by incorporating additional structural assumptions into the stock assessment model, as recommended in 

the 2015 Shark Working Group assessment report (Anon. 2016). These recommendations include 1) modeling 

CPUE time series with conflicting trends separately, and 2) splitting length compositions into geographic regions 

with similar length frequency distributions. However, it might also be useful to continue to evaluate model 

sensitivity to a range of data weighting options in future assessments, for example those outlined here, in order to 

determine if the range in sensitive parameter values identified here (e.g., SR_ln (R0) and SPB_Virgin, Figures 4 

and 5) could be reduced as more structural assumptions are included in the model. 
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Table 1. Time series of catch, abundance, and length composition data considered for use in the preliminary SS3 model runs (See Table 1 in Courtney 2016). 

 

Time series # Symbol 

Catch (t) and abundance 

(numbers or biomass) Name Definition Length composition (10 cm FL bins) 

1 F1 Catch (t) EU EU España + Portugal (1971-2013) 

 

EU España + Portugal (1993-2013) 

2 F2 Catch (t) JPN Japan (1971-2013) 

 

Japan (1997-2013) 

3 F3 Catch (t) CTP Chinese Taipei (1971-2013) 

 

Chinese Taipei (2004-2013) 

4 F4 Catch (t) USA USA (1981-2013) 

 

USA (1992-2013) 

5 F5 Catch (t) VEN Venezuela (1986-2013) 

 

Venezuela (1994-2013) 

6 F6 Catch (t) CAN Canada (1974-2007) 

 

Mirror USA (F4) 

7 F7 Catch (t) CPR China PR (1993-2013) 

 

Mirror CTP (F3) 

8 F8 Catch (t) BEL Belize (2009-2013) 

 

Mirror VEN (F5) 

9 F9 Catch (t) OTH Other (1978-2013) 

 

Mirror CTP (F3) 

10 S1 Relative abundance (numbers) US-Log US logbook (1986-2013) 1  

 

Mirror USA (F4) 

11 S2 Relative abundance (numbers) US-Obs US observer (1992-2013)  

 

Mirror USA (F4) 

12 S3 Relative abundance (numbers) JPLL-N-e Japan (1971-1993)  

 

Mirror JPN (F2) 

13 S4 Relative abundance (numbers) JPLL-N-l Japan (1994-2013)  

 

Mirror JPN (F2) 

14 S5 Relative abundance (numbers) IRL-Rec Irish Rec. (1980-2006) 2  

 

Mirror CTP (F3) 

15 S6 Relative abundance (numbers) US-Obs-cru [1957-1970] (1971-1991) [1992-2000] 3  

 

Mirror USA (F4) 

16 S7 Relative abundance (biomass) POR-LL EU Portugal (1997-2013)  

 

Mirror EU (F1) 

17 S8 Relative abundance (numbers) VEN-LL Venezuela (1994-2013)  

 

Mirror VEN (F5) 

18 S9 Relative abundance (biomass) ESP-LL-N EU España (1997-2013)  

 

Mirror EU (F1) 

19 S10 Relative abundance (numbers) CTP-LL-N Chinese Taipei (2004-2013) 4 

 

Mirror CTP (F3) 

1. Index S1 (US-Log) used the same data as S2 (US-Obs) and was not fit in model likelihood (lambda = 0). 

2. Index S5 (IRL-Rec) was preliminary and was not fit in model likelihood (lambda = 0). 

3. Index S6 (US-Obs_cru) overlapped with S2 (US-Obs) during the years 1992 – 2000; consequently, data from 1992 – 200 were excluded from S6 in the model. 

4. Index S10 (CTP-LL-N) was preliminary, but was fit in the model likelihood because of its presumed extensive geographic coverage. 
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Table 2. Coefficients of variation (CV) corresponding to indices of relative abundance for North Atlantic blue 

shark surveys S1 – S10 (Table 1; See Table 4 in Courtney 2016). 

 
Series 1 2 3 4 5 6 7 8 9 10 

Units Numbers Numbers Numbers Numbers Numbers Numbers Biomass Numbers Biomass Numbers 

Type Logbook observer   nominal      

Name (SS3) US-Log US-Obs JPLL-N-e JPLL-N-l IRL-Rec US-Obs-cru POR-LL VEN-LL ESP-LL-N CTP-LL-N 

Survey (SS3) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1957      0.17     

1958      0.16     

1959      0.25     

1960      0.38     

1961      0.35     

1962      0.27     

1963      0.25     

1964      0.17     

1965      0.17     

1966      0.23     

1967      0.21     

1968      0.21     

1969      0.22     

1970      0.32     

1971   0.534   0.23     

1972   0.386   0.21     

1973   0.452        

1974   0.316        

1975   0.335   0.19     

1976   0.470   0.29     

1977   0.267   0.2     

1978   0.316   0.11     

1979   0.242   0.11     

1980   0.290   0.09     

1981   0.357   0.09     

1982   0.362   0.09     

1983   0.368   0.1     

1984   0.499   0.1     

1985   0.444   0.1     

1986 0.221  0.393   0.09     

1987 0.169  0.346   0.1     

1988 0.168  0.489   0.12     

1989 0.168  0.444  0.179 0.39     

1990 0.167  0.489  0.195 0.17     

1991 0.167  0.470  0.078 0.11     

1992 0.167 0.314 0.428  0.188 0.1     

1993 0.167 0.291 0.399  0.242 0.09     

1994 0.166 0.289  0.499 0.171 0.1  1.075   

1995 0.166 0.292  0.546 0.094 0.1  0.867   

1996 0.166 0.503  0.510 0.082 0.3  1.898   

1997 0.167 0.330  0.522 0.095 0.13 0.084 0.685 0.008  

1998 0.168 0.346  0.534 0.103 0.15 0.076 0.666 0.008  

1999 0.170 0.342  0.489 0.118 0.13 0.077 0.843 0.008  

2000 0.172 0.319  0.282 0.122 0.12 0.083 0.737 0.008  

2001 0.172 0.393  0.560 0.087  0.089 0.771 0.008  

2002 0.174 0.394  0.623 0.182  0.086 1.034 0.008  

2003 0.177 0.366  0.589 0.111  0.082 1.262 0.009  

2004 0.175 0.297  0.687 0.171  0.084 1.525 0.009 0.120 

2005 0.179 0.345  0.713 0.195  0.087 3.881 0.010 0.185 

2006 0.181 0.310  0.687 0.203  0.084 2.244 0.010 0.062 

2007 0.182 0.324  0.606 0.253  0.085 1.353 0.011 0.220 

2008 0.174 0.321  0.687 0.453  0.085 1.164 0.011 0.275 

2009 0.174 0.312  0.643 0.190  0.086 1.559 0.012 0.171 

2010 0.175 0.308  0.643 0.406  0.089 1.543 0.010 0.101 

2011 0.175 0.294  0.510 0.464  0.079 1.514 0.010 0.119 

2012 0.176 0.336  0.510 0.483  0.081 1.000 0.010 0.109 

2013 0.174 0.305  0.206 0.553  0.085 1.842 0.011 0.138 
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Table 3. Observed sample size (number of sharks measured) for available length composition in fleets F1 – F5 

(Table 1; See Table 9 in Courtney 2016). 

 

Year 

F1  

(EU) 

F2  

(JPN) 

F3 

(CTP) 

F4 

(USA) 

F5 

(VEN) 

1992 0 0 0 35 0 

1993 2025 0 0 363 0 

1994 0 0 0 319 57 

1995 0 0 0 105 94 

1996 0 0 0 10 13 

1997 914 2813 0 146 125 

1998 562 1208 0 13 147 

1999 2142 301 0 21 83 

2000 2325 354 0 84 97 

2001 4643 923 0 5 74 

2002 1127 794 0 2 45 

2003 5096 1907 0 9 26 

2004 2455 1386 413 98 40 

2005 3153 2488 289 39 4 

2006 7242 2076 7373 85 14 

2007 3359 2244 159 125 7 

2008 4828 3729 192 129 26 

2009 2754 1786 595 98 24 

2010 7345 2226 287 511 44 

2011 2639 1751 444 393 164 

2012 10949 1970 359 10 169 

2013 2606 1799 236 17 90 
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Table 4. Example Model Run 1 (sensitivity run 1) non-recruitment parameter estimates; Parameters with a negative phase were fixed at their initial value; CV is calculated as 

the asymptotic standard error (Parm_StDev) divided by the estimated value (Value).   

 
Num Label Value Active_Cnt Phase Min Max Init Status Parm_StDev PR_type Prior Pr_SD CV (%) 

16 SR_LN(R0) 8.700 1 1 2.3 13.82 7.04 OK 0.056 Normal 7.04 1000 0.6 

65 InitF_1F1 

            

  

0.048 45 1 0 1.9 0.1 OK 0.009 Normal 0.38 1000 17.9 

74 SizeSel_1P_1_F1 

            75 SizeSel_1P_2_F1 160.289 46 2 1 500 100 OK 35.887 Sym_Beta 100 0.05 22.4 

76 SizeSel_1P_3_F1 0.034 47 3 0 1 0.15 OK 0.012 Sym_Beta 0.15 0.05 35.1 

77 SizeSel_1P_4_F1 255.202 48 2 1 500 243 OK 13.003 Sym_Beta 243 0.05 5.1 

78 SizeSel_1P_5_F1 0.097 49 3 0 1 0.08 OK 0.057 Sym_Beta 0.08 0.05 58.7 

79 SizeSel_1P_6_F1 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

80 SizeSel_2P_1_F2 0.000 _ -88 0 1 0 NA _ Sym_Beta 0 0.05 NA 

81 SizeSel_2P_2_F2 132.755 50 2 1 500 120 OK 9.237 Sym_Beta 120 0.05 7.0 

82 SizeSel_2P_3_F2 0.077 51 3 0 1 0.15 OK 0.019 Sym_Beta 0.15 0.05 24.8 

83 SizeSel_2P_4_F2 233.278 52 2 1 500 220 OK 15.402 Sym_Beta 220 0.05 6.6 

84 SizeSel_2P_5_F2 0.057 53 3 0 1 0.07 OK 0.029 Sym_Beta 0.07 0.05 50.6 

85 SizeSel_2P_6_F2 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

86 SizeSel_3P_1_F3 0.000 _ -88 0 1 0 NA _ Sym_Beta 0 0.05 NA 

87 SizeSel_3P_2_F3 228.296 54 2 5 500 200 OK 12.097 Sym_Beta 200 0.05 5.3 

88 SizeSel_4P_1_F4 53.636 55 3 0.01 60 25 OK 9.092 Sym_Beta 25 0.05 17.0 

89 SizeSel_4P_2_F4 275.849 56 2 1 500 110 OK 552.436 Sym_Beta 110 0.05 200.3* 

90 SizeSel_4P_3_F4 0.506 57 3 0 1 0.09 OK 1.518 Sym_Beta 0.09 0.05 300.0* 

91 SizeSel_4P_4_F4 226.030 58 2 1 500 120 OK 571.599 Sym_Beta 120 0.05 252.9* 

92 SizeSel_4P_5_F4 0.504 59 3 0 1 0.05 OK 1.526 Sym_Beta 0.05 0.05 302.7* 

93 SizeSel_4P_6_F4 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

94 SizeSel_5P_1_F5 0.000 _ -88 0 1 0 NA _ Sym_Beta 0 0.05 NA 

95 SizeSel_5P_2_F5 175.791 60 2 1 500 210 OK 12.186 Sym_Beta 210 0.05 6.9 

96 SizeSel_5P_3_F5 0.054 61 3 0 1 0.05 OK 0.012 Sym_Beta 0.05 0.05 21.7 

97 SizeSel_5P_4_F5 360.598 62 2 1 500 210 OK 54.474 Sym_Beta 210 0.05 15.1 

98 SizeSel_5P_5_F5 0.511 63 3 0 1 0.05 OK 1.533 Sym_Beta 0.05 0.05 299.9* 

99 SizeSel_5P_6_F5 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

*High CV >>50% . 
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Table 5. Example Model Run 2 (sensitivity run 2) non-recruitment parameter estimates; Parameters with a negative phase were fixed at their initial value; CV is calculated as 

the asymptotic standard error (Parm_StDev) divided by the estimated value (Value).  

 
Num Label Value Active_Cnt Phase Min Max Init Status Parm_StDev PR_type Prior Pr_SD CV (%) 

16 SR_LN(R0) 9.079 1 1 2.3 13.82 7.04 OK 0.198 Normal 7.04 1000 2.2 

              65 InitF_1F1 0.025 45 1 0 1.9 0.1 OK 0.006 Normal 0.38 1000 22.9 

              74 SizeSel_1P_1_F1 107.559 46 2 1 500 100 OK 7.337 Sym_Beta 100 0.05 6.8 

75 SizeSel_1P_2_F1 0.098 47 3 0 1 0.15 OK 0.039 Sym_Beta 0.15 0.05 39.5 

76 SizeSel_1P_3_F1 264.482 48 2 1 500 243 OK 4.492 Sym_Beta 243 0.05 1.7 

77 SizeSel_1P_4_F1 0.132 49 3 0 1 0.08 OK 0.038 Sym_Beta 0.08 0.05 29.1 

78 SizeSel_1P_5_F1 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

79 SizeSel_1P_6_F1 0.000 _ -88 0 1 0 NA _ Sym_Beta 0 0.05 NA 

80 SizeSel_2P_1_F2 127.882 50 2 1 500 120 OK 3.921 Sym_Beta 120 0.05 3.1 

81 SizeSel_2P_2_F2 0.083 51 3 0 1 0.15 OK 0.010 Sym_Beta 0.15 0.05 11.9 

82 SizeSel_2P_3_F2 223.874 52 2 1 500 220 OK 6.508 Sym_Beta 220 0.05 2.9 

83 SizeSel_2P_4_F2 0.054 53 3 0 1 0.07 OK 0.009 Sym_Beta 0.07 0.05 17.3 

84 SizeSel_2P_5_F2 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

85 SizeSel_2P_6_F2 0.000 _ -88 0 1 0 NA _ Sym_Beta 0 0.05 NA 

86 SizeSel_3P_1_F3 217.033 54 2 5 500 200 OK 7.598 Sym_Beta 200 0.05 3.5 

87 SizeSel_3P_2_F3 55.567 55 3 0.01 60 25 OK 6.320 Sym_Beta 25 0.05 11.4 

88 SizeSel_4P_1_F4 276.637 56 2 1 500 110 OK 551.575 Sym_Beta 110 0.05 199.4* 

89 SizeSel_4P_2_F4 0.506 57 3 0 1 0.09 OK 1.515 Sym_Beta 0.09 0.05 299.2* 

90 SizeSel_4P_3_F4 225.070 58 2 1 500 120 OK 566.232 Sym_Beta 120 0.05 251.6* 

91 SizeSel_4P_4_F4 0.505 59 3 0 1 0.05 OK 1.522 Sym_Beta 0.05 0.05 301.4* 

92 SizeSel_4P_5_F4 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

93 SizeSel_4P_6_F4 0.000 _ -88 0 1 0 NA _ Sym_Beta 0 0.05 NA 

94 SizeSel_5P_1_F5 211.867 60 2 1 500 210 OK 12.483 Sym_Beta 210 0.05 5.9 

95 SizeSel_5P_2_F5 0.063 61 3 0 1 0.05 OK 0.008 Sym_Beta 0.05 0.05 13.3 

96 SizeSel_5P_3_F5 106.299 62 2 1 500 210 OK 47.450 Sym_Beta 210 0.05 44.6 

97 SizeSel_5P_4_F5 0.031 63 3 0 1 0.05 OK 0.010 Sym_Beta 0.05 0.05 31.7 

98 SizeSel_5P_5_F5 1.000 _ -88 1 24 1 NA _ Sym_Beta 1 0.05 NA 

99 SizeSel_5P_6_F5 0.000 _ -88 0 1 0 NA _ Sym_Beta 0 0.05 NA 

*High CV >>50% . 
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Table 6. Preliminary Run 6 (See Table 11 in Courtney 2016) non-recruitment parameter estimates; Parameters with a negative phase were fixed at their initial value; CV is 

calculated as the asymptotic standard error (Parm_StDev) divided by the estimated value (Value).   

 
Num Label Value Active_Cnt Phase Min Max Init Status Parm_StDev PR_type Prior Pr_SD CV (%) 

16 SR_LN(R0) 8.789 1 1 2.3 13.82 7.04 OK 0.146 Normal 7.04 1000 1.7 

65 InitF_1F1 0.046 45 1 0 1.9 0.1 OK 0.012 Normal 0.38 1000 26.1 

              74 SizeSel_1P_1_F1 171.635 46 2 1 500 100 OK 51.767 Sym_Beta 100.00 0.05 30.2 

75 SizeSel_1P_2_F1 0.029 47 3 0 1 0.15 OK 0.011 Sym_Beta 0.15 0.05 37.7 

76 SizeSel_1P_3_F1 251.752 48 2 1 500 243 OK 13.177 Sym_Beta 243.00 0.05 5.2 

77 SizeSel_1P_4_F1 0.098 49 3 0 1 0.08 OK 0.051 Sym_Beta 0.08 0.05 52.0 

78 SizeSel_1P_5_F1 1.000 _ -88 1 24 1 NA _ Sym_Beta 1.00 0.05 NA 

79 SizeSel_1P_6_F1 0.000 _ -88 0 1 0 NA _ Sym_Beta 0.00 0.05 NA 

80 SizeSel_2P_1_F2 130.939 50 2 1 500 120 OK 9.218 Sym_Beta 120.00 0.05 7.0 

81 SizeSel_2P_2_F2 0.079 51 3 0 1 0.15 OK 0.020 Sym_Beta 0.15 0.05 26.0 

82 SizeSel_2P_3_F2 230.031 52 2 1 500 220 OK 14.903 Sym_Beta 220.00 0.05 6.5 

83 SizeSel_2P_4_F2 0.057 53 3 0 1 0.07 OK 0.026 Sym_Beta 0.07 0.05 45.8 

84 SizeSel_2P_5_F2 1.000 _ -88 1 24 1 NA _ Sym_Beta 1.00 0.05 NA 

85 SizeSel_2P_6_F2 0.000 _ -88 0 1 0 NA _ Sym_Beta 0.00 0.05 NA 

86 SizeSel_3P_1_F3 224.418 54 2 5 500 200 OK 12.015 Sym_Beta 200.00 0.05 5.4 

87 SizeSel_3P_2_F3 52.088 55 3 0.01 60 25 OK 9.247 Sym_Beta 25.00 0.05 17.8 

88 SizeSel_4P_1_F4 108.567 56 2 1 500 110 OK 3.872 Sym_Beta 110.00 0.05 3.6 

89 SizeSel_4P_2_F4 0.131 57 3 0 1 0.09 OK 0.017 Sym_Beta 0.09 0.05 12.8 

90 SizeSel_4P_3_F4 10.746 58 2 1 500 120 OK 38.707 Sym_Beta 120.00 0.05 360.2* 

91 SizeSel_4P_4_F4 0.036 59 3 0 1 0.05 OK 0.005 Sym_Beta 0.05 0.05 14.7 

92 SizeSel_4P_5_F4 1.000 _ -88 1 24 1 NA _ Sym_Beta 1.00 0.05 NA 

93 SizeSel_4P_6_F4 0.000 _ -88 0 1 0 NA _ Sym_Beta 0.00 0.05 NA 

94 SizeSel_5P_1_F5 215.389 60 2 1 500 210 OK 25.063 Sym_Beta 210.00 0.05 11.6 

95 SizeSel_5P_2_F5 0.064 61 3 0 1 0.05 OK 0.018 Sym_Beta 0.05 0.05 28.3 

96 SizeSel_5P_3_F5 104.847 62 2 1 500 210 OK 101.137 Sym_Beta 210.00 0.05 96.5 

97 SizeSel_5P_4_F5 0.030 63 3 0 1 0.05 OK 0.021 Sym_Beta 0.05 0.05 69.2 

98 SizeSel_5P_5_F5 1.000 _ -88 1 24 1 NA _ Sym_Beta 1.00 0.05 NA 

99 SizeSel_5P_6_F5 0.000 _ -88 0 1 0 NA _ Sym_Beta 0.00 0.05 NA 

  *High CV >>50% . 
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Figure 1. Time series of catch, abundance, and length composition data considered for use in the preliminary 

SS3 model runs (See Figure 7 in Courtney 2016). 
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Figure 2. LOESS smoother fits used to estimate the RMSEsmoother for each CPUE series in Example Model Run 1 

and Example Model Run 2; Left panel: Smoother fits to log (CPUE) data; Middle panel: Residual plots and 

estimated RMSE for each CPUE series and time-block (where applicable); Right panel: LOESS smoother fits 

illustrated for CPUE indices. 
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Figure 2. Continued.  
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Figure 2. Continued. 
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Figure 3. Selectivity at length (cm FL) obtained for previously conducted Preliminary Run 6 (Courtney 2016; 

upper panel), Example Model Run 1 (left lower panel), and Example Model Run 2 (right lower panel). 
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Figure 4. Density plots for the main scaling parameter in the model (equilibrium recruitment; SR_ln(R0)) 

among different model runs compared here.  
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Figure 5. Density plots for equilibrium unfished spawning output (SPB_Virgin) among different model runs 

compared here. 
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Figure 6. Estimated log recruitment deviations for the early (1968 – 1990, blue) and main (1991 – 2010, black) 

recruitment periods with associated 95% asymptotic intervals obtained for previously conducted Preliminary 

Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel).   
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Figure 7. Index S1 (US-Log) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel); 

Note that index S1 (US-Log) was only included in the model for exploratory purposes, was not fit in the model 

likelihood (lambda = 0), and had no influence on model results or predicted values. 

 

  



2882 

 

 
 

 

Figure 8. Index S2 (US-Obs) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel). 
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Figure 9. Index S3 (JPLL-N-e) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel). 
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Figure 10. Index S4 (JPLL-N-l) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel). 
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Figure 11. Index S5 (IRL-Rec) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel); 

Note that index S5 (IRL-Rec) was only included in the model for exploratory purposes, was not fit in the model 

likelihood (lambda = 0), and had no influence on model results or predicted values. 
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Figure 12. Index S6 (US-Obs-cru) predicted (blue line) and observed (open circles with 95% confidence 

intervals assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel); 

Note that index S6 (US-Obs_cru) overlapped with S2 (US-Obs) during the years 1992 – 2000, and data from 

those years were excluded from the model fit to S6. 
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Figure 13. Index S7 (POR-LL) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel). 
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Figure 14. Index S8 (VEN-LL) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel). 
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Figure 15. Index S9 (ESP-LL-N) predicted (blue line) and observed (open circles with 95% confidence intervals 

assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel). 
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Figure 16. Index S10 (CTP-LL-N) predicted (blue line) and observed (open circles with 95% confidence 

intervals assuming lognormal error) standardized index of relative abundance obtained for previously conducted 

Preliminary Run 6 (Courtney 2016, SCRS/2015/151; upper panel) and model runs compared here (lower panel). 
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