# STOCK SYNTHESIS (SS3) MODEL RUNS CONDUCTED FOR NORTH ATLANTIC SHORTFIN MAKO SHARK 

Dean Courtney, Enric Cortés, and Xinsheng Zhang

SEDAR65-RD09

Received: 5/7/2020


# STOCK SYNTHESIS (SS3) MODEL RUNS CONDUCTED FOR NORTH ATLANTIC SHORTFIN MAKO SHARK 

Dean Courtney ${ }^{1}$, Enric Cortés ${ }^{1}$, and Xinsheng Zhang ${ }^{1}$


#### Abstract

SUMMARY Stock Synthesis model runs were conducted for the North Atlantic shortfin mako shark based on the available catch, CPUE, length composition, and life history data compiled by the Shark Working Group. A sex-specific model was implemented in order to allow for observed differences in growth between sexes. Beverton-Holt stock-recruitment was assumed. The steepness of the stock recruitment relationship and natural mortality at age were fixed at independently estimated values. A two-stage data weighting approach was implemented. Ending year (2015) stock status relative to maximum sustainable yield (MSY) reference points obtained from the final SS3 model run following the two stage data weighting approach indicated that the fishing mortality rate in 2015 was above the fishing mortality rate at maximum sustainable yield $\left(F_{-} 2015 / F_{-} M S Y=3.5\right)$ and that $F_{-} 2015 / F_{-} M S Y$ first exceeded 1.0 in 1985. The final SS3 model run indicated that spawning stock size in 2015, calculated here as spawning stock fecundity (SSF, 1,000s), was above the spawning stock size at MSY (SSF_2015/SSF_MSY = 1.217).


## RÉSUMÉ

Des scénarios du modèle Stock synthèse ont été réalisés pour le requin-taupe bleu de l'Atlantique Nord basés sur les données disponibles de capture, CPUE, composition par taille et cycle vital qui ont été compilées par le Groupe d'espèces sur les requins. Un modèle sexospécifique a été mis en ouvre afin de pouvoir observer des différences de croissance entre les sexes. On a postulé une relation stock-recrutement de Beverton-Holt. La pente à l'origine de la relation stock-recrutement (steepness) et la mortalité naturelle par âge ont été fixées à des valeurs estimées de façon indépendante. Une approche de pondération des données en deux étapes a été mise en øuvre. L'état du stock de l'année finale (2015) par rapport aux points de référence de la production maximale équilibrée (PME) obtenu à partir du scénario final du modèle SS3 suivant l'approche de pondération des données en deux étapes indiquait que le taux de mortalité par pêche en 2015 était supérieur à la production maximale équilibrée ( $F \_2015 / F_{-} P M E=3,5$ ) et que $F_{-} 2015 / F_{\_} P M E$ avait dépassé 1,0 pour la première fois en 1985. Le scénario final du modèle SS3 indiquait que la taille du stock reproducteur en 2015, calculée comme la fécondité du stock reproducteur (SSF, 1000s), était supérieure à la taille du stock reproducteur au niveau de la PME (SSF_2015/SSF_PME = 1,217).

## RESUMEN

Se llevaron a cabo ensayos del modelo Stock Shynthesis para el marrajo dientuso del Atlántico norte basados en los datos disponibles de captura, CPUE, composición por tallas y ciclo vital recopilados por el Grupo de especies de tiburones. Se implementó un modelo específico del sexo para tener en cuenta las diferencias específicas del sexo observadas en el crecimiento. Se asumió una relación stock reclutamiento de Beverton-Holt. La inclinación de la relación stock reclutamiento y la mortalidad natural por edad se fijaron en valores estimados independientemente. Se utilizó un enfoque de ponderación de los datos en dos etapas: el año final (2015) del estado del stock en relación a los puntos de referencia del rendimiento máximo sostenible (RMS) obtenidos en el ensayo final del modelo SS3 siguiendo el enfoque de ponderación de los datos en dos etapas indicaba que la tasa de mortalidad por pesca en 2015 era superior a la tasa de mortalidad por pesca en el rendimiento máximo sostenible ( $F_{-} 2015 / F_{-} R M S=3,5$ ) y que $F_{-} 2015 / F_{-} R M S$ superó por primera vez el 1,0 en 1985. El ensayo final del modelo SS3 indicaba que el tamaño del stock reproductor en 2015, calculado aquí como fecundidad del stock reproductor (SSF, 1000s) era superior al tamaño del stock reproductor en $R M S\left(S S F \_2015 / S S F \_R M S=1,217\right)$.

[^0]
## KEYWORDS

Stochastic models, Stock assessment, Shark fisheries, Pelagic fisheries, Shortfin mako shark

## 1. Introduction

A length-based age-structured statistical model was implemented with Stock Synthesis (Methot and Wetzel 2013) version 3.24 U (SS3; e.g., Methot 2015) for the North Atlantic shortfin mako stock. Stock Synthesis is an integrated modeling approach (Maunder and Punt 2013) and was proposed to take advantage of available length composition data sources. An advantage of the integrated modeling approach is that the development of statistical methods which combine several sources of information into a single analysis allows for consistency in assumptions and permits the uncertainty associated with multiple data sources to be propagated to final model outputs (Maunder and Punt 2013). A disadvantage of the integrated modeling approach is the increased model complexity. Because of the model complexity and because this is the first time that Stock Synthesis will be applied to shortfin mako in ICCAT, its application was limited to the North Atlantic stock.

A sex-specific model was implemented to allow for observed differences in length at age between sexes. Sexspecific length composition and life history inputs were obtained and input, where available. Sex-specific natural mortality and growth were implemented, and sex-specific selectivity was implemented for fleets with sexspecific length composition data.

A two-stage Francis (2011) data weighting approach was implemented to iteratively tune (re-weight) variance adjustment factors for fleet-specific relative abundance indices (CPUE) externally to the model (Stage 1) and fleet-specific size data distributions (length composition) within the Stock Synthesis model (Stage 2). Francis (2011) describes a two-stage approach to assign variance adjustment factors to different data inputs (e.g., first to fleet-specific relative abundance indices, and second to fleet-specific size data distributions) within an integrated stock assessment model. In stage one, variance adjustment factors are applied to the fleet-specific relative abundance indices externally to the integrated stock assessment model. In stage two, variance adjustment factors are applied to fleet-specific size data distributions within the integrated stock assessment model. An example of this approach was previously investigated for North Atlantic blue shark and described in SCRS/2016/066 (Courtney et al. 2017).

Ending year (2015) stock status relative to maximum sustainable yield (MSY) reference points is provided for the final SS3 model run following the two-stage data weighting approach described above.

## 2. Materials and methods

The model was fitted to the available catch, CPUE, and length composition data compiled during the 2017 Shortfin Mako Shark Data Preparatory meeting. Life history inputs were obtained from data first assembled at the 2014 Intersessional meeting of the Shark Species Group (Anon. 2015), plus updated information provided during the 2016 Intersessional meeting of the Shark Species Group (Anon. 2017), the 2017 Shortfin Mako Shark Data Preparatory meeting (Anon. In Prep.), and thereafter, as summarized below. A sex-specific model was implemented to allow for observed differences in growth between sexes.

### 2.1 Time series data

Available time series of catch, abundance, and length composition data considered for use in the SS3 model runs were assigned to "fleets" and "surveys" as summarized in Table 1. The start year of the model was 1950, and the end year was 2015.

### 2.1.1 Catch

Catch in metric tons (t) by major flag for North Atlantic mako was obtained from data compiled during the 2017 Shortfin Mako Data Preparatory meeting (Table 2, Figure 1) and assigned to fleets F1 - F12 for use in SS3 model runs as described in Table 1.

### 2.1.2 Indices of abundance

Indices of abundance for North Atlantic shortfin mako and their corresponding coefficients of variation (CV) were obtained from data compiled during the 2017 Shortfin Mako Data Preparatory meeting (Tables 3 and 4, Figure 2; Anon. In Prep.), except for EU España Longline (EU ESP LL) which was obtained separately from SCRS/2017/108. The available abundance indices and their associated CVs were assigned to surveys S1-S6 for use in the SS3 model runs as described in Table 1.

### 2.1.3 Length composition

A sex-specific model was implemented in order to allow for observed differences in length at age between sexes, as described below. Sex-specific ( $\odot, \widehat{J}^{\top}$ ) and sex unknown (Unknown) length composition data, $30-350 \mathrm{~cm}$ fork length (FL) in 10 cm FL bins, were obtained for North Atlantic shortfin mako from data compiled during the 2017 Shortfin Mako Data Preparatory meeting as reported in document SCRS/2017/048 (Figure 3; Coelho et al. In Prep.). Length composition data were assigned to fleets F1 - F5 as described in Table 1. Length composition data for USA LL were updated here to remove estimated lengths. Sex-combined length composition data ( $O$, ${ }^{1}$, Unknown) were entered in SS3 for fleet F1 (EU LL), because the available sex-specific data for F1 ( $\circ, \delta^{\top}$ ) were limited ( $13 \%$ of the combined data were sex specific) (Table 5). Sex-specific length composition data were entered in SS3 for fleets F2 (JPN LL), F3 (CTP LL), F4 (USA LL), and F5 (VEN LL), because sex-specific data made up higher proportions of the combined data for the other fleets $(92 \%, 100 \%, 100 \%$, and $100 \%$, respectively) (Table 5). A 10 cm FL bin width was chosen for the length composition data bin width and 21 data length bins ( $55-255+\mathrm{cm}$ FL, 10 cm FL bins) were defined for use in SS3. A jagged pattern was apparent in some of the length composition data sources at a higher 5 cm FL bin width, which suggested that some lengths were estimated or were not measured at more than 10 cm resolution. In the Stock Synthesis model, a finer resolution can be established for the internal calculations of numbers at length (population length bins) than is used to enter the data (data length bins). For this assessment, a total of 66 population length bins were implemented ( $55-380+\mathrm{cm}$ FL in 5 cm FL bins).

### 2.2 Life history

Sex-specific life history inputs were obtained from data first assembled at the 2014 Intersessional meeting of the Shark Species Group (Anon. 2015), plus updated information provided during the 2016 Intersessional meeting of the Shark Species Group (Anon. 2017), the 2017 Shortfin Mako Shark Data Preparatory meeting (Anon. In Prep.), and thereafter, as summarized in document SCRS/2017/126 (Cortés In Prep.; Table 6). The maximum age in SS3 was fixed at 30 yr based on the approximate maximum age observed in the population (Table 6). In SS3, maximum age is modelled as a "plus" group that accumulates ages greater than or equal to the maximum age.

### 2.2.1 Growth

Growth in length at age was assumed to follow a von Bertalanffy growth (VBG) relationship, and sex-specific growth was implemented in SS3 by modelling female and male VBG with updated parameters provided separately in SCRS/2017/111 (Table 7 and Figure 4). VBG length at age-0 ( $L_{\text {Amin }}$ ) was fixed at 63.0 cm FL for both females and males. VBG asymptotic length ( $\mathrm{L}_{\mathrm{inf}}$ ) was 350.6 cm FL for females and 241.8 cm FL for males. VBG growth coefficient $(k)$ was 0.064 for females and 0.136 for males. The resulting VBG intercept ( $\mathrm{t}_{0}$ ) was estimated here as -3.1 for females and -2.2 for males.

A normal distribution in mean length at each age was assumed and was implemented in SS3 separately for females and males (Figure 5). The CV in mean length at age was assumed to be a linear function of length. Values for the CVs in length at each age were obtained here from the raw data used for document SCRS/2017/111 (R. Coelho, Pers. Comm.). The sample standard deviation in observed length at each age was divided by the mean in observed length at each age. The CV for $\mathrm{L}_{\text {Amin }}$ was computed as the average CV for ages $<=8 \mathrm{yr}$. The CV for $\mathrm{L}_{\text {inf }}$ was computed as the average CV for ages $>8 \mathrm{yr}$. The resulting CVs for $\mathrm{L}_{\text {Amin }}$ were 0.093 for females and 0.097 for males. The resulting CVs for $L_{\text {inf }}$ were 0.090 for females and 0.082 for males. CVs were linearly interpolated between $L_{\text {Amin }}$ and $L_{\text {inf. }}$. The break point at age ( 8 yr ) was chosen because this was the approximate age after which male and female growth began to differ noticeably (e.g., see Figure 4)

A combined-sex length-weight relationship, weight $(\mathrm{kg})=5.2432 \mathrm{E}-06^{*}(\mathrm{~cm} \mathrm{FL})^{\wedge} 3.1407$ (Table 6) was implemented in SS3 to convert body length ( cm FL) to body weight ( kg ) for both males and females.

### 2.2.2 Pup production

Annual pup production at each age (Table 8) was implemented in SS3 model runs, and was calculated as follows. Growth in cm FL at each age was assumed to follow the female VBG relationship from Table 7. Growth in cm TL was obtained as (growth in cm FL + 1.7101)/ 0.9286 from Table 6. Litter size (LS) was obtained as 0.81 * (growth in m TL)^ 2.346 from Table 6. Female fraction mature (Mat) at m TL was obtained as $1 /(1+\exp -(-27.81+9.332 * \mathrm{MS})$ ) from Table 6, where MS was maternal size (m TL). Annual pup production was obtained by assuming a three year reproductive cycle (Table 6) and calculated as [(LS) * (Mat)]/3 (Table 8). For sensitivity analyses, a more conservative estimate of the annual pup production at parturition at age $a$ was modeled as the annual pup production at age $a-2$, based on an assumed gestation period of 18 months (Table 6) plus an additional 6 months to allow for mating.

### 2.3 Model structure

### 2.3.1 Natural mortality

Sex-specific natural mortality rates at each age $\left(M_{a}\right)$ were fixed at values obtained independently with life history invariant methods, as described in document SCRS/2017/126 (Cortés In Prep.; Table 9, Figure 6). The VBG parameters utilized to derive sex-specific natural mortality rates were obtained from document SCRS/2017/111 (Rosa et al. In Prep), and were the same as those used in the SS3 model runs (Table 7).

### 2.3.2 Stock recruitment

A Beverton-Holt stock-recruitment relationship was assumed and implemented in SS3. In Stock Synthesis, the Beverton-Holt stock-recruitment model is parameterized with three parameters, the $\log$ of unexploited equilibrium recruitment $\left(R_{0}\right)$, the steepness parameter $(h)$ and a parameter representing the standard deviation in recruitment $\left(\sigma_{\mathrm{R}}\right)$ (Methot and Wetzel 2013; e.g., Wetzel and Punt 2011a, 2011b). Parameter estimation for $\ln \left(R_{0}\right)$ utilized a normal prior with a large standard deviation ( Pr _ SD ) along with independent minimum and maximum boundary conditions (Min, Max). Implementation of a normal prior is described in the manual for Stock Synthesis (Methot 2015). The steepness parameter, $h$, describes the fraction of the unexploited recruits produced at $20 \%$ of the equilibrium spawning biomass level. For these SS3 model runs, the stock-recruit steepness parameter was fixed at a value obtained analytically based on life history, $h=0.345$ (Table 9), as described in document SCRS/2017/126 (Cortés In Prep.). The VBG parameters utilized to derive the stock-recruit steepness parameter were obtained from document SCRS/2017/111 (Rosa et al. In Prep), and were the same as those used to derive sex specific natural mortality rates, as described above, and as those used in the SS3 model runs (Table 7). The parameter representing the standard deviation in recruitment, $\sigma_{\mathrm{R}}$, was fixed initially at a value of 0.4 and updated as described below.

Spawning stock size in the stock-recruitment relationship was modelled as spawning stock fecundity (SSF), and calculated here as the sum of female numbers at age (in $1,000 \mathrm{~s}$ ) multiplied by annual female pup production at age (male and female pups, assuming a 1:1 ratio of male to female pups) at the beginning of each calendar year.

An examination of preliminary SS3 output with the program r4ss (Taylor et al. 2014) indicated that there was little recruitment information in the data prior to about 1985, that there was a ramp up in recruitment information by about 1990 consistent with availability of length composition data beginning about that time (Table 5 and Figure 7; e.g., see Figure 11 - lower panel), and a ramp back down after about 2012 consistent with the decreasing influence of length composition data on recruitment with proximity to the terminal year of the model. Consequently, main recruitment deviations were estimated in these SS3 model runs for the years 1990 - 2012, with early recruitment deviations beginning 5 years prior to the main recruitment in 1985. Main recruitment deviations are zero centered. The estimation of early recruitment deviations allows for recruitment in early periods without biasing recruitment estimates in the main period. Recruitment deviations are estimated on the log scale in Stock Synthesis. Consequently, the expected recruitments require a bias adjustment so that the resulting recruitment level on the standard scale is mean unbiased. The years chosen for bias adjustment, and the maximum bias adjustment parameter value were obtained from Stock Synthesis output with the program r 4 ss .

### 2.3.3 Selectivity

A double normal selectivity function (Stock Synthesis selectivity pattern 24; Methot 2015) was implemented in SS3 for fleets F1 - F5 (Table 1) and fit to the available length composition data ( 10 cm FL bin width; Figure 3). The double normal selectivity function includes six parameters: p1 - Peak value, p2 - Top logistic, p3 Ascending width, p4 - Descending width, p5 - Selectivity at initial size bin, and p6-Selectivity at final size bin.

Initial values for all parameters were obtained by fitting the selectivity curve by eye to the available length composition data separately for each fleet within a Microsoft Excel spreadsheet provided with Stock Synthesis. Selectivity at the first bin (p5) was subsequently fixed at its value determined by eye, and the remaining parameters were estimated within SS3 with initial values set to those obtained by eye. This approach allowed for either asymptotic selectivity or dome-shaped selectivity depending upon the data. Parameter estimation for double normal selectivity parameters utilized a diffuse symmetric beta prior ( $\mathrm{Pr}_{-} \mathrm{SD}=0.05$ ) scaled between parameter bounds. A diffuse symmetric beta prior imposed larger penalty near minimum and maximum boundary conditions (Min, Max) and is described in the manual for Stock Synthesis (Methot 2015). Because there was no prior information - other than the fit by eye, the priors were set equal to the initial values.

Sex-specific selectivity was implemented for fleets with sex-specific length composition data (F2 - F5; Tables 1 and 5). Sex-specific selectivity was implemented as a parameter offset to the double normal selectivity and included the estimation of five additional parameters per fleet: p 1 -offset (peak), p3-offset (ascending width), p4offset (descending width), p6-offset (selectivity at final size bin), and sex specific apical selectivity. Parameter offsets to double normal selectivity were estimated with minimum and maximum boundary conditions (Min, Max) for each parameter (no prior). For each fleet, male selectivity was first calculated as an offset from the female parameters (option 3), followed by calculating female selectivity as an offset from the male parameters (option 4). The option which resulted in maximum selectivity equal to one was chosen so that the resulting apical $F$ (the $F$ that would be obtained when multiplied by maximum selectivity) was comparable among fleets. Initial values for selectivity offset parameters along with their minimum and maximum boundary conditions were adjusted by trial and error in preliminary model runs to insure that parameter estimates were not hitting upper or lower bounds.

### 2.3.4 Data weighting

A two-stage Francis (2011) data weighting approach was implemented. In stage one, a minimum average standard error (SE; on the natural log scale) was implemented in SS3 for each CPUE series. The minimum SE was based on fitting a simple smoother to the CPUE data (on the natural log scale) outside the model and estimating the residual variance ${ }^{2}$ (e.g., Francis 2011; Lee et al. 2014a, 2014b; Courtney et al. 2017). In stage two, the Francis (2011) method was applied to estimate the effective sample size of each length composition data set from the residuals of the Stock Synthesis model fit to the data, based on Stock Synthesis output (Methot and Wetzel 2013; Methot 2015) obtained with the program r4ss (Taylor et al. 2014). The McAllister and Ianelli (1997) method (using the harmonic mean) was also evaluated to estimate the effective sample size of each length composition data from the residuals of the Stock Synthesis model fit to the data, based on Stock Synthesis output (Methot and Wetzel 2013; Methot 2015). The Francis (2011) and McAllister and Ianelli (1997) methods are reviewed in Punt et al. (2014).

Stage 1. The CVs for each CPUE series were obtained externally to the Stock Synthesis model and adjusted externally to the model before being input in Stock Synthesis as follows. The annual CVs for each CPUE series were assumed to be equal to the SE on the $\log$ scale and adjusted based on our expectation that the stock assessment model would fit each CPUE data at best as well as a smoother (e.g., Francis 2011; Lee et al. 2014a, 2014b; Courtney et al. 2017). The average annual SE (SE.in; on the log scale) was calculated for each CPUE series. The square root of the residual variance was calculated based on the fit of a simple smoother to each CPUE series on the log scale as

$$
\mathrm{RMSE}_{\text {smoother }}=\sqrt{\left(\frac{1}{N}\right) \sum_{t=1}^{N}\left(Y_{t}-\hat{Y}_{t}\right)^{2}}
$$

where $Y_{t}$ is the observed CPUE in year $t$ on the log scale, $\hat{Y}_{t}$ is the predicted CPUE in year $t$ from the smoother fit to the data on the $\log$ scale, and N is the number of CPUE observations-rather than the degrees of freedom used in the estimation of the smoother fit- (e.g., Francis 2011; Lee et al. 2014a, 2014b; Courtney et al. 2017). For these model runs, a LOESS smoother was fit to each CPUE data on the log scale (Appendix A). If SE.in for a CPUE series was less than RMSE $_{\text {smoother }}$ for that CPUE series, then the input SE for the CPUE series was

[^1]adjusted (SE.adj) in Stock Synthesis before running the model so that the new average SE was equal to $\mathrm{RMSE}_{\text {smoother }}\left(\right.$ SE.in $+\mathrm{SE} . \mathrm{adj}=\mathrm{RMSE}_{\text {smoother }}$ ). If SE.in for a CPUE series was greater than or equal to the $\mathrm{RMSE}_{\text {smoother }}$ for that CPUE series then the SE of the CPUE series was not adjusted in the Stock Synthesis model. The resulting variance adjustment factors for surveys S1 - S6 were $0.0000,0.0000,0.1459$, $0.0578,0.0886$, and 0.2510 , respectively.

Stage 2. The Francis (2011) method (Francis method Stage 2) was applied to estimate the effective sample size of each length composition data set after an initial model run with the input CVs adjusted for each CPUE as described in Stage 1 above. The input sample sizes for the length composition data for fleets F1 - F5 were adjusted two times with variance adjustment multiplication factors so that the sample size entered for each length composition data set (fleets F1 - F5) was equal to the effective sample size obtained using the Francis method. The resulting variance adjustment factors for fleets F1 - F5 were $0.048,0.057,0.040,0.100$, and 0.254 , respectively.

| Stage 2 <br> *VarAdj <br> $\left(\mathbf{1}^{\text {st }}\right.$ time $)$ | Stage 2 <br> *VarAdj <br> $\left(\mathbf{2}^{\text {nd }}\right.$ time $)$ | Percent <br> Difference | Relative <br> Difference |
| :---: | :---: | :---: | :---: |
| 0.063 | 0.048 | 0.77 | $23 \%$ (Lower) |
| 0.083 | 0.057 | 0.69 | $31 \%$ (Lower) |
| 0.041 | 0.040 | 0.96 | $4 \%$ (Lower) |
| 0.119 | 0.100 | 0.84 | $16 \%$ (Lower) |
| 0.626 | 0.254 | 0.41 | $59 \%$ (Lower) |

Additional iterative adjustments to the effective sample size obtained using the Francis method were not attempted because the estimates appeared to stabilize (i.e., within $6 \%$ of the previous estimate). This is consistent with CAPAM Data Weighting Workshop (Pers. Obs., D, Courtney, see footnote 3) that the Francis method variance adjustment factors for length composition data tend to stabilize after one (or in this case two) iterative adjustments.

The effective sample size for length composition obtained with the Francis method is based on the number of years with length composition data and can be uncertain if the number of years is small (Courtney, D. Pers. Observation from CAPAM Data Weighting Workshop; see footnote 3). For this reason, the McAllister and Ianelli (1997) method (using the harmonic mean) was also explored for obtaining the effective sample size of each length composition data set in Stage 2. The resulting variance adjustment factors obtained with the McAllister and Ianelli (1997) method (using the harmonic mean) for fleets F1 - F5 resulted in relatively more weight being given to the length data than the Francis method. Consequently, variance adjustments that would be applied to length data from the McAllister and Ianelli (1997) method (using the harmonic mean) were considered to be intermediate between those that would be applied under the raw length data sample size and those that would be applied under the Francis method, and were not implemented in the final SS3 model runs presented here due to time constrains. However, variance adjustments obtained with the McAllister and Ianelli (1997) method (using the harmonic mean) would be appropriate for use in sensitivity analyses at a later time.

The parameter representing the standard deviation in recruitment, $\sigma_{\mathrm{R}}$, was adjusted one time from the initial value of 0.4 to the value of 0.28 in order match the RMSE of recruitment variability obtained in SS3 during the main recruitment deviation period (1990-2012). Additional iterative adjustments for the standard deviation in recruitment, $\sigma_{\mathrm{R}}$, based on the RMSE of recruitment variability obtained in SS3 were not attempted because the adjustments may tend to zero (Courtney, D. Pers. Observation from the CAPAM Data Weighting Workshop ${ }^{3}$ ). In addition, lower values for the standard deviation in recruitment, evaluated in preliminary model runs resulted in a noticeable trend in recruitment (matching the trend in CPUE), which did not seem plausible. For example, a similar trend in recruitment, matching the CPUE trends, was observed in preliminary model runs when estimation of early recruitment deviations began in either 1951 (near start year of the model) or in 1966 (the first year for which early recruitment deviations were correlated with other data in the assessment).

[^2]The expected recruitments require a bias adjustment so that the resulting recruitment level on the standard scale is mean unbiased. The years chosen for bias adjustment, and the maximum bias adjustment parameter value were obtained from Stock Synthesis output with the program r4ss and implemented in SS3:

```
1981.6 #_last_early_yr_nobias_adj_in_MPD
1991.5 #_first_yr_fullbias_adj_in_MPD
2012.0 #_last_yr_fullbias_adj_in_MPD
2019.2 #_first_recent_yr_nobias_adj_in_MPD
0.377 #_max_bias_adj_in_MPD
```


### 2.3.5 Initial fishing mortality

Initial fishing mortality was not estimated because the model started in 1950 and fishing mortality was assumed to be negligible prior to 1950 . In addition, preliminary attempts to estimate initial fishing mortality within these model runs resulted in parameter estimates at the lower boundary (zero). Implementation of initial fishing mortality is described in the manual for Stock Synthesis (Methot 2015). Parameter estimation for initial fishing mortality utilized a normal prior with a large standard deviation (Pr_SD) along with independent minimum and maximum boundary conditions (Min, Max). The poor performance of the initial $F$ estimate (hitting a lower bound) contrasts with results from model runs previously completed for North Atlantic blue shark, for which the model was started in 1970 and initial fishing mortality was estimable (Courtney 2016; Courtney et al. 2017). One difference between the SS3 model runs implemented here for North Atlantic shortfin mako and those implemented previously for North Atlantic blue sharks, is that the previously completed runs for North Atlantic blue sharks included some fleets with logistic (asymptotic) selectivity, while those completed for North Atlantic shortfin mako did not include any fleets with logistic (asymptotic) selectivity.

### 2.3.6 Model convergence and diagnostics

Model convergence was based on whether or not the Hessian inverted (i.e., the matrix of second derivatives of the likelihood with respect to the parameters, from which the asymptotic standard error of the parameter estimates is derived). Other convergence diagnostics were also evaluated. Excessive CVs on estimated quantities (>>50\%) or a large final gradient ( $>1.00 \mathrm{E}-05$ ) were indicative of uncertainty in parameter estimates or assumed model structure. The correlation matrix was also examined for highly correlated (>0.95) and non-informative (< $0.01)$ parameters. Parameters estimated at a bound were a diagnostic for possible problems with data or the assumed model structure. Fits to CPUE and patterns in Pearson's residuals of fits to length composition data were examined as diagnostics for problems with data or the assumed model structure.

### 2.3.7 Uncertainty and measures of precision

Uncertainty in estimated and derived parameters was obtained from asymptotic standard errors calculated from the maximum likelihood estimates of parameter variances at the converged solution. In SS3 asymptotic standard errors are obtained for derived quantities by including the derived parameters in the inverted Hessian matrix calculation.

### 2.4 Evaluation of stock status

Derived quantities and their associated asymptotic standard errors were obtained for time series of annual spawning stock size (calculated in fecundity; SSF) relative to spawning stock size at MSY (SSF/SSF_MSY) and for annual fishing mortality relative to fishing mortality at MSY ( $F / F_{-}$MSY).

## 3. Results

Model results are presented below for the final SS3 model run obtained by applying the two-stage data weighting approach described above to the available data for North Atlantic shortfin mako (Figure 7)

### 3.1 Convergence diagnostics

The Hessian matrix inverted and was presumably positive definite. The final gradient was reasonably small (< $1.00 \mathrm{E}-05$ ) and no parameters were estimated above the maximum correlation threshold (cormax $=0.95$ ) or below the minimum correlation threshold (cormin $=0.01$ ).

Parameter estimates, their asymptotic standard errors and resulting CV, and their priors and status relative to imposed boundary conditions are provided in Table 10. None of the parameters were estimated at a boundary. The CV of many (20) selectivity parameters was >> $50 \%$. However, repeated examination of selectivity parameter estimation in preliminary and final runs indicated that despite the high uncertainty in individual parameters, the overall shape of the selectivity curves that resulted from the parameter estimation in the final SS3 model run (Figure 8) were relatively stable across model runs. In contrast, and as expected, the location of peak selectivity shifted slightly across model runs in response to model changes (Not shown).

### 3.2 Model fits

### 3.2.1 Indices of abundance

Model predicted and observed standardized indices of relative abundance are provided in Figure 9 for each standardized index of relative abundance as defined in Table 1. Fits on the nominal scale and on the log scale are provided. Index S2 (USA LL Obs) was not fit in the model likelihood (lambda $=0$ ) because of high variability in the index and because S2 describes the same fishery as S1 (USA LL Log) (Anon. In Prep.).

### 3.2.2 Length compositions

Model predicted and observed aggregated length compositions (female + male; for fleet F1 and sex-specific for fleets F2 - F5) (as defined in Tables 1 and 5) are provided in Figure 10 for the final SS3 model run. Fits to aggregate length compositions appeared to be reasonably accurate - indicating that the estimated selectivity curves removed sharks from the modelled population in aggregate at comparable length to that observed in the data.

Observed and predicted annual length compositions by fleet (as defined in Tables $\mathbf{1}$ and 5) are provided in Appendix B. Fits to the annual length compositions by fleet were poor (Figure B1), but there were few obvious systematic patterns observed in the residuals (e.g., patterns of positive or negative residuals) making it difficult to objectively determine how to improve the fits. This may be an important area for future model development. For example, more flexible selectivity curves (or time blocks in selectivity) in combination with alternative binning of length composition data could be examined in the future to account for the jagged distributions observed in annual length compositions. Alternatively, different area stratification of fleets could be explored in the future to either increase sample size or smooth the length-frequency distributions.

Diameter of Pearson residuals was relatively larger for fleet F1 (Max > 10) than fleets F2 - F5 (Max < 3) indicating a relatively poorer fit to fleet F1 (Figure B1), and/or relatively larger sample size, and consequently, relatively more influence on model results if in conflict with other data in the model. Length data for fleet F1 was the only fleet modelled with sex-combined length composition. Length-specific data were available but were not fit in the model because there were only a limited number of sex-specific length data relative to the sexcombined data. However, given the poor fit, an examination of sex-specific length data may be appropriate for use in sensitivity analyses at a later time. Additional length composition data were also available for fleet F1 from EU España (Appendix C) which were not included in the current model due to time constraints. A preliminary examination of the sex-combined length composition data available for fleet F1 from EU España indicated a similar distribution to EU Portugal but with a peak at slightly smaller lengths for EU España (Figure C.1). Interestingly, a peak at slightly smaller lengths than those observed for EU Portugal was also predicted by the SS3 model for fleet F1 (EU LL) in aggregate (Figure 10).

### 3.3 Estimated time series

### 3.3.1 Recruitment

Expected recruitment from the stock-recruitment relationship and the bias adjustment applied to the stockrecruitment relationship (Figure 11), along with estimated $\log$ recruitment deviations and estimated annual recruitment (Figure 12), are provided for the final SS3 model run. Estimation of early recruitment deviations was limited to 5 years before the start of main recruitment because preliminary model runs which allowed earlier recruitment deviations resulted in an early recruitment pattern that was strongly influenced by the common trend in CPUE (not shown).

### 3.3.2 Fishing mortality

Two calculations of exploitation rate were obtained from Stock Synthesis model output for the final SS3 model run. First, instantaneous annual fishing mortality rates (Continuous $F$ ) were estimated for each fleet F1 - F12 (Figure 13). Estimated total annual fishing mortality for all fleets combined $(F)$ was then calculated as the sum of continuous $F$ obtained for each fleet (Table 11) and reported relative to total annual fishing mortality at MSY ( $F / F_{-}$MSY) (Tables 12 and 13; Figure 14). Second, the total annual exploitation rate in numbers ( $U$ ) (Table 11) was obtained for ages $1+$ from Stock Synthesis output for comparison with other assessment methods.

### 3.3.3 Spawning stock biomass

Estimated spawning stock size (spawning stock fecundity, SSF in 1,000s) along with approximate $95 \%$ asymptotic standard errors ( $\pm 2 *$ s.e.) relative to spawning stock size at MSY (SSF_MSY) are provided from Stock Synthesis model output for the final SS3 model run in Table 11 and Figure 14.

### 3.3.4 Evaluation of uncertainty

Sensitivity runs were not implemented in SS3 due to time constraints, but may be important to explore at a later time.

### 3.4 Stock status

Stock status is provided from the final SS3 model run obtained by applying the two-stage data weighting approach described above.

Annual estimates of total biomass ( $B, 1,000 \mathrm{~s} \mathrm{~kg}$ ), spawning stock fecundity (SSF, $1,000 \mathrm{~s}$ ), recruits ( $R, 1,000 \mathrm{~s}$ ), total fishing mortality ( $F$, calculated as the sum of continuous $F$ obtained for each fleet; see Figure 13), and the total exploitation rate in numbers ( $U$, obtained for ages $1+$ ) are provided in Table 11.

Annual estimates of total fishing mortality relative to total fishing mortality at MSY ( $F / F_{-}$MSY) and spawning stock size (spawning stock fecundity, SSF) relative to spawning stock size at MSY (SSF/SSF_MSY) are provided in Table 12 and Figure 14.

Estimates of ending year (2015) stock status relative to maximum sustainable yield (MSY) are provided in Table 13 including spawning stock fecundity (SSF_2015, 1,000s), fishing mortality ( $F \_2015$ ), and recruits ( $R \_2015$, $1,000 \mathrm{~s}$ ) along with equilibrium SSF (SSF_0) and $R\left(R_{-} 0\right)$, maximum sustainable yield (MSY, $t$ ), SSF at MSY (SSF_MSY), $F$ at MSY ( $F_{-}$MSY) and the ratios SSF_2015/SSF_MSY and $F_{-}$2015/F_MSY. Asymptotic standard errors (S.E.) calculated from the maximum likelihood estimates of parameter variances at the converged solution and CVs based on the S.E. (where available) are also provided for the parameter estimates.

Model results for the final SS3 model run indicated that the fishing mortality rate in 2015 was above the fishing mortality rate at maximum sustainable yield ( $F_{-} 2015 / F_{-}$MSY $=3.5$ ) and that $F_{-} 2015 / F_{-}$MSY first exceeded 1.0 in 1985 (Tables 12 and 13, Figures 14 and 15).

Model results for the final SS3 model run indicated that spawning stock size in 2015, calculated here as spawning stock fecundity (SSF, 1,000s), was above the spawning stock size at MSY (SSF_2015/SSF_MSY = 1.217) (Tables 12 and 13, Figures 14 and 15).

## 4. Discussion

Two calculations of total exploitation rate were obtained from Stock Synthesis. The first was the total annual fishing mortality for all fleets combined, $F$, calculated as the sum of continuous $F$ obtained for each fleet. The second was the total annual exploitation rate in numbers, $U$, obtained for ages $1+$. The two calculations of exploitation rates were similar in trend but not in absolute magnitude (Table 11; Figure 16). For comparisons with other assessment methods, the total annual exploitation rate in numbers, $U$, obtained for ages $1+$ may be most appropriate, because the sum of continuous $F$ may not be comparable across models with different selectivity, especially if maximum selectivity is not equal to one for all fleets.

## Acknowledgements

We thank all the scientists from the ICCAT Shark Species Working Group who contributed to the development of the stock assessment by providing data for ICCAT papers referenced here and/or who provided data or insight for the stock assessment model that we failed to reference. The initial parameterization of selectivity benefited from conversations with Felipe Carvalho (NOAA Fisheries, Pacific Islands Fisheries Science Center, Honolulu, HI, USA). The implementation of data weighting approaches benefited from presentations and discussions during a Center for the Advancement of Population Assessment Methodology (CAPAM) Data Weighting Workshop (October 19-23, 2015, La Jolla, California) and from conversations with Hui-Hua Lee (NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA, USA). Interpretation and presentation of Stock Synthesis model results benefited immensely from the R package r4ss (Taylor et al., 2014).

## References

Anon. 2015. Report of the 2014 Intersessional meeting of the Shark Species Group (Piriapolis, Uruguay, 10-1 March 2014). Collect Vol. Sci. Pap. ICCAT 71(6):2458-2550.

Anon. 2017. Report of the 2016 Intersessional Meeting of the Shark Species Group (Madeira, Portugal, 25-29 April 2016). Collect Vol. Sci. Pap. ICCAT 73(8):2759-2809.

Anon. In Prep. Report of the 2017 Shortfin Mako Data Preparatory Meeting (Madrid, Spain, 28-31 March 2017).
Coelho, R., Domingo, A., Courtney, D., Cortés E., Arocha, F., Liu, K.-M., Yokawa, K., Yasuko, S., Hazin, F., Rosa, D., and P. G. Lino. In Prep. A revision of the shortfin mako catch-at-size in the Atlantic using observer data. ICCAT SCRS/2017/048 (In Prep. for Collect Vol. Sci. Pap. ICCAT).

Courtney, D. 2016. Preliminary Stock Synthesis (SS3) model runs conducted for North Atlantic blue shark. SCRS/2015/151. Collect Vol. Sci. Pap. ICCAT 72(5):1186-1232.

Courtney, D., Cortés, E., Zhang, X. and F. Carvalho. 2017. Stock Synthesis model sensitivity to data weighting: An example from preliminary model runs previously completed for North Atlantic blue shark. SCRS/2016/066. Collect Vol. Sci. Pap. ICCAT 73(8):2860-2890.

Cortés, E. In Prep. Estimates of maximum population growth rate and steepness for shortfin makos in the North and South Atlantic Ocean. ICCAT SCRS/2017/126 (In Prep. for Collect Vol. Sci. Pap. ICCAT).

Francis, R. I. C. C. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68:1124-1138.

Lee, H.-H., Piner, K. R., Hinton, M. G., Chang, Y.-J., Kimoto, A., Kanaiwa, M., Su, N.-J., Walsh, W., Sun, C.L., and G. DiNardo. 2014a. Sex-structured population dynamics of blue marlin Makaira nigricans in the Pacific Ocean. Fish. Sci. 80:869-878.

Lee, H.-H., Piner, K. R., Methot Jr., R. D., and M. N. Maunder. 2014b. Use of likelihood profiling over a global scaling parameter to structure the population dynamics model: An example using blue marlin in the Pacific Ocean. Fish. Res. 158:138-146.

Maunder, M. N., and A. E. Punt. 2013. A review of integrated analysis in fisheries stock assessment. Fish. Res. 142:61-74.

McAllister, M. K., and J. N. Ianelli. 1997. Bayesian stock assessment using catch-age data and the samplingimportance resampling algorithm. Can. J. Fish. Aquat. Sci. 54:284-300.

Methot Jr., R. D. 2015. User manual for Stock Synthesis model version 3.24s, Updated February 11, 2015. NOAA Fisheries, Seattle, WA.

Methot Jr., R. D., and C. R. Wetzel. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 142:86-99.

Punt, A. E., Hurtado-Ferro, F., and A. R. Whitten. 2014. Model selection for selectivity in fisheries stock assessments. Fish. Res. 158:124-134.

Rosa, D., Mas, F., Mathers, A., Natanson, L. J., Domingo, A., Carlson, J., and R. Coelho. In Prep. Age and growth of shortfin mako in the North Atlantic, with revised parameters for consideration to use in the stock assessment. ICCAT SCRS/2017/111 (In Prep. for Collect Vol. Sci. Pap. ICCAT).

Taylor, I., and other contributors. 2014. r4ss: R code for Stock Synthesis. R package version r4ss-1.23.1. Available: http://CRAN.R-project.org/ packages=r4ss; http://cran.r-project.org/web/packages/r4ss/r4ss.pdf (Accessed October 2014).

Wetzel, C. R., and A. E. Punt. 2011a. Model performance for the determination of appropriate harvest levels in the case of data-poor stocks. Fish. Res. 110:342-355.

Wetzel, C. R., and A. E. Punt. 2011b. Performance of a fisheries catch-at-age model (Stock Synthesis) in datalimited situations. Mar. Freshw. Res. 62:927-936.

Table 1. Time series of catch, relative abundance, and length composition data considered for use in the North Atlantic shortfin mako SS3 model runs.

| Time series \# | Symbol | Catch ( t ) and abundance (numbers or biomass) | Name | Definition | Length composition ( 10 cm FL bins) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | F1 | Catch (t) | EU LL | EU España + Portugal Longline (1950-2015) | EU España + Portugal LL (1997-2015) |
| 2 | F2 | Catch (t) | JPN LL | Japan Longline(1971-2015) | Japan LL (1997-2015) |
| 3 | F3 | Catch (t) | CTP LL | Chinese Taipei Longline (1981-2015) ${ }^{1}$ | Chinese Taipei LL (2004-2015) |
| 4 | F4 | Catch (t) | USA LL | USA Longline (1982-2015) | USA LL (1992-2015) |
| 5 | F5 | Catch (t) | VEN LL | Venezuela Longline (1986-2015) | Venezuela LL (1994-2013) |
| 6 | F6 | Catch (t) | CAN LL | Canada Longline (1995-2015) | Mirror USA LL (F4) |
| 7 | F7 | Catch (t) | MOR LL | Morocco Longline (1961-2015) ${ }^{1}$ | Mirror EU LL (F1) |
| 8 | F8 | Catch (t) | USA RR | USA Recreational (1981-2015) | Mirror USA LL (F4) |
| 9 | F9 | Catch (t) | BEL LL | Belize Longline (2009-2015) | Mirror VEN LL (F5) |
| 10 | F10 | Catch (t) | MOR PS | Morocco Purse Seine (2011-2015) | Mirror EU LL (F1) |
| 11 | F11 | Catch (t) | CPR LL | China PR Longline (2000-2015) | Mirror CTP LL (F3) |
| 12 | F12 | Catch (t) | OTH | Other (1982-2015) | Mirror CTP LL (F3) |
| 13 | S1 | Relative abundance (numbers) | USA LL Log | USA Longline-Logbook (1986-2015) | Mirror USA (F4) |
| 14 | S2 | Relative abundance (numbers) | USA LL Obs | USA Longline-Observer (1992-2015) ${ }^{2}$ | Mirror USA (F4) |
| 15 | S3 | Relative abundance (numbers) | JPN LL | Japan Longline (1994-2015) | Mirror JPN (F2) |
| 16 | S4 | Relative abundance (biomass) | EU POR LL | EU Portugal Longline (1999-2015) | Mirror EU (F1) |
| 17 | S5 | Relative abundance (biomass) | EU ESP LL | EU España Longline (1990-2015) ${ }^{3}$ | Mirror EU (F1) |
| 18 | S6 | Relative abundance (numbers) | CTP LL | Chinese Taipei Longline (2007-2015) | Mirror CTP (F3) |

[^3]Table 2. North Atlantic shortfin mako catch in metric tons ( t ) was obtained from data compiled during the 2017 Shortfin Mako Data Preparatory meeting and assigned here to "fleets" F1 - F12 for use in SS3 model runs as defined below.

| Fleet <br> Flag Gear | $\begin{gathered} \text { F1 } \\ \begin{array}{c} \text { EU España }{ }^{1,2} \\ \text { LL } \end{array} \\ \hline \end{gathered}$ | F1 $\underset{\substack{\text { EU Portugal } \\ \text { LL }}}{ }{ }^{\text {T }}$ | $\begin{gathered} \text { F2 } \\ \substack{\text { Japan } \\ \text { LL }} \end{gathered}$ | $\underset{\substack{\text { Chinese } \\ \text { Taipei } \\ \text { LL } \\ \text { LL }}}{\text { ² }}$ | $\begin{gathered} \text { F4 } \\ \text { U.S.A. } \\ \hline \text { LL } \end{gathered}$ |  |  | $\begin{gathered} \text { F7 } \\ \begin{array}{c} \text { Morocco } \\ \text { LL } \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} \text { F8 } \\ \substack{\text { U.S.A. } \\ \text { SP }+ \text { RR }} \\ \hline \end{gathered}$ | $\begin{gathered} \text { F9 } \\ \begin{array}{c} \text { Belize } \\ \text { LL } \end{array} \end{gathered}$ | $\begin{gathered} \text { F10 } \\ \begin{array}{c} \text { Morocco } \\ \text { PS } \end{array} \\ \hline \end{gathered}$ |  | $\begin{gathered} \text { F12 } \\ \text { Other } \\ \text { ombined } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1950 | 105.6 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1951 | 70.6 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1952 | 70.6 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1953 | 87.9 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1954 | 22.3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1955 | 45.2 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1956 | 27.3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1957 | 73.1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1958 | 60.8 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1959 | 80.4 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1960 | 52.8 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1961 | 124.3 |  |  |  |  |  |  | 4.0 |  |  |  |  |  |
| 1962 | 168.1 |  |  |  |  |  |  | 7.9 |  |  |  |  |  |
| 1963 | 73.1 |  |  |  |  |  |  | 4.0 |  |  |  |  |  |
| 1964 | 131.6 |  |  |  |  |  |  | 11.9 |  |  |  |  |  |
| 1965 | 104.8 |  |  |  |  |  |  | 9.3 |  |  |  |  |  |
| 1966 | 219.2 |  |  |  |  |  |  | 7.9 |  |  |  |  |  |
| 1967 | 196.6 |  |  |  |  |  |  | 7.3 |  |  |  |  |  |
| 1968 | 259.6 |  |  |  |  |  |  | 8.6 |  |  |  |  |  |
| 1969 | 256.0 |  |  |  |  |  |  | 10.6 |  |  |  |  |  |
| 1970 | 231.0 |  |  |  |  |  |  | 9.3 |  |  |  |  |  |
| 1971 | 247.373 |  | 112.0 |  |  |  |  | 13.880 |  |  |  |  |  |
| 1972 | 234.7 |  | 115.0 |  |  |  |  | 9.9 |  |  |  |  |  |
| 1973 | 280.2 |  | 61.0 |  |  |  |  | 6.6 |  |  |  |  |  |
| 1974 | 211.5 |  | 307.0 |  |  |  |  | 7.9 |  |  |  |  |  |
| 1975 | 273.9 |  | 344.0 |  |  |  |  | 9.9 |  |  |  |  |  |
| 1976 | 205.9 |  | 84.0 |  |  |  |  | 7.9 |  |  |  |  |  |
| 1977 | 241.9 |  | 236.0 |  |  |  |  | 4.0 |  |  |  |  |  |
| 1978 | 264.0 |  | 153.0 |  |  |  |  | 7.3 |  |  |  |  |  |
| 1979 | 188.7 |  | 45.0 |  |  |  |  | 137.5 |  |  |  |  |  |
| 1980 | 278.5 |  | 246.0 |  |  |  |  | 89.9 |  |  |  |  |  |
| 1981 | 293.4 |  | 387.0 | 32.0 |  |  |  | 82.0 | 384.960 |  |  |  |  |
| 1982 | 332.9 |  | 273.0 | 52.0 | 42.1 |  |  | 60.1 | 613.1 |  |  |  | 0.04 |
| 1983 | 600.5 |  | 159.0 | 59.0 | 42.2 |  |  | 82.6 | 368.1 |  |  |  | 0.00 |
| 1984 | 389.2 |  | 141.0 | 70.0 | 42.5 |  |  | 52.2 | 929.0 |  |  |  | 0.00 |
| 1985 | 543.2 |  | 142.0 | 71.0 | 51.9 |  |  | 90.6 | 2947.5 |  |  |  | 1.34 |

Table 2. Continued.

| Fleet Flag Gear | $\begin{gathered} \text { F1 } \\ \text { EU Españã }{ }^{1,2} \\ \text { LL } \end{gathered}$ | $\begin{gathered} \text { F1 } \\ \text { EU Portugal }{ }^{1} \\ \text { LL }^{1} \\ \hline \end{gathered}$ | $\begin{gathered} \text { F2 } \\ \begin{array}{c} \text { Japan } \\ \text { LL } \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} \text { F3 } \\ \text { Chinese } \\ \text { Taipei }{ }^{3} \\ \text { LL } \\ \hline \end{gathered}$ | $\begin{gathered} \text { F4 } \\ \text { U.S.A. } \\ \text { LL } \\ \hline \end{gathered}$ | $\begin{gathered} \text { F5 } \\ \text { Venezuela } \end{gathered}$ LL | $\begin{gathered} \text { F6 } \\ \text { Canada } \\ \text { LL } \\ \hline \end{gathered}$ | $\begin{gathered} \text { F7 } \\ \text { Morocco }^{3} \\ \text { LL } \\ \hline \end{gathered}$ | $\begin{gathered} \text { F8 } \\ \substack{\text { U.S.A. } \\ \text { SP + RR }} \\ \hline \end{gathered}$ | $\begin{gathered} \text { F9 } \\ \text { Belize } \\ \text { LL } \\ \hline \end{gathered}$ | $\begin{gathered} \text { F10 } \\ \begin{array}{c} \text { Morocco } \\ \text { PS } \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} \text { F11 } \\ \text { China PR } \end{gathered}$ $\begin{gathered} \mathrm{LL} \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 2097.4 |  | 120.0 | 78.0 | 64.0 | 2.8 |  | 117.6 | 1295.9 |  |  |  | 0.79 |
| 1987 | 2404.5 |  | 218.0 | 22.0 | 86.1 | 1.7 |  | 126.9 | 461.7 |  |  |  | 0.46 |
| 1988 | 1851.3 |  | 113.0 | 4.0 | 105.9 | 2.6 |  | 128.9 | 794.6 |  |  |  | 0.54 |
| 1989 | 1078.5 |  | 207.0 | 2.0 | 122.8 | 8.1 |  | 144.7 | 670.4 |  |  |  | 10.73 |
| 1990 | 1537.2 | 193.0 | 221.0 | 9.0 | 93.0 | 1.5 |  | 15.9 | 268.4 |  |  |  | 9.08 |
| 1991 | 1390.1 | 314.0 | 157.0 | 39.0 | 112.7 | 2.1 |  | 60.8 | 210.0 |  |  |  | 6.78 |
| 1992 | 2145.4 | 220.0 | 318.0 | 16.0 | 160.8 | 0.7 |  | 27.1 | 250.3 |  |  |  | 7.61 |
| 1993 | 1964.1 | 796.0 | 425.0 | 9.0 | 301.9 | 0.6 |  | 17.8 | 666.7 |  |  |  | 4.06 |
| 1994 | 2163.6 | 649.0 | 214.0 | 29.0 | 331.8 | 3.5 |  | 4.6 | 317.8 |  |  |  | 17.35 |
| 1995 | 2209.5 | 657.0 | 592.0 | 32.0 | 309.7 | 4.2 | 93.4 | 18.5 | 1421.5 |  |  |  | 38.92 |
| 1996 | 3293.8 | 691.0 | 790.0 | 45.0 | 234.1 | 11.7 | 56.1 | 23.1 | 232.1 |  |  |  | 21.13 |
| 1997 | 2415.6 | 354.0 | 258.0 | 42.0 | 242.1 | 3.4 | 99.0 | 158.0 | 163.9 |  |  |  | 18.57 |
| 1998 | 2223.1 | 307.0 | 892.0 | 47.0 | 195.0 | 0.8 | 54.6 |  | 148.4 |  |  |  | 27.52 |
| 1999 | 2050.9 | 327.4 | 120.0 | 75.0 | 89.5 | 2.0 | 53.8 | 23.1 | 69.2 |  |  |  | 30.63 |
| 2000 | 1560.7 | 317.5 | 138.0 | 56.0 | 163.8 | 2.2 | 58.7 | 25.1 | 290.5 |  |  | 0.2 | 40.26 |
| 2001 | 1684.5 | 377.6 | 105.0 | 47.0 | 180.5 | 20.3 | 59.6 | 174.5 | 214.5 |  |  | 0.0 | 32.72 |
| 2002 | 2046.6 | 414.7 | 438.0 | 53.0 | 166.8 | 16.0 | 61.1 | 101.8 | 248.0 |  |  | 0.0 | 24.31 |
| 2003 | 2067.6 | 1248.6 | 267.0 | 37.0 | 141.4 | 21.9 | 63.4 | 147.4 | 0.2 |  |  | 0.0 | 29.00 |
| 2004 | 2087.6 | 398.7 | 572.0 | 70.0 | 187.8 | 58.0 | 69.4 | 168.5 | 332.6 |  |  | 0.0 | 100.14 |
| 2005 | 1751.3 | 1109.3 | 0.0 | 68.0 | 186.9 | 19.6 | 73.9 | 214.8 | 282.1 |  |  | 0.0 | 36.61 |
| 2006 | 1918.0 | 950.6 | 0.0 | 40.0 | 129.3 | 6.3 | 64.5 | 220.1 | 256.7 |  |  | 0.0 | 22.34 |
| 2007 | 1815.6 | 1539.7 | 82.4 | 6.0 | 222.4 | 11.1 | 63.7 | 151.4 | 158.3 |  |  | 80.5 | 84.53 |
| 2008 | 1895.3 | 1033.1 | 130.9 | 27.0 | 196.5 | 1.8 | 38.9 | 282.9 | 156.0 |  |  | 15.5 | 74.11 |
| 2009 | 2216.2 | 1169.3 | 98.4 | 89.0 | 221.0 | 35.1 | 50.3 | 475.9 | 162.7 | 23.1 |  | 19.0 | 109.23 |
| 2010 | 2090.7 | 1431.9 | 116.3 | 14.0 | 225.7 | 21.9 | 38.6 | 636.5 | 167.8 | 28.1 |  | 28.6 | 23.68 |
| 2011 | 1667.1 | 1044.6 | 53.3 | 54.0 | 212.9 | 18.0 | 37.2 | 390.0 | 178.2 | 69.2 | 30.0 | 17.7 | 40.01 |
| 2012 | 2308.0 | 1022.6 | 56.1 | 35.0 | 198.4 | 24.3 | 27.6 | 380.0 | 229.5 | 113.8 | 26.0 | 24.0 | 52.71 |
| 2013 | 1508.8 | 817.4 | 32.7 | 13.0 | 190.0 | 5.8 | 34.7 | 616.0 | 219.4 | 98.5 | 50.7 | 11.5 | 52.34 |
| 2014 | 1480.9 | 208.6 | 69.2 | 16.0 | 206.9 | 7.5 | 53.1 | 580.0 | 201.4 | 1.2 | 44.0 | 5.0 | 42.31 |
| 2015 | 1361.7 | 213.3 | 47.1 | 11.4 | 341.1 | 7.5 | 84.2 | 807.0 | 190.0 | 0.6 | 140.0 | 1.5 | 21.61 |

1. EU España + EU Portugal catch was combined into a single fleet (F1) because length comps were similar.
2. Start year of the model was 1950 (first year of catch EU España).
3. Not ICCAT Task I - Finalized catch data for this assessment was obtained from the 2017 Shortfin Mako Data Preparatory meeting (Anon. In Prep.)

Table 3. Indices of relative abundance for North Atlantic shortfin mako were obtained from data compiled during the 2017 Shortfin Mako Data Preparatory meeting (Anon. In Prep.), except for EU España Longline (EU ESP LL) which was obtained from SCRS/2017/108; the available abundance indices were assigned here to "surveys" S1 - S6 for use in SS3 model runs as defined below.


[^4]Table 4. Coefficients of variation (CV) corresponding to indices of relative abundance for North Atlantic shortfin mako were obtained from data compiled during the 2017 Shortfin Mako Data Preparatory meeting (Anon. In Prep.), except for EU España Longline (EU ESP LL) which was obtained from SCRS/2017/108.


1. Index S2 (USA LL Obs) was not fit in the model likelihood (lambda $=0$ ) because of high variability in the index and because S2 describes the same fishery as S1 (USA LL Log) (Anon. In Prep.)
2. Index S5 was obtained from SCRS/2017/108 (CV on the nominal scale $=$ standard error on log scale obtained from CPUE in weight)

Table 5. Observed sample sizes (number of sharks measured) for available length composition assigned to fleets F1 - F5 (Table 1) in the SS3 model runs; Years with small sample size (total number of sharks measured < 30) were excluded from the fit in the model likelihood (see Appendix B for model fits to annual length composition).

| Year | $\begin{gathered} \text { F1 } \\ (\mathbf{E U} \text { LL })^{\mathbf{1}} \\ \left(Q_{,}^{\lambda}, O^{\lambda}, \text { Unknown }\right) \end{gathered}$ | $\begin{gathered} \text { F2 } \\ (\mathbf{J P N} \text { LL }) \\ (\text { (Q) }) \\ \hline \end{gathered}$ | $\begin{gathered} \text { F2 } \\ (\mathbf{J P N} \text { LL }) \\ \left(\delta^{1}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \text { F3 } \\ (\mathbf{C T P} \text { LL }) \\ (\not)) \\ \hline \end{gathered}$ | $\begin{gathered} \text { F3 } \\ (\mathbf{C T P} \text { LL }) \\ \left(\delta^{\top}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \text { F4 } \\ \text { (USA LL) } \\ (\mathrm{q}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { F4 } \\ \text { (USA LL) } \\ \left(\delta^{\prime}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \text { F5 } \\ (\text { VEN LL }) \\ (\not)) \\ \hline \end{gathered}$ | $\begin{gathered} \text { F5 } \\ (\text { VEN LL }) \\ \left(\delta^{\top}\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992 |  |  |  |  |  | 9 | 9 |  |  |
| 1993 |  |  |  |  |  | 95 | 74 |  |  |
| 1994 |  |  |  |  |  | 54 | 63 | 5 | 3 |
| 1995 |  |  |  |  |  | 85 | 106 | 27 | 19 |
| 1996 |  |  |  |  |  | 12 | 13 | 10 | 7 |
| 1997 | 19 | 175 | 145 |  |  | 71 | 71 | 12 | 5 |
| 1998 | 26 | 92 | 78 |  |  | 14 | 39 | 10 | 5 |
| 1999 | 18 | 2 | 8 |  |  | 38 | 34 | 2 | 0 |
| 2000 | 334 | 2 | 5 |  |  | 73 | 84 | 2 | 0 |
| 2001 | 301 | 26 | 26 |  |  | 28 | 40 | 3 | 5 |
| 2002 | 545 | 6 | 28 |  |  | 63 | 62 | 2 | 2 |
| 2003 | 164 | 2 | 9 |  |  | 59 | 76 | 9 | 4 |
| 2004 | 629 | 2 | 21 | 20 | 17 | 136 | 203 | 1 | 5 |
| 2005 | 292 | 4 | 20 | 9 | 2 | 52 | 84 | 0 | 0 |
| 2006 | 172 | 6 | 42 | 228 | 122 | 103 | 146 | 1 | 3 |
| 2007 | 494 | 9 | 33 | 3 | 2 | 90 | 135 | 1 | 5 |
| 2008 | 249 | 34 | 56 | 6 | 7 | 97 | 114 | 1 | 0 |
| 2009 | 499 | 28 | 44 | 44 | 68 | 174 | 225 | 1 | 1 |
| 2010 | 925 | 21 | 55 | 4 | 5 | 142 | 170 | 1 | 5 |
| 2011 | 713 | 11 | 74 | 22 | 39 | 106 | 163 | 7 | 36 |
| 2012 | 1042 | 29 | 37 | 31 | 37 | 81 | 89 | 66 | 67 |
| 2013 | 682 | 24 | 19 | 0 | 14 | 86 | 132 | 23 | 63 |
| 2014 | 277 | 34 | 75 | 2 | 0 | 73 | 108 |  |  |
| 2015 | 273 | 1 | 5 | 4 | 2 | 95 | 110 |  |  |

1. Sex-combined length composition data ( + , $O$, Unknown) were input in SS3 for fleet F1 (EU LL), because the available sex-specific data for F1 ( + , ${ }^{\circ}$ ) was only a smal portion (13\%) of the combined data. Sex-specific length composition data were input in SS3 for fleets F2 (JPN LL), F3 (CTP LL), F4 (USA LL), and F5 (VEN LL), because sex-specific data made up higher proportions $(92 \%, 100 \%, 100 \%$, and $100 \%$, respectively) of the combined data for the other fleets.

Table 6. Life history inputs were obtained from data first assembled at the 2014 Intersessional meeting of the Shark Species Group (Anon. 2015), plus updated information provided during the 2016 Intersessional meeting of the Shark Species Group (Anon. 2017), the 2017 Shortfin Mako Shark Data Preparatory meeting (Anon. In Prep.), and thereafter. Highlighted values are used in the current SS3 model runs. Cited references in the table are provided separately in the references above, except as noted below.

|  | NA | SA | References |
| :---: | :---: | :---: | :---: |
| Reproduction |  |  |  |
| $L_{\text {mat }}\left({ }^{\text {a }}\right.$ ) |  | 180 | Mas et al. (2017) [SCRS] |
| $\mathrm{L}_{50}\left({ }^{\text {( }}\right.$ ) | 180-185 FL | 166 | Natanson et al. (2006) Maia et al. (2006) Mas et al. (2017) [SCRS] |
| $\mathrm{T}_{\text {mat }}\left({ }^{\text {a }}\right.$ ) | 8 | 6-8* | Campana et al. (2005) Barreto et al. (2016) Doño et al. (2015) |
| $\mathrm{T}_{50}\left({ }^{\text {( }}\right.$ ) | 8 |  | Natanson et al. (2006) |
| $L_{\text {mat }}$ (\%) |  |  |  |
| $\mathrm{L}_{50}$ (f) | 275-298 FL |  | Mollet et al. (2000), Natanson et al. (2006) |
| $\mathrm{T}_{\text {mat }}$ (f) | 18 | 12-18* | Campana et al. (2005) Barreto et al. (2016) Doño et al. (2015) |
| $\mathrm{T}_{50}$ (f) | 18 |  | Natanson et al. (2006) |
| Sex ratio | 1:1 |  | Mollet et al. (2000) |
| Cycle | 3 |  | Mollet et al. (2000) |
| GP (months) | 16.5 (15-18) |  | Mollet et al. (2000) |
| $\mathrm{L}_{0}$ | $70 \mathrm{TL}(63 \mathrm{FL})$ | 81M-88F (FL)* | Natanson et al. (2006) Mollet et al. (2000) Doño et al. (2015) |
| Mean litter size (LS) | 12.5 |  | Mollet et al. 2000 ( $\mathrm{n}=24$ ) |
| Min LS | 2 |  | Mollet et al. 2000 ( $\mathrm{n}=24$ ) |
| Max LS | 30 |  | Mollet et al. 2000 ( $\mathrm{n}=24$ ) |
| LS vs MS relation | $\mathrm{LS}=0.81{ }^{*}(\mathrm{~m} \mathrm{TL})^{\wedge} 2.346$ |  | Mollet et al. 2000 ( $\mathrm{n}=24$ ) |
| Maturity ogive ( ( ) | Mat $=1 /\left(1+\exp -(-27.81+9.332 * M S){ }^{\text {² }}\right.$ | Use fit to clasper index ( ${ }^{\text {² }}$ ) | Mollet et al. 2000 ( $\mathrm{n}=24$ ); SCRS/2017/058 |
| Age \& Growth |  |  |  |
| $\mathrm{L}_{\text {inf }}(\underline{q})^{1}$ | 366 (393) [350.6]** | 244*; 408 | Natanson et al. (2006) Doño et al. (2015) Barreto et al. (2016) |
| $\mathrm{k}(\mathrm{q})^{1}$ | 0.087 (0.054) [0.064]** | 0.04 | Natanson et al. (2006) Barreto et al. (2016) |
| $\mathrm{T}_{0} / \mathrm{L}_{0}(\mathrm{P})^{1}$ | 88.4 (70 TL fixed) [63 FL] ** | -7.08 | Natanson et al. (2006) Barreto et al. (2016) |
| $\mathrm{T}_{\text {max }}$ ( $($ ) ) | 32 | 23-28* | Natanson et al. (2006) Barreto et al. (2016) Doño et al. (2015) |
| $L_{\text {inf }}\left(\delta^{2}\right)^{1}$ | 253 *** | 261*; 329 | Natanson et al. (2006) Doño et al. (2015) Barreto et al. (2016) |
| $k\left(0^{\prime}\right)^{1}$ | 0.125 | 0.08 | Natanson et al. (2006) Barreto et al. (2016) |
| $\mathrm{T}_{0} / L_{0}\left(\delta^{2}\right)^{1}$ | 71.6 | -4.47 | Natanson et al. (2006) Barreto et al. (2016) |
| $\mathrm{T}_{\text {max }}\left({ }^{\text {® }}\right.$ ) | 29 | 11-18* | Natanson et al. (2006) Doño et al. (2015) Barreto et al. (2016) |
| Conversion Factors |  |  |  |
| Length-length [cm] | FL=0.9286TL-1.7101 | TL=1.127FL+0.358 | Megalofonou et al. (2005) Kohler (1995) |
|  | $\mathrm{W}=5.2432 \mathrm{E}-06 \mathrm{FL}$ ^3.1407 | $\mathrm{W}=3.1142 \mathrm{E}-05 \mathrm{FL}$ ^2.7243 | Kohler (1995) García-Cortes \& Mejuto (2002) |
| Length-weight (b) [cm,kg] |  | HG=7.5443x10 ${ }^{6} \times\left(\right.$ FL ${ }^{\text {2,9568 }}$ )**** | Mas et al. (2017) [SCRS] |

[^5]Table 7. Sex-specific VBG parameters and CVs in mean length at age were obtained from document SCRS/2017/111 (Rosa et al. In Prep.) as described in the text.

| Age (yr) | Female cm FL predicted from VBG parameters below | Male cm FL predicted from VBG parameters below |
| :---: | :---: | :---: |
| 0 | 62.9 | 63.0 |
| 1 | 80.7 | 85.7 |
| 2 | 97.5 | 105.6 |
| 3 | 113.2 | 122.9 |
| 4 | 127.9 | 138.0 |
| 5 | 141.7 | 151.2 |
| 6 | 154.6 | 162.7 |
| 7 | 166.8 | 172.8 |
| 8 | 178.2 | 181.6 |
| 9 | 188.9 | 189.2 |
| 10 | 198.9 | 195.9 |
| 11 | 208.3 | 201.7 |
| 12 | 217.1 | 206.8 |
| 13 | 225.4 | 211.3 |
| 14 | 233.2 | 215.2 |
| 15 | 240.4 | 218.6 |
| 16 | 247.3 | 221.5 |
| 17 | 253.7 | 224.1 |
| 18 | 259.7 | 226.3 |
| 19 | 265.3 | 228.3 |
| 20 | 270.6 | 230.0 |
| 21 | 275.6 | 231.5 |
| 22 | 280.2 | 232.8 |
| 23 | 284.6 | 234.0 |
| 24 | 288.7 | 235.0 |
| 25 | 292.5 | 235.8 |
| 26 | 296.1 | 236.6 |
| 27 | 299.5 | 237.3 |
| 28 | 302.7 | 237.8 |
| 29 | 305.6 | 238.3 |
| 30 | 308.4 | 238.8 |
| VBG parameters | Female | Male |
| $\mathrm{L}_{\text {inf }}$ | 350.6 | 241.8 |
| $k$ | 0.064 | 0.136 |
| $t_{0}$ | -3.09 | -2.2 |
| CV implemented for $\mathrm{L}_{\text {Amin }}$ | 0.093 | 0.097 |
| CV implemented for $L_{\text {inf }}$ | 0.090 | 0.082 |

Table 8. Annual pup production at age used i5n SS3 model runs.

| $\begin{gathered} \text { Age } \\ \text { (yr) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Length } \\ & (\mathrm{cm} \mathrm{FL})^{1} \end{aligned}$ | $\underset{(c m ~ T L)}{\text { Length }}$ <br> ${ }_{2}$ | $\begin{aligned} & \text { Length } \\ & \left(\mathrm{m}_{\mathrm{TL}}\right) \end{aligned}$ | $\begin{gathered} \text { Litter } \\ \text { size } \\ (\mathbf{L S})^{3} \end{gathered}$ | Fraction mature (Mat) | $\begin{gathered} \text { Pup } \\ \text { production } \\ (\mathrm{LS}) *(\text { Mat }) \end{gathered}$ | $\begin{gathered} \text { Annual } \\ \text { pup } \\ \text { production }{ }^{5} \end{gathered}$ | $\begin{gathered} \text { Annual } \\ \text { pup } \\ \text { production } \\ \text { at parturition }{ }^{6} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 62.9 | 69.6 | 0.7 | 0.3 | 0.0 | 0.0 | 0.00 | 0.00 |
| 1 | 80.7 | 88.8 | 0.9 | 0.6 | 0.0 | 0.0 | 0.00 | 0.00 |
| 2 | 97.5 | 106.8 | 1.1 | 0.9 | 0.0 | 0.0 | 0.00 | 0.00 |
| 3 | 113.2 | 123.7 | 1.2 | 1.3 | 0.0 | 0.0 | 0.00 | 0.00 |
| 4 | 127.9 | 139.6 | 1.4 | 1.8 | 0.0 | 0.0 | 0.00 | 0.00 |
| 5 | 141.7 | 154.4 | 1.5 | 2.2 | 0.0 | 0.0 | 0.00 | 0.00 |
| 6 | 154.6 | 168.4 | 1.7 | 2.8 | 0.0 | 0.0 | 0.00 | 0.00 |
| 7 | 166.8 | 181.5 | 1.8 | 3.3 | 0.0 | 0.0 | 0.00 | 0.00 |
| 8 | 178.2 | 193.7 | 1.9 | 3.8 | 0.0 | 0.0 | 0.00 | 0.00 |
| 9 | 188.9 | 205.2 | 2.1 | 4.4 | 0.0 | 0.0 | 0.00 | 0.00 |
| 10 | 198.9 | 216.0 | 2.2 | 4.9 | 0.0 | 0.0 | 0.00 | 0.00 |
| 11 | 208.3 | 226.2 | 2.3 | 5.5 | 0.0 | 0.0 | 0.00 | 0.00 |
| 12 | 217.1 | 235.7 | 2.4 | 6.1 | 0.0 | 0.0 | 0.01 | 0.00 |
| 13 | 225.4 | 244.6 | 2.4 | 6.6 | 0.0 | 0.0 | 0.01 | 0.00 |
| 14 | 233.2 | 252.9 | 2.5 | 7.1 | 0.0 | 0.1 | 0.03 | 0.01 |
| 15 | 240.4 | 260.8 | 2.6 | 7.7 | 0.0 | 0.2 | 0.08 | 0.01 |
| 16 | 247.3 | 268.1 | 2.7 | 8.2 | 0.1 | 0.5 | 0.16 | 0.03 |
| 17 | 253.7 | 275.0 | 2.8 | 8.7 | 0.1 | 0.9 | 0.30 | 0.08 |
| 18 | 259.7 | 281.5 | 2.8 | 9.2 | 0.2 | 1.6 | 0.54 | 0.16 |
| 19 | 265.3 | 287.6 | 2.9 | 9.7 | 0.3 | 2.6 | 0.88 | 0.30 |
| 20 | 270.6 | 293.3 | 2.9 | 10.1 | 0.4 | 4.0 | 1.32 | 0.54 |
| 21 | 275.6 | 298.6 | 3.0 | 10.5 | 0.5 | 5.4 | 1.81 | 0.88 |
| 22 | 280.2 | 303.6 | 3.0 | 11.0 | 0.6 | 6.9 | 2.29 | 1.32 |
| 23 | 284.6 | 308.3 | 3.1 | 11.4 | 0.7 | 8.2 | 2.74 | 1.81 |
| 24 | 288.7 | 312.7 | 3.1 | 11.8 | 0.8 | 9.4 | 3.13 | 2.29 |
| 25 | 292.5 | 316.8 | 3.2 | 12.1 | 0.9 | 10.3 | 3.45 | 2.74 |
| 26 | 296.1 | 320.7 | 3.2 | 12.5 | 0.9 | 11.1 | 3.71 | 3.13 |
| 27 | 299.5 | 324.4 | 3.2 | 12.8 | 0.9 | 11.8 | 3.93 | 3.45 |
| 28 | 302.7 | 327.8 | 3.3 | 13.1 | 0.9 | 12.4 | 4.12 | 3.71 |
| 29 | 305.6 | 331.0 | 3.3 | 13.4 | 1.0 | 12.8 | 4.28 | 3.93 |
| 30 | 308.4 | 334.0 | 3.3 | 13.7 | 1.0 | 13.3 | 4.42 | 4.12 |

[^6]Table 9. The stock-recruit steepness parameter, $h$, and the sex-specific natural mortality at each age $\left(M_{a}\right)$ were fixed at values obtained independently with life history invariant methods, as described in document SCRS/2017/126 (Cortés In Prep.).

| Age $(\mathbf{y r})$ | Female | Male |
| :---: | :---: | :---: |
| 0 | 0.080 | 0.157 |
| 1 | 0.080 | 0.157 |
| 2 | 0.080 | 0.157 |
| 3 | 0.080 | 0.157 |
| 4 | 0.080 | 0.149 |
| 5 | 0.080 | 0.139 |
| 6 | 0.080 | 0.131 |
| 7 | 0.080 | 0.125 |
| 8 | 0.080 | 0.120 |
| 9 | 0.080 | 0.116 |
| 10 | 0.080 | 0.113 |
| 11 | 0.080 | 0.111 |
| 12 | 0.080 | 0.108 |
| 13 | 0.080 | 0.107 |
| 14 | 0.080 | 0.105 |
| 15 | 0.080 | 0.104 |
| 16 | 0.080 | 0.103 |
| 17 | 0.080 | 0.102 |
| 18 | 0.080 | 0.101 |
| 19 | 0.080 | 0.100 |
| 20 | 0.080 | 0.100 |
| 21 | 0.080 | 0.099 |
| 22 | 0.080 | 0.099 |
| 23 | 0.080 | 0.098 |
| 24 | 0.080 | 0.098 |
| 25 | 0.079 | 0.098 |
| 26 | 0.079 | 0.097 |
| 27 | 0.078 | 0.097 |
| 28 | 0.077 | 0.097 |
| 29 | 0.076 | 0.097 |
| $30+$ | 0.075 | 0.097 |
|  |  |  |

Stock-recruit steepness parameter (h)
0.345

Table 10. Non-recruitment parameter estimates are provided for the final SS3 model run obtained by applying the two-stage data weighting approach described in the text of the main document above. Parameters with a negative phase were fixed at their initial value. CV is calculated as the asymptotic standard error (Parm_StDev) divided by the estimated value (Value). Num is the parameter number within the SS3 model run.

| Num | Label | Value | Active_Cnt | Phase | Min | Max | Init | Status | Parm_StDev | PR_type | Prior | Pr_SD | CV (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | SR_LN(R0) | 5.589 | 1 | 1 | 2.300 | 13.820 | 7.040 | OK | 0.0507 | Normal | 7.040 | 1000 | 0.91 |
| 69 | SizeSel_1P_1_F1_EU_LL | 139.86 | 30 | 2 | 63 | 298 | 131.76 | OK | 4.104 | Sym_Beta | 135.54 | 0.05 | 2.93 |
| 70 | SizeSel_1P_2_F1_EU_LL | -5.55 | 31 | 3 | -6 | 4 | -5.91 | OK | 1.669 | Sym_Beta | -6.00 | 0.05 | 30.09 |
| 71 | SizeSel_1P_3_F1_EU_LL | 6.81 | 32 | 3 | -1 | 9 | 6.63 | OK | 0.226 | Sym_Beta | 6.70 | 0.05 | 3.32 |
| 72 | SizeSel_1P_4_F1_EU_LL | 7.33 | 33 | 3 | -1 | 9 | 7.29 | OK | 0.198 | Sym_Beta | 7.25 | 0.05 | 2.69 |
| 73 | SizeSel_1P_5_F1_EU_LL | -5.00 |  | -2 | -5 | 9 | -5.00 | NA | - | Sym_Beta | -5.00 | 0.05 | NA |
| 74 | SizeSel_1P_6_F1_EU_LL | -4.96 |  | -2 | -5 | 9 | -4.96 | NA |  | Sym_Beta | -5.00 | 0.05 | NA |
| 75 | SizeSel_2P_1_F2_JPN_LL | 176.02 | 34 | 2 | 63 | 298 | 142.77 | OK | 14.228 | Sym_Beta | 148.87 | 0.05 | 8.08 |
| 76 | SizeSel_2P_2_F2_JPN_LL | -4.36 | 35 | 3 | -6 | 4 | -4.74 | OK | 4.366 | Sym_Beta | -4.56 | 0.05 | 100.04 |
| 77 | SizeSel_2P_3_F2_JPN_LL | 7.56 | 36 | 3 | -1 | 9 | 6.83 | OK | 0.510 | Sym_Beta | 7.25 | 0.05 | 6.75 |
| 78 | SizeSel_2P_4_F2_JPN_LL | 6.19 | 37 | 3 | -1 | 9 | 7.54 | OK | 1.510 | Sym_Beta | 7.61 | 0.05 | 24.40 |
| 79 | SizeSel_2P_5_F2_JPN_LL | -5.00 |  | -2 | -5 | 9 | -5.00 | NA |  | Sym_Beta | -5.00 | 0.05 | NA |
| 80 | SizeSel_2P_6_F2_JPN_LL | -1.95 | 38 | 2 | -5 | 9 | -3.21 | OK | 0.876 | Sym_Beta | -5.00 | 0.05 | 44.96 |
| 81 | SzSel_2Fem_Peak_F2_JPN_LL | -29.35 | 39 | 4 | -60 | 200 | 17.20 | OK | 20.085 | No_prior | 0.00 | 0 | 68.42 |
| 82 | SzSel_2Fem_Ascend_F2_JPN_LL | -0.88 | 40 | 4 | -15 | 15 | 0.91 | OK | 1.006 | No_prior | 0.00 | 0 | 114.15 |
| 83 | SzSel_2Fem_Descend_F2_JPN_LL | 1.51 | 41 | 4 | -15 | 15 | -0.64 | OK | 1.651 | No_prior | 0.00 | 0 | 109.59 |
| 84 | SzSel_2Fem_Final_F2_JPN_LL | -3.70 | 42 | 4 | -15 | 15 | 0.57 | OK | 2.247 | No_prior | 0.00 | 0 | 60.79 |
| 85 | SzSel_2Fem_Scale_F2_JPN_LL | 0.46 | 43 | 5 | -15 | 15 | 0.73 | OK | 0.158 | No_prior | 0.00 | 0 | 34.46 |
| 86 | SizeSel_3P_1_F3_CTP_LL | 169.36 | 44 | 2 | 63 | 298 | 155.77 | OK | 20.717 | Sym_Beta | 159.98 | 0.05 | 12.23 |
| 87 | SizeSel_3P_2_F3_CTP_LL | -3.28 | 45 | 3 | -6 | 4 | -2.26 | OK | 5.104 | Sym_Beta | -6.00 | 0.05 | 155.58 |
| 88 | SizeSel_3P_3_F3_CTP_LL | 6.85 | 46 | 3 | -1 | 9 | 6.49 | OK | 0.967 | Sym_Beta | 6.81 | 0.05 | 14.12 |
| 89 | SizeSel_3P_4_F3_CTP_LL | 7.25 | 47 | 3 | -1 | 9 | 7.32 | OK | 1.471 | Sym_Beta | 7.08 | 0.05 | 20.30 |
| 90 | SizeSel_3P_5_F3_CTP_LL | -5.00 |  | -2 | -5 | 9 | -5.00 | NA |  | Sym_Beta | -5.00 | 0.05 | NA |
| 91 | SizeSel_3P_6_F3_CTP_LL | -4.08 | 48 | 2 | -5 | 9 | -3.35 | OK | 2.047 | Sym_Beta | -5.00 | 0.05 | 50.16 |
| 92 | SzSel_3Male_Peak_F3_CTP_LL | -6.31 | 49 | 4 | -200 | 200 | -19.99 | OK | 35.944 | No_prior | 0.00 | 0 | 569.48 |
| 93 | SzSel_3Male_Ascend_F3_CTP_LL | 0.15 | 50 | 4 | -15 | 15 | -0.74 | OK | 1.611 | No_prior | 0.00 | 0 | 1078.14 |
| 94 | SzSel_3Male_Descend_F3_CTP_LL | -0.42 | 51 | 4 | -15 | 15 | -0.08 | OK | 3.097 | No_prior | 0.00 | 0 | 740.22 |
| 95 | SzSel_3Male_Final_F3_CTP_LL | 2.00 | 52 | 4 | -15 | 15 | -0.57 | OK | 3.286 | No_prior | 0.00 | 0 | 163.95 |
| 96 | SzSel_3Male_Scale_F3_CTP_LL | 0.94 | 53 | 5 | -15 | 15 | 0.47 | OK | 0.525 | No_prior | 0.00 | 0 | 55.75 |

Table 10. Continued.

| Num | Label | Value | Active_Cnt | Phase | Min | Max | Init | Status | Parm_StDev | PR_type | Prior | Pr_SD | CV (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 97 | SizeSel_4P_1_F4_USA_LL | 187.61 | 54 | 2 | 63 | 298 | 147.05 | OK | 6.313 | Sym_Beta | 127.99 | 0.05 | 3.36 |
| 98 | SizeSel_4P_2_F4_USA_LL | -5.56 | 55 | 3 | -6 | 4 | -5.16 | OK | 1.623 | Sym_Beta | -5.84 | 0.05 | 29.18 |
| 99 | SizeSel_4P_3_F4_USA_LL | 8.98 |  | -3 | -1 | 9 | 8.98 | NA |  | Sym_Beta | 7.33 | 0.05 | NA |
| 100 | SizeSel_4P_4_F4_USA_LL | 6.18 | 56 | 3 | -1 | 9 | 7.54 | OK | 0.948 | Sym_Beta | 8.08 | 0.05 | 15.34 |
| 101 | SizeSel_4P_5_F4_USA_LL | -4.32 | 57 | 2 | -5 | 9 | -2.50 | OK | 1.538 | Sym_Beta | -2.50 | 0.05 | 35.58 |
| 102 | SizeSel_4P_6_F4_USA_LL | -1.30 | 58 | 2 | -5 | 9 | -3.38 | OK | 0.563 | Sym_Beta | -5.00 | 0.05 | 43.24 |
| 103 | SzSel_4Fem_Peak_F4_USA_LL | 10.29 |  | -4 | -20 | 200 | 10.29 | NA |  | No_prior | 0.00 | 0 | NA |
| 104 | SzSel_4Fem_Ascend_F4_USA_LL | 1.89 | 59 | 4 | -15 | 15 | 3.42 | OK | 2.045 | No_prior | 0.00 | 0 | 108.46 |
| 105 | SzSel_4Fem_Descend_F4_USA_LL | -0.60 | 60 | 4 | -15 | 15 | -0.46 | OK | 0.954 | No_prior | 0.00 | 0 | 158.08 |
| 106 | SzSel_4Fem_Final_F4_USA_LL | -3.31 | 61 | 4 | -15 | 15 | 0.63 | OK | 0.945 | No_prior | 0.00 | 0 | 28.58 |
| 107 | SzSel_4Fem_Scale_F4_USA_LL | 0.50 | 62 | 5 | -15 | 15 | 0.74 | OK | 0.082 | No_prior | 0.00 | 0 | 16.34 |
| 108 | SizeSel_5P_1_F5_VEN_LL | 182.01 | 63 | 2 | 63 | 298 | 191.87 | OK | 9.802 | Sym_Beta | 167.54 | 0.05 | 5.39 |
| 109 | SizeSel_5P_2_F5_VEN_LL | -4.96 | 64 | 3 | -6 | 4 | -5.50 | OK | 3.310 | Sym_Beta | -6.00 | 0.05 | 66.78 |
| 110 | SizeSel_5P_3_F5_VEN_LL | 7.26 | 65 | 3 | -1 | 9 | 8.33 | OK | 0.431 | Sym_Beta | 6.81 | 0.05 | 5.93 |
| 111 | SizeSel_5P_4_F5_VEN_LL | 6.97 | 66 | 3 | -1 | 9 | 7.00 | OK | 1.593 | Sym_Beta | 7.08 | 0.05 | 22.84 |
| 112 | SizeSel_5P_5_F5_VEN_LL | -5.00 |  | -2 | -5 | 9 | -5.00 | NA |  | Sym_Beta | -5.00 | 0.05 | NA |
| 113 | SizeSel_5P_6_F5_VEN_LL | -1.46 | 67 | 2 | -5 | 9 | -2.70 | OK | 1.904 | Sym_Beta | -5.00 | 0.05 | 130.50 |
| 114 | SzSel_5Fem_Peak_F5_VEN_LL | 15.39 | 68 | 4 | -200 | 200 | -19.66 | OK | 20.053 | No_prior | 0.00 | 0 | 130.33 |
| 115 | SzSel_5Fem_Ascend_F5_VEN_LL | 0.93 | 69 | 4 | -15 | 15 | -1.00 | OK | 0.693 | No_prior | 0.00 | 0 | 74.60 |
| 116 | SzSel_5Fem_Descend_F5_VEN_LL | 0.01 | 70 | 4 | -15 | 15 | -0.42 | OK | 2.135 | No_prior | 0.00 | 0 | 22673.67 |
| 117 | SzSel_5Fem_Final_F5_VEN_LL | -3.44 | 71 | 4 | -15 | 15 | 0.76 | OK | 3.333 | No_prior | 0.00 | 0 | 96.86 |
| 118 | SzSel_5Fem_Scale_F5_VEN_LL | 0.40 | 72 | 5 | -15 | 15 | 0.94 | OK | 0.127 | No_prior | 0.00 | 0 | 31.69 |

Table 11. Annual estimates of total biomass $(B)$, spawning stock fecundity (SSF), recruits $(R)$, total fishing mortality ( $F$, calculated as the sum of continuous $F$ obtained for each fleet; see Figure 13), and total exploitation rate in numbers ( $U$, for ages $1+$ ) for the final SS3 model run obtained by applying the two-stage data weighting approach described in the text of the main document above.

| Year | $\boldsymbol{B}(\mathbf{t})$ | SSF <br> $(\mathbf{1 , 0 0 0 s})$ | $\boldsymbol{R}$ <br> $(\mathbf{1 , 0 0 0 s})$ | $\boldsymbol{F}$ | $\boldsymbol{U}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Virg |  | 1,366 | 267 |  |  |
| Init |  | 1,366 | 267 |  |  |
| 1950 | 265,971 | 1,366 | 267 | 0.003 | 0.001 |
| 1951 | 265,848 | 1,366 | 267 | 0.002 | 0.001 |
| 1952 | 265,755 | 1,366 | 267 | 0.002 | 0.001 |
| 1953 | 265,655 | 1,366 | 267 | 0.003 | 0.001 |
| 1954 | 265,531 | 1,366 | 267 | 0.001 | 0.000 |
| 1955 | 265,477 | 1,366 | 267 | 0.001 | 0.000 |
| 1956 | 265,400 | 1,366 | 267 | 0.001 | 0.000 |
| 1957 | 265,345 | 1,366 | 267 | 0.002 | 0.001 |
| 1958 | 265,240 | 1,366 | 267 | 0.002 | 0.001 |
| 1959 | 265,148 | 1,366 | 267 | 0.003 | 0.001 |
| 1960 | 265,033 | 1,366 | 267 | 0.002 | 0.001 |
| 1961 | 264,949 | 1,366 | 267 | 0.004 | 0.001 |
| 1962 | 264,780 | 1,365 | 267 | 0.006 | 0.002 |
| 1963 | 264,550 | 1,365 | 267 | 0.002 | 0.001 |
| 1964 | 264,425 | 1,365 | 267 | 0.005 | 0.001 |
| 1965 | 264,227 | 1,364 | 267 | 0.004 | 0.001 |
| 1966 | 264,059 | 1,363 | 267 | 0.007 | 0.002 |
| 1967 | 263,761 | 1,363 | 267 | 0.007 | 0.002 |
| 1968 | 263,480 | 1,362 | 267 | 0.009 | 0.003 |
| 1969 | 263,118 | 1,361 | 267 | 0.009 | 0.003 |
| 1970 | 262,747 | 1,361 | 267 | 0.008 | 0.002 |
| 1971 | 262,399 | 1,360 | 267 | 0.012 | 0.003 |
| 1972 | 261,901 | 1,359 | 267 | 0.011 | 0.003 |
| 1973 | 261,414 | 1,358 | 267 | 0.011 | 0.003 |
| 1974 | 260,936 | 1,357 | 267 | 0.016 | 0.004 |
| 1975 | 260,266 | 1,356 | 266 | 0.020 | 0.005 |
| 1976 | 259,482 | 1,355 | 266 | 0.010 | 0.003 |
| 1977 | 259,063 | 1,353 | 266 | 0.015 | 0.004 |
| 1978 | 258,458 | 1,352 | 266 | 0.014 | 0.004 |
| 1979 | 257,926 | 1,350 | 266 | 0.012 | 0.004 |
| 1980 | 257,460 | 1,348 | 266 | 0.020 | 0.006 |
| 1981 | 256,735 | 1,346 | 266 | 0.033 | 0.010 |
| 1982 | 255,389 | 1,343 | 265 | 0.036 | 0.011 |
| 1983 | 253,813 | 1,340 | 265 | 0.038 | 0.012 |
| 1984 | 252,269 | 1,337 | 265 | 0.042 | 0.013 |
| 1985 | 250,287 | 1,334 | 230 | 0.094 | 0.031 |
| 1986 | 245,730 | 1,330 | 216 | 0.119 | 0.037 |
| 1987 | 240,889 | 1,325 | 209 | 0.121 | 0.036 |
| 1988 | 236,166 | 1,320 | 210 | 0.109 | 0.033 |
| 1989 | 231,519 | 1,314 | 217 | 0.082 | 0.024 |
| 1990 | 227,550 | 1,309 | 219 | 0.098 | 0.028 |
| 1991 | 223,356 | 1,303 | 214 | 0.100 | 0.028 |
| 1992 | 219,085 | 1,296 | 194 | 0.145 | 0.040 |
| 1993 | 213,746 | 1,287 | 200 | 0.196 | 0.054 |
| 1994 | 207,080 | 1,277 | 195 | 0.191 | 0.052 |
| 1995 | 200,677 | 1,266 | 177 | 0.276 | 0.072 |
| 1996 | 192,281 | 1,252 | 174 | 0.344 | 0.084 |
| 1997 | 183,718 | 1,236 | 223 | 0.261 | 0.065 |
| 1999 | 177,040 | 170,466 | 1,219 | 279 | 0.290 | 0.0670

Table 11. Continued.

| Year | $\boldsymbol{B}(\mathbf{t})$ | $\mathbf{S S F}(\mathbf{1 , 0 0 0 s})$ | $\boldsymbol{R}(\mathbf{1 , 0 0 0 s})$ | $\boldsymbol{F}$ | $\boldsymbol{U}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 165,537 | 1,179 | 316 | 0.190 | 0.050 |
| 2001 | 161,412 | 1,157 | 322 | 0.196 | 0.055 |
| 2002 | 157,442 | 1,132 | 233 | 0.230 | 0.065 |
| 2003 | 153,362 | 1,105 | 343 | 0.248 | 0.079 |
| 2004 | 149,323 | 1,076 | 370 | 0.238 | 0.072 |
| 2005 | 145,744 | 1,044 | 356 | 0.207 | 0.068 |
| 2006 | 142,863 | 1,011 | 293 | 0.190 | 0.065 |
| 2007 | 140,275 | 977 | 210 | 0.211 | 0.075 |
| 2008 | 137,148 | 941 | 238 | 0.187 | 0.070 |
| 2009 | 134,403 | 904 | 250 | 0.228 | 0.084 |
| 2010 | 130,611 | 867 | 191 | 0.251 | 0.089 |
| 2011 | 126,339 | 830 | 169 | 0.209 | 0.073 |
| 2012 | 122,877 | 795 | 165 | 0.264 | 0.090 |
| 2013 | 118,514 | 760 | 194 | 0.232 | 0.078 |
| 2014 | 114,904 | 728 | 189 | 0.197 | 0.064 |
| 2015 | 112,050 | 698 | 184 | 0.230 | 0.073 |

Table 12. Annual estimates of total fishing mortality ( $F$, calculated as the sum of continuous F obtained for each fleet; see Figure 13) relative to total fishing mortality at MSY ( $F / F \_$MSY) and spawning stock fecundity (SSF 1,000 s) relative to spawning stock fecundity at MSY (SSF/SSF_MSY) for the final SS3 model run obtained by applying the two-stage data weighting approach described in the text of the main document above.

| Year | $\boldsymbol{F} / \boldsymbol{F}$ _MSY | SSF/SSF_MSY |
| :---: | :---: | :---: |
| 1950 | 0.052 | 2.384 |
| 1951 | 0.035 | 2.384 |
| 1952 | 0.035 | 2.384 |
| 1953 | 0.043 | 2.384 |
| 1954 | 0.011 | 2.384 |
| 1955 | 0.022 | 2.384 |
| 1956 | 0.013 | 2.384 |
| 1957 | 0.036 | 2.384 |
| 1958 | 0.030 | 2.384 |
| 1959 | 0.039 | 2.384 |
| 1960 | 0.026 | 2.383 |
| 1961 | 0.063 | 2.383 |
| 1962 | 0.087 | 2.382 |
| 1963 | 0.038 | 2.382 |
| 1964 | 0.071 | 2.381 |
| 1965 | 0.056 | 2.380 |
| 1966 | 0.112 | 2.379 |
| 1967 | 0.101 | 2.378 |
| 1968 | 0.133 | 2.377 |
| 1969 | 0.133 | 2.375 |
| 1970 | 0.120 | 2.374 |
| 1971 | 0.181 | 2.373 |
| 1972 | 0.174 | 2.371 |
| 1973 | 0.171 | 2.370 |
| 1974 | 0.249 | 2.368 |
| 1975 | 0.300 | 2.366 |
| 1976 | 0.147 | 2.364 |
| 1977 | 0.232 | 2.361 |
| 1978 | 0.208 | 2.359 |
| 1979 | 0.186 | 2.355 |
| 1980 | 0.300 | 2.352 |
| 1981 | 0.501 | 2.348 |
| 1982 | 0.553 | 2.344 |
| 1983 | 0.581 | 2.339 |
| 1984 | 0.637 | 2.334 |
| 1985 | 1.435 | 2.328 |
| 1986 | 1.816 | 2.320 |
| 1987 | 1.841 | 2.312 |
| 1988 | 1.664 | 2.303 |
| 1989 | 1.258 | 2.293 |
| 1990 | 1.499 | 2.284 |
| 1991 | 1.527 | 2.273 |
| 1992 | 2.205 | 2.261 |
| 1993 | 2.986 | 2.246 |
| 1994 | 2.920 | 2.228 |
| 1995 | 4.211 | 2.209 |
| 1996 | 5.244 | 2.184 |
| 1997 | 3.977 | 2.157 |
| 1998 | 4.422 | 2.127 |
| 1999 | 3.354 | 2.094 |

Table 12. Continued.

| Year | F/F_MSY | SSF/SSF_MSY |
| :---: | :---: | :---: |
| 2000 | 2.891 | 2.058 |
| 2001 | 2.985 | 2.019 |
| 2002 | 3.507 | 1.976 |
| 2003 | 3.779 | 1.929 |
| 2004 | 3.635 | 1.877 |
| 2005 | 3.152 | 1.823 |
| 2006 | 2.894 | 1.765 |
| 2007 | 3.218 | 1.704 |
| 2008 | 2.858 | 1.641 |
| 2009 | 3.470 | 1.578 |
| 2010 | 3.829 | 1.513 |
| 2011 | 3.184 | 1.449 |
| 2012 | 4.032 | 1.387 |
| 2013 | 3.541 | 1.326 |
| 2014 | 3.008 | 1.270 |
| 2015 | 3.501 | 1.217 |

Table 13. Estimates of ending year (2015) stock status relative to maximum sustainable yield (MSY), including spawning stock fecundity (SSF_2015), fishing mortality ( $F \_2015$, calculated as the sum of continuous $F$ obtained for each fleet; see Figure 13), and recruits ( $R_{-} 2015$ ), along with equilibrium SSF (SSF_0) and $R\left(R \_0\right)$, maximum sustainable yield (MSY), SSF at MSY (SSF_MSY), $F$ at MSY ( $F_{-}$MSY) and the ratios SSF_2015/SSF_MSY and $F_{-} 2015 / F_{-}$MSY. Asymptotic standard errors (S.E.) calculated from the maximum likelihood estimates of parameter variances at the converged solution and CVs based on the S.E. (where available) are also provided for the parameter estimates.

| Ending year (2015) stock status relative to MSY reference points | Estimate | S.E. | CV |
| :---: | :---: | :---: | :---: |
| SSF_2015 (1,000s) | 698 | 69 | 10\% |
| F_2015 | 0.230 | --- | --- |
| R_2015 (1,000s) | 184 | 15 | 8\% |
| SSF_0 | 1,366 | 69 | 5\% |
| R_0 | 267 | 14 | 5\% |
| MSY (t) | 1,075 | 40.60 | 4\% |
| SSF_MSY | 573 | 29 | 5\% |
| $F_{-}$MSY | 0.066 | 0.003 | 4\% |
| SSF_2015/SSF_MSY | 1.217 | --- | --- |
| F_2015/F_MSY | 3.501 | 0.41 | 12\% |



Figure 1. Catch in metric tons (t) by major flag obtained from data compiled during the 2017 Shortfin Mako Data Preparatory meeting and presented here as annual time series (upper panel) and as the proportion of the total catch (lower panel).


Figure 2. Indices of relative abundance for North Atlantic shortfin mako obtained from Table 3, divided here by the mean of the overlapping years among series (2007-2015) for plotting purposes, along with total catches ( t ) obtained from Table 2 for overlapping years with survey data (1986 - 2015).


Figure 3. Available length composition data for North and South Atlantic shortfin mako ( $30-350 \mathrm{~cm}$ FL in 10 cm bins) were obtained from data compiled during the 2017 Shortfin Mako Data Preparatory meeting, as reported in document SCRS/2017/048 (Coelho et al. In Prep.). Only data for North Atlantic shortfin mako were used in the SS3 model runs. Plots of fits to annual North Atlantic shortfin mako length composition by fleet are provided in Appendix B).


Figure 4. Sex-specific VBG parameters were obtained from SCRS/2017/111 as described in the text and Table 7.

## Length at Age (Female)



Figure 5. The assumed distribution of mean length at each age implemented in SS3 separately for females (upper panel) and males (lower panel) as described in the text of the main document and in Table 7.


Figure 6. Sex-specific natural mortality at each age was fixed at values obtained independently with life history invariant methods, as described in document SCRS/2017/126 (Cortés In Prep.).

Data by type and year, circle area is relative to precision within data type


Figure 7. North Atlantic shortfin mako time series of catch, relative abundance, and length composition data used in the final SS3 model runs.


Figure 8. Selectivity at length (cm FL; upper panel) and corresponding derived selectivity at age (lower panel) obtained for the final SS3 model. Selectivity was estimated for fleets F1-F5 based on fit to length composition data. Selectivity for the remaining fleets and surveys mirrored the estimated selectivity of Fleets F1 - F5 as defined in Table 1. Sex-combined selectivity was estimated for fleet F1 based on sex-combined length composition data. Sex- specific selectivity was estimated for fleets F2 - F5 based on sex-specific length composition data.


Figure 8. Continued.


Figure 8. Continued.

Female ending year selectivity for F3_CTP_LL


Male ending year selectivity for F3_CTP_LL


Figure 8. Continued.

Female ending year selectivity for F4_USA_LL


Male ending year selectivity for F4_USA_LL


Figure 8. Continued.

Female ending year selectivity for F5_VEN_LL


Male ending year selectivity for F5_VEN_LL


Figure 8. Continued.


Figure 9. Predicted (blue line) and observed (open circles with $95 \%$ confidence intervals assuming lognormal error) for each standardized index of relative abundance as defined in Table 1 obtained for the final SS3 model. Fits on the nominal scale are provided in the upper panel and fits on the log scale are provided in the lower panel. Index S2 (USA LL Obs) was not fit in the model likelihood (lambda = 0) because of high variability in the index and because S2 describes the same fishery as S1 (USA LL Log) (Anon. In Prep.).


Figure 9. Continued.


Figure 9. Continued.


Figure 9. Continued.


Figure 9. Continued.
length comps, whole catch, aggregated across time by fleet


Figure 10. Model predicted (line) and observed (shaded) aggregated length compositions (female + male; for fleet F1 and sex specific for fleets F2 - F5) obtained for the final SS3 model. N is the input effective sample size using the Francis method (Stage 2) as described in the text of the main document above, and effN is the effective sample size estimated in Stock Synthesis. Plots of annual fits to length composition data by fleet along with plots of Francis method (Stage 2) length composition variance adjustments are provided in Appendix B.


Figure 11. Upper panel is the expected recruitment from the stock-recruitment relationship (black line), expected recruitment after implementing the bias adjustment correction (green line), estimated annual recruitments (circles), unfished equilibrium (plus), and first (1950) and last (2015) years along with years with $\log$ deviations $>0.5$. Note the different scales on the Y-axis (number of recruits in $1,000 \mathrm{~s}$ ) and X -axis (spawning stock fecundity, SSF, in 1,000 s). Lower panel is bias adjustment applied to the stock-recruitment relationship (red stippled line) and the estimated alternative (blue line) obtained from the r4ss output.


Figure 12. Upper panel is the estimated log recruitment deviations for the early (1985-1989, blue) and main (1990 - 2012, black) recruitment periods with associated $95 \%$ asymptotic confidence intervals, lower panel is the estimated annual age-0 recruitment (circles) with $95 \%$ asymptotic confidence intervals; recruitment in years prior to 1985 and after 2012 follows the stock recruitment relationship exactly.


Figure 13. Estimated instantaneous fishing mortality rates (Continuous $F$ ) for each fleet (F1 - F12) obtained for the final SS3 model.



Figure 14. Upper panel is the estimated total annual fishing mortality for all fleets combined, calculated as the sum of continuous $F$ obtained for each fleet (see Figure 13), relative to total annual fishing mortality at MSY ( $F / F_{-}$MSY) and lower panel is the estimated spawning stock size (spawning stock fecundity, SSF) and spawning stock size at MSY (SSF_MSY). Approximate $95 \%$ asymptotic standard errors ( $\pm 2 *$ s.e.) are based on asymptotic standard errors obtained for derived quantities from SS3.


Figure 15. Kobe plot of the estimated total annual fishing mortality for all fleets combined, calculated as the sum of continuous $F$ obtained for each fleet (see Figure 13), relative to total annual fishing mortality at MSY ( $F / F_{-}$MSY) and estimated spawning stock size (spawning stock fecundity, SSF 1,000 s) relative to spawning stock size at MSY (SSF/SSF_MSY).


Figure 16. Upper panel is estimated total annual fishing mortality for all fleets combined (calculated as the sum of continuous $F$ obtained for each fleet; see Figure 13) relative to fishing mortality at MSY, and lower panel is the annual exploitation rate in numbers ( $U$, calculated for age $1+$ ) relative to the annual exploitation rate at MSY.

## Francis Method (Stage 1) CPUE Variance Adjustments.



Figure A.1. LOESS smoother fits used to estimate the RMSE $_{\text {smoother }}$ for each CPUE series; Left panel: Smoother fits to $\log$ (CPUE) data; Middle panel: Residual plots and estimated RMSE for each CPUE series; Right panel: LOESS smoother fits illustrated for CPUE indices along with approximate $95 \%$ confidence intervals after applying the variance adjustment.


Figure A.1. Continued.

## Annual Length Composition Fits and Francis Method (Stage 2) Length Composition Variance Adjustments



Figure B.1. Observed and predicted annual length compositions (upper panel) by fleet (as defined in Table 1 of the main document) obtained for the final SS3 model. Diameter of Pearson residuals (lower panel, circles) indicates relative error; predicted < observed (solid), predicted > observed (transparent). The maximum diameter width of the plot for Pearson residuals (max) is an indication of relative fit. N is the input effective sample size using the Francis Method (Stage 2) as described in the main document, and effN is the effective sample size estimated in Stock Synthesis. Years with small sample size (total number of sharks measured < 30) were excluded from the fit (input sample sizes of raw length data are provided in Table 5 of the main document).
length comps, whole catch, F2_JPN_LL


Pearson residuals, whole catch, F2_JPN_LL (max=1.95)


Figure B.1. Continued.
length comps, whole catch, F3_CTP_LL


Length (cm)

Pearson residuals, whole catch, F3_CTP_LL (max=2.52)


Figure B.1. Continued.
length comps, whole catch, F4_USA_LL

length comps, whole catch, F4_USA_LL


Figure B.1. Continued.

Pearson residuals, whole catch, F4_USA_LL (max=1.92)


Year
Figure B.1. Continued.

## length comps, whole catch, F5_VEN_LL



Length (cm)

Pearson residuals, whole catch, F5_VEN_LL (max=2.54)


Figure B.1. Continued.


Figure B.2. Observed mean length (cm FL, open circle and $95 \%$ confidence intervals) and predicted mean length (blue line) by fleet (as defined in Table 1 of the main document) obtained for the final SS3 model run; Confidence intervals are calculated using the input effective sample size ( N ) obtained from the Francis Method (Stage 2) as described in the main document and should include the predicted (blue line) mean annual length composition in about $95 \%$ of the observations (years). Years with total number of sharks measured < 30 were excluded from the fit (input sample sizes of raw length data are provided in Table 5 of the main document).


Figure B.2. Continued.


Figure B.2. Continued.

Appendix C. Additional Length Composition Data Available for Fleet F1.


Figure C.1. Additional length composition data available for fleet F1 from EU España were not included in the current model due to time constraints.


[^0]:    ${ }^{1}$ National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Panama City Laboratory, 3500 Delwood Beach Road, Panama City, Florida 32408, U.S.A. E-mail: Dean.Courtney@noaa.gov

[^1]:    ${ }^{2}$ Carvalho, F. and H. Winker. Withdrawn. Stock assessment of south Atlantic blue shark (Prionace glauca) through 2013. (ICCAT SCRS/2015/153).

[^2]:    ${ }^{3}$ Personal observation based on presentations and discussions during a Center for the Advancement of Population Assessment Methodology (CAPAM) Data Weighting Workshop (October 19-23, 2015, La Jolla, California).

[^3]:    1. Not ICCAT Task I - Finalized catch data for this assessment was obtained from the 2017 Shortfin Mako Data Preparatory meeting (Anon. In Prep.)
    2. Index S2 (USA LL Obs) was not fit in the model likelihood (lambda $=0$ ) because of high variability in the index and because S2 describes the same fishery as S1 (USA LL Log) (Anon. In Prep.).
    3. Index S5 was obtained from SCRS/2017/108-CPUE in weight $(C V=$ se on $\log$ scale $)$.
[^4]:    1. Index S2 (USA LL Obs) was not fit in the model likelihood (lambda $=0$ ) because of high variability in the index and because S2 describes the same fishery as S1 (USA LL Log) (Anon. In Prep.)
    2. Index S5 was obtained from SCRS/2017/108-CPUE in weight.
[^5]:    * Derived with the Schnute model; ** Gompertz (VBGF in parentheses) [Coelho et al. VBGF in brackets]; *** VBGF with Lo; ${ }^{* * * * ~ H G ~ i s ~ e v i s c e r a t e d ~ w e i g h t ~}$

    1. Sex-specific growth in length at age was assumed to follow von Bertalanffy growth (VBG), with updated parameters provided separately from document SCRS/2017/111 (Rosa et al. In Prep.) as described in the text, Table 7, and Figure 4.
[^6]:    1 Growth in length at age was assumed to follow the female von Bertalanffy growth (VBG) relationship from Table 7.
    2. $\mathrm{cm} \mathrm{TL}=(\mathrm{cm} \mathrm{FL}+1.7101) / 0.9286$ (Table 6).
    3. Litter size $(\mathrm{LS})=0.81 *(\mathrm{~m} \mathrm{TL})^{\wedge} 2.346$ (Table 6).
    4. Fraction mature $($ Mat $)=1 /(1+\exp -(-27.81+9.332 * M S))($ Table 6$)$, where MS is maternal size ( m TL).
    5. Annual pup production was obtained here by assuming a three year reproductive cycle (Table 6) and calculated as [(LS) * (Mat)]/3
    6. Annual pup production at maternity (parturition) was obtained here by assuming a two year gestation period ( 18 months, Table 6, plus 6 months for mating), for use in sensitivity analyses [(Annual pup production at parturition $)_{\mathrm{a}}=(\text { Annual pup production })_{\mathrm{a}-2}$ ].

