# Standardized Catch Rates of Yellowtail Snapper (Ocyurus chrysurus) from the U.S. Headboat Fishery in Southeast Florida and the Florida Keys, 1981-2017 

## Liz Herdter and Shanae Allen

## SEDAR64-DW-11

## 28 May 2019



This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Herdter, Liz and Allen, Shanae. 2019. Standardized Catch Rates of Yellowtail Snapper (Ocyurus chrysurus) from the U.S. Headboat Fishery in Southeast Florida and the Florida Keys, 1981-2017. SEDAR64-DW-11. SEDAR, North Charleston, SC. 44 pp.

# Standardized Catch Rates of Yellowtail Snapper (Ocyurus chrysurus) from the U.S. Headboat Fishery in Southeast Florida and the Florida Keys, 1981-2017. 

Liz Herdter and Shanae Allen<br>Florida Fish and Wildlife Research Institute

SEDAR64

## Introduction

Headboats are vessels with a capacity for carrying six or more recreational anglers. The Southeast Region Headboat Survey (SRHS), administered by the SEFSC Laboratory in Beaufort, NC, has operated along the east coast since 1972 and in the Gulf of Mexico since 1986. Catch and effort records from every trip are provided using self-reported logbooks and biological samples are collected from dockside intercepts by port agents. Logbooks are mandatory and required for permit renewal. Each logbook form collects information about number and weight of each species caught, total number of anglers, location fished, trip duration, and, starting in 2004, number of species released and their release condition (alive, dead). Vessels are chosen by port agents in a systematic rotation with the flexibility to sample vessels opportunistically in order to sample all vessels equally each month. Port agents collect information on length and weight of a subsample of fish as well as biological samples (e.g. otoliths, gonads, stomachs) for use in life history studies. The catch and effort information from the logbooks for each trip were used to construct indices of Yellowtail Snapper catch rates in the Florida Keys and Southeast Florida. Generalized linear mixed effects models and a delta-lognormal approach were used to generate the indices.

## Methods

## Area Descriptions

Three standardized headboat catch rate indices were generated.

1. A catch rate index for southeast Florida (SE_FL) - headboat area 11
2. A catch rate index for the Florida Keys (FL_Keys) - headboat areas 12 and 17
3. A catch rate index for combined Florida Keys and Southeast Florida

To note, areas 12 (Keys) and 17 (Dry Tortugas, vessels docked in the Keys) were consolidated to area 12 starting in 2013. The third index, a single area catch rate, was developed by joining catch records from areas 11,12 , and 17 . The standardized index was generated by adding the trip catches together only after all forthcoming filtering and clustering steps had been applied to each area-specific dataset.

## New Variables

Additional features (variables) were created using existing variables within the dataset. The new features were season, angler category, time of day, and trip identification number. Seasons were defined as winter (January through March), spring (April through June), summer (July through September) and fall (October through December). The numbers of anglers were grouped into four categories based on quantiles such that records were evenly distributed within each category. The time of day variable was derived from the existing trip variable. Time of day was defined as night (for $1 / 2$ day night trips, $1 / 2$ day night (second trips), $3 / 4$ day night and overnight trips) and day for all remaining trip types. Preliminary data filtering was performed prior to any steps described below; please refer to the SEDAR 64 Southeast Region Headboat Survey overview working paper (SEDAR64-DW08) for a discussion of the methods.

## Data Filtering

1. Trips were removed if they did not occur between the years 1981 to 2017 and within areas 11,12 , and 17 (resulting in 233,593 trips).
2. Trips were removed if the associated vessel ID made fewer than 11 trips (corresponding to the 5th percentile) over the entire duration of the timeframe (resulting in 233,559 trips).

Furthermore, only trips that were directly or indirectly targeting Yellowtail Snapper were retained in the analysis. Trips that targeted Yellowtail Snapper were identified as those that retained Yellowtail Snapper or any other species that were shown, via statistical methodology described below, to co-occur with Yellowtail Snapper even if Yellowtail Snapper was not retained on the specific trip.

## Species Clustering

The suite of co-occurring species (hereafter, species clusters) was identified using hierarchical clustering analysis described by Shertzer and Williams (2008). Hierarchical cluster analysis was performed with average linkage on the Bray-Curtis similarity measure calculated on presence/absence of retained catch data for each species (i.e. total retained species per trip). The number of clusters against the average distance between clusters was visualized and a piecewise regression with one breakpoint was used to determine the inflection point of the plot (Figures 1 and 2). The inflection point was chosen as that with the lowest residual mean square error.

Twenty-one clusters were identified for SE_FL using this method with Yellowtail Snapper clustering (co-occurring with) with 20 species including Almaco Jack, Bigeye, Blue Runner, Dolphin, Graysby, Gray Snapper, Gray Triggerfish, Jolthead Porgy, King Mackerel, Lane Snapper, Little Head Porgy, Little Tunny, Mutton Snapper, Queen Triggerfish, Red Grouper, Remora, Sand Tilefish, Squirrelfish, Vermillion Snapper, and White Grunt (Figure 3).

Thirteen clusters were identified for the Florida Keys area with Yellowtail Snapper clustering (co-occurring with) 23 species including Bigeye, Black Grouper, Blue Runner, Blue Striped Grunt, Cero, Doctorfish, Gag Grouper, Graysby, Gray Snapper, Gray Triggerfish, Hogfish, Jolthead Porgy, Knobbed Porgy, Lane Snapper, Little Head Porgy, Mutton Snapper, Porkfish,

Puddingwife Wrasse, Red Grouper, Schoolmaster Snapper, Spotted Moray, Squirrelfish, and White Grunt (Figure 4).

After removing all trips that did not capture at least one of the species in the clusters, 147,504 trips remained for SE_FL and 79,558 trips in the Florida Keys. Importantly, the clustering algorithm was not run for the combined single area trip data. Rather, the catch rate index produced for the single area model was developed by combining the trip data selected from the two areas.

## Standardization

CPUE, the number of Yellowtail Snapper retained per trip, was modeled using the delta-glm approach (Dick 2004; Lo et al. 1992; Maunder and Punt 2004). This approach calculates an index as the product of the indices from binomial (probability of retaining the selected species) and positive (trips that retained at least one Yellowtail Snapper) sub-models. Positive CPUE of Yellowtail Snapper was modeled as a lognormal distribution.

Five explanatory variables were evaluated for both the positive and binomial models. These included:

```
Year - factor with levels 1981 to 2017
Season - factor with four levels (winter, spring, summer, fall)
Angler category - factor with four levels
Hours fished - factor with three levels (5, 7, 10+)
Time of day - factor with two levels (night time (0), day time (1))
```

Some studies have shown that the experience level of a vessel captain may affect catch rates of species and could be used as an explanatory variable in models examining catch rates. However, the SRHS does not have information on vessel captains as part of its catch records, and only coding for vessel identity is available for use. Because a vessel may report many trips over a year but not always have the same captain for all those trips or any trips in the following years, vessel was included as a random effect in the submodels.

A fixed effects model was fit using generalized least squares (GLS) and restricted maximum likelihood estimation (REML) and compared to a linear mixed effects model (LME) also fit with REML that included a vessel as a random effect. An ANOVA was used to compare the GLS and LME models (Zuur et al. 2009). For all areas, the likelihood ratio test indicated that the mixed effects model with the random vessel effect was significantly better. Therefore, a random vessel effect was included in the positive and binomial sub-models for each region. The R package and function lmerTest::Imer was used to produce the positive sub-model and the lme4::glmer package and function was used to produce the binomial sub-model for each region. For both the positive and binomial sub-models, explanatory variables were selected using stepwise forward selection based on AIC. The goal of stepwise selection is to produce a model (overall model) that contains the optimal combination of explanatory variables (which explain a significant amount of variation in the response variable) while also being most parsimonious. Stepwise forward selection starts with a null model that is specified by the practitioner. At the first step, each covariate is added to a null model so that there are $n$ unique models ( $n=$ number of covariates). The lowest AIC of the unique models is compared to that of the null model; if it is
lower than the AIC of the null model by at least two points the unique model becomes the new base model (Burnham and Anderson 2002, p. 70). This process repeats itself until no additional covariate reduces the AIC. Finally, each variable was evaluated in terms of its total percent reduction in deviance (in relation to the null model). If the variables did not reduce deviance by at least $0.5 \%$ they were excluded from the final model.

## Index Generation and Evaluation

Monte Carlo simulations ( $\mathrm{n}=10,000$ ) were used to generate an expected distribution around the least squared mean estimates (year factor) for the proportion data (binomial) and positive data (positive model). The resulting simulants were transformed back to response space using the inverse logit function and exponentiation, respectively. Finally the estimates from the distributions were multiplied together to obtain annual distributions of standardized catch rates. From these simulated distributions, standard deviation, coefficients of variations, and quantiles were calculated.

The DHARMa package in R (Hartig 2019) was used to evaluate residuals of the positive and binomial mixed effects model. The DHARMa package produces quantile residuals by simulating synthetic datasets from the fitted model for each observation. It then calculates the cumulative distribution of simulated values ${ }^{1}$ for each observed value and returns the corresponding quantile value within which the observation falls- thus, quantile residual (Figure 5). A residual value of 0.5 means that half of the simulated data are higher than the observed value and half are lower. A value of 0.99 would mean that nearly all simulated data are lower than the observed value (Hartig 2019). The choice for producing quantile residuals plots is motivated by the fact that "misspecifications in generalized linear mixed effects models cannot reliably be diagnosed with standard residual plots". Frequently, standard residual plots for generalized mixed models would indicate issues such as non-normality or heteroscedasticity even for a correctly specified model (Hartig 2019).

## Results \& Discussion

Nominal catch rates were highest in the FL_Keys area and were generally consistent across seasons in both areas indicating no likely seasonality in catch rates (Figures 6, 7, 8). Nominal catch rate in both areas was highest for the $10+$ hours fished category as well as for the highest angler category (Figures 6, 7, 8). There is a year*time of day interaction in both areas with catch rates being higher during the day time in the early part of the time series. Starting in 1998 nominal catch rates during the night time in both areas were higher than those during the day (Figures 6, 7, 8) even though the proportion of nighttime trips declined (Tables 10 and 12) which may suggest that higher nighttime catch rates may be due to increasing nighttime catches. We did not account for a year*time of day interaction but suggest that the index should be calculated for daytime-only trips if the entire time period is used in the assessment model.

[^0]The final positive and binomial sub-models were:

## SE_FL

Pos: $\log ($ retained $)=$ year + timeofday + season $+(1 \mid \text { vessel })^{2}($ Table 1$)$
Bin: retained $=$ timeofday + year + season $+(1 \mid$ vessel $)($ Table 2$)$

## FL_Keys

Pos: $\log ($ retained $)=$ year + timeofday $+(1 \mid$ vessel $)($ Table 3$)$
Bin: retained $=$ year + season $+(1 \mid$ vessel $)($ Table 4$)$

## Single Area (Continuity)

Pos: $\log ($ retained $)=$ year + timeofday $+(1 \mid$ vessel $)($ Table 5$)$
Bin: retained $=$ year + timeofday + season $+(1 \mid$ vessel $)($ Table 6$)$
Randomized quantile residuals for the positive and binomial sub-models of the SE_FL region appear approximately normally distributed despite the significant deviation from normality indicated by the K-S test and the Q-Q plot (Figures 9, 11). For large sample sizes, the K-S test could imply significant deviations from normality even in the case of minor deviations. There is some pattern, however, in residuals over years as well as hours fished (Figures 10, 12). This same pattern is evident for the FL_Keys model with model fit varying slightly over levels of years and hours fished (Figures 13, 14, 15, 16). The observed annual mean CPUE and modeled CPUE are provided in Tables 7, 8, 9 and plotted in Figures 21-23. Additionally, the number of trips per covariate by year and region are provided in Tables 10 and 12, while Tables 11 and 13 present the number of positive trips (i.e. retained at least one Yellowtail Snapper) by year per covariate and region.

## Considerations

The data from the headboat fishery (especially for southeast Florida and during years 1981 to 2008) are plagued by low reporting rates. Significant differences in the number of captainreported and estimated trips during this time period resulted in an average compliance rate of $50 \%$ (Fitzpatrick et al. 2017). Model fit to data within this time period is poor (as seen in residuals across years) likely due to low vessel reporting rates which is evident in Figures 24 and 25.

Therefore, we produced three additional indices with a start year of 2008. For these indices the catch rate is based on total catch of Yellowtail Snapper (retained plus released). The same covariates were evaluated in the positive and binomial sub-models for each region and the indices was generated using Monte Carlo simulations (Appendix A).

The analysis and estimation of catch rates from the headboat fishery may be improved by considering additional covariates such as the maximum number of anglers which could serve as a proxy for vessel size as well as the 'fullness' of the vessel which would be an indicator of crowding on a headboat vessel (SFB 2016). Although not available currently, a captain

[^1]identification number would be a useful metric to adjust for the experience levels of the captains and may be able to explain some variability in catch per vessel over the time period.

## References

Allen, S.D. and E.S. Herdter. 2019. Overview of the Southeast Region Headboat Survey and Data Related to Yellowtail Snapper (Ocyurus chrysurus). SEDAR64-DW08. SEDAR, North Charleston, SC. 19 pp.

Burnham, K.P. and D.R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edn. Springer, Berlin.

Dick, E.J. 2004. Beyond 'lognormal vs. gamma': discrimination among error distributions for generalized linear models. Fisheries Research 70:347-362.

Fitzpatrick, E. E., Williams, E. H., Shertzer, K. W., Siegfried, K. I., Craig, J. K., Cheshire, R. T., and Brennan, K. (2017). The NMFS Southeast Region Headboat Survey: History, Methodology, and Data Integrity. Marine Fisheries Review, 79(1), 1-28.

Hartig, F. 2019. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.4.https://CRAN.R-project.org/package=DHARMa

Lo, N.C., L.D. Jacobson, J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Canadian Journal Fisheries and Aquatic Sciences 49:25152526.

Maunder, M.N. and A.E. Punt. 2004. Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70:141-159.

Shertzer, K. W., and E. H. Williams. 2008. Fish assemblages and indicator species: reef fishes off the southeastern United States. Fishery Bulletin 106:257-269.

Sustainable Fisheries Branch - NMFS. 2016. Standardized catch rates of Red Grouper (Epinephelus morio) in the southeast U.S. from headboat logbook data. SEDAR53-WP02. SEDAR, North Charleston, SC. 40 pp.

Zuur, A.F., E.N. Ieno, N.J. Walker, A.A. Saveliev, and G.M. Smith. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer Science \& Business Media.

## Tables

Table 1. Deviance table for the final positive sub-model for the SE_FL area model.

| Factor | Deviance | Residual DF | AIC | Loglikelihood | \% Deviance Reduced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Null | 206220.2 | 71528 | 206226.2 | -103110 | - |
| year | 203834.4 | 71492 | 203912.4 | -101917 | 1.11 |
| timeofday | 201632.8 | 71491 | 201712.8 | -100816 | 1.07 |
| season | 200217.7 | 71488 | 200303.7 | -100109 | 0.68 |
| hrsfished | 199876.5 | 71486 | 199966.5 | -99938.3 | 0.16 |
| anglercat | 199752.1 | 71483 | 199848.1 | -99876 | 0.06 |

Table 2. Deviance table for the final binomial sub-model for the SE_FL area model.

| Factor | Deviance | Residual DF | AIC | Loglikelihood | \% Deviance Reduced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Null | 172946.6 | 147502 | 172950.6 | -86473.3 | - |
| timeofday | 169818.7 | 147501 | 169824.7 | -84909.3 | 1.81 |
| year | 167061.8 | 147465 | 167139.8 | -83530.9 | 1.57 |
| season | 164778 | 147462 | 164862 | -82389 | 1.32 |
| hrsfished | 164457.7 | 147460 | 164545.7 | -82228.9 | 0.18 |
| anglercat | 164406.7 | 147457 | 164500.7 | -82203.4 | 0.03 |

Table 3. Deviance table for the final positive sub-model for the FL_Keys area model.

| Factor | Deviance | Residual DF | AIC | Loglikelihood | \% Deviance Reduced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Null | 186668.2 | 65134 | 186674.2 | -93334.1 | - |
| year | 184241.5 | 65098 | 184319.5 | -92120.7 | 1.25 |
| timeofday | 183207.4 | 65097 | 183287.4 | -91603.7 | 0.55 |
| hrsfished | 182599.7 | 65095 | 182683.7 | -91299.9 | 0.32 |
| anglercat | 182287.8 | 65092 | 182377.8 | -91143.9 | 0.16 |
| season | 181910.8 | 65089 | 182006.8 | -90955.4 | 0.2 |

Table 4. Deviance table for the final binomial sub-model for the FL_Keys area model.

| Factor | Deviance | Residual DF | AIC | Loglikelihood | \% Deviance Reduced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Null | 61133.69 | 79556 | 61137.69 | -30566.8 | - |
| year | 60126.23 | 79520 | 60202.23 | -30063.1 | 1.6 |
| season | 59789.13 | 79517 | 59871.13 | -29894.6 | 0.55 |
| timeofday | 59558.9 | 79516 | 59642.9 | -29779.5 | 0.38 |
| anglercat | 59482.04 | 79513 | 59572.04 | -29741 | 0.12 |
| hrsfished | 59462.46 | 79511 | 59556.46 | -29731.2 | 0.03 |

Table 5. Deviance table for the final positive sub-model for the single area (continuity) model.

| Factor | Deviance | Residual DF | AIC | Loglikelihood | \% Deviance Reduced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Null | 392981.8 | 136665 | 392987.8 | -196491 | - |
| year | 389859.4 | 136629 | 389937.4 | -194930 | 0.77 |
| timeofday | 386567 | 136628 | 386647 | -193283 | 0.84 |
| season | 385346.4 | 136625 | 385432.4 | -192673 | 0.31 |
| hrsfished | 384855.9 | 136623 | 384945.9 | -192428 | 0.12 |
| anglercat | 384454.1 | 136620 | 384550.1 | -192227 | 0.1 |

Table 6. Deviance table for the final binomial sub-model for the single area (continuity) model.

| Factor | Deviance | Residual DF | AIC | Loglikelihood | \% Deviance Reduced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Null | 234151.5 | 227060 | 234155.5 | -117076 | - |
| year | 230786.3 | 227024 | 230862.3 | -115393 | 1.42 |
| timeofday | 227631.9 | 227023 | 227709.9 | -113816 | 1.35 |
| season | 225574.2 | 227020 | 225658.2 | -112787 | 0.88 |
| hrsfished | 225424.1 | 227018 | 225512.1 | -112712 | 0.06 |
| anglercat | 225412.1 | 227015 | 225506.1 | -112706 | 0 |

Table 7. Nominal mean CPUE and final modeled index for the SE_FL area model.

| Year | NumTrips | NominalMean | Mean | CV |
| :---: | :---: | :---: | :---: | :---: |
| 1981 | 5469 | 7.13 | 2.52 | 0.16 |
| 1982 | 5890 | 4.5 | 2.13 | 0.15 |
| 1983 | 6003 | 2.81 | 1.32 | 0.17 |
| 1984 | 5084 | 2.81 | 1.28 | 0.17 |
| 1985 | 5477 | 2.05 | 0.98 | 0.19 |
| 1986 | 6780 | 2.73 | 1.27 | 0.17 |
| 1987 | 6202 | 3.18 | 1.55 | 0.17 |
| 1988 | 5255 | 3.96 | 2.25 | 0.15 |
| 1989 | 5354 | 3.72 | 2.39 | 0.15 |
| 1990 | 5847 | 3.80 | 2.45 | 0.16 |
| 1991 | 5415 | 3.67 | 2.64 | 0.15 |
| 1992 | 6505 | 5.57 | 2.75 | 0.15 |
| 1993 | 5275 | 5.13 | 2.63 | 0.15 |
| 1994 | 4732 | 7.19 | 3.72 | 0.14 |
| 1995 | 4344 | 3.74 | 2.12 | 0.16 |
| 1996 | 1708 | 2.47 | 1.06 | 0.20 |
| 1997 | 2290 | 4.14 | 1.93 | 0.16 |
| 1998 | 1661 | 1.96 | 1.21 | 0.19 |
| 1999 | 804 | 1.91 | 1.38 | 0.20 |
| 2000 | 831 | 1.23 | 1.20 | 0.24 |
| 2001 | 904 | 0.80 | 1.01 | 0.24 |
| 2002 | 513 | 0.66 | 1.10 | 0.26 |
| 2003 | 369 | 1.53 | 1.66 | 0.23 |
| 2004 | 543 | 0.99 | 0.98 | 0.24 |
| 2005 | 589 | 1.02 | 0.76 | 0.26 |
| 2006 | 460 | 0.59 | 0.72 | 0.30 |
| 2007 | 534 | 2.97 | 1.73 | 0.21 |
| 2008 | 2728 | 6.70 | 2.89 | 0.16 |
| 2009 | 3444 | 5.31 | 2.66 | 0.16 |
| 2010 | 4102 | 9.08 | 3.40 | 0.16 |
| 2011 | 3893 | 7.37 | 3.17 | 0.17 |
| 2012 | 4620 | 7.08 | 2.94 | 0.15 |
| 2013 | 5604 | 5.32 | 2.34 | 0.16 |
| 2014 | 8573 | 7.62 | 3.62 | 0.14 |
| 2015 | 8557 | 7.11 | 3.76 | 0.13 |
| 2016 | 7117 | 6.94 | 3.37 | 0.14 |
| 2017 | 4028 | 6.61 | 4.16 | 0.14 |

Table 8. Nominal mean CPUE and final modeled index for the FL_Keys area model.

| Year | NumTrips | NominalMean | Mean | CV |
| :---: | :---: | :---: | :---: | :---: |
| 1981 | 1904 | 16.37 | 19.30 | 0.20 |
| 1982 | 2115 | 36.78 | 25.97 | 0.20 |
| 1983 | 1788 | 28.25 | 18.12 | 0.21 |
| 1984 | 1825 | 25.54 | 13.30 | 0.21 |
| 1985 | 1395 | 35.06 | 17.31 | 0.21 |
| 1986 | 1776 | 73.11 | 18.88 | 0.20 |
| 1987 | 2271 | 57.79 | 19.66 | 0.21 |
| 1988 | 1627 | 41.80 | 18.34 | 0.20 |
| 1989 | 1612 | 26.96 | 23.80 | 0.20 |
| 1990 | 1915 | 32.45 | 41.46 | 0.20 |
| 1991 | 1816 | 38.40 | 39.24 | 0.20 |
| 1992 | 2713 | 37.70 | 33.87 | 0.20 |
| 1993 | 2854 | 40.77 | 36.80 | 0.20 |
| 1994 | 2689 | 43.23 | 42.28 | 0.19 |
| 1995 | 2853 | 30.56 | 35.07 | 0.20 |
| 1996 | 2833 | 28.57 | 30.03 | 0.20 |
| 1997 | 3097 | 28.10 | 31.82 | 0.20 |
| 1998 | 2552 | 26.53 | 28.24 | 0.20 |
| 1999 | 2252 | 23.72 | 27.94 | 0.20 |
| 2000 | 2138 | 26.46 | 28.29 | 0.20 |
| 2001 | 1723 | 29.63 | 26.98 | 0.20 |
| 2002 | 1275 | 34.48 | 26.24 | 0.20 |
| 2003 | 1224 | 37.46 | 32.16 | 0.20 |
| 2004 | 1286 | 38.03 | 38.31 | 0.21 |
| 2005 | 1444 | 39.24 | 47.62 | 0.20 |
| 2006 | 1461 | 28.85 | 32.89 | 0.20 |
| 2007 | 1523 | 25.33 | 29.87 | 0.20 |
| 2008 | 1907 | 32.68 | 32.26 | 0.20 |
| 2009 | 2019 | 30.42 | 31.71 | 0.20 |
| 2010 | 1949 | 30.95 | 28.08 | 0.20 |
| 2011 | 1958 | 32.28 | 33.80 | 0.20 |
| 2012 | 2201 | 28.73 | 32.01 | 0.20 |
| 2013 | 2574 | 29.84 | 35.74 | 0.20 |
| 2014 | 3290 | 26.91 | 30.91 | 0.20 |
| 2015 | 3534 | 26.02 | 30.44 | 0.19 |
| 2016 | 3172 | 24.58 | 27.57 | 0.19 |
| 2017 | 2993 | 24.29 | 28.92 | 0.19 |
|  |  |  |  |  |
|  |  |  |  |  |

Table 9. Nominal mean CPUE and final modeled index for the single-area (continuity) model.

| Year | NumTrips | NominalMean | Mean | CV |
| :---: | :---: | ---: | ---: | :---: |
| 1981 | 7373 | 9.51 | 7.74 | 0.16 |
| 1982 | 8005 | 13.03 | 7.39 | 0.15 |
| 1983 | 7791 | 8.65 | 4.99 | 0.17 |
| 1984 | 6909 | 8.81 | 4.33 | 0.17 |
| 1985 | 6872 | 8.75 | 4.20 | 0.17 |
| 1986 | 8556 | 17.34 | 4.99 | 0.16 |
| 1987 | 8473 | 17.82 | 5.64 | 0.16 |
| 1988 | 6882 | 12.91 | 6.83 | 0.15 |
| 1989 | 6966 | 9.10 | 7.63 | 0.15 |
| 1990 | 7762 | 10.87 | 9.53 | 0.15 |
| 1991 | 7231 | 12.39 | 9.60 | 0.15 |
| 1992 | 9218 | 15.03 | 9.33 | 0.15 |
| 1993 | 8129 | 17.64 | 9.56 | 0.15 |
| 1994 | 7421 | 20.25 | 12.00 | 0.14 |
| 1995 | 7197 | 14.37 | 8.50 | 0.15 |
| 1996 | 4541 | 18.76 | 6.85 | 0.16 |
| 1997 | 5387 | 17.92 | 8.14 | 0.15 |
| 1998 | 4213 | 16.84 | 6.67 | 0.16 |
| 1999 | 3056 | 17.98 | 7.03 | 0.16 |
| 2000 | 2969 | 19.40 | 6.92 | 0.17 |
| 2001 | 2627 | 19.71 | 6.47 | 0.17 |
| 2002 | 1788 | 24.78 | 6.49 | 0.17 |
| 2003 | 1593 | 29.14 | 8.25 | 0.17 |
| 2004 | 1829 | 27.04 | 8.79 | 0.17 |
| 2005 | 2033 | 28.17 | 11.11 | 0.17 |
| 2006 | 1921 | 22.08 | 7.99 | 0.17 |
| 2007 | 2057 | 19.52 | 7.58 | 0.17 |
| 2008 | 4635 | 17.39 | 9.28 | 0.15 |
| 2009 | 5463 | 14.59 | 8.72 | 0.15 |
| 2010 | 6051 | 16.12 | 9.61 | 0.15 |
| 2011 | 5851 | 15.7 | 10.02 | 0.16 |
| 2012 | 6821 | 14.07 | 9.10 | 0.15 |
| 2013 | 8178 | 13.04 | 8.62 | 0.15 |
| 2014 | 11863 | 12.97 | 10.17 | 0.14 |
| 2015 | 12091 | 12.64 | 9.97 | 0.14 |
| 2016 | 10289 | 12.38 | 8.90 | 0.14 |
| 2017 | 7021 | 14.15 | 9.70 | 0.14 |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

Table 10. Number of trips by year and factor for SE_FL.
*Percent of total trips made during the daytime in relation to those made during nighttime.

|  | Season |  |  |  | Angler Category |  |  |  | Hours Fished |  |  | Time of Day |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1 winter | 2spring | 3summer | 4fall | [1,10] | $(11,15]$ | $(16,24]$ | $(25,111]$ | 5 | 7 | 10+ | Daytime* | Nighttime |
| 1981 | 1327 | 1469 | 1435 | 1238 | 1201 | 1117 | 1343 | 1808 | 5227 | 34 | 208 | 3686 (67.4) | 1783 |
| 1982 | 1447 | 1461 | 1553 | 1429 | 1504 | 1594 | 1369 | 1423 | 5752 | 1 | 137 | 3900 (66.2) | 1990 |
| 1983 | 1351 | 1756 | 1642 | 1254 | 1268 | 1589 | 1662 | 1484 | 5931 | 2 | 70 | 3955 (65.9) | 2048 |
| 1984 | 1339 | 1443 | 1325 | 977 | 1140 | 1187 | 1391 | 1366 | 4756 | 111 | 217 | 3482 (68.5) | 1602 |
| 1985 | 1457 | 1643 | 1337 | 1040 | 1111 | 1303 | 1460 | 1603 | 5163 | 104 | 210 | 3684 (67.3) | 1793 |
| 1986 | 1247 | 1866 | 2176 | 1491 | 1838 | 1505 | 1633 | 1804 | 6288 | 168 | 324 | 4778 (70.5) | 2002 |
| 1987 | 1590 | 1685 | 1700 | 1227 | 1573 | 1444 | 1580 | 1605 | 5700 | 144 | 358 | 4442 (71.6) | 1760 |
| 1988 | 1386 | 1528 | 1265 | 1076 | 1800 | 1221 | 1142 | 1092 | 4892 | 143 | 220 | 3641 (69.3) | 1614 |
| 1989 | 1315 | 1192 | 1428 | 1419 | 1853 | 1223 | 1054 | 1224 | 5099 | 49 | 206 | 3612 (67.5) | 1742 |
| 1990 | 1381 | 1738 | 1557 | 1171 | 1798 | 1352 | 1315 | 1382 | 5647 | 10 | 190 | 3849 (65.8) | 1998 |
| 1991 | 1429 | 1523 | 1494 | 969 | 1983 | 1308 | 1103 | 1021 | 5218 | 16 | 181 | 3545 (65.5) | 1870 |
| 1992 | 1372 | 2047 | 1904 | 1182 | 1852 | 1723 | 1617 | 1313 | 6132 | 31 | 342 | 4445 (68.3) | 2060 |
| 1993 | 1228 | 1438 | 1294 | 1315 | 1478 | 1286 | 1240 | 1271 | 5073 | 39 | 163 | 3731 (70.7) | 1544 |
| 1994 | 1117 | 1388 | 1205 | 1022 | 1207 | 1067 | 1163 | 1295 | 4583 | 32 | 117 | 3369 (71.2) | 1363 |
| 1995 | 1176 | 1326 | 1038 | 804 | 1183 | 1147 | 1051 | 963 | 4123 | 75 | 146 | 3381 (77.8) | 963 |
| 1996 | 701 | 420 | 291 | 296 | 500 | 428 | 432 | 348 | 1623 | 8 | 77 | 1320 (77.3) | 388 |
| 1997 | 370 | 559 | 629 | 732 | 595 | 560 | 603 | 532 | 2177 | 21 | 92 | 1823 (79.6) | 467 |
| 1998 | 641 | 362 | 384 | 274 | 596 | 428 | 364 | 273 | 1575 | 56 | 30 | 1461 (88.0) | 200 |
| 1999 | 238 | 260 | 194 | 112 | 245 | 233 | 194 | 132 | 803 | NA | 1 | 715 (88.9) | 89 |
| 2000 | 56 | 214 | 314 | 247 | 185 | 196 | 265 | 185 | 759 | 71 | 1 | 774 (93.1) | 57 |
| 2001 | 296 | 197 | 229 | 182 | 249 | 218 | 235 | 202 | 776 | 121 | 7 | 878 (97.1) | 26 |
| 2002 | 161 | 161 | 138 | 53 | 118 | 144 | 146 | 105 | 374 | 138 | 1 | 506 (98.6) | 7 |
| 2003 | 123 | 67 | 80 | 99 | 78 | 94 | 115 | 82 | 245 | 122 | 2 | 358 (97.0) | 11 |
| 2004 | 208 | 145 | 87 | 103 | 114 | 144 | 152 | 133 | 392 | 130 | 21 | 528 (97.2) | 15 |
| 2005 | 156 | 192 | 143 | 98 | 122 | 166 | 190 | 111 | 496 | 48 | 45 | 563 (95.6) | 26 |
| 2006 | 89 | 155 | 134 | 82 | 90 | 104 | 136 | 130 | 437 | 19 | 4 | 452 (98.3) | 8 |
| 2007 | 112 | 206 | 132 | 84 | 129 | 150 | 145 | 110 | 531 | NA | 3 | 489 (91.6) | 45 |
| 2008 | 532 | 908 | 812 | 476 | 701 | 772 | 673 | 582 | 2581 | 71 | 76 | 2187 (80.2) | 541 |
| 2009 | 960 | 931 | 958 | 595 | 762 | 853 | 939 | 890 | 3160 | 134 | 150 | 3084 (89.6) | 360 |
| 2010 | 896 | 1317 | 915 | 974 | 1013 | 1134 | 1056 | 899 | 3848 | 143 | 111 | 3602 (87.8) | 500 |
| 2011 | 1228 | 1163 | 898 | 604 | 786 | 930 | 1059 | 1118 | 3648 | 146 | 99 | 3515 (90.3) | 378 |
| 2012 | 1059 | 1384 | 1302 | 875 | 1086 | 1113 | 1209 | 1212 | 4435 | 150 | 35 | 4069 (88.1) | 551 |
| 2013 | 1281 | 1733 | 1551 | 1039 | 1461 | 1407 | 1518 | 1218 | 5341 | 177 | 86 | 4977 (88.8) | 627 |
| 2014 | 1719 | 2424 | 2541 | 1889 | 1894 | 2058 | 2295 | 2326 | 8228 | 227 | 118 | 7052 (82.3) | 1521 |
| 2015 | 2163 | 2491 | 2413 | 1490 | 1810 | 1951 | 2339 | 2457 | 8211 | 255 | 91 | 6972 (81.5) | 1585 |
| 2016 | 1896 | 2095 | 1964 | 1162 | 1825 | 1599 | 1736 | 1957 | 6750 | 298 | 69 | 5921 (83.2) | 1196 |
| 2017 | 975 | 1205 | 1049 | 799 | 1583 | 845 | 845 | 755 | 3646 | 230 | 152 | 3623 (90.0) | 405 |

Table 11. Number of positive trips by year and factor for SE_FL.

|  | Season |  |  |  | Angler Category |  |  |  | Hours Fished |  |  | Time of Day |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1 winter | 2spring | 3summer | 4fall | [1,10] | (11,15] | (16,24] | $(25,111]$ | 5 | 7 | 10+ | Daytime* | Nighttime |
| 1981 | 512 | 738 | 914 | 726 | 574 | 567 | 752 | 997 | 2851 | 3 | 36 | 1763 | 1127 |
| 1982 | 662 | 871 | 901 | 980 | 796 | 923 | 834 | 861 | 3394 | 1 | 19 | 2135 | 1279 |
| 1983 | 614 | 527 | 752 | 837 | 625 | 800 | 749 | 556 | 2706 | NA | 24 | 1690 | 1040 |
| 1984 | 549 | 498 | 517 | 621 | 541 | 527 | 590 | 527 | 2113 | 53 | 19 | 1361 | 824 |
| 1985 | 413 | 391 | 492 | 496 | 437 | 495 | 460 | 400 | 1731 | 21 | 40 | 1115 | 677 |
| 1986 | 373 | 777 | 914 | 865 | 828 | 717 | 732 | 652 | 2788 | 66 | 75 | 1940 | 989 |
| 1987 | 594 | 628 | 839 | 784 | 712 | 788 | 746 | 599 | 2624 | 78 | 143 | 1958 | 887 |
| 1988 | 481 | 748 | 783 | 719 | 883 | 722 | 620 | 506 | 2503 | 111 | 117 | 1826 | 905 |
| 1989 | 640 | 544 | 757 | 812 | 724 | 657 | 631 | 741 | 2644 | 36 | 73 | 1817 | 936 |
| 1990 | 596 | 725 | 782 | 574 | 715 | 639 | 623 | 700 | 2622 | 4 | 51 | 1668 | 1009 |
| 1991 | 684 | 732 | 666 | 437 | 884 | 583 | 538 | 514 | 2454 | 11 | 54 | 1537 | 982 |
| 1992 | 594 | 892 | 1130 | 785 | 823 | 905 | 872 | 801 | 3243 | 17 | 141 | 2270 | 1131 |
| 1993 | 604 | 653 | 631 | 836 | 623 | 661 | 666 | 774 | 2635 | 11 | 78 | 1865 | 859 |
| 1994 | 603 | 713 | 715 | 656 | 496 | 615 | 741 | 835 | 2634 | 9 | 44 | 1859 | 828 |
| 1995 | 488 | 641 | 523 | 352 | 491 | 525 | 508 | 480 | 1971 | 5 | 28 | 1361 | 643 |
| 1996 | 159 | 100 | 127 | 130 | 136 | 136 | 124 | 120 | 495 | 6 | 15 | 308 | 208 |
| 1997 | 144 | 261 | 313 | 349 | 227 | 281 | 288 | 271 | 1052 | 5 | 10 | 756 | 311 |
| 1998 | 202 | 63 | 69 | 71 | 119 | 110 | 98 | 78 | 401 | NA | 4 | 246 | 159 |
| 1999 | 48 | 43 | 54 | 27 | 49 | 51 | 37 | 35 | 172 | NA | NA | 95 | 77 |
| 2000 | 2 | 25 | 77 | 31 | 24 | 21 | 47 | 43 | 116 | 19 | NA | 118 | 17 |
| 2001 | 35 | 10 | 41 | 42 | 27 | 29 | 40 | 32 | 82 | 45 | 1 | 116 | 12 |
| 2002 | 16 | 29 | 24 | 8 | 11 | 23 | 24 | 19 | 30 | 47 | NA | 70 | 7 |
| 2003 | 20 | 21 | 17 | 36 | 22 | 24 | 31 | 17 | 50 | 44 | NA | 83 | 11 |
| 2004 | 33 | 32 | 10 | 14 | 19 | 27 | 23 | 20 | 69 | 19 | 1 | 74 | 15 |
| 2005 | 8 | 58 | 21 | 8 | 17 | 21 | 38 | 19 | 92 | NA | 3 | 75 | 20 |
| 2006 | 8 | 12 | 6 | 24 | 18 | 17 | 9 | 6 | 49 | NA | 1 | 42 | 8 |
| 2007 | 23 | 38 | 26 | 39 | 37 | 33 | 30 | 26 | 126 | NA | NA | 81 | 45 |
| 2008 | 146 | 412 | 465 | 210 | 294 | 332 | 333 | 274 | 1217 | 7 | 9 | 807 | 426 |
| 2009 | 342 | 426 | 517 | 326 | 294 | 422 | 453 | 442 | 1521 | 39 | 51 | 1373 | 238 |
| 2010 | 244 | 658 | 505 | 591 | 437 | 580 | 552 | 429 | 1937 | 25 | 36 | 1558 | 440 |
| 2011 | 258 | 629 | 463 | 386 | 301 | 397 | 462 | 576 | 1684 | 16 | 36 | 1408 | 328 |
| 2012 | 557 | 762 | 733 | 502 | 552 | 619 | 732 | 651 | 2499 | 42 | 13 | 2124 | 430 |
| 2013 | 565 | 782 | 795 | 606 | 610 | 709 | 808 | 621 | 2688 | 27 | 33 | 2257 | 491 |
| 2014 | 827 | 1392 | 1550 | 1264 | 922 | 1228 | 1436 | 1447 | 4885 | 91 | 57 | 3750 | 1283 |
| 2015 | 1242 | 1694 | 1361 | 1047 | 936 | 1203 | 1480 | 1725 | 5173 | 132 | 39 | 4036 | 1308 |
| 2016 | 1129 | 1227 | 1053 | 769 | 879 | 929 | 1084 | 1286 | 4057 | 105 | 16 | 3188 | 990 |
| 2017 | 427 | 508 | 482 | 444 | 829 | 388 | 324 | 320 | 1785 | 28 | 48 | 1482 | 379 |

Table 12. Number of trips by year and factor for FL_Keys.
*Percent of total trips made during the daytime in relation to those made during nighttime.

|  | Season |  |  |  | Angler Category |  |  |  | Hours Fished |  |  | Time of Day |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1 winter | 2spring | 3summer | 4fall | [1,10] | $(11,15]$ | $(16,24]$ | $(25,111]$ | 5 | 7 | 10+ | Daytime* | Nighttime |
| 1981 | 545 | 579 | 386 | 394 | 507 | 524 | 441 | 432 | 1376 | NA | 528 | 1359 (71.4) | 545 |
| 1982 | 684 | 566 | 477 | 388 | 510 | 607 | 498 | 500 | 1381 | 1 | 733 | 1554 (73.5) | 561 |
| 1983 | 603 | 399 | 378 | 408 | 567 | 521 | 383 | 317 | 979 | NA | 809 | 1415 (79.1) | 373 |
| 1984 | 543 | 356 | 458 | 468 | 601 | 529 | 382 | 313 | 1028 | 47 | 750 | 1455 (79.7) | 370 |
| 1985 | 411 | 377 | 344 | 263 | 399 | 361 | 287 | 348 | 843 | 109 | 443 | 1133 (81.2) | 262 |
| 1986 | 350 | 302 | 574 | 550 | 507 | 398 | 407 | 464 | 1249 | 129 | 398 | 1383 (77.9) | 393 |
| 1987 | 717 | 618 | 508 | 428 | 716 | 396 | 495 | 664 | 1421 | 232 | 618 | 1767 (77.8) | 504 |
| 1988 | 488 | 473 | 356 | 310 | 297 | 407 | 443 | 480 | 1080 | 207 | 340 | 1252 (77.0) | 375 |
| 1989 | 478 | 355 | 367 | 412 | 378 | 395 | 399 | 440 | 1218 | 59 | 335 | 1202 (74.6) | 410 |
| 1990 | 502 | 438 | 504 | 471 | 590 | 437 | 405 | 483 | 1459 | 88 | 368 | 1479 (77.2) | 436 |
| 1991 | 637 | 474 | 385 | 320 | 623 | 464 | 415 | 314 | 1304 | 23 | 489 | 1356 (74.7) | 460 |
| 1992 | 869 | 761 | 535 | 548 | 923 | 601 | 576 | 613 | 1428 | 217 | 1068 | 2161 (79.7) | 552 |
| 1993 | 912 | 677 | 691 | 574 | 908 | 632 | 576 | 738 | 1578 | 206 | 1070 | 2311 (81.0) | 543 |
| 1994 | 880 | 642 | 618 | 549 | 924 | 576 | 538 | 651 | 1458 | 154 | 1077 | 2221 (82.6) | 468 |
| 1995 | 962 | 681 | 613 | 597 | 957 | 719 | 575 | 602 | 1823 | 175 | 855 | 2407 (84.4) | 446 |
| 1996 | 890 | 737 | 657 | 549 | 899 | 714 | 578 | 642 | 1809 | 251 | 773 | 2403 (84.8) | 430 |
| 1997 | 1138 | 745 | 631 | 583 | 966 | 833 | 647 | 651 | 2022 | 278 | 797 | 2681 (86.6) | 416 |
| 1998 | 879 | 728 | 521 | 424 | 689 | 742 | 612 | 509 | 1787 | 189 | 576 | 2214 (86.8) | 338 |
| 1999 | 657 | 528 | 569 | 498 | 757 | 596 | 511 | 388 | 1645 | 114 | 493 | 1927 (85.6) | 325 |
| 2000 | 763 | 517 | 447 | 411 | 548 | 641 | 567 | 382 | 1548 | 140 | 450 | 1829 (85.6) | 309 |
| 2001 | 458 | 420 | 522 | 323 | 461 | 526 | 429 | 307 | 1332 | NA | 391 | 1495 (86.8) | 228 |
| 2002 | 493 | 347 | 240 | 195 | 329 | 390 | 315 | 241 | 986 | 21 | 268 | 1151 (90.3) | 124 |
| 2003 | 398 | 368 | 242 | 216 | 256 | 298 | 335 | 335 | 918 | 20 | 286 | 1050 (85.8) | 174 |
| 2004 | 293 | 370 | 322 | 301 | 253 | 286 | 319 | 428 | 965 | 89 | 232 | 1091 (84.8) | 195 |
| 2005 | 410 | 440 | 321 | 273 | 295 | 290 | 358 | 501 | 1050 | 166 | 228 | 1307 (90.5) | 137 |
| 2006 | 474 | 436 | 286 | 265 | 309 | 344 | 331 | 477 | 1081 | 117 | 263 | 1353 (92.6) | 108 |
| 2007 | 520 | 366 | 399 | 238 | 370 | 354 | 357 | 442 | 1094 | 245 | 184 | 1428 (93.8) | 95 |
| 2008 | 508 | 608 | 385 | 406 | 509 | 485 | 439 | 474 | 1263 | 302 | 342 | 1757 (92.1) | 150 |
| 2009 | 561 | 618 | 473 | 367 | 456 | 454 | 534 | 575 | 1334 | 352 | 333 | 1856 (91.9) | 163 |
| 2010 | 465 | 575 | 483 | 426 | 476 | 536 | 479 | 458 | 1286 | 276 | 387 | 1798 (92.3) | 151 |
| 2011 | 527 | 526 | 513 | 392 | 323 | 417 | 582 | 636 | 1322 | 286 | 350 | 1683 (86.0) | 275 |
| 2012 | 556 | 638 | 574 | 433 | 488 | 471 | 577 | 665 | 1675 | 324 | 202 | 1854 (84.2) | 347 |
| 2013 | 646 | 675 | 704 | 549 | 650 | 653 | 590 | 681 | 2029 | 288 | 257 | 2256 (87.7) | 318 |
| 2014 | 834 | 943 | 861 | 652 | 717 | 843 | 805 | 925 | 2474 | 573 | 243 | 2873 (87.3) | 417 |
| 2015 | 921 | 1014 | 929 | 670 | 899 | 821 | 830 | 984 | 2761 | 575 | 198 | 3096 (87.6) | 438 |
| 2016 | 845 | 909 | 802 | 616 | 738 | 772 | 779 | 883 | 2354 | 583 | 235 | 2793 (88.1) | 379 |
| 2017 | 862 | 915 | 752 | 464 | 784 | 616 | 710 | 883 | 2388 | 466 | 139 | 2667 (89.1) | 326 |

Table 13. Number of positive trips by year and factor for FL_Keys.

|  | Season |  |  |  | Angler Category |  |  |  | Hours Fished |  |  | Time of Day |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1 winter | 2spring | 3summer | 4fall | [1,10] | $(11,15]$ | $(16,24]$ | $(25,111]$ | 5 | 7 | 10+ | Daytime* | Nighttime |
| 1981 | 342 | 472 | 315 | 250 | 369 | 385 | 333 | 292 | 991 | NA | 388 | 993 | 386 |
| 1982 | 477 | 496 | 379 | 230 | 356 | 435 | 376 | 415 | 1040 | NA | 542 | 1161 | 421 |
| 1983 | 362 | 261 | 274 | 207 | 355 | 343 | 224 | 182 | 512 | NA | 592 | 917 | 187 |
| 1984 | 229 | 239 | 347 | 272 | 358 | 323 | 220 | 186 | 518 | 35 | 534 | 923 | 164 |
| 1985 | 235 | 278 | 227 | 186 | 267 | 232 | 187 | 240 | 451 | 94 | 381 | 812 | 114 |
| 1986 | 228 | 217 | 371 | 403 | 330 | 258 | 286 | 345 | 774 | 123 | 322 | 1025 | 194 |
| 1987 | 478 | 427 | 336 | 313 | 459 | 239 | 322 | 534 | 859 | 225 | 470 | 1297 | 257 |
| 1988 | 381 | 340 | 278 | 246 | 218 | 298 | 335 | 394 | 737 | 191 | 317 | 1016 | 229 |
| 1989 | 369 | 287 | 261 | 278 | 269 | 249 | 299 | 378 | 823 | 56 | 316 | 951 | 244 |
| 1990 | 419 | 376 | 339 | 363 | 426 | 327 | 324 | 420 | 1101 | 86 | 310 | 1218 | 279 |
| 1991 | 504 | 377 | 279 | 252 | 438 | 354 | 351 | 269 | 918 | 23 | 471 | 1106 | 306 |
| 1992 | 769 | 619 | 410 | 461 | 717 | 500 | 484 | 558 | 1060 | 211 | 988 | 1875 | 384 |
| 1993 | 788 | 570 | 555 | 490 | 724 | 510 | 488 | 681 | 1204 | 205 | 994 | 2013 | 390 |
| 1994 | 792 | 602 | 528 | 490 | 797 | 525 | 476 | 614 | 1263 | 154 | 995 | 2017 | 395 |
| 1995 | 804 | 603 | 499 | 527 | 800 | 603 | 487 | 543 | 1462 | 175 | 796 | 2015 | 418 |
| 1996 | 672 | 671 | 587 | 461 | 736 | 608 | 473 | 574 | 1439 | 247 | 705 | 1985 | 406 |
| 1997 | 956 | 637 | 514 | 497 | 795 | 704 | 540 | 565 | 1590 | 276 | 738 | 2207 | 397 |
| 1998 | 728 | 592 | 439 | 357 | 559 | 618 | 504 | 435 | 1403 | 176 | 537 | 1800 | 316 |
| 1999 | 553 | 467 | 477 | 395 | 631 | 519 | 421 | 321 | 1306 | 113 | 473 | 1587 | 305 |
| 2000 | 591 | 438 | 397 | 364 | 456 | 523 | 488 | 323 | 1231 | 140 | 419 | 1498 | 292 |
| 2001 | 339 | 358 | 468 | 291 | 412 | 442 | 350 | 252 | 1092 | NA | 364 | 1249 | 207 |
| 2002 | 414 | 311 | 209 | 176 | 290 | 336 | 272 | 212 | 830 | 21 | 259 | 991 | 119 |
| 2003 | 313 | 320 | 201 | 184 | 220 | 257 | 276 | 265 | 735 | 20 | 263 | 870 | 148 |
| 2004 | 241 | 308 | 252 | 236 | 205 | 221 | 267 | 344 | 727 | 89 | 221 | 851 | 186 |
| 2005 | 346 | 378 | 266 | 233 | 247 | 225 | 299 | 452 | 840 | 161 | 222 | 1101 | 122 |
| 2006 | 367 | 375 | 257 | 220 | 255 | 277 | 288 | 399 | 923 | 60 | 236 | 1128 | 91 |
| 2007 | 430 | 310 | 312 | 200 | 281 | 283 | 307 | 381 | 917 | 164 | 171 | 1162 | 90 |
| 2008 | 477 | 551 | 348 | 363 | 439 | 445 | 405 | 450 | 1113 | 288 | 338 | 1601 | 138 |
| 2009 | 460 | 540 | 406 | 332 | 318 | 401 | 478 | 541 | 1093 | 322 | 323 | 1581 | 157 |
| 2010 | 393 | 493 | 413 | 377 | 377 | 466 | 429 | 404 | 1073 | 241 | 362 | 1535 | 141 |
| 2011 | 429 | 476 | 441 | 358 | 256 | 355 | 520 | 573 | 1145 | 248 | 311 | 1448 | 256 |
| 2012 | 483 | 576 | 476 | 376 | 422 | 407 | 491 | 591 | 1417 | 300 | 194 | 1580 | 331 |
| 2013 | 578 | 573 | 592 | 512 | 583 | 570 | 517 | 585 | 1752 | 259 | 244 | 1953 | 302 |
| 2014 | 750 | 834 | 739 | 605 | 659 | 748 | 703 | 818 | 2189 | 518 | 221 | 2524 | 404 |
| 2015 | 821 | 933 | 734 | 576 | 732 | 702 | 737 | 893 | 2345 | 553 | 166 | 2646 | 418 |
| 2016 | 709 | 782 | 642 | 543 | 615 | 629 | 631 | 801 | 1913 | 559 | 204 | 2309 | 367 |
| 2017 | 700 | 825 | 679 | 427 | 708 | 546 | 608 | 769 | 2077 | 439 | 115 | 2313 | 318 |

## Figures



Figure 1. Plot of number of clusters against height from the hierarchical cluster analysis for the southeast Florida area model, where height is the average dissimilarity among species in a cluster with 1 being most similar. Included are the piecewise regression lines (solid line) using a breakpoint (dashed vertical line) that minimized the residual mean square error.

## Scree plot for Headboat Cluster Analysis-FL_Keys



Figure 2. Plot of number of clusters against height from the hierarchical cluster analysis for the Keys area model, where height is the average dissimilarity among species in a cluster with 1 being most similar. Included are the piecewise regression lines (solid line) using a breakpoint (dashed vertical line) that minimized the residual mean square error.

## Dendrogram for Headboat Cluster Analysis-SE_FL



Species<br>bray similarity, average linkage

Figure 3. Dendrogram from hierarchical cluster analysis of species in the headboat dataset for the southeast Florida area model. Height measures the average dissimilarity among species within a branch with a value of 1 being most similar. Yellowtail Snapper is represented as 'target' in this plot.

## Dendrogram for Headboat Cluster Analysis-FL_Keys



Species
bray similarity, average linkage
Figure 4. Dendrogram from hierarchical cluster analysis of species in the headboat data for the Keys area model. Height measures the average dissimilarity among species within a branch with a value of 1 being most similar. Yellowtail Snapper is represented as 'target' in this plot.


Figure 5. Steps to produce a quantile residual for observed value data point 1 using the DHARMa package. This figure is taken directly from Hartig 2019.


Figure 6. Interaction plots of year and each predictor variable on CPUE for the SE_FL area model.


Figure 7. Interaction plots of year and each predictor variable on CPUE for the FL_Keys area model.


Figure 8. Interaction plots of year and each predictor variable on CPUE for the continuity model.

## Quantile Residuals for Positive Model-SE_FL



Figure 9. QQ plot residuals for the positive model for SE_FL region.

Quantile Residuals for Positive Model-SE_FL


Figure 10. Scaled (quantile) residuals for the positive model for SE_FL. Year has 37 levels (1981 -2017), season has four levels (winter, spring, summer, fall), time of day has two levels (night time, day time).

## Quantile Residuals for Binomial Model-SE_FL <br> DHARMa scaled residual plots



Figure 11. QQ plot residuals for the binomial model for SE_FL region.


Figure 12. Scaled (quantile) residuals for the binomial model for SE_FL. Year has 37 levels (1981-2017), season has four levels (winter, spring, summer, fall), and time of day has two levels (night time, day time).

## Quantile Residuals for Positive Model-FL_Keys <br> DHARMa scaled residual plots



Figure 13. QQ plot residuals for the positive model for FL_Keys region.


Figure 14. Scaled (quantile) residuals for the positive model for FL_Keys. Year has 37 levels (1981-2017), season has four levels (winter, spring, summer, fall), and time of day has two levels (night time, day time).

Quantile Residuals for Binomial Model-FL_Keys

QQ plot residuals
Residual vs. predicted
lines should match



Figure 15. QQ plot residuals for the binomial model for FL_Keys region.

Quantile Residuals for Binomial Model-FL_Keys


Figure 16. Scaled (quantile) residuals for the binomial model for FL_Keys. Year has 37 levels (1981-2017) and season has four levels (winter, spring, summer, fall).

## Quantile Residuals for Positive Model-continuity <br> DHARMa scaled residual plots



Figure 17. QQ plot residuals for the positive model for single area (continuity) model.

## Quantile Residuals for Positive Model-continuity



Figure 18. Scaled (quantile) residuals for the positive model for the single area (continuity) model. Year has 37 levels (1981-2017), and time of day has two levels (night time, day time).

# Quantile Residuals for Binomial Model-continuity <br> DHARMa scaled residual plots 



Figure 19. QQ plot residuals for the binomial model for the single area (continuity) model.

Quantile Residuals for Binomial Model-continuity


Figure 20. Scaled (quantile) residuals for the binomial model for the single area (continuity) model. Year has 37 levels (1981-2017), season has four levels (winter, spring, summer, fall), and time of day has two levels (night time, day time).


Figure 21. Standardized indices (black line) with $95 \%$ confidence intervals (grey ribbon) and nominal CPUE (red line) for SE_FL Yellowtail Snapper headboat catch rate index.


Figure 22. Standardized indices (black line) with 95\% confidence intervals (grey ribbon) and nominal CPUE (red line) for FL_Keys Yellowtail Snapper headboat catch rate index.


Figure 23. Standardized indices (black line) with 95\% confidence intervals (grey ribbon) and nominal CPUE (red line) for the single area (continuity) model Yellowtail Snapper headboat catch rate index.


Figure 24. Total number of trips made by each vessel in the headboat registry per year in the SE_FL region.


Figure 25. Total number of trips made by each vessel in the headboat registry per year in the FL Keys region.

## Appendix A - Total Catch in numerator of CPUE.

Total catch (retained plus releases) was explored as a numerator in CPUE. However, release information is not available for the entire time frame (1981-2017) so a CPUE based on total catch is available only for models with a 2008 start year. The same covariates were evaluated in the positive and binomial sub-models for each region and the index was generated using Monte Carlo simulations as described in the Methods section of this paper.

Table A1. Nominal mean CPUE and final modeled index for the SE_FL model where CPUE is based on total catch and start year is 2008.

| Year | NumTrips | NominalMean | Mean | CV |
| :---: | ---: | ---: | ---: | :---: |
| 2008 | 2728 | 7.14 | 4.73 | 0.14 |
| 2009 | 3444 | 5.76 | 4.94 | 0.15 |
| 2010 | 4102 | 9.78 | 5.93 | 0.15 |
| 2011 | 3893 | 7.72 | 5.54 | 0.16 |
| 2012 | 4620 | 7.96 | 5.28 | 0.14 |
| 2013 | 5604 | 6.55 | 4.69 | 0.14 |
| 2014 | 8573 | 9.00 | 6.31 | 0.13 |
| 2015 | 8557 | 9.41 | 6.85 | 0.12 |
| 2016 | 7117 | 9.03 | 6.21 | 0.13 |
| 2017 | 4028 | 8.12 | 7.00 | 0.13 |

Table A2. Nominal mean CPUE and final modeled index for the FL_Keys model where CPUE is based on total catch and start year is 2008.

| Year | NumTrips | NominalMean | Mean | CV |
| :---: | ---: | ---: | ---: | :---: |
| 2008 | 1907 | 51.17 | 60.8 | 0.10 |
| 2009 | 2019 | 47.53 | 58.7 | 0.10 |
| 2010 | 1949 | 47.65 | 53.3 | 0.10 |
| 2011 | 1958 | 43.46 | 51.5 | 0.10 |
| 2012 | 2201 | 39.55 | 49.4 | 0.11 |
| 2013 | 2574 | 41.90 | 54.2 | 0.10 |
| 2014 | 3290 | 42.58 | 56.6 | 0.11 |
| 2015 | 3534 | 35.84 | 48 | 0.11 |
| 2016 | 3172 | 32.41 | 39.6 | 0.11 |
| 2017 | 2993 | 32.76 | 39.8 | 0.11 |

Table A3. Nominal mean CPUE and final modeled index for the single area (continuity) model where CPUE is based on total catch and start year is 2008.

| Year | NumTrips | NominalMean | Mean | CV |
| :---: | ---: | ---: | :---: | :---: |
| 2008 | 4635 | 25.25 | 15.34 | 0.16 |
| 2009 | 5463 | 21.20 | 15.25 | 0.16 |
| 2010 | 6051 | 21.98 | 16.05 | 0.16 |
| 2011 | 5851 | 19.68 | 15.28 | 0.17 |
| 2012 | 6821 | 18.15 | 14.29 | 0.16 |
| 2013 | 8178 | 17.68 | 14.08 | 0.16 |
| 2014 | 11863 | 18.31 | 16.61 | 0.16 |
| 2015 | 12091 | 17.13 | 16.06 | 0.16 |
| 2016 | 10289 | 16.24 | 13.91 | 0.16 |
| 2017 | 7021 | 18.63 | 13.85 | 0.16 |



Figure A1. Standardized indices (black line) with 95\% confidence intervals (grey ribbon) and nominal CPUE (red line) for SE_FL Yellowtail Snapper headboat catch rate index with total catch in the numerator.


Figure A2. Standardized indices (black line) with $95 \%$ confidence intervals (grey ribbon) and nominal CPUE (red line) for FL_Keys Yellowtail Snapper headboat catch rate index with total catch in the numerator.


Figure A3. Standardized indices (black line) with $95 \%$ confidence intervals (grey ribbon) and nominal CPUE (red line) for the single area (continuity model) Yellowtail Snapper headboat catch rate index with total catch in the numerator.


[^0]:    ${ }^{1}$ Simulated observations describes all possible values (and their probability) at the specific predictor combination of the observed value given that the model is correctly specified (Hartig 2019).

[^1]:    ${ }^{2}$ This notation indicates that vessel is being treated as a random effect in the LME model.

