COMPARENT OF COMMENT

SEDAR 63: Gulf Menhaden

Ageing and Maturity/Fecundity

Ray Mroch NMFS Beaufort Laboratory

SEDAR 63 Review – November 6, 2018

- In 1964, NMFS Beaufort Lab began monitoring Gulf
 Menhaden fishery for size and age composition of the catch
- Otoliths were deemed impractical to age Gulf Menhaden
 - Otoliths are minute, fragile, and difficult to extract
 - Also, large sample sizes (1,000s) necessary
 - landings of half million metric tons
- Like Atlantic Menhaden, scales used to age Gulf Menhaden

- Nicholson and Schaaf (1978)
 - Found rings to be reliable annuli (especially for ages-0–2)
 - Difficulty for older ages because of oddly spaced rings
 - only ~50% of scale samples from 1971-73 could be aged by scale annuli
 - Developed criteria for ageing
 - Number and spacing of rings
 - Fork length at time of capture
 - Used length freq distributions to determine age for fish w/ illegible scales

Ten fish processed for:

- Fork Length (in mm)
- Weight (g)
- Scale patch for ageing

- Prior to ~1992, for each specimen, six gulf menhaden scales mounted between microscope slides, labeled w/ unique specimen number, then shipped to NMFS Beaufort Lab for ageing
 - Some yrs, up to a third lacked discernable rings
- ~1992, samplers asked to mount ten scales per specimen in effort to increase probability of acquiring a legible scale
- Percent legibility of scales has increased
 - For example:
 - 2015: 90.5% of scales legible (n = 9,663)
 - 2016: 84.8% of scales legible (n = 6,957)
 - 2017: 83.1% of scales legible (n = 6,312)

- Early years (prior to 1970), scales were read by two readers
- Due to budget constraints in early 1970s, ageing task reduced to one reader
- During 1970-2015, same person, Ethel A. Hall, aged both Atlantic and gulf menhaden scale samples
 - Through 2017, she read close to 1 million menhaden scale samples from reduction fishery
 - Ethel retired in 2015
- New Technician, Amanda Myers has taken Ethel's place
- Equipment Updates
 - Early 2000s Dell computer "1" key
 - 2018: sonic digitizer (~1985)
 - 2018: Dell Computer HD

Ageing Error Matrix

- Accounting for age estimation error is important for age composition data used in stock assessments
- Ageing error analysis using a program called "agemat" developed by André Punt
 - Provides estimates of the SD and CV
 - Creates an ageing error matrix

Ageing Error Matrices

In SEDAR 63 Review Report, Tables 3.1 and 3.2

Table 3.1 Ageing error matrix from a scale to scale comparison of ages done by Hall over four decades.

	0	1	2	3	4+
0	0.994	0.006	0	0	0
1	0.006	0.987	0.117	0.008	0.001
2	0	0.006	0.765	0.202	0.03
3	0	0	0.117	0.58	0.235
4+	0	0	0	0.21	0.734

- Scale-to-scale comparison looks at reader error within a reader
 - Addressed concerns of a drift in bias with time

Ageing Error Matrices

In SEDAR 63 Review Report, Tables 3.1 and 3.2

Table 3.1 Ageing error matrix from a scale to scale comparison of ages done by Hall over four decades.

	0	1	2	3	4+
0	0.994	0.006	0	0	0
1	0.006	0.987	0.117	0.008	0.001
2	0	0.006	0.765	0.202	0.03
3	0	0	0.117	0.58	0.235
4+	0	0	0	0.21	0.734

Table 3.2 Ageing error matrix from a scale to scale comparison of ages done by Myers and Price as blind reads.

	0	1	2	3	4+
0	0.905	0.095	0	0	0.242
1	0.095	0.811	0.095	0	0.067
2	0	0.095	0.81	0.114	0.074
3	0	0	0.095	0.772	0.078
4+	0	0	0	0.114	0.54

Ageing Error Matrices

In SEDAR 63 Review Report, Tables 3.1 and 3.2

Table 3.1 Ageing error matrix from a scale to scale comparison of ages done by Hall over four decades.

	0	1	2	3	4+
0	0.994	0.006	0	0	0
1	0.006	0.987	0.117	0.008	0.001
2	0	0.006	0.765	0.202	0.03
3	0	0	0.117	0.58	0.235
4+	0	0	0	0.21	0.734

Table 3.2 Ageing error matrix from a scale to scale comparison of ages done by Myers and Price as blind reads.

	0	1	2	3	4+
0	0.905	0.095	0	0	0.242
1	0.095	0.811	0.095	0	0.067
2	0	0.095	0.81	0.114	0.074
3	0	0	0.095	0.772	0.078
4+	0	0	0	0.114	0.54

• Table 3.2 has blind reads by relatively novice readers

Reproduction: Maturity and Fecundity

Spawning cycle

- Typical of most estuarine-dependent species in the GOM
 - Spawning occurs offshore in the GOM proper
 - Larvae move into estuarine nursery areas where they metamorphose into juveniles and spend their first yr of life
 - Maturing adults return to offshore waters to spawn and complete the cycle

Spawning times

- Lewis and Roithmayr (1981) Seminal paper on gulf menhaden reproduction:
 - Ova released in batches or fractions over a protracted spawning season
 - Between October–March (Peaks from December–February)
 - Peak spawning probably fluctuates from year to year depending on environmental conditions
- Brown-Peterson et al. (2017) Histological update
 - Potential weekly spawns from October–March
 - 25 spawns a season
 - Fecundity indeterminate
 - Total fecundity may be 10x greater than thought

Spawning locations

- Actual sites have not been determined
 - Data suggest nearshore locations more likely
- Combs (1969): only in high salinity waters
- Turner (1969): eggs inshore of 5 fathom curve (9m) off Florida
- Shaw et al. (1985): highest egg densities at 10-23m contours
- Fore (1970): over shelf from AL to TX
 - greatest egg densities 4 to 40 fathoms (7–73m)
- Sogard et al. (1987): highest larval densities near mouth of Miss. River

Maturity schedule

- Previous Assessment (2011)
 - Lewis and Roithmayr (1981)
 - "gulf menhaden spawn for the first time at age 1, after they have completed two seasons of growth, and then continue to spawn each year thereafter".
 - By convention in our previous assessments, fish surviving two growing seasons become age-2 fish on January 1, their theoretical birth date

Maturity schedule

Table 3.10 (Summarized) in Assessment Report: Estimated FL, weight, and percent mature of gulf menhaden at middle of fishing year.

Year	FL (mm)	Wgt (g)	Maturity (%)
0	121.2	35.9	0
1	161.9	89.3	80
2	186.9	140.4	100
3	202.3	179.9	100
	211.7	207.6	100

- Maturity schedule updated from previous stock assessment
 - 0% mature at age-0
 - 80% at age-1
 - 100% mature for age-2+
 - (Nelson and Ahrenholz 1986; Vaughan 1987, Vaughan et al. 1996, 2000, 2007, Brown-Peterson et al 2017)

Fecundity

- Lewis and Roithmayr (1981) reproductive potential of gulf menhaden: Eggs = 0.000051604 x fork length ^{3.8775}
- Brown-Peterson et al (2017) reproductive potential:

Eggs = $107.8 \times W_g$

- Formula like this often unavailable in other assessments, for which spawning stock biomass (SSB) is the typical default.
- Ascribes a greater measure of reproductive output to larger females

