Standardized Catch Rates of Red Grouper (Epinephelus morio) from the Gulf of Mexico Recreational Charterboat and Private Boat Fisheries (MRFSS) 1986-2017

Skyler Sagarese and Adyan Rios

SEDAR61-WP-16

21 November 2018

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Sagarese, Skyler and Adyan Rios. 2018. Standardized Catch Rates of Red Grouper (Epinephelus morio) from the Gulf of Mexico Recreational Charterboat and Private Boat Fisheries (MRFSS) 19862017. SEDAR61-WP-16. SEDAR, North Charleston, SC. 13 pp.

Standardized Catch Rates of Red Grouper (Epinephelus morio) from the Gulf of Mexico Recreational Charterboat and Private Boat Fisheries (MRFSS) 1986-2017

Skyler Sagarese and Adyan Rios
National Marine Fisheries Service, Southeast Fisheries Science Center
Sustainable Fisheries Division, 75 Virginia Beach Drive, Miami, FL 33149
Skyler.sagarese@noaa.gov; Adyan.Rios@NOAA.gov

Sustainable Fisheries Division Contribution Number: SFD-2018-011
Keywords: CPUE, catch, effort, recreational fisheries, red grouper

1. Introduction

The recreational fishery in the Gulf of Mexico is surveyed by the Marine Recreational Fishery Statistics Survey (MRFSS) conducted by NOAA Fisheries, the Texas Marine SportHarvest Monitoring Program conducted by the Texas Parks and Wildlife Department (TPWD), and the Headboat Survey (HBS) conducted by NOAA Fisheries. MRFSS has monitored shore based, charterboat and private/rental boat angler fishing in the Gulf of Mexico since 1981. Publically available MRFSS data were used to construct an index of red grouper catch rates in the Gulf of Mexico. The index was constructed using Generalized Linear Mixed Models, and a delta-lognormal approach.

2. Materials and Methods

Marine Recreational Fishery Statistics Survey

MRFSS collects information on participation, effort, and species-specific catch. Data are collected to provide catch and effort estimates in two-month periods ("waves") for each recreational fishing mode (shore fishing, private/rental boat, charterboat, or headboat/charterboat combined) and for each area of fishing (inshore, state Territorial Seas, U.S. Exclusive Economic Zone), in each Gulf of Mexico state (except Texas). Total catch information is collected by MRFSS on fish landed whole and observed by interviewers ("Type A"), fish reported as killed by the fishers ("Type B1") and fish reported as released alive by the fishers ("Type B2").

Data from the MRFSS dockside interviews were used to characterize abundance trends of red grouper in the Gulf of Mexico. Information on effort included hours fished and number of anglers as reported to the interviewer. Catch that was not observed by the interviewer (B1 and B2) was adjusted upwards by the ratio of non-interviewed to interviewed anglers in each group of anglers. The catch per unit effort was calculated on an individual group basis and was equal to the number of fish caught divided by the effort, where effort was the product of the number of anglers and the total hours fished.

Data Filtering Techniques

The following data preparation and filtering techniques were applied to the MRFSS dataset:

1. Data in the Gulf of Mexico were limited to interviews that took place in west Florida (excluding Monroe County)
2. Only interviews associated with charterboat or private fishing modes were retained.
3. Data were limited to interviews that took place from noon to $5: 59 \mathrm{pm}$.
4. Interviews that reported shore-based fishing or fishing in inshore waters were excluded.
5. Interviews with possible error in effort information or in catch amount were excluded.
6. Data prior to 1986 were excluded.
7. Data were not adjusted to account for size limits or closed seasons.
8. The Stephens MacCall (2004) approach was used to restrict the dataset to anglers that likely encountered red grouper based on the trip's species composition.
9. Interviews that reached bag limits for red grouper and aggregate groupers were retained.

Standardization

A delta-lognormal approach (Lo et al., 1992) was used to develop standardized catch rate indices. This method combines separate generalized linear modeling (GLM) analyses of the proportion of interviews that observed red grouper and the catch rates positive interviews to construct a single standardized index of abundance. A forward stepwise approach based on AIC was used during the construction of each GLM. In addition to screening using AIC, factors were also screened and not added to the model if the reduction in deviance per degree of freedom was less than one percent. The following factors were examined as possible influences on the proportion of positive interviews, and the catch rates on positive interviews:

Factor	DF	Details
Year	32	$1986-2017$
Time of	5	$12-1 \mathrm{pm}, 2 \mathrm{pm}, 3 \mathrm{pm}, 4 \mathrm{pm}, 5-6 \mathrm{pm}$
Interview	4	Dec-Feb, Mar-May ,Jun-Aug, Sep-Nov
Season	Open, Closed	
Reg. Season	2	SWFL, CWFL, NWFL
Region	3	<10 miles offshore, > 10 miles offshore
Area	2	Private, Charterboat
Mode	2	$1-2,3-4,5-6,7+$
Hours Fished*	4	$1,2,3,4,5,6,7+$
Anglers*	7	
*Trip type and number of anglers were only explored as factors		
for modeling success.		

The factors above were examined for the binomial model based on success, where success was defined as whether or not an interview caught red grouper. However, the binomial component of the delta lognormal did not model success. Instead, the binomial component modeled the proportion of positive interviews in each unique combination of variables associated with the fixed factors.

Once a set of fixed factors was identified, first level interactions were examined. The significance of these interactions was evaluated between nested models using the likelihood ratio
test. Interactions were screened and were only retained if the model improvement was significant according to the likelihood ratio test ($\mathrm{p}<0.0001$). Significant YEAR*FACTOR interaction terms were modeled as random effects. The final delta-lognormal model was fit using the SAS macro GLIMMIX and the SAS procedure PROC MIXED (SAS Institute Inc. 1997) following the procedures by Lo et al. (1992).

3. Results and Discussion

Stephens and MacCall

The minimum difference between the predicted and the observed number of interviews that reported red grouper occurred at the probability threshold of 0.36 (Figure 1a). Interviews with a predicted probability that was greater than the critical threshold probability were identified as interviews that targeted red grouper (Figure 2b). This method retained 12.4% of interviews, and 59.4% of interviews that reported red grouper. Prior to trip selection, there were 126,213 interviews and the proportion positive was 0.12 , and after selection there were 15,655 interviews and the proportion positive was 0.58 . Given these diagnostics, sufficient interviews were retained to develop a standardized index of abundance.

Annual Abundance Indices

Table 1 summarizes the standardized index and corresponding coefficients of variation, upper confidence limits, lower confidence limits, and nominal CPUE. Final deviance tables are included in Table 2. Tables 3-5, in appendix A, provide the number of observations, the number of positive observations, and the proportion of positive observations by year and factor.

The final models for the binomial and lognormal components were:

> Proportion Positive $=$ YEAR + REGION + AREA + ANGLERS + YEAR*REGION $\ln (C P U E)=$ YEAR + REGION + MODE + REGION*MODE + YEAR*REGION

The standardized index, with 95% confidence intervals, is shown in figure 2. Diagnostics for each component of the GLM are provided in figures 3 and 4. The over-dispersion parameter for the binomial component was 1.49 . Figure 5 provides a comparison of the MRFSS index that resulted from the current analysis to the MRFSS index that was used in the SEDAR 42 assessment.

Comments on Adequacy for Assessment

An important issue to point out is that for SEDAR61, the raw MRIP data were processed and used by the analysts to develop the index. Prior to the MRIP calibration, FSD staff preprocessed the recreational data and provided it for index development. Minor differences in how trips were filtered have led to slight variations in the index, most notably in the first five years of the index. For example, the large difference in 1988 is a result of the number of trips retained: only 48 trips in 1988 as opposed to 138 trips during SEDAR42. However, even with potential differences in data processing, the overall trend is generally similar to the index produced previously.

4. References

Lo, N.C. L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49: 2515-2526.

SAS Institute Inc. 1997, SAS/STAT® Software: Changes and Enhancements through Release 6.12. Cary, NC:Sas Institute Inc., 1997. 1167 pp.

Stephens, A. and A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research 70:299-310.

5. Tables

Table 1. Number of total interviews and positive interviews, proportion of positive interviews (PPT), relative nominal CPUE, and abundance index statistics for the MRFSS index.

YEAR	TRIPS	POSITIVE TRIPS	PPT	RELATIVE NOMINAL CPUE	RELATIVE INDEX	$\begin{aligned} & \text { LOWER } \\ & 95 \% \mathrm{CI} \end{aligned}$	$\begin{aligned} & \text { UPPER } \\ & 95 \% \text { CI } \end{aligned}$	CV
1986	132	104	0.788	1.1097	0.9155	0.5271	1.5901	0.2814
1987	140	91	0.650	0.7086	0.8588	0.4844	1.5226	0.2923
1988	48	34	0.708	1.4474	1.7574	0.8844	3.4922	0.3537
1989	124	92	0.742	1.6939	1.1544	0.6254	2.1309	0.3138
1990	109	81	0.743	1.9271	1.6897	0.9805	2.9119	0.2772
1991	124	68	0.548	1.5406	1.6115	0.8679	2.9921	0.3170
1992	326	203	0.623	1.2380	1.2747	0.7513	2.1627	0.2690
1993	304	172	0.566	0.9807	1.0266	0.5673	1.8576	0.3032
1994	347	179	0.516	0.8770	0.8697	0.4735	1.5973	0.3111
1995	355	179	0.504	0.9990	0.8428	0.4500	1.5782	0.3215
1996	350	143	0.409	0.6080	0.4655	0.2253	0.9617	0.3751
1997	318	113	0.355	0.6926	0.5510	0.2668	1.1379	0.3749
1998	622	313	0.503	0.7313	0.6964	0.3758	1.2902	0.3158
1999	952	513	0.539	0.9832	0.8329	0.4661	1.4885	0.2965
2000	698	352	0.504	0.7368	0.8053	0.4417	1.4681	0.3071
2001	813	398	0.490	0.5790	0.6549	0.3543	1.2104	0.3145
2002	860	436	0.507	0.6312	0.7432	0.4017	1.3751	0.3151
2003	962	556	0.578	0.7900	0.9254	0.5229	1.6377	0.2913
2004	1190	829	0.697	0.8695	1.1536	0.6924	1.9218	0.2594
2005	857	534	0.623	0.4759	0.7927	0.4472	1.4054	0.2923
2006	413	186	0.450	0.2646	0.4123	0.2012	0.8450	0.3706
2007	387	200	0.517	0.4773	0.6248	0.3381	1.1547	0.3145
2008	542	339	0.625	1.0123	1.2365	0.7531	2.0301	0.2518
2009	457	310	0.678	1.3090	1.4434	0.8840	2.3568	0.2489
2010	401	255	0.636	1.3000	1.2157	0.7210	2.0497	0.2657
2011	473	296	0.626	1.3830	1.3885	0.8276	2.3296	0.2631
2012	521	335	0.643	0.9964	1.0493	0.6244	1.7631	0.2639
2013	429	295	0.688	1.6296	1.5715	0.9405	2.6260	0.2610
2014	684	475	0.694	1.3591	1.2859	0.7732	2.1388	0.2585
2015	548	371	0.677	1.1625	0.9172	0.5274	1.5949	0.2820
2016	615	371	0.603	0.7468	0.5269	0.2854	0.9728	0.3140
2017	554	322	0.581	0.7400	0.7063	0.3968	1.2572	0.2944

Table 2. Final deviance tables for the Gulf of Mexico red grouper regressions from the MRFSS charterboat and private boat fisheries. The table shows the order of the factors as they were sequentially added to each model. Fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the tables below.

Binomial Model for Success (whether or not a trip landed red grouper)								
Factor	DF	Deviance	Residual Df	Residual Deviance	AIC	\% Deviance Reduced	Log likelihood	Likelihood Ratio Test
Null	1	21256.8	15654	21256.8	21256.80	-	-10628.4	-
Region	3	20328.9	15652	927.9	20329.00	4.35\%	-10164.5	927.8
Area	2	19128.8	15651	1200.1	19128.80	5.90\%	-9564.4	1200.2
Year	32	18601.7	15620	1727.2	18601.60	2.56\%	-9300.8	527.2
Anglers	7	18199.1	15614	2129.8	18199.20	2.13\%	-9099.6	402.4
Region*Year	63	17518.4	15552	1610.4	17518.40	3.36\%	-8759.2	680.8
Lognormal Model for Catch Rates From Positive Trips								
Factor	DF	Deviance	$\begin{gathered} \text { Residual } \\ \text { Df } \\ \hline \end{gathered}$	Residual Deviance	AIC	\% Deviance Reduced	Log likelihood	Likelihood Ratio Test
Null	1	14273.9	9144	14273.9	30024.00	-	-15012.0	-
Region	3	11775.4	9142	2498.5	28264.20	17.49\%	-14132.1	1759.8
Year	32	11321.2	9111	454.2	27904.60	3.53\%	-13952.3	359.6
Mode	2	11031.7	9110	289.5	27667.60	2.55\%	-13833.8	237.0
Region*Mode	3	10438.5	9108	593.2	27162.20	5.36\%	-13581.1	505.4
Year*Region	63	10004.4	9046	434.1	26773.80	3.50\%	-13386.9	388.4

6. Figures

Figure 1: The difference between the number of records in which red grouper are observed and the number in which they are predicted to occur for each probability threshold (a). Histogram of probabilities generated by the species-based regression (b). The dashed vertical line indicates the critical value where false prediction is minimized.

Figure 2: Standardized indices with 95% confidence intervals and nominal CPUE for the Gulf of Mexico red grouper MRFSS index.

Figure 3. Diagnostic plots for the binomial model. Shown here are the predicted (solid line) and observed proportion of positive interviews by year (a), and the residuals from the binomial model by year (b), region (c), area (d), and number of anglers (e).

Figure 4. Diagnostic plots for the lognormal model of catch rates on positive interviews. Shown here are the frequency distribution of catch rates (a), the cumulative normalized residuals (b), and the distribution of residuals by year (c), region (d), and mode (e). The red lines represent the expected normal distribution.

Figure 5: Standardized MRFSS indices for Gulf of Mexico red grouper from this report and from the SEDAR 42 Assessment Report. Each index has a mean of 1 over the time series shown in the plot.

7. Appendix A

Description of the analysis dataset after exclusions and other treatments

Table 3: Number of interviews by factor and year.

	Areas		Regions			Mode								Number of Anglers				
Year	EEZ	State	NWFL	CWFL	SWFL	charter	private	1	2	3	4	5	6	$7+$				
1986	94	38	19	44	69	88	44	102	4	NA	6	8	11	1				
1987	101	39	52	54	34	57	83	89	11	6	11	6	4	13				
1988	42	6	18	24	6	13	35	33	5	4	1	3	NA	2				
1989	94	30	21	49	54	36	88	65	11	15	16	6	7	4				
1990	70	39	34	63	12	29	80	77	7	8	6	7	4	NA				
1991	73	51	62	35	27	10	114	81	17	8	9	3	5	1				
1992	178	148	108	109	109	33	293	224	34	22	15	9	13	9				
1993	220	84	113	121	70	33	271	204	40	19	18	9	6	8				
1994	240	107	139	84	124	32	315	257	22	26	18	13	5	6				
1995	259	96	120	139	96	47	308	267	28	28	14	6	7	5				
1996	260	90	112	109	129	22	328	286	25	9	15	5	4	6				
1997	169	149	123	116	79	72	246	218	24	17	12	10	16	21				
1998	393	229	209	272	141	237	385	346	46	37	49	50	47	47				
1999	593	359	320	303	329	335	617	554	88	55	73	55	53	74				
2000	493	205	315	239	144	302	396	362	49	52	63	40	66	66				
2001	554	259	333	289	191	291	522	414	81	69	51	42	67	89				
2002	595	265	395	257	208	318	542	428	83	58	58	50	84	99				
2003	677	285	426	240	296	474	488	447	77	84	68	80	104	102				
2004	902	288	526	307	357	640	550	492	101	90	113	89	157	148				
2005	657	200	475	163	219	541	316	291	52	78	88	76	132	140				
2006	319	94	270	69	74	218	195	134	43	34	32	33	64	73				
2007	271	116	212	89	86	191	196	185	18	26	38	28	46	46				
2008	294	248	256	168	118	191	351	270	50	39	54	38	43	48				
2009	282	175	194	134	129	191	266	228	31	46	35	25	47	45				
2010	248	153	170	143	88	160	241	197	30	31	36	30	36	41				
2011	269	204	195	165	113	183	290	222	42	39	46	44	33	47				
2012	319	202	193	193	135	252	269	230	45	45	63	33	50	55				
2013	256	173	110	207	112	105	324	258	35	35	42	19	24	16				
2014	405	279	151	315	218	226	458	358	69	68	66	48	53	22				
2015	362	186	102	261	185	181	367	299	56	43	48	33	53	16				
2016	383	232	126	301	188	245	370	313	54	47	65	47	62	27				
2017	395	159	168	223	163	174	380	325	60	42	45	32	35	15				
All	10467	5188	6067	5285	4303	5927	9728	8256	1338	1180	1274	977	1338	1292				

Table 4: Number of positive interviews by factor and year.

Year	Areas		Regions			Mode		Number of Anglers						
	EEZ	State	NWFL	CWFL	SWFL	charter	private	1	2	3	4	5	6	7+
1986	76	28	11	24	69	68	36	84	3	NA	2	3	11	1
1987	67	24	19	41	31	29	62	65	7	3	8	3	2	3
1988	31	3	9	19	6	10	24	25	3	2	1	3	NA	0
1989	75	17	8	44	40	23	69	47	11	11	12	5	3	3
1990	54	27	12	57	12	22	59	56	6	7	6	5	1	NA
1991	47	21	23	26	19	2	66	37	12	8	7	3	1	0
1992	135	68	47	81	75	21	182	125	27	20	14	6	7	4
1993	152	20	47	78	47	10	162	114	24	14	12	4	4	0
1994	143	36	47	50	82	15	164	127	13	15	11	7	3	3
1995	157	22	34	77	68	29	150	123	15	18	11	5	4	3
1996	130	13	21	34	88	7	136	115	11	3	9	3	1	1
1997	72	41	13	50	50	20	93	76	9	12	4	5	2	5
1998	216	97	59	168	86	112	201	177	27	22	28	30	23	6
1999	360	153	68	201	244	183	330	301	62	34	48	31	25	12
2000	274	78	104	155	93	156	196	182	31	29	35	22	36	17
2001	310	88	123	170	105	137	261	185	46	42	36	25	38	26
2002	367	69	198	153	85	197	239	177	43	36	39	31	56	54
2003	465	91	240	160	156	358	198	186	44	57	50	63	81	75
2004	697	132	360	216	253	502	327	289	71	68	84	69	125	123
2005	459	75	306	103	125	406	128	117	30	48	59	61	103	116
2006	168	18	128	25	33	121	65	38	17	16	20	15	38	42
2007	162	38	94	47	59	109	91	92	10	15	22	14	26	21
2008	206	133	113	138	88	121	218	173	27	28	32	25	32	22
2009	207	103	96	112	102	121	189	156	23	34	22	20	28	27
2010	185	70	77	114	64	98	157	127	22	17	26	16	25	22
2011	184	112	81	131	84	119	177	132	23	27	33	31	24	26
2012	224	111	75	155	105	165	170	132	33	30	49	21	39	31
2013	215	80	53	159	83	85	210	165	27	27	30	17	19	10
2014	325	150	56	240	179	182	293	219	51	55	52	37	48	13
2015	279	92	31	195	145	150	221	174	39	33	40	27	48	10
2016	272	99	22	221	128	181	190	156	32	33	47	37	52	14
2017	279	43	54	139	129	128	194	160	39	29	32	25	30	7
All	6993	2152	2629	3583	2933	3887	5258	4332	838	793	881	669	935	697

Table 5: Proportion of positive interviews by factor and year.

Year	Areas		Regions			Mode		Number of Anglers						
	EEZ	State	NWFL	CWFL	SWFL	charter	private	1	2	3	4	5	6	7+
1986	0.81	0.74	0.58	0.55	1.00	0.77	0.82	0.82	0.75	NA	0.33	0.38	1.00	1.00
1987	0.66	0.62	0.37	0.76	0.91	0.51	0.75	0.73	0.64	0.50	0.73	0.50	0.50	0.23
1988	0.74	0.50	0.50	0.79	1.00	0.77	0.69	0.76	0.60	0.50	1.00	1.00	NA	0.00
1989	0.80	0.57	0.38	0.90	0.74	0.64	0.78	0.72	1.00	0.73	0.75	0.83	0.43	0.75
1990	0.77	0.69	0.35	0.90	1.00	0.76	0.74	0.73	0.86	0.88	1.00	0.71	0.25	NA
1991	0.64	0.41	0.37	0.74	0.70	0.20	0.58	0.46	0.71	1.00	0.78	1.00	0.20	0.00
1992	0.76	0.46	0.44	0.74	0.69	0.64	0.62	0.56	0.79	0.91	0.93	0.67	0.54	0.44
1993	0.69	0.24	0.42	0.64	0.67	0.30	0.60	0.56	0.60	0.74	0.67	0.44	0.67	0.00
1994	0.60	0.34	0.34	0.60	0.66	0.47	0.52	0.49	0.59	0.58	0.61	0.54	0.60	0.50
1995	0.61	0.23	0.28	0.55	0.71	0.62	0.49	0.46	0.54	0.64	0.79	0.83	0.57	0.60
1996	0.50	0.14	0.19	0.31	0.68	0.32	0.41	0.40	0.44	0.33	0.60	0.60	0.25	0.17
1997	0.43	0.28	0.11	0.43	0.63	0.28	0.38	0.35	0.38	0.71	0.33	0.50	0.12	0.24
1998	0.55	0.42	0.28	0.62	0.61	0.47	0.52	0.51	0.59	0.59	0.57	0.60	0.49	0.13
1999	0.61	0.43	0.21	0.66	0.74	0.55	0.53	0.54	0.70	0.62	0.66	0.56	0.47	0.16
2000	0.56	0.38	0.33	0.65	0.65	0.52	0.49	0.50	0.63	0.56	0.56	0.55	0.55	0.26
2001	0.56	0.34	0.37	0.59	0.55	0.47	0.50	0.45	0.57	0.61	0.71	0.60	0.57	0.29
2002	0.62	0.26	0.50	0.60	0.41	0.62	0.44	0.41	0.52	0.62	0.67	0.62	0.67	0.55
2003	0.69	0.32	0.56	0.67	0.53	0.76	0.41	0.42	0.57	0.68	0.74	0.79	0.78	0.74
2004	0.77	0.46	0.68	0.70	0.71	0.78	0.59	0.59	0.70	0.76	0.74	0.78	0.80	0.83
2005	0.70	0.38	0.64	0.63	0.57	0.75	0.41	0.40	0.58	0.62	0.67	0.80	0.78	0.83
2006	0.53	0.19	0.47	0.36	0.45	0.56	0.33	0.28	0.40	0.47	0.62	0.45	0.59	0.58
2007	0.60	0.33	0.44	0.53	0.69	0.57	0.46	0.50	0.56	0.58	0.58	0.50	0.57	0.46
2008	0.70	0.54	0.44	0.82	0.75	0.63	0.62	0.64	0.54	0.72	0.59	0.66	0.74	0.46
2009	0.73	0.59	0.49	0.84	0.79	0.63	0.71	0.68	0.74	0.74	0.63	0.80	0.60	0.60
2010	0.75	0.46	0.45	0.80	0.73	0.61	0.65	0.64	0.73	0.55	0.72	0.53	0.69	0.54
2011	0.68	0.55	0.42	0.79	0.74	0.65	0.61	0.59	0.55	0.69	0.72	0.70	0.73	0.55
2012	0.70	0.55	0.39	0.80	0.78	0.65	0.63	0.57	0.73	0.67	0.78	0.64	0.78	0.56
2013	0.84	0.46	0.48	0.77	0.74	0.81	0.65	0.64	0.77	0.77	0.71	0.89	0.79	0.62
2014	0.80	0.54	0.37	0.76	0.82	0.81	0.64	0.61	0.74	0.81	0.79	0.77	0.91	0.59
2015	0.77	0.49	0.30	0.75	0.78	0.83	0.60	0.58	0.70	0.77	0.83	0.82	0.91	0.62
2016	0.71	0.43	0.17	0.73	0.68	0.74	0.51	0.50	0.59	0.70	0.72	0.79	0.84	0.52
2017	0.71	0.27	0.32	0.62	0.79	0.74	0.51	0.49	0.65	0.69	0.71	0.78	0.86	0.47
All	0.67	0.41	0.43	0.68	0.68	0.66	0.54	0.52	0.63	0.67	0.69	0.68	0.70	0.54

