Red Grouper Abundance Indices from SEAMAP Groundfish Surveys in the Northern Gulf of Mexico

Adam G. Pollack, David S. Hanisko and G. Walter Ingram, Jr.

SEDAR61-WP-12

30 August 2018

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Pollack, Adam G., David S. Hanisko and G. Walter Ingram, Jr.. 2018. Red Grouper Abundance Indices from SEAMAP Groundfish Surveys in the Northern Gulf of Mexico. SEDAR61-WP-12. SEDAR, North Charleston, SC. 12 pp.

Red Grouper Abundance Indices from SEAMAP Groundfish Surveys in the Northern Gulf of Mexico

Adam G. Pollack¹, David S. Hanisko² and G. Walter Ingram, Jr.²

Riverside Technology, Inc.
NOAA Fisheries, Southeast Fisheries Science Center,
Mississippi Laboratories, Pascagoula, MS

² NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, MS

Abstract

The National Marine Fisheries Service Southeast Fisheries Science Center Mississippi Laboratories and state partners have conducted groundfish surveys since 1972 in the northern Gulf of Mexico during the summer and fall under several sampling programs. In 1987, both groundfish surveys were brought under the same survey design within the Southeast Area Monitoring and Assessment Program (SEAMAP). These fisheries independent data were used to develop abundance indices for red grouper (Epinephelus morio). Since red grouper had only been observed in the eastern Gulf of Mexico, the time series had to be limited to 2009 – 2017, as no sampling previously was conducted in the eastern Gulf of Mexico.

Introduction

The National Marine Fisheries Service (NMFS) Southeast Fisheries Science Center (SEFSC) Mississippi Laboratories (MSLABS) and state partners have conducted standardized trawl surveys in the Gulf of Mexico (GOM) under the auspices of the Southeast Area Monitoring and Assessment Program (SEAMAP) since 1982. The program is a collaborative effort between federal, state and university programs, designed to collect, manage and distribute fishery independent data throughout the region. The primary objective of the trawl surveys is to collect data on the abundance and distribution of demersal organisms in the northern GOM. Surveys are conducted semi-annually during the summer and fall, and collect information on many commercially and recreationally important species throughout the region. The SEAMAP summer survey was initiated in 1982, while the SEAMAP fall survey was initiated in1985. Fall trawl surveys prior to 1986 were conducted independently by NMFS and date back to 1972. This document outlines the development of an index of abundance for red grouper (*Epinephelus morio*) from NMFS and SEAMAP trawl survey data.

Methodology

Survey Design and Expansion

The survey methodologies and descriptions of the datasets used herein have been presented in detail by Nichols (2004) and Pollack and Ingram (2010). A change to the survey design was implemented between the summer and fall surveys of 2008. Prior to the fall survey of 2008, the basic structure of the groundfish surveys (i.e. 1987- summer of 2008) follows a stratified random

station location assignment with strata derived from depth zones (5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17, 17-18, 18-19, 19-20, 20-22, 22-25, 25-30, 30-35, 35-40, 40-45, 45-50 and 50-60 fathoms), shrimp statistical zones (between 88° and 97° W longitude, statistical zones from west to east: 21-20, 19-18, 17-16, 15-13 and 12-10), and time of day (i.e. day or night). Survey methodology prior to 1987 was presented in detail by Nichols (2004).

Starting in the fall of 2008 and continuing until the present, station allocation is randomized within each shrimp statistical zone with a weighting by spatial area. Other notable changes included a standardized 30 minute tow and dropping the day/night stratification. The main purpose of these changes was to increase the sample size of each survey and expand the survey into the waters off of Florida. In 2013, a depth stratification of 5 - 20 fathoms and 20 - 60 fathoms was added to the survey design.

The trawl survey area has been expanded throughout the course of the fall time series. Prior to 1985, the areas of East Louisiana and Mississippi/Alabama (Figure 1) were considered the primary sampling area, areas directly west and east of the primary were designated the secondary sampling areas; East Florida and Texas were not sampled. During this time, triplicate 10 minute tows were done at each station. From 1987 – 2008 (summer), the area sampled was from Brownsville, TX to Mobile Bay, AL. Sampling rarely extended past Mobile Bay due to an increase in the number of hangs. During this time, tow length was dependent on how long it took to cover a full depth stratum (defined above). However, single tows never exceeded 55 minutes. Full details about this survey can be found in Nichols (2004). Beginning in 2008, sampling was expanded to cover the eastern GOM, down to the Florida Keys. The other changes to the survey are outlined above and in Pollack and Ingram (2010).

Data

Trawl data was obtained from the MSLABS trawl unit and combined with data from the Gulf States Marine Fisheries Commission (GSMFC) database, which contains data collected by state agencies/partners from Alabama, Florida, Louisiana, Mississippi and Texas. Age data was obtained from the SEFSC Panama City Laboratory. Details concerning the aging methodologies of red grouper can be found in Lombardi-Carlson (2014).

Trawl data was initially limited to only tows without problems (i.e. net torn, doors crossed, etc.), tows taken between 9 and 110 meters and tows sampled with 40 ft shrimp trawls (Texas uses a 20 foot shrimp trawl and data are not used). A final total of 21,443 stations from 1972- 2017 were available for analysis with 9,500 and 11,943 stations sampled during the summer and fall surveys, respectively (Tables 1 and 2).

Preliminary mapping indicated that red grouper were taken only within shrimp statistical zones 2 - 8 (east of 86° W) coinciding with the eastward expansion of the trawl surveys in the fall of 2008 (Figure 1). Sampling coverage was also limited over the West Florida Shelf in 2008. Therefore, only 1,280 (summer) and 757 (fall) stations taken between 2009 and 2017 from statistical zones 2 -8 were retained for further analysis. Further examination of the spatial distribution of the SEAMAP Fall Groundfish Survey (Appendix Figure 1) determined that a relative abundance index could not be produced because of the gaps in the survey coverage. The

gaps that were of particular concern were those occurring south of Tampa Bay and in waters less than 50 m, where most of the red grouper were captured during other surveys. This follows the recommendations that were made during the previous SEDAR for red grouper (Pollack and Walter 2014). Based on the distribution of red grouper in trawls and the lack of consistent spatial coverage by the fall trawl survey, indices of red group abundance are developed utilizing only stations within shrimp statistical zones 2 – 8 from 2009 to 2017 summer trawl data.

Index Construction

Delta-lognormal modeling methods were used to estimate relative abundance indices for red grouper (Lo *et al.* 1992). The main advantage of using this method is allowance for the probability of zero catch (Ortiz *et al.* 2000). The index computed by this method is a mathematical combination of yearly abundance estimates from two distinct generalized linear models: a binomial (logistic) model which describes proportion of positive abundance values (i.e. presence/absence) and a lognormal model which describes variability in only the nonzero abundance data (Lo *et al.* 1992).

The delta-lognormal index of relative abundance (I_y) as described by Lo *et al.* (1992) was estimated as:

$$(1) I_{y} = c_{y}p_{y},$$

where c_y is the estimate of mean CPUE for positive catches only for year y, and p_y is the estimate of mean probability of occurrence during year y. Both c_y and p_y were estimated using generalized linear models. Data used to estimate abundance for positive catches (c) and probability of occurrence (p) were assumed to have a lognormal distribution and a binomial distribution, respectively, and modeled using the following equations:

(2)
$$\ln(c) = X\beta + \varepsilon$$

and

(3)
$$p = \frac{e^{X\beta + \varepsilon}}{1 + e^{X\beta + \varepsilon}},$$

respectively, where c is a vector of the positive catch data, p is a vector of the presence/absence data, X is the design matrix for main effects, β is the parameter vector for main effects, and ε is a vector of independent normally distributed errors with expectation zero and variance σ^2 . Therefore, c_y and p_y were estimated as least-squares means for each year along with their corresponding standard errors, SE (c_y) and SE (p_y) , respectively. From these estimates, I_y was calculated, as in equation (1), and its variance calculated as:

(4)
$$V(I_y) \approx V(c_y) p_y^2 + c_y^2 V(p_y) + 2c_y p_y \text{Cov}(c, p),$$

A covariance term is not included in the variance estimator since there is no correlation between the estimator of the proportion positive and the mean CPUE given presence. The two estimators are derived independently and have been shown to not covary for a given year (Christman, unpublished).

The submodels of the delta-lognormal model were built using a backward selection procedure based on type 3 analyses with an inclusion level of significance of $\alpha = 0.05$. Binomial submodel performance was evaluated using AIC, while the performance of the lognormal submodel was evaluated based on analyses of residual scatter and QQ plots in addition to AIC. Variables considered for inclusion in the submodels were:

Submodel Variables (SEAMAP Summer Groundfish)

Year: 2009 – 2017

Depth: 9 - 110 meters (continuous) Sponge: 0 kg, < 50 kg, > 50 kgShrimp Statistical Zone: Zones 2 - 8

Time of Day: Day, Night

Results and Discussion

Size and Age

The distribution of red grouper is presented in Figure 1, with seasonal/annual abundance and distribution presented in the Appendix Figure 1. The total number of red grouper captured ranged from 52 to 171 in the summer (Table 3). Of the 934 red grouper captured during the summer survey, a total of 924 were measured with an average total length of 304 mm (± 116 mm standard deviation). The length frequency distribution of red grouper captured is shown in Figure 2. Analysis of otoliths collected from red grouper collected during the summer survey, indicated that most (83%) are five years old or less (Figure 3 A and C). Length frequency distribution and age information for red grouper collected during the fall survey is presented in Figure 2 and Figure 3 (B and D) for comparison even no index was produced.

Index of Abundance

The final delta-lognormal index of red grouper abundance retained year, depth, sponge and shrimp statistical zone in the binomial submodel, while year, depth and shrimp statistical zone were retained in the lognormal submodel. A summary of the factors used in the analysis is presented in Appendix Table 1. Table 4 summarizes the backward selection procedure used to select the final set of variables used in the submodels and their significance. The AIC for the binomial and lognormal submodels were 6934.7 and 726.6, respectively. The diagnostic plots for the binomial and lognormal submodels are shown in Figure 4, and indicate the distribution of the residuals is approximately normal. Annual abundance indices are presented in Table 5 and Figure 5.

Literature Cited

- Bradu, D. and Y. Mundlak. 1970. Estimation in Lognormal Linear Models. *Journal of the American Statistical Association* 65:198-211.
- Lo, N.C.H., L.D. Jacobson, and J.L. Squire. 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. *Canadian Journal of Fisheries and Aquatic Science* 49:2515-2526.
- Lombardi-Carlson, L. 2014. An age and growth description of Red Grouper (Epinephelus morio) from the northeastern Gulf of Mexico: 1978-2013 for SEDAR42 SEDAR42-DW-10. SEDAR, North Charleston, SC. 37 pp
- Nichols, S. 2004. Derivation of red snapper time series from SEAMAP and groundfish trawl surveys. SEDAR7-DW01.
- Ortiz, M., C.M Legault and N.M. Ehrhardt. 2000. An alternative method for estimating bycatch from the U.S. shrimp trawl fishery in the Gulf of Mexico, 1972-1995. *Fishery Bulletin* 98:583-599.
- Pennington, M. 1983. Efficient Estimators of Abundance, for Fish and Plankton Surveys. *Biometrics* 39:281-286.
- Pollack, A.G. and G.W. Ingram Jr. 2010. Abundance indices of subadult yellowedge grouper, *Epinephelus flavolimbatus*, collected in summer and fall groundfish surveys in the northern Gulf of Mexico. SEDAR22-DW-06.
- Pollack, A.G. and G.W. Ingram, Jr. 2014. Red Grouper Abundance Indices from SEAMAP Groundfish Surveys in the Northern Gulf of Mexico. SEDAR42-DW-05. SEDAR, North Charleston, SC. 26 pp.

Table 1. Number of stations sampled by shrimp statistical zone during the SEAMAP Summer Groundfish Survey from 1982-2017.

										Shrim	p Statisti	cal Zoı	ne								
Year	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	Tota
982										14	36	24	26	8	1	11	30	10	3	23	186
983								5	19	8	26		6	16	19	25	24	21	5	17	19
984										13	36	10	16	16	22	17	15	23	28	14	210
985										10	48	11	27	12	10	7	7	12	11	10	16:
986										17	49	4	20	14	8	11	8	11	14	6	162
987										27	58	8	34	21	25	20	16	25	28	19	28
988										17	46	10	14	9	19	24	14	25	28	23	22
989										21	30	8	13	18	25	7	15	20	29	24	21
990											65	18	31	17	23	16	20	23	24	20	25
991											44	16	41	13	23	22	24	18	23	26	25
992										1	44	2	36	30	20	25	12	31	26	20	24
993											44	22	29	19	24	19	14	29	24	22	24
994											60	12	27	28	25	17	20	22	26	22	25
995											42	12	26	24	22	23	13	27	26	21	23
996											46	14	34	19	22	18	17	21	26	25	24
997											42	4	26	22	22	23	10	28	26	26	22
998											34	6	28	27	25	18	14	22	36	17	22
999											43	11	31	26	20	23	13	25	32	20	24
000											43	11	27	19	19	27	8	29	31	21	23
001											34	15	24	28	13	3	10	9	17	21	17
002											44	15	34	21	27	19	15	25	29	22	25
003											42	17	26	8	2	17	20	22	26	23	20
004											38	19	28	21	20	25	21	19	25	21	23
005											31	10	9	23	16	21	5	28	22	27	19
006											45	17	29	16	20	23	17	23	31	18	23
007											40	12	10	23	22	23	7	29	32	21	21
800				1	8	11	6	11	8	11	42	24	19	27	23	22	17	24	21	29	30
009				36	23	29	16	17	18	25	71	25	20	36	39	46	50	33	29	23	5 3
010			31	26	21	26	10	12	14	15	23	6	27	20	23	37	34	27	27	19	39
011		11	24	22	20	28	2	15	11	8	16	7	14	17	22	29	29	18	21	13	32
012		12	39	33	29	30	19	16	16	13	16	7	14	18	25	30	27	20	20	15	39
013		9	27	28	24	19	10	11	9	7	14	6	13	18	22	24	22	16	17	12	30
014		15	37	27	26	30	18	15	9	7	17	6	15	18	22	28	23	18	18	14	36
015	1	9	32	30	23	28	26	18	9	8	17	6	15	19	25	30	27	18	20	13	37
016		9	25	29	27	23	15	15	10	8	17	6	16	21	24	30	23	19	17	14	34
017		10	28	19	28	14	15	14	6	10	17	7	14	13	23	26	24	19	21	14	32
otal	1		243	251	229	238	137	149	129	240	1360	408	819	705	742	786	665	789	839	695	950

Table 2. Number of stations sampled by shrimp statistical zone during the SEAMAP Fall Groundfish Survey from 1972-2017.

											rimp Sta										otal
Year	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	
1972										10	55	27	41	34	17						184
1973									11	17	98	34	71	39	2						27.
1974										12	92	35	73	31							24.
1975											93	33	80	35	32	7					28
1976											108	42	79	56	22						30
1977											97	31	76	38							24
1978										36	101	32	67	58	25						31
1979											109	35	72	55	2						27
1980										24	85	22	70	32							23
1981										21	85	33	66	49	25						27
1982										21	102	41	72	37							27
1983										17	82	35	63	25							22
1984											82	32	64	47	1						22
1985										30	63	23	37	53	32	10	20	20	19	19	32
1986								20	10	25	34	13	27	14	27	35	26	23	22	21	29
1987										13	22	29	29	26	17	15	15	15	18	3	20
1988										8	27	10	28	24	18	26	19	21	31	20	23
1989											43	16	31	23	22	20	17	22	25	26	24
1990											52	20	22	27	22	19	18	22	19	27	24
1991											45	16	32	18	20	25	24	19	25	22	24
1992											32	15	31	14	25	18	17	27	30	18	22
1993											70	14	35	19	26	18	16	25	28	18	26
1994											49	17	24	27	25	20	21	23	24	20	25
1995											39	14	29	24	24	19	14	26	30	19	23
1996											43	11	36	21	17	28	13	25	29	24	24
1997											43	18	31	20	26	19	18	23	22	24	24
1998											43	28	50	14	34	11	15	24	29	22	27
1999											42	9	38	18	29	18	12	28	29	22	24
2000											42	10	27	28	20	26	12	30	25	21	24
2001											43	14	30	22	26	20	14	27	28	23	24
2002										1	49	16	27	26	22	23	14	26	30	21	25
2003										1	74	20	20	21	24	22	20	23	25	23	27
2004											43	6	23	24	17	27	14	24	30	21	22
2005											43	21	30	18	33	18	14	23	24	27	25
2006										1	46	7	22	14	18	28	13	23	32	19	22
2007											31	15	27	26	18	28	17	20	18	26	22
2008					15	14	4	4	3	4	34	16	28	34	42	46	44	19	36	20	36
2009				20	21	25	11	21	13	12	52	12	23	23	30	49	47	31	36	22	44

										Sh	rimp Sta	tistical	Zone							Т	otal
Year	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21	
2010				9	24	27	15	16	11	14	16	7	15	18	25	29	29	18	19	14	306
2011								9	11	7	15	6	15	16	27	31	28	21	18	15	219
2012			2	3	6	6	17	10	7	5	12	5	11	13	19	23	22	13	15	11	200
2013		4	14	14	11	12	10	10	6	5	12	5	11	12	5	12	16	12	14	9	194
2014	1	7	30	25	23	24	14	12	7	7	16	5	14	19	22	27	22	15	17	12	319
2015	1	10	29	26	25	23	16	13	9	11	19	6	14	19	21	27	21	16	17	12	335
2016	1	5	3	7	11	9	5	13	5	4	8	4	12	15	18	22	17	13	13	8	193
2017		9	18	27	19	18	7	12	7	7	15	6	9	12	22	25	22	15	18	14	282
Total	3	35	96	131	155	158	99	140	100	313	2406	866	1732	1238	899	791	651	712	795	623	11943

Table 3. Summary of the red grouper length data collected during summer SEAMAP Summer Groundfish Surveys conducted between 2009 and 2017. (Note that prior to 2008, no red grouper were caught and 2008 was excluded from the index because of survey coverage.)

Survey Year	Number of Stations	Number Collected	Number Measured	Minimum Fork Length (mm)	Maximum Fork Length (mm)	Mean Fork Length (mm)	Standard Deviation (mm)
2009	121	171	171	74	578	284	75
2010	126	113	111	137	718	282	98
2011	122	114	113	46	805	308	126
2012	178	142	140	37	838	316	142
2013	128	65	65	73	754	347	146
2014	168	109	109	174	670	347	118
2015	166	92	92	121	613	275	120
2016	143	76	71	131	609	313	109
2017	128	52	52	136	539	277	78
Total Number of Years	Total Number of Stations 1280	Total Number Collected 934	Total Number Measured 924			Overall Mean Fork Length (mm) 304	

Table 4. Summary of backward selection procedure for building delta-lognormal submodels for red grouper SEAMAP Summer Groundfish Survey index of relative abundance from 2009 to 2017.

Model Run #1		Binomic	al Submode	el Type 3 Te	sts (AIC 6942.1	')	Lognormal Su	bmodel Type	3 Tests (Al	IC 730.9)
Effect	Num DF	Den DF	Chi- Square	F Value	Pr > ChiSq	Pr > F	Num DF	Den DF	F Value	Pr > F
Year	8	1261	9.12	1.14	0.3324	0.3333	8	298	2.04	0.0418
Depth	1	1261	64.31	64.31	<.0001	<.0001	1	298	10.89	0.0011
Sponge	2	1261	56.87	28.44	<.0001	<.0001	2	298	1.24	0.2923
StatZone	6	1261	55.63	9.27	<.0001	<.0001	6	298	4.39	0.0003
Time of Day	1	1261	0.03	0.03	0.8713	0.8714	1	298	1.47	0.2265
Model Run #2		Binomia	al Submode	el Type 3 Te	sts (AIC 6934.7	7)	Lognormal Su	bmodel Type	3 Tests (Al	IC 728.2)
Effect	Num DF	Den DF	Chi- Square	F Value	Pr > ChiSq	Pr > F	Num DF	Den DF	F Value	Pr > F
Year	8	1262	9.17	1.15	0.3282	0.3291	8	300	2.03	0.0424
Depth	1	1262	64.78	64.78	<.0001	<.0001	1	300	11.86	0.0007
Sponge	2	1262	57.22	28.61	<.0001	<.0001		Droppe	d	
StatZone	6	1262	55.90	9.32	<.0001	<.0001	6	300	4.57	0.0002
Time of Day				Dropped			1	300	1.43	0.2324
Model Run #3		Binomia	al Submode	el Type 3 Te	sts (AIC 6934.7	7)	Lognormal Su	bmodel Type	3 Tests (Al	C 726.6)
Effect	Num DF	Den DF	Chi- Square	F Value	Pr > ChiSq	Pr > F	Num DF	Den DF	F Value	Pr > F
Year	8	1262	9.17	1.15	0.3282	0.3291	8	301	2.00	0.0464
Depth	1	1262	64.78	64.78	<.0001	<.0001	1	301	12.79	0.0004
Sponge	2	1262	57.22	28.61	<.0001	<.0001		Droppe	d	
StatZone	6	1262	55.90	9.32	<.0001	<.0001	6	301	4.52	0.0002
Time of Day				Dropped				Droppe	d	

Table 5. Indices of red grouper abundance developed using the delta-lognormal (DL) model for SEAMAP Summer Groundfish Survey from 2009-2017. The nominal frequency of occurrence, the number of samples (*N*), the DL Index (number per trawl-hour), the DL indices scaled to a mean of one for the time series, the coefficient of variation on the mean (CV), and lower and upper confidence limits (LCL and UCL) for the scaled index are listed.

Survey Year	Frequency	N	DL Index	Scaled Index	CV	LCL	UCL
2009	0.34711	121	1.59779	1.85200	0.25184	1.12784	3.04113
2010	0.31746	126	0.94414	1.09436	0.26558	0.64923	1.84467
2011	0.24590	122	0.84477	0.97917	0.29510	0.54938	1.74522
2012	0.28090	178	1.14972	1.33264	0.23084	0.84490	2.10195
2013	0.25000	128	0.56036	0.64951	0.28384	0.37223	1.13335
2014	0.22619	168	0.77943	0.90343	0.25934	0.54236	1.50488
2015	0.16867	166	0.59577	0.69056	0.29939	0.38434	1.24075
2016	0.25175	143	0.75480	0.87489	0.26718	0.51745	1.47922
2017	0.16406	128	0.53787	0.62344	0.33731	0.32335	1.20205

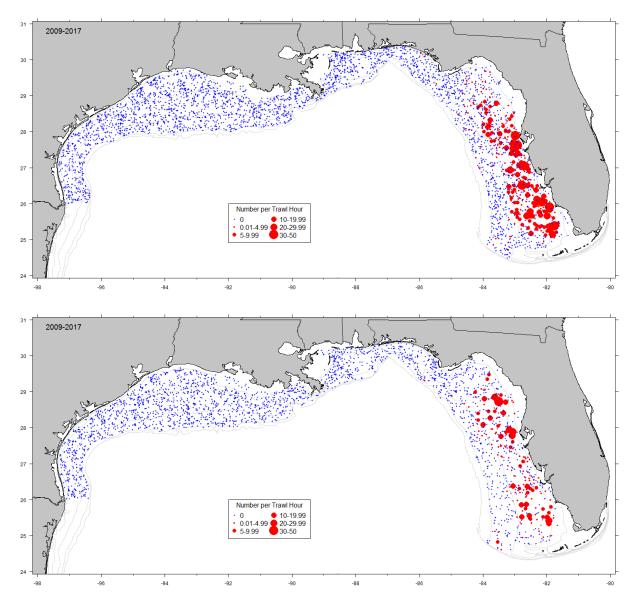


Figure 1. Stations sampled from 2009 to 2017 during the SEAMAP Summer (top) and Fall (Bottom) Groundfish Surveys with the CPUE for red grouper.

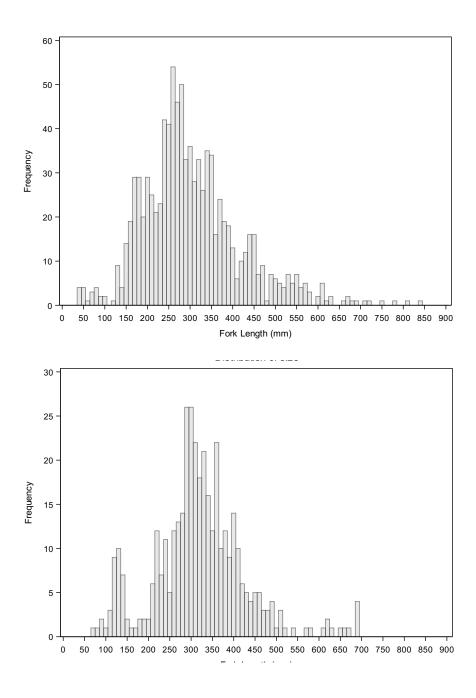


Figure 2. Length frequency histograms for red grouper captured Summer (top) and Fall (bottom) SEAMAP Groundfish surveys from 2009 - 2017.

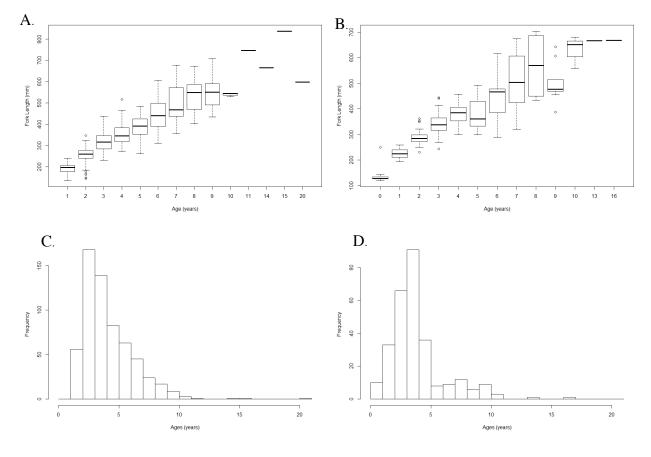


Figure 3. Age distribution of red grouper (n=73) captured during **A.** SEAMAP Summer Groundfish Surveys (n=611) and **B.** SEAMAP Fall Groundfish Surveys (n=285), and length at age information for **C.** Summer and **D.** Fall.

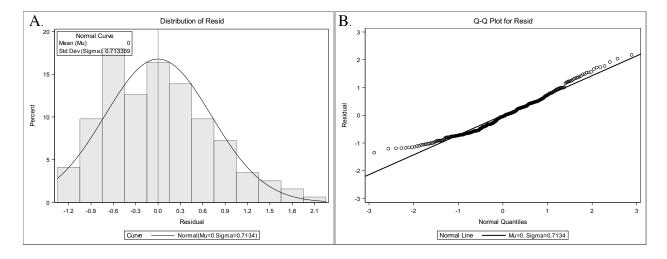
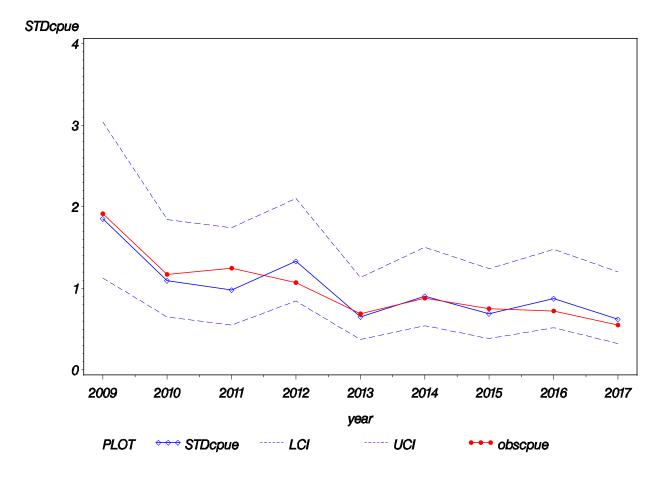
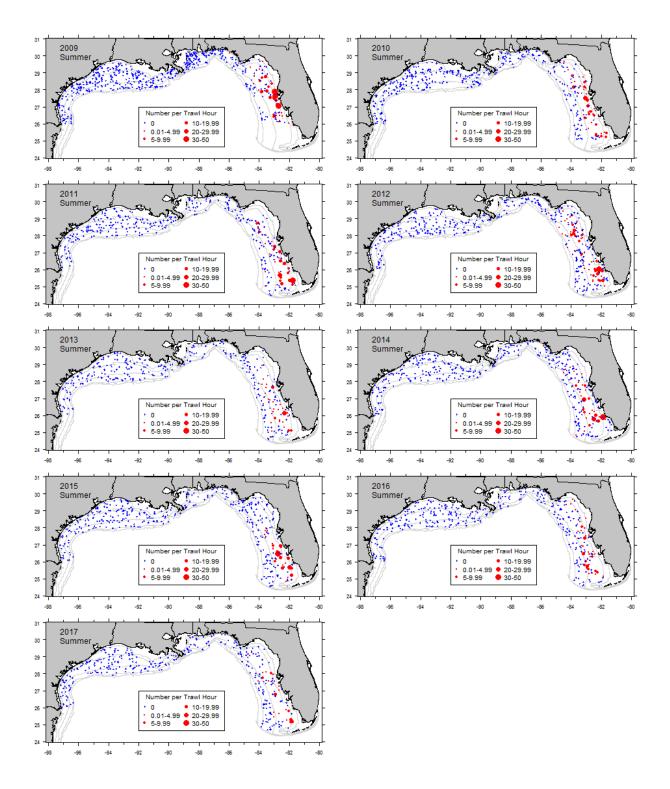
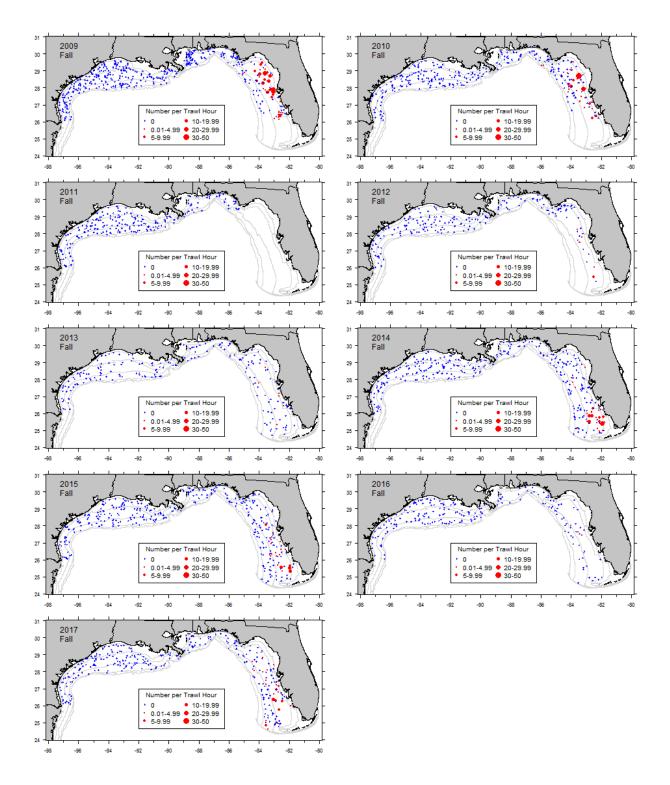


Figure 4. Diagnostic plots for lognormal component of the red grouper SEAMAP Summer Groundfish Survey model: **A.** the frequency distribution of log (CPUE) on positive stations and **B.** the cumulative normalized residuals (QQ plot).




Figure 5. Annual index of abundance for red grouper from the SEAMAP Summer Groundfish Survey from 2009-2017.



Appendix Table 1. Summary of the factors used in constructing the red grouper abundance index from the SEAMAP Summer Groundfish Survey data.

Factor	Level	Number of Observations	Number of Positive Observations	Proportion Positive	Mean CPUE
YEAR	2009	121	42	0.34711	2.82627
YEAR	2010	126	40	0.31746	1.72617
YEAR	2011	122	30	0.24590	1.83567
YEAR	2012	178	50	0.28090	1.57998
YEAR	2013	128	32	0.25000	1.01270
YEAR	2014	168	38	0.22619	1.29721
YEAR	2015	166	28	0.16867	1.10843
YEAR	2016	143	36	0.25175	1.06362
YEAR	2017	128	21	0.16406	0.81244
SPONGE	0 kg	463	47	0.10151	0.60552
SPONGE	< 50 kg	643	172	0.26750	1.42149
SPONGE	> 50 kg	174	98	0.56322	3.78125
STATZONE	2	75	5	0.06667	0.15990
STATZONE	3	243	81	0.33333	2.32165
STATZONE	4	250	89	0.35600	2.06994
STATZONE	5	221	66	0.29864	2.12932
STATZONE	6	227	59	0.25991	1.10229
STATZONE	7	131	14	0.10687	0.24331
STATZONE	8	133	3	0.02256	0.04509
TOD	Day	741	186	0.25101	1.37203
TOD	Night	539	131	0.24304	1.55035

Appendix Figure 1. Annual survey effort and catch of red grouper from the SEAMAP Groundfish Surveys during the summer and fall.

