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Background 

Beverton and Holt (1957) were amongst the first to describe mathematically the 

inverse relationship between the mean length of fish in a population and the total 

mortality rate, Z, experienced by the population. Assumptions of the Beverton-Holt 

approach include constant growth parameters, no individual variability in growth, 

constant and continuous recruitment over time, mortality rate that is constant over time, 

and population size that is in an equilibrium state (Gedamke and Hoenig 2006).  

Gedamke and Hoenig (2006) developed a model that is a non-equilibrium extension 

of the Beverton-Holt approach. The Gedamke-Hoenig approach follows the same basic 

assumptions of the Beverton-Holt approach, with the exception of population 

equilibrium. Their approach estimates period-specific total mortality along with the break 

points that mark transitions between periods in which different mortality rates occur 

(Gedamke and Hoenig, 2006). As a consequence of the complexity of estimating break 

points in time series data along with the magnitude of the changes in Z associated with 

each break point, careful development and testing of fitting routines is necessary. To 

estimate both the total mortality and the corresponding number and temporal position of 

break points, the R library known as MLZ has been developed, which implements a 

maximum likelihood estimation routine (Huynh et al., 2018). 

In this report, the MLZ library is subject to a simulated self-test to evaluate the 

reliability of parameters estimates obtained from the Gedamke-Hoenig derivation of 

changes in mean length. Self-testing consists of generating datasets from the same sets of 

equations that are then used in the fitting routine that estimates model parameters. We 

evaluate estimator reliability for a variety of scenarios that differ according to fish life 



history. Each life history is characterized by the ratio of natural mortality, M, to the von 

Bertalanffy growth coefficient, K, where M/K ratios represent life history variation across 

fish stocks (Hordyk et al., 2015; Prince et al., 2015). We also examine the reliability of 

estimating temporal changes in Z under fishery scenarios that differ with respect to 

lengths of first capture. Self-testing is useful for understanding the limitations on 

estimation of model parameters (Deroba et al., 2015). For instance, we reaffirm the 

known difficulties in estimating changes in Z, particularly when those changes occur 

close to the end point of a time series of mean lengths. Similarly, breaks points may be 

missed by the fitting routine when changes in Z occur very close together in time. This 

guidance is advanced through our analysis, and is germane to the process of providing 

reliable information about the state of a fish stock. Identifying substantive break points 

can reveal when important changes occurred in a fishery. Obtaining Z estimates at the 

beginning of a time series can be used to describe the state of the stock during the time 

period when data collection was initiated, while Z estimates at the end of a time series 

reflect near-term conditions and can inform whether recent catches are likely to be 

sustainable. Each of these quantities, estimated from time series of mean length 

observations, can be instrumental in informing development of effective length-based 

fishery management strategies. 

 

Methods 

Simulating mean length observations 

Gedamke and Hoenig (2006) demonstrated a transitional population in terms of 

changes to mean length that occur d years after a permanent change in total mortality 



from 𝑍𝑍1 year-1 to 𝑍𝑍2 year-1. Mean length of a population d years after the change in 

mortality is 

𝜇𝜇 = �∫ 𝑅𝑅 ∙ exp[−𝑍𝑍2(𝑡𝑡 − 𝑡𝑡𝑐𝑐)]𝐿𝐿𝑡𝑡𝑑𝑑𝑡𝑡
𝑔𝑔
𝑡𝑡𝑐𝑐

+  ∫ 𝑅𝑅 ∙ exp(−𝑍𝑍2𝑑𝑑) ∙ exp[−𝑍𝑍1(𝑡𝑡 − 𝑔𝑔)]𝐿𝐿𝑡𝑡𝑑𝑑𝑡𝑡
∞
𝑔𝑔 �  ÷

 �∫ 𝑅𝑅 ∙ exp[−𝑍𝑍2(𝑡𝑡 − 𝑡𝑡𝑐𝑐)]𝑑𝑑𝑡𝑡𝑔𝑔
𝑡𝑡𝑐𝑐

+ ∫ 𝑅𝑅 ∙ exp(−𝑍𝑍2𝑑𝑑) ∙ exp[−𝑍𝑍1(𝑡𝑡 − 𝑔𝑔)]𝐿𝐿𝑡𝑡𝑑𝑑𝑡𝑡 ∙
∞
𝑔𝑔 �.            (1) 

Age 𝑔𝑔 =  𝑡𝑡𝑐𝑐 + 𝑑𝑑. The first integral in both the numerator and denominator represents fish 

recruited after the change in mortality, which have only experienced the mortality rate of 

𝑍𝑍2. The second integral represents fish that were recruited before the change in mortality 

and thus have experienced both 𝑍𝑍1 and 𝑍𝑍2. After integration and simplification (these 

calculations are described in Gedamke and Hoenig (2006)), mean length d years after a 

change is written: 

𝜇𝜇 = 𝐿𝐿∞ − 𝑍𝑍1𝑍𝑍2(𝐿𝐿∞ − 𝐿𝐿𝑐𝑐)  ×  {𝑍𝑍1 + 𝐾𝐾 + (𝑍𝑍2 − 𝑍𝑍1) exp[−(𝑍𝑍2 + 𝐾𝐾)𝑑𝑑]}  

÷ {(𝑍𝑍1 + 𝐾𝐾)(𝑍𝑍2 + 𝐾𝐾)[𝑍𝑍1 + (𝑍𝑍2 − 𝑍𝑍1) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑍𝑍2𝑑𝑑)]}.          (2) 

Recognizing that the example derivation stated above describes the length transition 

dynamics for a single break point, generalization of this approach can be made to any 

number of changes in total mortality Z. Gedamke and Hoenig (2006) produce this 

generalized derivation. Using this derivation, annual mean lengths can be calculated from 

a mortality schedule or vice versa. Assume there are n=1,2,…,N years of mean length 

data in years y=Y1,Y2,…,YN, where Yn is the calendar year. If there are k changes in total 

mortality Z, then divide the time series to i=1,2,…,k+1 partitions where the population 

experiences mortality rate Zi in the i-th partition. A vector of mortality rates �⃗�𝑍 =

{𝑍𝑍1,𝑍𝑍2, …𝑍𝑍𝑘𝑘+1} then describes the historical mortality rates in the population over time 



with corresponding change points 𝐷𝐷��⃗ = {𝐷𝐷1,𝐷𝐷2, …𝐷𝐷𝑘𝑘}, where Di is the point in time (in 

calendar years) when there is a stepwise change in mortality rate from Zi to Z (i+1). Given 

the above mortality schedule, the predicted mean length μ in year y is: 

𝜇𝜇𝑦𝑦 = 𝐿𝐿∞
∑

𝑎𝑎𝑖𝑖,𝑦𝑦𝑏𝑏𝑖𝑖,𝑦𝑦
𝑍𝑍𝑘𝑘+2−𝑖𝑖

𝑘𝑘+1
𝑖𝑖=1 − �1 − 𝐿𝐿𝑐𝑐

𝐿𝐿∞
�∑

𝑟𝑟𝑖𝑖,𝑦𝑦𝑠𝑠𝑖𝑖,𝑦𝑦
𝑍𝑍𝑘𝑘+2−𝑖𝑖 + 𝐾𝐾

𝑘𝑘+1
𝑖𝑖=1

∑
𝑎𝑎𝑖𝑖,𝑦𝑦𝑏𝑏𝑖𝑖,𝑦𝑦
𝑍𝑍𝑘𝑘+2−𝑖𝑖

𝑘𝑘+1
𝑖𝑖=1

 

(3) 

Where 

𝑎𝑎𝑖𝑖,𝑦𝑦 = �
1 𝑖𝑖 = 1
exp �−∑ 𝑍𝑍𝑘𝑘+2−𝑗𝑗𝑑𝑑𝑘𝑘+1−𝑗𝑗,𝑦𝑦

𝑖𝑖−1
𝑗𝑗=1 � 𝑖𝑖 = 2, . .𝑘𝑘 + 1     (4) 

𝑏𝑏𝑖𝑖,𝑦𝑦 = �1 − exp �−𝑍𝑍𝑘𝑘+2−𝑖𝑖𝑑𝑑𝑘𝑘+1−𝑖𝑖,𝑦𝑦� 𝑖𝑖 = 1, . . ,𝑘𝑘
1 𝑖𝑖 = 𝑘𝑘 + 1

     (5) 

𝑟𝑟𝑖𝑖,𝑦𝑦 = �
1 𝑖𝑖 = 1
exp �−∑ (𝑍𝑍𝑘𝑘+2−𝑗𝑗 + 𝐾𝐾)𝑑𝑑𝑘𝑘+1−𝑗𝑗,𝑦𝑦

𝑖𝑖−1
𝑗𝑗=1 � 𝑖𝑖 = 2, . .𝑘𝑘 + 1   (6) 

𝑠𝑠𝑖𝑖,𝑦𝑦 = �
1 𝑖𝑖 = 1, … ,𝑘𝑘
1 − exp �−(𝑍𝑍𝑘𝑘+2−𝑖𝑖 + 𝐾𝐾)𝑑𝑑𝑘𝑘+1−𝑖𝑖,𝑦𝑦� 𝑖𝑖 = 𝑘𝑘 + 1     (7) 

And 

𝑑𝑑𝑖𝑖,𝑦𝑦 = �
0 𝑦𝑦 ≤ 𝐷𝐷𝑖𝑖
𝑦𝑦 − 𝐷𝐷𝑖𝑖 𝐷𝐷𝑖𝑖 < 𝑦𝑦 ≤ 𝐷𝐷𝑖𝑖+1
𝐷𝐷𝑖𝑖+1 − 𝐷𝐷𝑖𝑖 𝑦𝑦 > 𝐷𝐷𝑖𝑖+1

       (8) 

The second subscript in d(i,y) indexes the change point i and each year y. 

In year y, the relative population abundance in year y after dividing out recruitment is 

the denominator of Equation (3), while the total length of all animals in year y is 

calculated in the numerator. The term 𝑎𝑎𝑖𝑖,𝑦𝑦𝑏𝑏𝑖𝑖,𝑦𝑦
𝑍𝑍𝑘𝑘+2−𝑖𝑖

 is the relative abundance of animals that are 

recruited to the population when the mortality rate was 𝑍𝑍𝑘𝑘+2−𝑖𝑖,  



The equations describing transitional dynamics in length were used to generate 

simulated datasets, based on a specified number of breaks, k. Each simulated dataset of 

annual mean length was N=30 years in duration, and we evaluated datasets having zero, 

one, or two breaks. Given a specified number of break points, the duration of 𝑍𝑍𝑖𝑖 were 

obtained using a vector of proportions 𝑒𝑒��⃗ = 𝑒𝑒1,𝑒𝑒2, … ,𝑒𝑒𝑘𝑘+1 where all 𝑒𝑒𝑖𝑖 > 0 and 

∑ 𝑒𝑒𝑖𝑖𝑘𝑘+1
𝑖𝑖=1 = 1. Change points, 𝐷𝐷��⃗ ,are obtained as: 

𝐷𝐷𝑖𝑖 = 𝑌𝑌1 + 𝑁𝑁∑ 𝑒𝑒𝑗𝑗𝑖𝑖
𝑗𝑗=𝑖𝑖  (9) 

Thus, the 𝑖𝑖-th change point is now a function of the cumulative sum of the duration of 

prior mortality rates, allowing for ordered change points in estimation. Simulation of 𝑒𝑒��⃗  

was specified as a diffuse Dirichlet distribution with 𝛼𝛼 = (1, … ,1). Change points are 

continuous random variables since the transitional dynamics of mean length are 

formulated as a function of elapsed time since the previous change in Z, thus, break 

points (in years and fractions of a year) are location parameters that reflect an offset 

relative to a previous change in Z.  Values of Z were generated from a uniform 

distribution with a lower bound at M, and a maximum of 4M.  

Parameters describing growth according to the von Bertalanffy growth function (von 

Bertalanffy, 1938) as well as the minimum capture length, Lc, are required to generate 

mean length time series from the transitional dynamics equations. Different life history 

types were represented in our analysis through specification of the ratio of natural 

mortality to the von Bertalanffy growth rate constant, K. The M/K ratio is known as a 

Beverton-Holt life history invariant; however, considerable variability across taxa is 

recognized in this ratio and differences in life history types are useful in determining 

fishery management strategies (Prince et al., 2015). We considered M/K ratios of 0.5, 1, 



and 2 that cover a broad array of marine taxa that have been subject to life history meta-

analysis (Prince et al., 2015). Values of K that were calculated based on specified M/K 

were always based on an assumed M of 0.2 year-1. Asymptotic length, L∞, is a scaling 

parameter that was fixed at an arbitrary value of 100 cm for all simulations. Two levels of 

Lc were specified as proportions of L∞, with a values of Lc=0.66 L∞, meant to reflect 

recruitment to the fishery corresponding with length at which 50% of the population has 

reached maturity (Prince et al., 2015) and a second scenario of Lc=0.80 L∞ reflecting 

delayed recruitment of fish to the fishery.  

Five-hundred simulated datasets were generated for each factorial combination of 

number of breaks (3 levels), M/K (3 levels), and Lc (2 levels). Simulated ‘true’ mean 

lengths were observed with an arbitrarily low observation error. This observation error 

was specified as a Gaussian sampling distribution with mean, 𝐿𝐿�, and variance of the mean 

equal to one. Low observation error was specified because our objectives do not pertain 

to the reliability of length-based sampling designs, which would be better addressed by 

simulating the more complex process of observing individual lengths (e.g., Hulson et al., 

2012) and not through simply increasing the variance of a summary statistic like mean 

length. Input parameters of K, L∞, Lc were provided to the fitting routine without error.      

Fitting model parameters to simulated datasets using MLZ 

The R library MLZ contains a maximum likelihood fitting routine that estimates the 

timing of breaks points and associated Z(s) (Huynh et al., 2018; R Development Core 

Team, 2012). The log-likelihood of the model is 

log 𝐿𝐿 = −𝑛𝑛 log 𝜎𝜎 − 1
2𝜎𝜎2

∑ 𝑚𝑚𝑦𝑦�𝐿𝐿�𝑦𝑦 − 𝜇𝜇𝑦𝑦�
2𝑌𝑌𝑁𝑁

𝑦𝑦=𝑌𝑌1        (10) 



where 𝐿𝐿𝑦𝑦 is the observed mean length in year 𝑦𝑦 and 𝑚𝑚𝑦𝑦 is the corresponding sample size, 

and 𝜎𝜎 is a dispersion parameter of the normal distribution 

Because the fitting routine does not estimate the total number of break points, the user 

specifies the number of break points, the estimation process must be carried out 

separately for each number of breaks that are considered plausible. Thus, model selection 

criteria for discriminating among candidate models was required. For batch processing of 

our simulated datasets, candidate models were those with 0, 1, 2, or 3 break points. From 

the candidate model set, the ‘best approximating model’ was identified using Akaike 

Information Criterion (AIC; Burnham and Anderson, 2002). AIC assesses model fit in 

relation to model complexity. Model fit, calculated as two times the negative of the log-

likelihood, is penalized by the quantity of two times the number of parameters in the 

model to produce an AIC score (Burnham and Anderson, 2002). The number of 

parameters required to estimate the transitional behavior of Z(s) is calculated as two times 

the number of breaks plus two, which accounts for parameters describing the positions of 

break(s), total mortality parameters, and a parameter for the residual error. AIC provides 

a ranking system for the candidate models with the best approximating model having the 

lowest AIC score. During batch processing, the model with lowest AIC score was 

selected from model fits to each simulated dataset. 

Performance metrics 

Performance metrics were calculated separately for each tested scenario, represented 

by the combination of M/K ratio, number of simulated breaks, and length at first capture 

to asymptotic length (Lc/L∞) ratio. The percentage of correctly identified number of 

simulated breaks was calculated as the number of simulations in which the number of 



estimated breaks equaled the number of simulated breaks divided by the total number of 

simulations and multiplied by 100 to give a percentage.  

To determine fitting routine reliability in estimating Z at the beginning of the mean 

length time series, known as initial Z, percent bias in Z1 was calculated as: 

𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑍𝑍𝑒𝑒𝑖𝑖𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑍𝑍𝑒𝑒𝑖𝑖𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∗ 100%   (11) 

An interval that encompasses the centered 95% of the Z1 bias was determined by setting 

the 2.5th quantile point as the lower bounds, and the 97.5th quantile as the upper bounds 

across the simulations. To determine how well the fitting routine estimated terminal Z 

(Zterminal), regardless of whether the total number of breaks was accurately predicted, the 

percent bias for Zterminal was calculated according to Equation (11). As number of 

simulated breaks may differ from number of estimated breaks in the model selected by 

the fitting routine, these calculations were made by ensuring that the simulated Zterminal 

was compared to the estimated Zterminal, regardless of whether the number of break points 

differed in each comparison. An interval that encompasses the centered 95% of the 

Zterminal bias was calculated as for Z1.  

As the largest percent bias for Zterminal occurred when simulated breaks was equal to 

two, a fourth metric was devised to summarize how the position of the simulated second 

break point in relation to the end of the mean length time series could be influencing 

estimator reliability. Bias in Zterminal was categorized according to those simulation runs in 

which the simulated Zterminal occurred greater than ten years from the end of the time 

series, between three and ten years from the end of the time series, and within three years 

from the end of the time series. Given these partitions in the position of the second break 

point, the centered 95% of Zterminal percent bias was calculated. 



 

Results 

When two breaks were simulated, the maximum likelihood fitting routine correctly 

selected this model structure from the candidate set 65.8-73.4% of the time (Table 1). 

The simulation configuration with two breaks had the highest percentage of being 

correctly selected; whereas, simulated breaks of zero or one were correctly estimated 51.6 

to 70.8% of the time (Table 1). Percent bias for initial Z was most pronounced e.g., -0.9 

to 0.6% when number of simulated breaks is 2 (Fig. 1). This bias is larger in comparison 

to simulations with zero or one break, with a percent bias between -0.1 and 0.1% and -0.6 

and 0.4%, respectively. Likewise, Zterminal had the largest percent bias when number of 

simulated breaks was 2, with centered 95% of bias from -17.6 to 34.8% (Fig. 2). For 

simulations in which there are zero or one break, the centered 95% of bias in Zterminal bias 

was -0.4 to 8.1%. 

In order to investigate why percent bias tends to be much larger for simulations in 

which simulated breaks is equal to two, these simulations were sorted according to 

proximity in years to the end of the time series in which the last predicted break occurred 

(Fig. 3). For the subset of simulation runs in which the last predicted break occurred 

within three years from the end of time series, the upper bound of the centered 95% of 

Zterminal bias was 135.9%. This upper confidence interval bound for Zterminal is appreciably 

higher than that reported for all simulations combined because the smaller subset of 

simulations (i.e., those with break points < 3 years before the end of time series) fell 

outside of the 95% CI for the larger pooled dataset.  

 



Discussion 

In this report, the MLZ library was subject to simulation testing to evaluate the 

reliability of a fitting routine used to estimate the parameters of the Gedamke-Hoenig 

derivation of changes in mean length. Having completed this self-testing, we offer usage 

guidance to implementing this fitting routine for the evaluation of data-limited fisheries. 

As the number of breaks was increased (in our simulations this corresponded to a 

maximum of two breaks), the estimated Zterminal had a troubling level of bias. After 

further inspection, this large percent bias often coincided with simulated terminal break 

being close to the end of the time series (i.e., we partitioned simulated datasets as being 

within three years from the end of the time series). This result likely occurred because of 

a lack of information (i.e., several years of mean length following a change in Z), which 

resulted in either an inaccurate estimate Zterminal or a lack of detection of the last break 

point in time series, and thus, a failure to recognize a change in Z at all. Thus, when the 

fitting routine is applied to real data for data-limited fisheries, caution should be taken in 

relying on terminal Z estimates if a break point is believed to occur relatively close to the 

end of the time series. Nevertheless, this undesirable property of the mean length 

estimator (i.e., high uncertainty in Zterminal in certain situations) is not appreciably 

different from results obtained from self-testing of age-structured or surplus production 

models, which are considered standard approaches for stock assessment (Deroba et al., 

2015). 

When the number of breaks is incorrectly estimated, these results can occur when the 

break points are close together in the time series, and thus are overlooked by the model, 

or where there is a break point but Z does not differ too greatly between periods. In 



addition, in our simulations where there were zero break points, we observed instances 

where >0 break points were erroneously selected through the fitting and model selection 

routine. This result highlights that false break points can occur due to observation error, 

even at the relatively low level of observation variance we included in our simulations. 

This result illustrates a potential sensitivity to observation error that can be translated into 

perceived break points. However, in our simulations, false break points tended to also 

result in similar mortality estimates before and after the erroneous break point, thus 

diminishing the consequence of a perceived break point that was identified in error. In 

both the instance of a missed break point as well as the instance of a false break point, we 

found that Zterminal estimates were, on average, unbiased and 95% CI were reasonable 

(except when a simulated break point occurred close to the end of the time series). Thus, 

while the model selection criteria did not always select the correct model, Zterminal, as an 

important management quantity, remained reasonably reliably estimated. Accordingly, 

reconstructing the temporal position of transition points remains a more uncertain aspect 

in application of the mean length mortality estimator methodology. 
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Table 1. For the maximum likelihood fitting routine, percentage of simulation runs in 
which the model selected by the fitting routine correctly predicted the number of 
simulated breaks. Tested scenario are represented by the combination of M/K ratio, 
number of simulated breaks, and the ratio of length at first capture to asymptotic length 
(Lc/L∞).  
 

 



 

 
Figure 1. Percent difference between predicted and simulated initial Z for the described 
scenarios for the maximum likelihood fitting routine tested. Points represent median 
values for percent bias; lines represent the centered 95% of percent bias. 



 

Figure 2. Percent difference between predicted and simulated terminal Z for the 
described scenarios for the maximum likelihood fitting routine tested. Points represent 
median values for percent bias; lines represent the centered 95% of percent bias. 



 
 
Figure 3. Percent difference between predicted and simulated terminal Z for the 
described scenarios for the maximum likelihood fitting routine tested, sorted according to 
those simulation runs in which the simulated terminal Z occurs greater than ten years 
from the end of the time series, between ten to three years from the end of the time series, 
and within three years from the end of the time series. Points represent median values for 
percent bias; lines represent the centered 95% of percent bias. 
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