Using a Censored Regression Modeling Approach to Standardize Red Snapper Catch per Unit Effort Using Recreational Fishery Data Affected by a Bag Limit

Skyler Sagarese and Adyan Rios

SEDAR52-WP-13

15 November 2017

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Sagarese, Skyler, and Adyan Rios. 2017. Using a Censored Regression Modeling Approach to Standardize Red Snapper Catch per Unit Effort Using Recreational Fishery Data Affected by a Bag Limit . SEDAR52-WP-13. SEDAR, North Charleston, SC. 27 pp.

Using a Censored Regression Modeling Approach to Standardize Red Snapper Catch per Unit Effort Using Recreational Fishery Data Affected by a Bag Limit

Skyler Sagarese and Adyan Rios National Marine Fisheries Service Southeast Fisheries Science Center Sustainable Fisheries Division 75 Virginia Beach Drive, Miami, FL 33149 <u>Skyler.sagarese@noaa.gov</u> <u>Adyan.rios@noaa.gov</u>

Sustainable Fisheries Division Contribution Number: SFD-2017-??

Keywords

Catch per unit effort (CPUE), standardization, censoring, generalized linear model, red snapper, bag limit

Abstract

In this paper we apply a censored regression approach previously used for red snapper to statistically calculate an unbiased standardized index of abundance using data collected from a fishery with trip limits. A delta censored lognormal regression approach is applied to catch and effort data from the recreational fishery for red snapper (*Lutjanus campechanus*) in the Gulf of Mexico. Indices are calculated for the headboat and private/for hire sectors using data through 2016 following the same procedures as SEDAR31.

Introduction

In this study, a censored regression approach following the analysis of Saul and Walter III (2012) is used to develop standardized indices of abundance from fishery dependent data for the recreational red snapper (*Lutjanus campechanus*) fishery in the Gulf of Mexico, which has experienced increasingly restrictive trip limit regulations. The censored regression approach to standardizing CPUE was recommended by the Indices Working Group during SEDAR31 because of its ability to account for the bag limit effect which, if not accounted for, would otherwise give the artificial perception that abundance had decreased unnecessarily over the time series (SEDAR 2013). The implementation of the trip limit has impacted the ability to properly observe the full potential of red snapper that could be caught for a given unit of fishing effort. During SEDAR31, the inclusion of discards was not recommended to generate an index due to the fact that anglers may be altering their fishing behavior after catching their limit of red snapper or while fishing outside of the recreational open season, which would bias their discards. Furthermore, substantial reductions in the length of annual recreational fishing seasons (Table 1) have greatly reduced the data available for modeling CPUE of red snapper in recent years.

Methodology

Data

The recreational fisheries in the Gulf of Mexico are surveyed by three programs:

- Marine Recreational Fishery Statistics Survey (MRFSS) conducted by the NOAA Fisheries (NMFS);
- Texas Marine Sport-Harvest Monitoring Program by the Texas Parks and Wildlife Department (TPWD);
- Headboat Survey (HBS) conducted by NMFS, Southeast Fisheries Science Center, Beaufort, NC.

These three surveys together provide information on catch in numbers, fishing effort, and length and weight samples. The MRFSS and the TPWD survey are both sampling-based, while the Headboat Survey is a census of headboats using logbooks provided to all headboats to report total landings per trip and fishing effort. MRFSS was conducted in TX through 1985, after which the Texas Parks and Wildlife Department covered surveying efforts. In addition, starting in 1986, MRFSS no longer covered headboats in the Gulf of Mexico and instead this sector of the recreational fishery was covered by the Headboat Survey. MRFSS provides information on participation, effort, and species-specific catch. Data are collected to provide catch and effort estimates in two-month periods ("waves") for each recreational fishing mode (shore fishing, private/rental boat, charterboat, or headboat/charterboat combined) and area of fishing (inshore, state Territorial Seas, U.S. Exclusive Economic Zone) in each Gulf of Mexico state (except Texas). Total catch information is collected by MRFSS on fish landed whole and observed by the interviewers, fish reported as killed by the fishers and fish reported as released alive by the fishers. Similar to MRFSS, the Texas Parks and Wildlife survey also, provides information on participation, effort and species-specific landings however no discards are reported in this dataset.1

Following Saul and Walter III (2012), we use catch and effort observations from MRFSS, TPWD, and HBS to develop standardized catch per unit effort (CPUE) indices of abundance for two sectors of the recreational fishery: the headboat sector and the private/for hire sector. Throughout the time series of the data, various increasingly strict trip limits were imposed on the recreational fishing sector (Figure 1).

fish per person per day

Figure 1: Red snapper recreational bag limit history.

¹ General overview of the recreational surveys from the following: Recreational Survey Data for Gag and Black Grouper in the Gulf of Mexico. Patty Phares, Vivian Matter, and Steve Turner. National Marine Fisheries Service, Southeast Fisheries Science Center, Sustainable Fisheries Division, January, 2006. Sustainable Fisheries Division Contribution No. SFD-2006-008.

As in Saul and Walter III (2012), only the landings information from the MRFSS dataset was used to construct an index, and the MRFSS data were combined with the TPWD survey in order to develop indices for the private/for hire sector that geographically cover the entire U.S. coastline in the Gulf of Mexico. The MRFSS/Texas and Headboat Survey data sets were looked at across different strata to assess the sample size of total trips and positive trips within each of the strata. In order to avoid double counting, any data from Texas, present in the MRFSS dataset between the years 1981 through 1985, were removed from the MRFSS data because the State of Texas has its own survey. In addition, data from the headboat mode in MRFSS, also present in the years 1981 through 1985, were removed because this information was covered by the Headboat Survey program. The shore mode was removed from the MRFSS data as well as trips taken in inshore waters because less than 0.1 percent of such trips caught red snapper. Datasets were partitioned at the Mississippi River and separate Eastern and Western indices were estimated. Effort was measured as the number of anglers times the hours fished, while catch was measured as the number of fish caught.

Trip Selection

After comparing multiple approaches for subsetting recreational data, Saul and Walter III (2012) determined that the three trip selection approaches perform very similarly to one another, and the Stephens and MacCall approach (Stephens and MacCall 2004) was recommended for use in SEDAR31 since it is the convention accepted by SEDAR. The Stephens and MacCall approach was used to identify trips that could have caught red snapper. This approach uses the species composition of each trip in a logistic regression of species presence/absence to infer if effort on that trip occurred in habitat similar to red snapper habitat. If effort on a trip was determined to occur in similar habitat to red snapper, then that trip was used in the analysis (Stephens and MacCall 2004).

For the headboat survey, the data were subset such that only data collected during red snapper open seasons were used in the analysis. Closed season data were excluded because fishing effort outside of the red snapper fishing season would not have targeted red snapper, and any red snapper caught incidentally would have been discarded and not recorded in the headboat survey.

Continuity CPUE Indices

An eastern and western continuity index was estimated in the same manner as the indices constructed in SEDAR31 for continuity purposes.

Censored Delta Lognormal Modeling Approach

The censored Delta lognormal modeling approach combines separate generalized linear model (GLM) analyses of the proportion of successful trips (trips that landed red snapper) and the catch rates on successful trips to construct a single standardized CPUE index (Lo et al. 1992, Hinton and Maunder 2004, Maunder and Punt 2004). For each GLM procedure of proportion positive trips, a type-3 model was fit, a binomial error distribution was assumed, and the logit link was

selected. In this analysis, catch rates on successful trips are assumed to follow a censored lognormal error distribution.

The following factors were examined as possible influences on the proportion of positive trips, and the catch rates on positive trips for the MRFSS data:

Year (36)	1981-2016
State (3, 2)	East: FL, AL, MS
	West: LA, TX
Area (4)	< 3 miles, > 3 miles, <10 miles, > 10 miles
Season (2)	Open, Closed
Wave (6)	Jan-Feb, Mar-Apr, May-Jun, Jul-Aug, Sep-Oct, Nov-Dev
Mode (2)	Charter, Private
Anglers (10)	1,2,3,4,5,6,7,8,9,10+
Number of an	glers was only explored as a factor for modeling success.

The following factors were examined as possible influences on the proportion of positive trips, and the catch rates on positive trips for the Headboat data:

Year (31)	1986-2016						
Area (2,3)	East: Florida Panhandle, FL West Coast						
	West: LA & Northeast TX, Central TX, South TX						
Anglers (10)	0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90+						
Number of anglers was only explored as a factor for modeling success.							

A stepwise approach was used to quantify the relative importance of the explanatory factors. First a GLM model was fit to the null model (only the intercept) and the AIC, deviance and degrees of freedom were calculated. Next, a suite of models was tested where each potential explanatory factor was added to the null model. Again, the AIC, deviance, and degrees of freedom were calculated. The model with the factor that had the lowest AIC became the new base model and the process was repeated adding factors individually until either the AIC was no longer further reduced or all the factors were added to the model. In addition to screening using AIC, factors were also screened and not added to the model if the reduction in deviance per degree of freedom was less than one percent. This screening was implemented in order to fit a more parsimonious model, given the fact that factors which reduce the deviance by so little exert little influence on the index trend. Two-way interactions among significant main effects were <u>not</u> examined because many of these interactions were confounded with one another (such as the interaction of year and month confounding with the regulatory season factor). The final censored lognormal model was fit using the SAS procedure "proc lifereg" (SAS Institute Inc. 1999).

This algorithm fits parametric models to failure time data that can be uncensored, right censored, left censored, or interval censored. The model for the response variable is a linear effect

composed of the covariates and a random disturbance term, which, for the model used in this work, is taken from the lognormal distribution. The model for the response variable is

$y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\sigma}\boldsymbol{\epsilon}$

where y is the vector of response values, **X** is the design matrix, β is a vector of unknown regression parameters, σ is an unknown scale parameter, and ε is a vector of errors assumed to come from a lognormal distribution. The procedure estimates the parameters of this model using maximum likelihood with a Newton-Raphson algorithm (SAS 9.22 User's Guide 2010; Scott Long 1997, Allison 2010). Martingale-type residuals are used to assess model fit (Barros et al. 2010).

Results and Discussion

MRFSS East

The private/for hire mode indices for the eastern Gulf of Mexico contain strictly MRFSS data. Table 2 summarizes the standardized index and corresponding coefficients of variation, upper confidence limits, lower confidence limits, and nominal CPUE. The final deviance table contains a list of the factors that were included in each model in the order in which they were added, and the resulting AIC of the model when that factor was added (Table 4). The standardized index, with 95% confidence intervals, is shown in Figure 1. Appendix A provides the number of observations, the number of positive observations, and the proportion of positive observations by year before and after trip selection. Figure 2 provides a comparison of the private/for hire index that resulted from the current analysis to the index used during the SEDAR31 Update. Differences in the index trend at the end of the time series are due to a slight change in the coded regulations.

MRFSS West

The private/for hire mode indices for the western Gulf of Mexico contain a combination of MRFSS data (to cover Louisiana) and data from the Texas Parks and Wildlife Survey. Table 2 summarizes the standardized index and corresponding coefficients of variation, upper confidence limits, lower confidence limits, and nominal CPUE. The final deviance table contains a list of the factors that were included in each model in the order in which they were added, and the resulting AIC of the model when that factor was added (Table 5). The standardized index, with 95% confidence intervals, is shown in Figure 3. Appendix B provides the number of observations, the number of positive observations, and the proportion of positive observations by year before and after trip selection. Figure 4 provides a comparison of the private/for hire index that resulted from the current analysis to the index used during the SEDAR31 Update, which are nearly identical in trend.

Headboat East

The headboat mode indices for each region of the Gulf of Mexico were estimated from the NMFS Headboat Survey. Table 3 summarizes the standardized index and corresponding coefficients of variation, upper confidence limits, lower confidence limits, and nominal CPUE. The final deviance table contains a list of the factors that were included in each model in the order in which they were added, and the resulting AIC of the model when that factor was added (Table 6). The standardized index, with 95% confidence intervals, is shown in Figure 5. Appendix C provides the number of observations, the number of positive observations, and the proportion of positive observations by year before and after trip selection. Figure 6 provides a comparison of the headboat index that resulted from the current analysis to the index used during the SEDAR31 Update. An important note is the lack of an index value during 2011 due to all positive trips (100% proportion positive) which prevented the binomial component of the delta model to fit. Although this was not an issue during the SEDAR31 Update, year 2011 had a proportion positive of 99.74% due to only 3 trips included within the Stephens and MacCall subset that did not catch red snapper.

Headboat West

The headboat mode indices for each region of the Gulf of Mexico were estimated from the NMFS Headboat Survey. Table 3 summarizes the standardized index and corresponding coefficients of variation, upper confidence limits, lower confidence limits, and nominal CPUE. The final deviance table contains a list of the factors that were included in each model in the order in which they were added, and the resulting AIC of the model when that factor was added (Table 7). The standardized index, with 95% confidence intervals, is shown in Figure 7. Appendix D provides the number of observations, the number of positive observations, and the proportion of positive observations by year and factor. Figure 8 provides a comparison of the headboat index that resulted from the current analysis to the index used during the SEDAR31 Update, which were generally similar in trend.

Conclusions and Recommendations

Future research will simulation test the censored regression technique in order to better understand the utility and limitations of the algorithm.

References

Allison, P. D. 2010. Survival analysis using SAS: a practical guide. SAS Institute, Cary, NC. Barros, M., M. Galea, M. González, and V. Leiva. 2010. Influence diagnostics in the tobit

censored response model. Statistical Methods & Applications 19:379-397.

- Hinton, M. G., and M. N. Maunder. 2004. Methods for standardizing CPUE and how to select among them. Col. Vol. Sci. Pap. ICCAT **56**:169-177.
- Lo, N. C.-h., L. D. Jacobson, and J. L. Squire. 1992. Indices of Relative Abundance from Fish Spotter Data based on Delta-Lognornial Models. Canadian Journal of Fisheries and Aquatic Sciences 49:2515-2526.
- Maunder, M. N., and A. E. Punt. 2004. Standardizing catch and effort data: a review of recent approaches. Fisheries Research **70**:141-159.

- Saul, S., and J. F. Walter III. 2012. Using a censored regression modeling approach to standardize red snapper catch per unit effort using recreational fishery data affected by a bag limit. SEDAR, North Charleston, SC.
- Scott Long, J. 1997. Regression models for categorical and limited dependent variables. Advanced quantitative techniques in the social sciences **7**.
- SEDAR. 2013. SEDAR 31: Gulf of Mexico Red Snapper Stock Assessment Report. SEDAR, North Charleston, SC.
- Stephens, A., and A. MacCall. 2004. A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research (Amsterdam) **70**:299-310.

Tables

Table 1: Recreational season lengths, open/close dates, and references used for modeling red snapper.

Year	Component	# Days	Open date	Close date	Effective Date	Reference
Pre-1990	Private/for- hire	365	1-Jan	31-Dec		
1990	"	"	"	"		
1991	"	"	"	"		
1992	"	"	"	"		
1993	"	"	"	"		
1994	"	"	"	"		
1995	"	"	"	"		
1996	"	"	"	"		
1997	"	330	"	27-Nov	11/27/1997	62 FR 61700
1998	"	272	"	30-Sep	8/27/1998	63 FR 45760
1999	"	240	"	29-Aug	6/4/1999	64 FR 30445
2000	"	194	21-Apr	1-Nov	1/19/2000; 9/18/2000	64 FR 71056; 65 FR 50158
2001	"	"	"	"		
2002	"	"	"	"		
2003	"	"	"	"		
2004	"	"	"	"		
2005	"	"	"	"		
2006	"	"	"	"		
2007	"	"	"	"	5/2/2007	72 FR 15617
2008	"	65	1-Jun	5-Aug	8/5/2008	73 FR 15674
2009	"	75	"	15-Aug	8/15/2009	74 FR 21558
2010	"	53	"	24-Jul	6/2/2010	75 FR 23186
2011	"	48	"	19-Jul	9/12/2011	76 FR 50143
2012	"	46	"	17-Jul	7/11/2012	77 FR 39647
2013	"	42	1-Jun; 1-Oct	29-Jun; 15-Oct	6/29/2013; 10/1/2013	78 FR 34586; 78 FR 57313
2014	"	9	"	10-Jun	5/15/2014	79 FR 27768
0015	Private	10	"	11-Jun	6/1/2015	80 FR 24832
2015	For-hire	44	"	15-Jul	6/1/2015	80 FR 24832
0015	Private	11	"	12-Jun	6/10/2016	81 FR 38110
2016	For-hire	46	"	17-Jul	6/10/2016	81 FR 25583

Table 2: Index values, lower confidence limits, upper confidence limits, and coefficient of variation for the recommended censored regression fit private/for hire mode index for red snapper.

Veen	E	ASTER	N GUL	\mathbf{F}	WESTERN GULF			
y ear	Index	LCI	UCI	CV	Index	LCI	UCI	CV
1981	0.374	0.112	1.254	0.665	0.208	0.043	1.000	0.922
1982	0.249	0.070	0.886	0.705	0.504	0.194	1.311	0.507
1983	0.893	0.273	2.922	0.649	1.084	0.604	1.943	0.298
1984	0.522	0.116	2.348	0.872	0.457	0.238	0.880	0.336
1985	0.644	0.195	2.126	0.654	0.215	0.110	0.420	0.345
1986	0.274	0.086	0.877	0.633	0.430	0.227	0.816	0.328
1987	0.419	0.227	0.773	0.314	0.500	0.250	1.000	0.357
1988	0.142	0.068	0.297	0.381	0.536	0.274	1.048	0.345
1989	0.089	0.041	0.192	0.401	0.498	0.243	1.022	0.371
1990	0.085	0.036	0.200	0.449	0.310	0.163	0.591	0.331
1991	0.224	0.111	0.452	0.362	0.777	0.403	1.497	0.337
1992	0.475	0.277	0.814	0.274	0.812	0.472	1.396	0.276
1993	0.382	0.207	0.706	0.314	0.901	0.512	1.586	0.289
1994	0.253	0.128	0.500	0.351	0.977	0.563	1.696	0.281
1995	0.256	0.122	0.537	0.383	1.146	0.696	1.885	0.253
1996	0.310	0.151	0.635	0.370	0.890	0.539	1.470	0.255
1997	0.851	0.476	1.521	0.297	0.767	0.463	1.272	0.257
1998	1.358	0.902	2.045	0.207	0.841	0.507	1.396	0.257
1999	1.065	0.752	1.509	0.175	0.507	0.304	0.845	0.260
2000	1.025	0.688	1.528	0.201	0.624	0.373	1.044	0.261
2001	0.857	0.560	1.311	0.215	0.609	0.356	1.040	0.273
2002	1.323	0.876	1.996	0.208	0.763	0.457	1.275	0.261
2003	1.110	0.743	1.661	0.203	0.622	0.374	1.032	0.258
2004	0.935	0.654	1.336	0.180	0.577	0.350	0.950	0.254
2005	0.732	0.492	1.088	0.200	0.844	0.509	1.400	0.257
2006	0.856	0.557	1.316	0.217	0.669	0.424	1.056	0.231
2007	2.335	1.478	3.687	0.232	1.822	1.110	2.989	0.251
2008	2.344	1.639	3.351	0.180	1.798	1.103	2.932	0.248
2009	1.460	0.889	2.398	0.252	2.396	1.460	3.933	0.252
2010	2.405	1.454	3.978	0.256	3.175	1.712	5.887	0.316
2011	1.518	0.925	2.489	0.251	2.520	1.489	4.263	0.268
2012	2.482	1.523	4.043	0.248	1.285	0.750	2.202	0.274
2013	1.624	0.933	2.827	0.283	1.553	0.942	2.561	0.254
2014	2.121	1.461	3.081	0.188	1.537	0.860	2.748	0.297

2015	2.164	1.446	3.239	0.204	1.961	1.308	2.940	0.205
2016	1.843	1.306	2.601	0.174	0.885	0.509	1.537	0.281

Table 3: Index values, upper confidence limits, lower confidence limits, and coefficient of variation for the recommended censored regression fit headboat mode index for red snapper.

X 7	E	ASTER	N GULF	WESTERN GULF				
Year	Index	LCI	UCI	CV	Index	LCI	UCI	CV
1986	0.136	0.023	0.810	1.103	0.530	0.334	0.843	0.235
1987	0.138	0.023	0.836	1.119	0.638	0.422	0.965	0.209
1988	0.172	0.030	0.988	1.069	0.761	0.507	1.141	0.205
1989	0.218	0.040	1.203	1.036	0.674	0.452	1.003	0.201
1990	0.228	0.040	1.304	1.068	0.473	0.319	0.700	0.198
1991	0.290	0.051	1.662	1.068	0.787	0.510	1.215	0.220
1992	0.434	0.079	2.378	1.029	1.398	0.898	2.177	0.224
1993	0.554	0.109	2.829	0.971	1.405	0.921	2.145	0.214
1994	0.435	0.080	2.375	1.028	1.094	0.738	1.624	0.199
1995	0.353	0.064	1.958	1.041	1.134	0.737	1.745	0.218
1996	0.538	0.112	2.578	0.921	1.200	0.734	1.962	0.250
1997	0.925	0.213	4.013	0.844	1.267	0.819	1.958	0.221
1998	1.445	0.356	5.861	0.795	1.094	0.702	1.703	0.224
1999	1.522	0.358	6.477	0.830	0.480	0.273	0.846	0.289
2000	1.368	0.316	5.911	0.842	0.457	0.289	0.722	0.232
2001	1.324	0.314	5.580	0.823	0.663	0.368	1.196	0.301
2002	1.944	0.476	7.938	0.800	0.583	0.340	1.002	0.276
2003	1.752	0.425	7.219	0.807	0.500	0.303	0.825	0.254
2004	1.388	0.335	5.741	0.810	0.384	0.233	0.632	0.253
2005	1.400	0.343	5.709	0.799	0.421	0.257	0.690	0.250
2006	0.820	0.200	3.366	0.804	0.495	0.285	0.861	0.282
2007	1.710	0.407	7.183	0.821	0.946	0.506	1.770	0.321
2008	2.137	0.509	8.971	0.820	0.979	0.341	2.808	0.566
2009	3.031	0.650	14.127	0.899	1.048	0.555	1.979	0.326
2010	1.491	0.288	7.725	0.983	1.101	0.409	2.960	0.527
2011					1.122	0.384	3.277	0.577
2012	0.738	0.140	3.885	0.997	1.255	0.400	3.933	0.621
2013	1.762	0.361	8.590	0.934	1.830	0.645	5.192	0.559
2014	0.076	0.014	0.409	1.014	1.397	0.304	6.424	0.888
2015	0.834	0.197	3.537	0.827	2.759	1.365	5.575	0.363
2016	0.838	0.201	3.504	0.817	2.124	0.769	5.865	0.543

Table 4: Final deviance table for the recommended eastern Gulf of Mexico censored regression for the private/for hire mode using landings only catch. The table shows the order of the factors as they were added sequentially to the model such that fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the table.

Factor	Df	Deviance	Residual Df	Residual Deviance	AIC	% Deviance Reduction	Log likelihood	Like ratio				
BINOMIAL												
Null	1	20071.82	17024	20071.82	20073.82	NA	-10035.91	NA				
season	1	6709.76	17023	13362.06	13366.06	33.43	-6682.03	6707.76				
year	35	1354.06	16988	12008.00	12082.00	6.75	-6006.00	1352.06				
area	3	531.76	16985	11476.24	11556.24	2.65	-5775.12	461.76				
wave	5	289.54	16980	11186.70	11276.70	1.44	-5633.35	283.54				
anglers	9	216.28	16971	10970.42	11078.42	1.08	-5530.21	206.28				
			POSITI	VE OBSER	VATIONS	ONLY						
Null	1	52478.63	12319	52478.63	17857.92	NA	-8926.96	NA				
year	35	2933.53	12285	49545.10	17219.24	5.59	-8572.62	708.68				
mode	1	1542.57	12319	48002.53	16831.57	2.94	-8377.78	389.68				
state	2	2228.21	12318	45774.32	16249.99	4.25	-8085.00	585.58				
wave	5	801.95	12315	44972.37	16042.24	1.53	-7976.12	217.75				

Table 5: Final deviance table for the recommended western Gulf of Mexico censored regression for the private/for hire mode using landings only catch. The table shows the order of the factors as they were added sequentially to the model such that fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the table.

Factor	Df	Deviance	Residual Df	Residual Deviance	AIC	% Deviance Reduction	Log likelihood	Like ratio				
BINOMIAL												
Null	1	11928.20	10603	11928.20	11930.20	NA	-5964.10	NA				
area	3	544.15	10600	11384.06	11392.06	4.56	-5693.03	542.15				
season	1	343.85	10599	11040.21	11050.21	2.88	-5524.10	337.85				
year	35	398.49	10564	10641.72	10721.72	3.34	-5325.86	396.49				
anglers	9	241.01	10555	10400.71	10498.71	2.02	-5240.36	171.01				
			POSITIV	E OBSERV	ATIONS (DNLY						
Null	1	20719.68	7951	20719.68	7619.32	NA	-3807.66	NA				
year	35	1058.64	7917	19661.04	7272.27	5.11	-3599.14	417.04				
mode	1	561.37	7951	19099.67	7043.92	2.71	-3483.96	230.35				
wave	5	286.25	7947	18813.42	6933.84	1.38	-3423.92	120.08				

Table 6: Final deviance table for the recommended eastern Gulf of Mexico censored regression for the headboat mode using landings only catch. The table shows the order of the factors as they were added sequentially to the model such that fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the table.

Factor	Df	Deviance	Residual Df	Residual Deviance	AIC	% Deviance Reduction	Log likelihood	Like ratio				
BINOMIAL												
Null	1	41394.04	45313	41394.04	41396.04	NA	-20697.02	NA				
year	30	7124.67	45283	34269.37	34331.37	17.21	-17135.69	7122.67				
area	1	533.67	45282	33735.71	33799.71	1.29	-16898.85	473.67				
anglers	9	431.50	45273	33304.20	33386.20	1.04	-16684.10	429.50				
			POSITI	VE OBSEF	RVATIONS	ONLY						
Null	1	12386.15	37585	12386.15	-41718.44	NA	20861.22	NA				
year	30	2408.52	37556	9977.64	-49785.77	19.45	24924.88	8127.33				
area	1	236.91	37585	9740.73	-50686.98	1.91	25376.49	903.21				

Table 7: Final deviance table for the recommended western Gulf of Mexico censored regression for the headboat mode using landings only ("A") catch. The table shows the order of the factors as they were added sequentially to the model such that fit diagnostics listed for each factor were the diagnostics from a model that included that factor and all of the factors listed above it in the table.

Factor	Df	Deviance	Resid. Df	Resid. Dev	AIC	% Deviance Reduction	Log likelihood	Like ratio				
BINOMIAL												
Null	1	21557.60	44700	21557.60	21559.60	NA	-10778.80	NA				
anglers	9	880.04	44691	20677.56	20697.56	4.08	-10339.78	878.04				
area	2	864.26	44689	19813.30	19837.30	4.01	-9916.65	846.26				
year	30	830.79	44659	18982.51	19066.51	3.85	-9503.25	826.79				
			POSITI	VE OBSERV	ATIONS (ONLY						
Null	1	181858.99	41784	181858.99	61456.96	NA	-30726.48	NA				
year	30	12763.29	41755	169095.70	58476.40	7.02	-29206.20	3040.56				
area	2	12731.34	41783	156364.37	55209.64	7.00	-27570.82	3270.76				

Figures

Figure 1: Model fit and diagnostics for the recommended eastern Gulf of Mexico censored regression for the private/for hire mode using landings only catch.

Figure 2: Comparison of the recommended eastern Gulf of Mexico censored regression for the private/for hire mode using landings only catch to the index used in the SEDAR31 Update. For comparison, both indices are normalized by their respective means in the bottom panel.

Figure 3: Model fit and diagnostics for the recommended western Gulf of Mexico censored regression for the private/for hire mode using landings only catch.

Figure 4: Comparison of the recommended western Gulf of Mexico censored regression for the private/for hire mode using landings only catch to the index used in the SEDAR31 Update. For comparison, both indices are normalized by their respective means in the bottom panel.

Figure 5: Model fit and diagnostics for the recommended eastern Gulf of Mexico censored regression for the headboat using landings only catch.

Figure 6: Comparison of the recommended eastern Gulf of Mexico censored regression for the headboat using landings only catch to the index used in the SEDAR31 Update. For comparison, both indices are normalized by their respective means in the bottom panel.

Figure 7: Model fit and diagnostics for the recommended western Gulf of Mexico censored regression for the headboat using landings only catch.

Figure 8: Comparison of the recommended western Gulf of Mexico censored regression for the headboat using landings only catch to the index used in the SEDAR31 Update. For comparison, both indices are normalized by their respective means in the bottom panel.

Appendix A: Private/for hire sector of the recreational fishery in the eastern Gulf of Mexico

		All Da	ata		Subset 1	Data	Percent
Year	Total Trips	Positive Trips	Proportion Positive	Total Trips	Positive Trips	Proportion Positive	Trips Retained
1981	332	33	9.94	46	33	71.74	13.86
1982	727	45	6.19	51	45	88.24	7.02
1983	409	58	14.18	64	58	90.62	15.65
1984	484	41	8.47	43	41	95.35	8.88
1985	374	59	15.78	65	59	90.77	17.38
1986	909	51	5.61	59	51	86.44	6.49
1987	1790	166	9.27	226	166	73.45	12.63
1988	1222	102	8.35	151	102	67.55	12.36
1989	799	78	9.76	132	78	59.09	16.52
1990	814	71	8.72	109	71	65.14	13.39
1991	1002	149	14.87	197	149	75.63	19.66
1992	1940	328	16.91	402	328	81.59	20.72
1993	1285	213	16.58	263	213	80.99	20.47
1994	1411	162	11.48	204	162	79.41	14.46
1995	1353	125	9.24	163	125	76.69	12.05
1996	1486	149	10.03	185	149	80.54	12.45
1997	2017	332	16.46	386	332	86.01	19.14
1998	2816	449	15.94	594	449	75.59	21.09
1999	4312	837	19.41	1010	837	82.87	23.42
2000	4066	865	21.27	1048	865	82.54	25.77
2001	3755	661	17.60	892	661	74.10	23.75
2002	3789	690	18.21	946	690	72.94	24.97
2003	3732	730	19.56	981	730	74.41	26.29
2004	3811	927	24.32	1244	927	74.52	32.64
2005	3286	746	22.70	984	746	75.81	29.95
2006	2760	623	22.57	797	623	78.17	28.88
2007	2725	646	23.71	772	646	83.68	28.33
2008	2764	451	16.32	590	451	76.44	21.35

Table A1: All trips, positive trips, and percent positive for all data and Stephens and MacCall selected data by year.

2009	2281	287	12.58	514	287	55.84	22.53
2010	2185	274	12.54	482	274	56.85	22.06
2011	2554	259	10.14	633	259	40.92	24.78
2012	2657	280	10.54	558	280	50.18	21.00
2013	1794	259	14.44	398	259	65.08	22.19
2014	2725	287	10.53	568	287	50.53	20.84
2015	2678	371	13.85	539	371	68.83	20.13
2016	2739	516	18.84	729	516	70.78	26.62

Appendix B: Private/for hire sector of the recreational fishery in the western Gulf of Mexico.

Table B1: All trips, positive trips, and percent positive for all data and Stephens and MacCall selected data by year.

		All D	ata	Subset Data			Percent
Year	All	Positive	Proportion Positive	All	Positive	Proportion Positive	Trips Retained
1981	100	7	7.00	30	7	23.33	30.00
1982	184	34	18.48	47	34	72.34	25.54
1983	520	178	34.23	237	178	75.11	45.58
1984	666	127	19.07	180	127	70.56	27.03
1985	785	104	13.25	187	104	55.61	23.82
1986	1261	134	10.63	194	134	69.07	15.38
1987	812	122	15.02	165	122	73.94	20.32
1988	637	112	17.58	171	112	65.50	26.84
1989	498	95	19.08	137	95	69.34	27.51
1990	655	120	18.32	188	120	63.83	28.70
1991	761	147	19.32	187	147	78.61	24.57
1992	1015	213	20.99	298	213	71.48	29.36
1993	718	218	30.36	278	218	78.42	38.72
1994	789	273	34.60	328	273	83.23	41.57
1995	1117	429	38.41	499	429	85.97	44.67
1996	951	387	40.69	463	387	83.59	48.69
1997	1242	379	30.52	449	379	84.41	36.15

1998	896	327	36.50	414	327	78.99	46.21
1999	994	233	23.44	336	233	69.35	33.80
2000	801	285	35.58	377	285	75.60	47.07
2001	690	238	34.49	326	238	73.01	47.25
2002	812	266	32.76	370	266	71.89	45.57
2003	762	280	36.75	390	280	71.79	51.18
2004	862	275	31.90	388	275	70.88	45.01
2005	749	289	38.58	382	289	75.65	51.00
2006	1185	425	35.86	548	425	77.55	46.24
2007	832	318	38.22	405	318	78.52	48.68
2008	670	223	33.28	321	223	69.47	47.91
2009	710	237	33.38	329	237	72.04	46.34
2010	399	141	35.34	188	141	75.00	47.12
2011	631	197	31.22	279	197	70.61	44.22
2012	491	175	35.64	251	175	69.72	51.12
2013	569	250	43.94	321	250	77.88	56.41
2014	376	151	40.16	194	151	77.84	51.60
2015	933	368	39.44	500	368	73.60	53.59
2016	533	195	36.59	247	195	78.95	46.34

Appendix C: Headboat sector of the recreational fishery in the eastern Gulf of Mexico.

Table C1: All trips, positive trips, and percent positive for all data and Stephens and MacCall selected data by year.

Year		All Da	ata	Subset Data			Percent
	Total	Positive	Proportion Positive	Total	Positive	Proportion Positive	Trips Retained
1986	2837	283	9.98	512	283	55.27	18.05
1987	2640	408	15.45	714	408	57.14	27.05
1988	4142	968	23.37	1541	968	62.82	37.20
1989	4857	878	18.08	1328	878	66.11	27.34
1990	8253	1089	13.20	1783	1089	61.08	21.60
1991	7261	1120	15.42	1835	1120	61.04	25.27

1992	7623	1368	17.95	2068	1368	66.15	27.13
1993	7967	1687	21.17	2334	1687	72.28	29.30
1994	7404	1432	19.34	2138	1432	66.98	28.88
1995	5906	1468	24.86	2203	1468	66.64	37.30
1996	5764	1700	29.49	2123	1700	80.08	36.83
1997	5453	2070	37.96	2335	2062	88.31	42.82
1998	4138	1985	47.97	2104	1985	94.34	50.85
1999	2851	1295	45.42	1439	1295	89.99	50.47
2000	2957	1568	53.03	1763	1568	88.94	59.62
2001	2798	1532	54.75	1683	1532	91.03	60.15
2002	2768	1708	61.71	1815	1708	94.10	65.57
2003	2894	1678	57.98	1800	1678	93.22	62.20
2004	2860	1485	51.92	1599	1485	92.87	55.91
2005	2853	1311	45.95	1380	1311	95.00	48.37
2006	2265	1307	57.70	1386	1307	94.30	61.19
2007	2687	1371	51.02	1394	1371	98.35	51.88
2008	1902	1116	58.68	1141	1116	97.81	59.99
2009	2538	1610	63.44	1618	1610	99.51	63.75
2010	1473	666	45.21	669	666	99.55	45.42
2011	1722	1148	66.67	1148	1148	100.00	66.67
2012	1459	988	67.72	990	988	99.80	67.85
2013	1055	645	61.14	651	645	99.08	61.71
2014	287	181	63.07	182	181	99.45	63.41
2015	1334	682	51.12	717	682	95.12	53.75
2016	1538	847	55.07	921	847	91.97	59.88

Appendix D: Headboat sector of the recreational fishery in the western Gulf of Mexico.

Table D1: All trips, positive trips, and percent positive for all data and Stephens and MacCall selected data by year.

Year	All Data			Subset Data			Percent
	Total	Positive	Proportion Positive	Total	Positive	Proportion Positive	Trips Retained

1986	1627	1134	69.70	1275	1134	88.94	78.37
1987	1958	1340	68.44	1543	1340	86.84	78.80
1988	2146	1463	68.17	1665	1463	87.87	77.59
1989	2064	1417	68.65	1641	1417	86.35	79.51
1990	2084	1448	69.48	1675	1448	86.45	80.37
1991	1845	1418	76.86	1572	1418	90.20	85.20
1992	2650	2102	79.32	2226	2102	94.43	84.00
1993	2790	2362	84.66	2501	2362	94.44	89.64
1994	3289	2654	80.69	2825	2654	93.95	85.89
1995	3096	2498	80.68	2629	2498	95.02	84.92
1996	2676	2212	82.66	2301	2212	96.13	85.99
1997	2622	2010	76.66	2142	2010	93.84	81.69
1998	2594	2071	79.84	2196	2071	94.31	84.66
1999	1239	1067	86.12	1133	1067	94.17	91.44
2000	1623	1244	76.65	1369	1244	90.87	84.35
2001	1685	1434	85.10	1488	1434	96.37	88.31
2002	1841	1505	81.75	1574	1505	95.62	85.50
2003	1684	1370	81.35	1459	1370	93.90	86.64
2004	1775	1501	84.56	1590	1501	94.40	89.58
2005	1693	1486	87.77	1578	1486	94.17	93.21
2006	1719	1505	87.55	1570	1505	95.86	91.33
2007	1743	1570	90.07	1616	1570	97.15	92.71
2008	418	391	93.54	403	391	97.02	96.41
2009	989	867	87.66	914	867	94.86	92.42
2010	722	686	95.01	700	686	98.00	96.95
2011	635	609	95.91	620	609	98.23	97.64
2012	686	643	93.73	652	643	98.62	95.04
2013	542	516	95.20	528	516	97.73	97.42
2014	133	122	91.73	125	122	97.60	93.98
2015	585	510	87.18	548	510	93.07	93.68
2016	661	632	95.61	645	632	97.98	97.58