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The majority of fish stocks worldwide are not managed quantitatively as they lack sufficient data, particularly a direct index of abundance,
on which to base an assessment. Often these stocks are relatively “low value”, which renders dedicated scientific management too costly,
and a generic solution is therefore desirable. A management procedure (MP) approach is suggested where simple harvest control rules are
simulation tested to check robustness to uncertainties. The aim of this analysis is to test some very simple “off-the-shelf” MPs that could be
applied to groups of data-poor stocks which share similar key characteristics in terms of status and demographic parameters. For this initial
investigation, a selection of empirical MPs is simulation tested over a wide range of operating models (OMs) representing resources of
medium productivity classified as severely depleted, to ascertain how well these different MPs perform. While the data-moderate MPs
(based on an index of abundance) perform somewhat better than the data-limited ones (which lack such input) as would be expected,
the latter nevertheless perform surprisingly well across wide ranges of uncertainty. These simple MPs could well provide the basis to
develop candidate MPs to manage data-limited stocks, ensuring if not optimal, at least relatively stable sustainable future catches.

Keywords: Bayes, data-poor, generic, management procedures, simulations, target/limit reference points, uncertainty, yield/risk trade-offs.

Introduction
The majority of the world’s most valuable living marine resources
are managed on the basis of advice generated using quantitative sci-
entific techniques. These quantitative approaches provide the basis
for scientific recommendations which aim to ensure the long-term
sustainable exploitation of fish stocks. The traditional and widely
used approach for the provision of such scientific advice is stock as-
sessment, where statistical and mathematical models which describe
the underlying dynamics of the fishery and resource are fitted to fish-
eries data to produce estimates of current stock abundance and sus-
tainable yield.

A variety of stock assessment methods have been developed over
the years and are conveniently grouped in terms of their data
requirements by ICES (2012). These typically include virtual popu-
lation analysis, integrated analysis, and statistical catch-at-age
models, which are based on age or length data as well as one or
more indices of abundance. In the absence of catch-at-age data,
simpler age-aggregated models such as production models (e.g.
Schaefer or Pella–Tomlinson), fitted to one or more indices of

abundance, are typically used to estimate pertinent resource man-
agement quantities.

A cornerstone of successful modelling is reliable data. However,
for most fish stocks, and particularly for low-value resources, reli-
able data are in short supply. With the lack of knowledge and
greater uncertainty associated with the majority of exploited
marine stocks, sustainable resource management becomes difficult,
if not impossible, if one seeks to base this on traditional stock
assessment methods. The question is: how to achieve effective man-
agement in the absence of reliable data, which rules out the use of
traditional assessment techniques?

An alternative, called the management procedure (MP), ap-
proach, which was first developed by the International Whaling
Commission’s (IWC’s) Scientific Committee (Punt and Donovan,
2007), has found favour with marine scientists and fisheries
managers seeking a more comprehensive resource management
paradigm. [An inclusive and holistic approach to fisheries manage-
ment, involving full quantitative recognition of underlying uncer-
tainty as well as including all stakeholders (scientists, industry,

#International Council for the Exploration of the Sea 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com

ICES Journal of

Marine Science
ICES Journal of Marine Science; doi:10.1093/icesjms/fst232

 ICES Journal of Marine Science Advance Access published January 15, 2014
 by guest on January 15, 2014

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/
http://icesjms.oxfordjournals.org/


and managers) in the management process, thereby seeking to
ensure that biological and economic goals are met in the long
run.] This approach, described in the Supplementary material,
has been adopted to provide scientific recommendations for man-
agement measures for the exploitation of some high-value stocks
in the southern hemisphere, e.g. the South African demersal hake
fishery, the pelagic fishery for sardine and anchovy, and the
lobster fishery (Punt, 1992; Johnston, 1998; Geromont et al., 1999;
De Oliveira, 2003; De Oliveira and Butterworth, 2004; Rademeyer,
2012). Known as Management Strategy Evaluation in Australia,
this approach provides a platform to simulation test a variety of
management options for fish stocks ranging from data-rich to data-
poor (Wayte, 2009).

Compared with complex annual stock assessments, MPs (harvest
control rules that have been simulation tested to check robustness to
uncertainties about resource dynamics) are often very simple
empirical algorithms that are much more easily understood by stake-
holders such as the fishing industry, thus enhancing the credibility of
fishery scientists with these stakeholders (Geromont et al., 1999). An
additional advantage of the MP approach is its multiyear cyclical
implementation, which is particularly advantageous for managing
data-poor stocks for which scientific person-power and financial
support are typically sorely lacking. (Although it can be argued that
all fish stocks are data-poor to some degree due to unavoidable uncer-
tainty about both the resource dynamics and the associated data,
“data-poor” refers here to stocks for which a statistical assessment
is not possible due to insufficient data.) One further advantage of
the approach is related to the important resource management
concern of long-term trade-offs (between, for example, the mutually
conflicting objectives of maximizing catch and minimizing the risk of
overexploitation of the resource). These are basic to the MP selection
process, though generally ignored in the traditional “best” assessment
approach. These advantages notwithstanding, the key advantage of
the MP approach, compared with the traditional annual stock assess-
ment approach, is its ability to incorporate uncertainty in the model-
ling exercise explicitly, thereby ensuring consistency with the
precautionary approach (PA; Butterworth, 2007), which is an im-
portant consideration when dealing with all marine resources, and
even more so with data-poor stocks.

At present, there are as yet no quantitative measures in place to
manage the majority of low-value fish stocks, mainly due to this
lack of reliable data. In South Africa, management reference
points have been estimated for data-poor species using spawning
biomass-per-recruit analyses (Griffiths et al., 1999); however, the
reliability of these estimates is questionable as they rely on the esti-
mates of natural mortality whose accuracy is debatable. Another
possible management option for data-poor stocks is a simple
“traffic light” framework based on qualitative information, or
“expert judgement” (Caddy, 1998, 1999). However, the problem
with management decisions that are based on such “expert judge-
ment” is that their underlying rationale can hardly be subjected to
scientific scrutiny and, more specifically and importantly, they
therefore cannot be simulation tested to demonstrate their robust-
ness in the presence of uncertainty (Butterworth et al., 2010).
A “Robin Hood“ approach (taking from the rich to benefit the
poor) has been proposed by Smith et al. (2009) where information
from data-rich stocks/fisheries is used when developing harvest
control rules to manage data-poor stocks/fisheries.

To manage data-poor resources successfully (and defensibly
from a scientific stand-point), some very simple quantitative har-
vesting rules are desirable, where these have been shown to be

robust by subjecting them to comprehensive simulation testing to
ensure that management objectives are reasonably met despite the
uncertainties about the underlying dynamics. Rather than attempt
the impossible task of developing and simulation testing many
species-specific MPs, it seems more reasonable to try to develop
generic MPs that can be applied to several similar data-poor low-
value stocks. Based on available quantitative and qualitative data,
different sets of generic operating models (OMs) can be specified
for the different groups of resources. Having defined the range of
OMs that would encompass the uncertainty associated with such
a selection of resources, robustness trials can then be undertaken
for the chosen set of MPs depending on the data typically available.
The generic MP most appropriate for a group of resources sharing
similar characteristics can then be chosen by comparing perform-
ance statistics.

The aim of this work is therefore to design and test some very
simple “off-the-shelf” MPs that could be applied to a group of data-
poor fisheries which share some key characteristics in terms of
demographic parameters.

Methods
Building on preliminary work by Butterworth et al. (2010), this
paper looks at more extensive comparative testing of a selection of
empirical MPs on a wider range of OMs representing the underlying
dynamics of the resource. In the absence of a direct index of abun-
dance, how well can these MPs perform?

Rather than test the MPs on data forthcoming from an existing
fishery, simulated data are generated from a range of OMs encom-
passing the extent of uncertainty expected in reality. A generic ap-
proach is required for data-poor stocks where similar species are
grouped together in “baskets” (Smith et al., 2009) according to
their longevity/productivity and perceived depletion levels. Similar
to the FAO (2011) categories in terms of exploitation level, stocks
are grouped here into three broad categories depending on the per-
ceived level of resource depletion: “severely depleted” (current
biomass Bsp

n /Ksp between 10 and 30% of the pre-exploitation
level), “moderately depleted” (corresponding to a less pessimistic
range for depletion of Bsp

n /Kspof 30–50%), and “near target” (deple-
tion in the range of 50–70% of the pre-exploitation level). In add-
ition, stocks are grouped in terms of their level of productivity so
that the categorization results in nine large “baskets” (Table 1).
[The Food and Agriculture Organisation of the United Nations
(FAO, 2011) defines three general categories similar to those
adopted here: overexploited, fully exploited and non-fully exploited
corresponding to current biomass less than 40%, between 40 and
60%, and more than 60% of the pre-exploitation level, respectively.]
A different generic suite of OMs needs to be developed for each of the
nine “baskets”, with different MPs being appropriate for each.
However, for this initial study whose primary purpose is illustrative,
the analysis here considers onlyat a group of stocks of “medium prod-
uctivity” deemed to be “severely depleted”.

Two data-poor scenarios are considered. The “data-limited”
scenario is typified by the lack of any index of abundance (such as
catch per unit effort, cpue), with only the mean length of catch
data available as a quantitative though an indirect indicator of the
trend in resource abundance. In contrast, the “data-moderate” scen-
ario corresponds to a fishery for which a direct index of abundance is
available. For the data-limited scenario, where stock assessments are
not possible due to the lack of quantitative data, a number of empir-
ical MPs are simulation tested, ranging from a conservative constant
catch (CC) to a step up/down CC strategy depending on the value of
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the current mean length of the catch, and a target-type MP based on
this mean length as a function of a target mean length. For compara-
tive purposes, empirical MPs corresponding to the data-moderate
scenario are also tested, including slope and target MPs based on a
direct index of abundance (e.g. from a survey or cpue). Summary
statistics and plots are shown to compare performance statistics
across the candidate MPs.

Operating models
A Bayes-like approach has been adopted for this generic data-poor
MP evaluation exercise. The OMs that form the basis of this exercise
are age-structured production models. They include model uncer-
tainty (by effectively integrating over the ranges specified for
model parameter values); this is in addition to “observation”
error (taken into account by including stochastic components
when generating future abundance index and length data), as well
as “process” error (past and future recruitment and fishing selectiv-
ity fluctuations are included for each simulation). These three
sources of uncertainty are incorporated explicitly into the generic
MP approach adopted here for a group of similar data-poor
resources: simulated trajectories are generated by sampling from
prespecified distributions for key model variables such as the
current depletion Bsp

n /Ksp(from which the pre-exploitation equilib-
rium spawning biomass, Ksp, is back-calculated), the “steepness” of
the stock–recruit relationship h and an age-independent natural
mortality rate M, as well as for selectivity and stock–recruit resi-
duals. The distributions chosen are intended to reflect some of the
qualitative information which would typically be available for a re-
source or a group of stocks of the same or similar species, while still
allowing for the extent of model uncertainty which would be
expected in an application for an actual resource.

The specific distributions used for model variables/parameters
are based on typical ranges expected for other similar stocks of inter-
mediate size and longevity for which data and assessments are
readily available, in this case South African hake and horse mackerel
(Johnston and Butterworth, 2007):

† steepness of the Beverton–Holt stock–recruitment relationship:
sampled from a wide uniform distribution h � U[0.5, 0.9];

† age-independent natural mortality: sampled from a uniform dis-
tribution M � U[0.2, 0.4] year21;

† selectivity residuals: generated from lognormal fluctuations
about the expected fishing selectivity-at-age vector, with a s.d.
of the log-residuals of 0.4: ty,a � N(0, 0.42) where a is the age
and y the year;

† stock–recruit residuals: generated from lognormal fluctuations
about the recruitment expected in terms of the stock–recruitment
relationship, with a s.d. of the log-residuals of 0.5:zy � N(0, 0.52);

† data for MPs: pseudo mean length and cpue data are generated
from lognormal fluctuations about the expected indices,
with s.d. of the log-residuals of sl = 0.25 and scpue = 0.2,
respectively.

Furthermore, as the focus here is a group of “severely depleted”
stocks, the current (year n) intended spawning biomass may lie
between 10 and 30% of its pre-exploitation level and is sampled
from a uniform distribution: Bsp

n /Ksp � U[0.1, 0.3].
A large set of biomass trajectories is generated by sampling from

these distributions. Each population biomass trajectory, or simula-
tion, corresponds to a plausible reality. To ensure comprehensive
sampling from these distributions, 8000 simulations are generated.
The pre-management period is taken to span n = 40 years, followed
by a projection period of 10 years. [A 10-year period is consistent
with typical rebuilding periods selected for species of medium prod-
uctivity and is also as advocated at the World Summit on Sustainable
Development held in 2002 (UN, 2002).] Annual historical catches
are assumed to be known exactly (Table A.1), while direct (cpue)
and indirect (mean length) indices of abundance are available for
only the past 10 years.

Technical specifications of the OM, parameters, and pseudo data
are detailed in Supplementary material.

MPs considered
A variety of total allowable catch (TAC)-based harvest control rules,
suitable for data-poor resource management, are simulation tested.
These simple empirical MPs are easy to code and would be readily
understood by all parties typically involved in the management of
the resource. Limited data are used in the formulae: it is assumed
that these data have reasonable information content and that the
associated observation error is not too large. Given these premises,
it is reasonable to assume that any trend in the data is a fairly reliable
indicator of trend in resource abundance. The idea underlying these
empirical MPs is that the TAC each year is adjusted up or down from
the previous year’s TAC depending on either the rate of increase or
decrease in the size of the resource or whether it is above or below
some target level as indicated by the index of abundance. The
success of this rule depends on how much information, rather
than noise due to observation error, the dataseries contains, i.e.
whether the MP is reacting to real trends in biomass or simply
following noise.

An unavoidable disadvantage of these simple empirical MPs is the
lack of estimates of resource abundance and other management
quantities such asMSYonwhich tobase TACs.While not problematic
for a data-rich scenario for which estimates of resource depletion are
readily available, this poses an obvious problem for the data-limited
case for which there are not sufficient data to obtain reliable estimates
of current resource status, rendering optimum resource management
difficult if not impossible. In the absence of a formal assessment to
provide an estimate of stock status, the FAO (2011) suggests that

Table 1. Fish stocks grouped into nine “baskets” according to their perceived level of depletion and productivity.

Low productivity Medium productivity High productivity

Severely depleted M � U[0.05, 0.2]
Bsp/Ksp � U[0.05, 0.2]

M � U[0.2, 0.4]
Bsp/Ksp � U[0.05, 0.2]

M � U[0.4, 1.0]
Bsp/Ksp � U[0.05, 0.2]

Moderately depleted M � U[0.05, 0.2]
Bsp/Ksp � U[0.3, 0.5]

M � U[0.2, 0.4]
Bsp/Ksp � U[0.3, 0.5]

M � U[0.4, 1.0]
Bsp/Ksp � U[0.3, 0.5]

Near target M � U[0.05, 0.2]
Bsp/Ksp � U[0.5, 0.7]

M � U[0.2, 0.4]
Bsp/Ksp � U[0.5, 0.7]

M � U[0.4, 1.0]
Bsp/Ksp � U[0.5, 0.7]

For the analyses of this paper, values are drawn from uniform distributions across the ranges shown.
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data/information be collected from “grey literature” or “black litera-
ture” to assist with classification of data-poor stocks. (“Grey literature
refers to working papers, local government reports, and regional
fisheries management reports and projects. “Black literature” refers
to personal communications, reports of local meetings, newspaper
articles, and so forth.) If little is known about the resource status
particular caution needs to be taken to avoid undue (and undetected)
resource depletion as a result of unsustainable use of the stock. It is
therefore important that the starting point of such an empirical MP
corresponds to an appropriate level of catch (TAC); the starting
point (expressed as a percentage of the average catch taken over the
last 5 years) is a key control parameter of all the MPs, which is
chosen to ensure adequate recovery within the selected period; the
feedback nature of the MP would adjust if this starting point is too
low/too high.

For illustrative purposes, these empirical MPs are divided here
into two classes appropriate to the different levels of quantitative
data availability:

(i) data-limited: no quantitative data except for the catch history
(which is assumed to be known exactly), and possibly some
mean length of catch data;

(ii) data-moderate: an index of abundance (cpue) in addition to
the above.

cpue and mean length of catch data are generated by the OM for each
simulation, i.e. each dataset generated corresponds to a different set
of parameter values sampled from the input distributions. Technical
specifications of the process for generating the pseudo data are pro-
vided in Supplementary material.

Data-limited MPs
A CC rule is tested to give some idea of what level of TAC can be sup-
ported by the resource in the absence of quantitative data (other
than the historical catches); this provides a benchmark against
which to compare feedback-control MPs. The CC sought is
that which would move the resource biomass to above the MSY
level within the projection period of 10 years. CC strategies, where
future TAC is fixed to some percentage (100%, 90%, 80%, etc.) of
the average TAC over the last 5 years, are tested. The downside of
this type of MP is that it may require an unacceptably large drop
in TAC in the first year of implementation and, more important,
that there is no feedback control.

When mean length of catch data are available, empirical rules are
employed in which the mean length of fish caught is taken to be an
indirect index of abundance. These MPs include a simple CC strat-
egy in which the TAC is stepped up or down by a fixed amount de-
pending on whether certain thresholds are crossed. The idea is that
unless there is a strong quantitative signal from the length data, the
TAC is better left where it is so as to avoid the possibility of tracking
noise rather than signal in a data-poor situation. Target-based MPs,
similar in form to those investigated in Wayte (2009), are tested for
comparison. For this class of MPs, the TAC is adjusted up or down
depending on whether the recent mean length is above or below a
target mean length.

Data-moderate MPs
For the data-moderate case where cpue data are available, some
simple empirical MPs based on the recent slope of the cpue series
and on the difference of the recent cpue from some target level are
considered. Although these MPs would normally not be applicable

to data-poor resources because such data are typically absent, they
are included here in an attempt to illustrate the possible benefit of
the availability of a direct index of abundance for management use.

The MPs are summarized in Table 2 with full technical specifica-
tions given in Supplementary material.

Results and discussion
To assist realism, the results are shown as if the pre-management
period of n = 40 years corresponded to starting in 1970 and
ending in 2009. This is followed by a rebuilding period under the
MP which allows only 10 years to reach the management targets,
i.e. from 2010 to 2019. The values of the control parameters used
to tune the five MPs of Table 2 are chosen to achieve adequate
biomass recovery (see below) for a “severely depleted” stock
within the 10-year projection period.

The spawning biomass target and limit reference points pro-
posed in Smith et al. (2009) have been adopted here. Specifically,
the MP sought is one which would move the resource biomass to
20% above the MSY level (i.e. the target is 1.2B

sp
MSY) within the pro-

jection period of 10 years. In terms of risk of further resource deple-
tion, the MP must ensure that the spawning biomass is maintained
above 50% of B

sp
MSY (the limit reference point) for 90% of the time.

Therefore, assuming that B
sp
MSY is achieved when the resource

biomass is at �40% of its pre-exploitation biomass level Ksp,
the target biomass (in median terms) to be achieved at the end of
the projection period is 0̃.5Ksp, with a 10 percentile of 0.2Ksp to
meet the risk threshold. A complete set of results is provided in
Supplementary material.

Summary statistics
Pertinent management quantities for the five types of MPs, each
tested over a range of control parameters, are shown in Figure 1 to
facilitate comparison. The key statistics reported are medians and
90 percentiles of spawning biomass depletion Bsp/Ksp, spawning
biomass in terms of MSY, Bsp/B

sp
MSY at the end of the 10-year projec-

tion period, the average annual future TAC, and the average inter-
annual variation in TAC.

Noticeable from the top two plots in Figure 1 is that all five MPs
can be tuned to give comparable performance in terms of the risk
statistics with perhaps marginally narrower probability intervals
for the data-moderate MPs based on cpue data (the “Islope” and
“Itarget” candidates). Summary statistics for the best-performing
candidates (considered to be those that maximize catch while satis-
fying both target and limit abundance reference points) are com-
pared in Figure 2. The difference in performance between these
MPs lies mainly in the extent of fluctuation in TAC that can be tol-
erated by the fishery, and the total average future yield to be expected
under a particular MP.

For comparative purposes, and to show the bound on the
maximum recovery possible by the simulated stock over the
period considered, summary statistics are also shown for a future
catch of zero (CC0).

Biomass and catch projections
Spawning biomass and TAC trajectories corresponding to the best
performing MPs in each category are shown in Figure 3.

The top two plots of Figure 3 show simulation results for the best
performing CC harvesting strategy, which requires a large drop in
TAC from 500 to 350 t in the first year of implementation. This pro-
vides a benchmark against which to compare the feedback-based
MPs that follow.
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Spawning biomass trajectories for MPs based on a stepwise CC
strategy (linked to some threshold) show improved behaviour to
the CC MPs for the equivalent starting point of 70% of recent
catches (second row, Figure 3), with marginally less spread in the
final spawning biomass distribution. However, this improvement
comes at the price of a much greater spread in future catch trajector-
ies (100–600 t).

Spawning biomass and TAC trajectories corresponding to the
target length-based MP are shown in the third row of plots of
Figure 3. Compared with the TAC trajectories of the stepwise CC
strategy, this MP results in less interannual TAC variability to
achieve the biological target and reference points (Figure 2).

Spawning biomass and catch trajectories corresponding to the
data-moderate MPs based on trend in recent cpue data are shown
in the fourth row of plots in Figure 3. To achieve the biomass
target and limit reference points, the slope-type MP requires a
rather sharp drop in catch in the first year of the projection
period. By comparison, the initial decrease in catch is more
gradual for the target-type MP (bottom two plots), but here
future TACs are more widely spread than for the slope MP, with a
correspondingly narrower distribution for final spawning biomass
at the end of the projection period.

Yield-risk trade-offs
While the summary statistics in Figure 1 give useful information
regarding spread of results and the trade-offs under different strat-
egies, Figure 4 provides a better visual aid when comparing risk/
return performance statistics. Here, the median average future
TAC is plotted against the 10 percentile estimates for spawning
biomass depletion under different harvesting strategies and their
corresponding control parameter values. If the objective is to maxi-
mize future catch while at the same time minimizing the risk of re-
source depletion, then one seeks points that lie furthest to the top
right of Figure 4. The yield-risk trade-off choice would be then be
made from among these points.

Considering the trendlines drawn for each type of harvesting
strategy, it is clear that the C) benchmark strategy performs worst
as would be expected. In the absence of an index of abundance,
the stepwise CC (LstepCC) strategy, based on mean length data, per-
forms best. The best performing MPs overall are the cpue-based
MPs, which achieve a higher yield in terms of median average
TAC for the same level of risk of resource depletion, when compared
with the length-based ones.

These results accentuate the importance of the role of a reliable
abundance index, such as provided by cpue data, for fishery

Table 2. Summary of the five types of empirical MPs considered for data-poor stocks.

Summary of candidate MPs

CC:
CC0: TAC∗ = 0
CC1: TAC∗ = Cave

CC2: TAC∗ = 0.9Cave

CC3: TAC∗ = 0.8Cave

CC4: TAC∗ = 0.7Cave

CC5: TAC∗ = 0.6Cave

TACy+1 = TAC∗ = (1 − x)Cave

where
x lies between 0 and 1, and
Cave = 1/5

∑n
y=n−4 Cy

Stepwise CC (length data):
LstepCC1: TAC∗ = Cave

LstepCC2: TAC∗ = 0.9Cave

LstepCC3: TAC∗ = 0.8Cave

LstepCC4: TAC∗ = 0.7Cave

LstepCC5: TAC∗ = 0.6Cave

TACy+1 = TACy + step
where
step = 5%Cave, and TAC∗ is the starting point defined above

Length target (length data):
Ltarget1: Ltarget = 1.05Lave,TAC∗ = Cave

Ltarget2: Ltarget = 1.1Lave,TAC∗ = Cave

Ltarget3: Ltarget = 1.15Lave,TAC∗ = Cave

Ltarget4: Ltarget = 1.15Lave, TAC∗ = 0.8Cave

TACy+1 = 0.5TAC∗ 1 −
Lrecent

y − L0

Ltarget − L0

( )[ ]
if Lrecent

y ≥ L0, or

TACy+1 = 0.5TAC∗ Lrecent
y

L0

[ ]2

if Lrecent
y , L0, where

L0 = 0.9Lave,
Lrecent

y is the average length for the most recent 5 years, and
Lave is the historical mean length

Index slope (cpue index of abundance):
Islope1: l = 0.4, TAC∗ = 0.8Cave

Islope2: l = 0.4, TAC∗ = 0.7Cave

Islope3: l = 0.4, TAC∗ = 0.6Cave

Islope4: l = 0.2, TAC∗ = 0.6Cave

TACslope
y+1 = TACy(1 + lsy)

where syis the cpue slope (gradient of a log-linear regression) for the most recent 5 years

Index target (cpue index of abundance):
Itarget1: Itarget = 1.5Iave,TAC∗ = Cave

Itarget2: Itarget = 2Iave,TAC∗ = Cave

Itarget3: Itarget = 2.5Iave,TAC∗ = Cave

Itarget4: Itarget = 2.5Iave, TAC∗ = 0.7Cave

TACy+1 = 0.5TAC∗ 1 +
Irecent
y − I0

Itarget − I0

( )[ ]
if Irecent

y ≥ I0, or

TACy+1 = 0.5TAC∗ Irecent
y

I0

[ ]2

if Irecent
y , I0, where

I0 = 0.8Iave,
Irecent
y is the average cpue for the most recent 5 years, and

Iaveis the historical average cpue

Full specifications for these MPs are given in the supplementary material.
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management purposes. For the cpue-based MP, a median future TAC
of �475 t is achievable for only 10% chance of being below a stock
depletion level of 20% of the pre-exploitation biomass, which is indi-
cated by the black vertical line in Figure 4. The potential yield corre-
sponding to the stepwise CC MPs is somewhat less at �425 t, with the
benchmark CC strategy yielding only 400 t for the same level of risk.
Hence, in the absence of an index of abundance, the potential yield
foregone is more than 15% when comparisons are made for the
same level risk. From a strategic point of view, the management au-
thority therefore needs to decide if the extra tonnage warrants the
effort that is required to obtain the additional data.

While data-moderate MPs based on a direct index of abundance
(cpue) perform better than the data-limited length-based strategies
as might be expected, these initial results show that nevertheless the
very simple empirical MPs perform surprisingly well given the wide
range of uncertainty associated with key parameters and could well
be candidates to manage some of the world’s many data-poor stocks,
ensuring perhaps not optimum, but at least some form of manage-
ment to ensure relatively stable and sustainable future catches.

Robustness trials
Thus far, the results reflect the performance of MPs which have been
simulation tested across a suite of base case OMs with prespecified
parameter distributions as detailed in “Operating models”. An
important aspect not yet covered in the previous sections is that no
allowance is made for implementation error: TAC and total removals
are taken to be the same, with annual historical catches assumed to be

known exactly. This section examines robustness of the best perform-
ing MPs to further uncertainties and in particular implementation
error. The robustness tests are summarized in Tables 1 and 3.
Tables of summary statistics for these robustness trials are given in
Section 4 of Supplementary material.

Figure 5 shows summary statistics for the best performing MPs in
each of the five categories when making allowance for lognormally
distributed implementation error (robustness test OM1). The per-
formance of all five MPs are largely unaffected by these random dif-
ferences from the assumed catches, with risk-related limit and target
reference points being met always. To visualize the extent of the dif-
ferences between actual and reported catches (and TACs), trajector-
ies of “true” catches are shown in Figure 6, along with associated
spawning biomass trajectories.

Rather than submit all the MPs to all nine robustness tests listed
in Table 3, a target-type MP which relies only on mean length data
(the data-limited scenario) was selected for further projections;
this MP was selected based on its performance across the range
of base case OMs (Figures 2 and 3). A comparison of summary sta-
tistics when subjecting the Ltarget4 MP to all robustness tests is
shown in Figure 7. The combined tests (OM2 plus OM4 and
OM5) investigate both bias and variability in the reported
catches. Of particular note is that this MP is surprisingly robust
across the range of uncertainty encompassed by these trials,
except robustness tests OM6 and OM7; this is not surprising as
these fall outside the “basket” for which the MPs were designed.
This suggests that the correct classification of stocks within
baskets in terms of their depletion and productivity levels is key
to these MPs achieving their objectives. Therefore, when dealing

Figure 2. As for Figure 1, but here comparing the best performing MPs
in each category (where “best” is defined here as maximizing catch
subject to satisfying the spawning biomass limit reference point at the
10th percentile).

Figure 1. Medians and 90% probability intervals for final spawning
biomass depletion (top), final spawning biomass in terms of the MSY level
(second), average future annual TAC (third), and average interannual
variation in TAC (bottom) for the various candidate MPs tested (see text
for definitions). The solid horizontal lines correspond to the target
reference points (0.5Kspand 1.2BMSY), whereas the dotted horizontal
lines correspond to the limit reference points (0.2Ksp and 0.5BMSY).
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with stocks that fall in the “severely depleted” and/or “low prod-
uctivity” basket, different generic MPs would need to be developed
which are more conservative than the Ltarget4 considered here to
avoid further depletion of the stock.

Future work
The generic MPs developed and the simulation tested in this paper
are intentionally simple to illustrate some basic principles of the
approach. The purpose of these analyses is first to show how an

Figure 3. Spawning biomass in terms of the MSY level (left) and TAC (right) trajectories for 30 from a total of 8000 simulations are shown for the
best performing data-poor strategies: CC (CC4, top row), stepwise CC (LstepCC4, second row), length-based target (Ltarget4, third row), slope
(Islope3, fourth row), and target (Itarget4, bottom row) MPs. The horizontal lines on the left-hand plots correspond to the spawning biomass target
(solid) and limit (dotted) reference points. A subset of 30 simulations from a total of 8000 performed are shown so as to clearly reflect the extent of
variation and uncertainty incorporated into the population models.
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MP approach could be applied to data-limited resources, and,
second, to highlight the emphasis placed on forecasting, with long-
term management objectives defined in terms of target and limit

reference points with decision-making based on yield-risk trade-
offs, and, lastly, to emphasize the potential value in terms of extra
yield for extra data.

These generic MPs can of course not be adopted for practical im-
plementation in their present form. In particular, before practical
application might be considered, the full extent of uncertainty
(model structure uncertainty, process error, observation error,
and implementation error) for the group of stocks under consider-
ation would need to be addressed. While these sources of error are
incorporated to some extent in the analyses reported here, a wider
range of testing would be needed. For example, robustness to uncer-
tainty regarding the somatic growth parameters and their correl-
ation with natural mortality should be considered. In addition,
different stock–recruitment relationships, such as a Ricker model,
need to be examined.

Furthermore, the MPs investigated here rely on a direct or indir-
ect index of abundance to set the TAC for the following year, based
on the assumption that any trend in the index of abundance is a re-
liable indicator of the trend in resource biomass. However, reliable
data may not be available for data-limited stocks and robustness to
bias in these indices need to be demonstrated.

At this stage, the range of OMs used for trials corresponds only to
“severely depleted” resources of medium productivity. Ideally, these
generic analyses need to be repeated, for MPs with different control
parameter choices, for groups of stocks that fall in the other eight

Figure 4. Medians average future TAC plotted against 10th percentile
values for final spawning biomass depletion distributions for the five
MPs tested across a selection of tuning parameters for each: five CC
strategies (stars), five stepwise CC strategies (squares), three
length-based target strategies (triangles), four cpue slope strategies
(dots), and four cpue target strategies (diamonds). Linear trend lines are
shown for each MP type to facilitate comparisons. The vertical solid
black line indicates the limit reference point used in selecting the best
performing MPs.

Table 3. Summary of robustness tests.

Robustness tests

Notable performance
difference from base case
OMs

Risk Yield

OM1: undetected implementation error
1C

y � N(0, 0.22)
No No

OM2: detected implementation error
1C

y � N(0, 0.22)
No No

OM3: detected implementation error
with bias 1C

y � N(0.1, 0.22)
Marginal 2 Yes +

OM4: undetected 40% positive bias in
reported catches

Marginal 2 Marginal +

OM5: undetected 40% negative bias in
reported catches

OM5k: same as above, but here detected

Marginal + Marginal 2

OM6: Bsp/Ksp = 0.05 (outside base case
basket)

Yes 2 Yes 2

OM7: M = 0.1 (outside base case basket) Yes 2 Yes 2

OM8: scpue = 0.3; sL = 0.35 No No
OM9a: shift in selectivity (Sa ¼ 1 from

a ¼ 4) over projections period
No No

OM9b: shift in selectivity (Sa ¼ 1 from
a ¼ 8) over projections period

Yes 2 Yes +

OM2 + OM4: detected variations and
undetected positive bias

Marginal2 Marginal +

OM2 + OM5: detected variations and
undetected negative bias

Marginal+ Marginal2

OM2 + OM5k: detected variations and
detected negative bias

Yes 2 Yes +

Figure 5. As for Figure 2, but here allowing for implementation error in
catches which is random and unbiased (OM1).
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Figure 6. As for Figure 3, but here making allowance for implementation error in catches which is random and unbiased (OM1).
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“baskets” depicted in Table 1, together with associated alternative
historical catch series and cpue/length data availability scenarios.
An unavoidable difficulty for data-limited stocks is the need to cat-
egorize stocks into “baskets” according to productivity levels and
depletion. The former may not be too problematic, given results
from research on similar stocks and species, but the latter presents
greater challenges. A possible approach would be to follow a proced-
ure similar to the FAO (2011) classification system which relies on
“grey” and “black” literature. With few data (and an absence of
quantitative assessments) to inform reliable categorization of
stocks, a more PA is required, particularly for low productive longer-
lived species that have been under severe fishing pressure.

Finally, the extent of uncertainty, as reflected by the prespecified
distributions, needs to be closely examined and accepted by all sta-
keholders before these simple MPs could be considered for applica-
tion in practice.

Supplementary material
Supplementary material is available at the ICESJMS online version
of the manuscript.
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Appendix: Data
For purposes of this exercise, a pseudo stock hasbeen selectedthat has
been depleted to well below the maximum sustainable level, with
historical catches having been high at the start of the fishery after
which they are reduced later to prevent further resource depletion.
The historical catches assumed for the pseudo fishery for the pre-
management period (y = 1 to n ¼ 40) are given in Table A1.

Table A1. Annual historical catches in tonnes assumed for the base
case analyses.

Year Catch (metric tonnes) Year Catch (metric tonnes)

1 1 000 21 950
2 1 000 22 900
3 1 000 23 850
4 1 000 24 800
5 1 000 25 750
6 1 000 26 700
7 1 000 27 650
8 1 000 28 600
9 1 000 29 550
10 1 000 30 500
11 1 000 31 500
12 1 000 32 500
13 1 000 33 500
14 1 000 34 500
15 1 000 35 500
16 1 000 36 500
17 1 000 37 500
18 1 000 38 500
19 1 000 39 500
20 1 000 40 500
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