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Appendix A: Reference methods 

DCAC  

In circumstances where the information available is insufficient to derive a catch-limit from stock 

assessment Depletion Corrected Average Catch has been applied (DCAC, MacCall 2009). DCAC 

attempts to calculate average catch accounting for the removal of “windfall harvest” of less productive 

biomass that may have occurred as the stock became depleted. DCAC requires inputs for M, FMSY/M 

(or c), BMSY/B0 (stock biomass at MSY relative to unfished, Bpeak) and Bcur/B0 (current stock depletion, 

D). A number of samples are drawn from the following distributions: 

 

App.A.1a)  MDCAC ~ lognormal(μ=M, SD=0.5) 

 

App.A.1b)  cDCAC ~ lognormal(μ=c, SD=0.2) 

 

App.A.1c)  DDCAC ~ lognormal(μ=D, SD=0.2) 

 

where, in keeping with MacCall’s (2009) approach, the SDs for M and c are set to 0.5 and 0.2, 

respectively.. MacCall (2009) states that “unlike the other parameters, the precision of [depletion D] is 

entirely dependent on the data and method used in its estimation, and there is no clear value of 

precision that can serve as a default”. Subsequently, Dick and MacCall (2011) assume a default 

distribution with a CV of 0.25. We adopt a beta distribution for depletion: 

 

App.A.2a)  DDCAC ~ beta(μ=Dobs, CV = 0.25) where Dobs < 0.5 

 

App.A.2b)  1-DDCAC ~ beta(μ=1-Dobs, CV = 0.25) where Dobs > 0.5 

 

For each sample of these parameters, sustainable yield (SY) is calculated by: 
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where the Cobs are annual historical catches and n is the number of years of historical catches. 

 

This stochastic approach produces numerous samples of the derived sustainable yield (SY) of which a 

percentile (typically the median) is used as the TAC.  

 

FMSY/M ratio ‘Fratio’ 

It has been suggested that ratios of FMSY/M (c) may be robust to broad life-history types and fisheries 

exploitation scenarios. Gulland (1971) proposed a simple method of setting maximum sustainable 

yield 00.5MSY M B  , in doing so assuming that BMSY/B0 =0.5 and FMSY/M = 1. Subsequent publications 

have revised this FMSY recommendation downwards. The Fratio MP is simulated by generating 

imperfect knowledge regarding M, current absolute biomass and the ratio of FMSY/M.  

 

Delay-difference stock assessment (DD) 

The performance of a delay-difference model (Deriso, 1980; Schnute, 1985) fitted to catch and effort 

data is evaluated to provide a reference for the performance of the other MPs. The delay-difference 

model requires additional auxiliary (independent) information regarding the form of the stock-recruit 

function, the fraction mature at age, somatic growth, M, and the selectivity-at-age curve. The delay-

difference stock assessment method provides estimates of Bcur and FMSY and therefore direct estimates 

of an appropriate catch limit.  

 

The delay-difference model is fitted to annual total catch and effort data. The model is parameterized 

according to: maximum sustainable yield, MSYDD and harvest rate at maximum sustainable yield, 

UmsyDD . The catchability coefficient scaling effort to fishing mortality rate is also estimated. The 

growth parameters α and ρ of the Ford-Brody growth model (Wa+1=α+ρWa) are approximated from the 

known weight at age W, for each simulation: 
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where W∞ is the maximum weight of an individual. Selectivity at age is assumed to follow the maturity 

schedule and AMobs is the observed age at 50% maturity selectivity determined from the ascending 

limb of the selectivity curve ω (Eqn. App.A.12). Since bias in the age at 50% maturity may strongly 

affect the delay-difference model, AMobs is simulated subject to imperfect knowledge (Table App.C.1). 

Survival rate at maximum sustainable yield is given by   DDobs UmsyMSmsy  1exp  so that the 

number of spawners per recruit, SPR is given by: 
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The Beverton-Holt parameter αrec, the maximum recruits per spawner as spawner biomass approaches 

zero, is calculated: 
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The derivative of yield with respect to harvest rate ΔSPR, evaluated at UmsyDD is given by: 
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where S0 is unfished survival rate  MS  exp0 . The Beverton-Holt parameter βrec is calculated as: 
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Unfished recruitment R0 is allocated to recruitments up to and including the age at recruitment to the 

fishery Amobs and is given by: 
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where unfished spawners per recruit SPR0 is calculated using Eqn. App.A.5 when Smsy is replaced by 

S0.  It follows that initial biomass B1 is given by: 001 SPRRB   and initial numbers N1 is given by

1 0 0/ (1 )N R S  . From this initialization, biomass dynamics are calculated by: 
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where )exp( MqES DDyy   is the survival rate in year y, N represents stock numbers, B is the 

biomass, Wk is the weight of an individual at the age at 50% selectivity k, M is the natural mortality 

rate (assumed to be known exactly), qDD is the estimated catchability, Ey is the observed fishing effort 

during year y,  and Ry represents the number of recruits during year y:  
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where catches C, are given by:   yDDyy EqBC  exp1 . 

The model is fitted to observed (simulated) catches by minimizing a global objective O that is 

calculated by the sum of the negative log likelihood of the catches (excluding constant terms): 
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where σc is the assumed standard deviation (in log space) of the observation error.  

 

Appendix B. Operating model 

Simulating stock dynamics 

A standard age-structured, spatial model identical to that of Carruthers et al. (2014) was used to 

simulate population and fishery dynamics. Ranges of parameters and variables allowed variation 

among simulations for a given stock (e.g., natural mortality rate M, slope in recent fishing effort, 

targeting). All parameters that vary as random variables across simulations are denoted with a tilde 

(e.g.~ ). The probability distributions from which these parameters are sampled are detailed in Table 

App.B.1. Hence, each parameter or variable denoted with a tilde represents a sample from a 

distribution specific to each stock. This convention alleviates the need for a simulation and stock 

subscript for every parameter or variable described below. For example, the symbol ~  represents 

 sis f  ~~
,

which is the sample of the parameter ~ corresponding with the ith simulation for stock s, 

drawn from a distribution function f(), which has stock specific parameters s . 

  

The numbers of individuals recruited to the first age group Ny,a=1,r in each year y, and area r is 

calculated using a Beverton-Holt stock-recruitment relationship with log-normal recruitment 

deviations: 
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where h is the steepness parameter, R0 is the mean recruitment given unfished conditions, SSBy,r is 

spawning stock biomass in the previous year and SSB0 is the mean spawning stock biomass under 

unfished conditions. The process error term P, is an autocorrelated random variable:  
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where ϛ controls the level of autocorrelation in recruitment deviations and ϕ is a normally distributed 

random variable with mean zero and standard deviation proc~ . 

 

The spawning stock biomass SSB, is given by: 
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where ma is the maturity-at-age a, and the maximum age na is specific to each stock. Maturity-at-age is 

assumed to follow a logistic relationship with age; the slope of the transition from immature to mature 

is determined by the precision parameter σA, and the inflection point mA
~

that is the age where 50% of 

individuals are mature (sampled form a random uniform distribution):  
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Numbers at age are converted to biomass using the von Bertalanffy growth equation: 
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where La is the length of an individual of age a, the asymptotic length is Linf, and κ is the slope at the 

theoretical age at zero length t0. Simulated Linf and κ are sampled independently and assumed to be 

time-varying with mean percentage slope αLinf and ακ (Table App.B.1.). Parameters αLinf and ακ were 

sampled independently from uniform distributions between -0.25 and 0.25 percent per year to 

investigate whether small temporal changes in growth could affect MP performance. Inter-annual 

variability in Linf and κ were simulated from log-normal distributions with mean 1, and standard 

deviations sdLinf and sdK.  



 

Weight at age Wa is assumed to be related to length by: 
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For ages greater than 1, fishing mortality is assumed to occur before natural mortality and the 

numbers-at-age are calculated by: 
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Similarly to Linf and κ, inter-annual variability in natural mortality rate was generated by sampling 

from a lognormal distribution with mean 1 and standard deviation sdM. The underlying trend (per cent 

per year) in natural mortality was sampled from a random uniform distribution (Table App.B.1.). No 

“plus group” is modelled; instead the maximum age is set sufficiently high that survival to the 

maximum age is less than 1% under unfished conditions.  

 

Movement and spatial targeting dynamics were not the focus of this simulation evaluation. The 

generic two-area model of the simulation framework was parameterized to mimic a fully diffuse stock 

that was not subject to spatial targeting.  

 

Simulating fishery dynamics 

The selectivity at age ωa, was calculated using a double normal curve with age at maximum selectivity  

msel, an ascending limb standard deviation of σsel1 and a descending limb standard deviation σsel2. These 

standard deviations were determined for each simulation by numerically solving for two user-specified 

quantities that are more intuitive: (1) the minimum age at 5% maximum selectivity 05.0
~a , and (2) the 

selectivity of the oldest age class old~ . To sample a wide range of selectivity dynamics 05.0
~a was 

sampled from a uniform distribution between 20% and 50% age at maturity. Additionally old~  could 



range from a 0-100%, representing dome-shaped selectivity curve where older fish are not fished to a 

‘flatted – topped’ selectivity where older fish are fished at the same rate as younger fish.  

 

The ascending limb age selectivity Aa (before normalization to a maximum value of 1) is given by: 
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The descending limb selectivity Da is given by: 
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The selectivity at age is given by: 
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Catch in numbers is calculated by: 
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where F is the instantaneous fishing mortality rate.  

 

Observed catch is calculated by multiplying simulated catch in numbers-at-age by weight-at-age and 

adding observation error:  

 



App.B.12) 














a r

aray
obs

ray

obs

y WCC ,,

2

,,
2

~
exp


 ,    obsray  ~,0dnorm~,,

 

 

The error term ε, is drawn from a standard normal distribution whose standard deviation σobs is 

sampled at random in each simulation: 

 

Fishing mortality rate F, was assumed to be proportional to effort according to the constant q~ which 

was determined by numerical optimizing for sampled current depletion D (Table App.B.1. below).   

 

App.B.13)  yy EqF ~  

 

Total effort is not related to biomass levels, and in historical and future projections can remain high 

even at very low biomass levels. The maximum instantaneous fishing mortality rate is limited to 90% 

to prevent the simulation of large declines in stock biomass in any year due to TAC recommendations 

that are occasionally very high.  

 

Log-normal variability in effort is added to a general effort trend V: 
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where the effort variability term φy is randomly sampled from a standard normal distribution that has a 

standard deviation, �̃�𝑒𝑓𝑓 drawn at random for each simulation from a uniform distribution ranging 

from 0.1 to 0.4. 

 

A range of effort variability is sampled to assess how the degree of auto-correlation affected the 

performance of stock status classification methods. The general trend in effort is determined by a 

linear model of change in effort over time with slope aE, and intercept of 0.5: 
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This functional form allows effort to increase, decrease or remain unchanged over time. This effort 

model is constrained by sampling positive values for initial changes in effort (effort is increasing at the 

start of the time series). The final annual change in effort 
E

~ , was sampled from a uniform distribution 

between -1 and 1 to simulate a range of final effort trajectories including strongly decreasing and 

increasing effort:  
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For any simulated effort time series, the slope 
Ea , can then be calculated from the total number of 

years in the time series ny, and the sampled intercept of 0.5:  
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Simulated effort time series that included negative values were discarded. All of the stocks 

experienced the same effort dynamics. 

 

In any given year, spatial fishing effort is assumed to be proportional to the distribution of the 

vulnerable biomass in the previous year, modified by a targeting parameter λ, that controls how 

strongly fishing effort will be distributed in relation to vulnerable biomass. The fraction of fishing 

effort P, allocated to each region r, in a given year y, is calculated: 
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The values for p sum to 1 in any year so they can be used to distribute total effort Ey across areas in 

each year such that mean F among areas is the same as total annual F. Fishing is distributed evenly 

regardless of the vulnerable biomass in the previous year when the targeting parameter λ is zero. 

Spatial fishing will be distributed in favour of areas of high vulnerable biomass when λ is positive and 

distributed away from such areas when λ is negative. For all stocks a range of the targeting parameter 

was sampled from a random uniform distribution between -0.5 and 1 to evaluate the impact on MPs of 

the distribution of fishing relative to the population.  

 

Parameterization of stock dynamics 

Given the availability of full stock assessments with which to characterize their stock dynamics, we 

chose Pacific herring (DFO, 2012), Atlantic bluefin tuna (ICCAT, 2012), and canary rockfish 

(Wallace and Cope, 2011) as case-studies that span a range of longevity. The values of input 

parameters and the sources of these inputs are detailed in Table App.B.1.  

 



Table App.B.1. Summary of the variables/parameters that define each of the stock simulations, 

including values and/or the range over which they are sampled. The values for simulations were taken 

from recent stock assessments for Pacific herring (DFO, 2012), eastern Atlantic bluefin tuna (ICCAT, 

2012) and canary rockfish (Wallace and Cope, 2011). Where two values are provided, variables are 

sampled from a uniform distribution with the lower and upper bounds listed.  

 

 

Appendix C: Simulating imperfect information 

Table App.C.1. Summary of the bias /error parameters and related distributions that control the 

accuracy and precision of knowledge of the simulated system that is subsequently used by the data-

limited methods and harvest control rules. The log-normal distribution described in the table below 

Name

Maximum age n a

Steepness h 0.4 0.6 0.6 0.9 0.35 0.7

Mean natural mortality rate μ M 0.28 0.38 0.12 0.16 0.04 0.08

Interannual variability in natural mortality rate sd M 0 0.1 0 0.1 0 0.05

Gradient in natural mortality rate (per cent y
-1

) α M -0.5 0.5 -0.5 0.5 -0.5 0.5

Theoretical age at length zero t0

Mean maximum length μ Linf 25 29 315 325 62 68

Interannual variability in maximum length sd Linf 0 0.025 0 0.025 0 0.025

Gradient in maximum length (per cent y-1) α Linf -0.25 0.25 -0.25 0.25 -0.25 0.25

Mean von Bertalanffy growth coefficient μ K 0.43 0.53 0.08 0.1 0.122 0.128

Interannual variability in the growth coefficient κ sd K 0 0.025 0 0.025 0 0.025

Gradient in the growth coefficient κ (per cent y-1) α K -0.25 0.25 -0.25 0.25 -0.25 0.25

Weight-length parameter a (W=aLb) α WL

Weight-length parameter b (W=aLb) b WL

Stock depletion, biomass relative to unfished D 0.025 0.6 0.025 0.6 0.025 0.6

Age at 50% maturity A m 1.7 2.3 3.5 5 6.5 9.5

Spatial targetting parameter λ 0.5 1 0.5 1 0.5 1

Log-normal recruitment variation σ R 0.2 0.4 0.1 0.3 0.2 0.5

Pacific herring
Eastern Atlantic 

bluefin tuna
Canary rockfish

10 32 64

-0.025 -0.97 -0.04

4.50E-06

3.127

1.96E-05

3.009

1.55E-05

3.03



where ~lognormal(μ,σ) is the exponent of the normal distribution with mean μ and standard deviation 

σ, parameters:     2222 /1log,/1log5.0dnorm   .    

 

 

Variable Symbol Related functions

The standard deviation of the log-normally distributed bias in natural 

mortality rate M (μ M  varies among simulations)
ϒ M

M obs  = M × μ M 

μ M ~lognormal(μ =1,ϒ M )

The standard deviation of the log-normally distributed bias in von 

Bertalanffy growth rate parameter K (μ K  varies among simulations)
ϒ K

K obs  = K × μ K 

μ K~lognormal(μ =1,ϒ K)

The standard deviation of the log-normally distributed bias in biomass 

at maximum sustainble yield B MSY (μ Bmsy  varies among simulations)
ϒ Bmsy

Bmsy obs  = Bmsy × μ Bmsy 

μ Bmsy~lognormal(μ =1,ϒ Bmsy)

The standard deviation of the log-normally distributed bias in biomass 

at maximum sustainable yield relative to unfished Bpeak (B MSY/B 0, 

μ Bpeak  varies among simulations)

ϒ Bpeak

Bpeak obs  = Bpeak × μ Bpeak 

μ Bpeak~lognormal(μ =1,ϒ Bpeak)

The standard deviation of the log-normally distributed bias in the ratio 

of maximum sustainable fishing mortality rate to natural mortality rate 

FMSY_M (μ FMSY_M  varies among simulations )

ϒ FMSY_M

FMSY_M obs  = FMSY_M × μ FMSY_M 

μ FMSY_M ~lognormal(μ =1,ϒ FMSY_M )

The standard deviation of the log-normally distributed bias in 

MSY(μ MSY  varies among simulations )
ϒ MSY

MSY obs  = MSY× μ MSY 

μ MSY~lognormal(μ =1,ϒ MSY)

The standard deviation of the log-normally distributed bias in the age 

at first maturity Am (μ Am  varies among simulations )
ϒ Am

Am obs  = Am × μ Am 

μ Am ~lognormal(μ =1,ϒ Am )

Uniformly distributed observation error in recruitment (R obs , varies 

among years and simulations, σ Robs  varies among simulations)
σRobs

Robs=lognormal( μ =R, σ Robs )  

σ Robs ~U(L Robs , U Robs )

The standard deviation of the log-normally distributed bias in the 

current level of stock depletion D  (B /B 0; D obs and j D vary among 

projected years and simulations;  μ D  and σ D  vary among simulations) 

ϒ D

Uniformly distributed observation error in current stock depletion μ D 

for projected years
σ D

The standard deviation of the log-normally distributed bias in catches 

C  (C obs and ϒ C vary among projected years and simulations;  μ C  and 

σ C  vary among simulations) 

ϒ C

Uniformly distributed observation error in catches σC

Standard deviation in log-normal error in the relative abundance index 

for projected years (I  and ϒ I  vary among years and simulations, σ I 

varies among simulations)

σ I   

The beta parameter controlling hyperstability / hyperdepletion in the 

abundance index (β varies among simulations)
β

Loguniform bias in current biomass (B obs  and j B vary among years and 

simulations, μ B  and σ B  vary among simulations)

min B  

max B 

The maximum standard deviation for log-normal error in current 

biomass for projected years
σ B

D obs  = D × j D   

jD ~lognormal(μ D ,σ D ) 

μ D ~lognormal(μ=1,ϒ D ) 

σ D ~U(L D ,U D )

C obs  = C × ϒC   

ϒ C~lognormal(μ C ,σ C) 

μ C~lognormal(μ=1,ϒ C) 

σ C~U(L C ,U C)

B obs  = B × j B    jB ~lognormal(μ B,σ B )  

log(μ B )~U(min B ,max B ) 

σ Bcur ~U(L B ,U B )

I=B
β
 x ϒ I                                   

ϒ I~lognormal(1, σ I)                    

σ I~U(L I ,U I) 

LN(β)~U(LN(β min ),LN(β max))


