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Introduction 

Data-limited methods toolkit (DLMtool) is a collaboration between the University of British 

Columbia and the Natural Resources Defense Council that has produced a software library for 

evaluating the performance of data-limited management procedures (MPs; Carruthers and 

Hordyk 2015). This software library is implemented in the R statistical computing environment 

and is maintained by its principal developers T. Carruthers and A. Hordyk (R Development Core 

Team 2012, Carruthers and Hordyk 2015). DLMtool simulates the performance of data-limited 

MPs using a framework known as management strategy evaluation (MSE; Butterworth and Punt 

1999, Punt et al. 2014). MSE requires linkages to be specified between a fish stock, its fisheries, 

and a MP. These linkages are used to simulate a dynamic sequence of events that reflects the 

regulatory effects of a MP, fishery operation responses to regulatory changes, and stock 

responses to fishing. This approach is otherwise known as closed-loop simulation (Sainsbury et 

al. 2000, Walters and Martell 2004). 

This document is not intended as an exhaustive summary of DLMtool or its wide variety of 

capabilities or applications. As it pertains to SEDAR 49, we focus on key aspects of the 

operating model (OM) that contribute to MSE through simulation of stock dynamics, fishery 

operations, and observation of simulated data. We also focus on the translation of user inputs 

into OM parameters. This report is separated into three parts. The first part summarizes key OM 

components of DLMtool v3.2 that were implemented in their standard configurations. The 

second part details OM components that were modified for use in SEDAR 49. The third part 

explores the role of uncertainty in decision-making and the use of MSE to evaluate the 

consequences of uncertainty for achieving management objectives. 
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Additional technical resources 

Carruthers TR, Punt AE, Walters CJ, MacCall A, McAllister MK, Dick EJ, Cope J. 2014. 

 Evaluating methods for setting catch limits in data-limited fisheries. Fisheries Research 

 153: 48–68.  

Carruthers TR, Punt AE, Walters CJ, MacCall A, McAllister MK, Dick EJ, Cope J. 2014. 

 Evaluating methods for setting catch limits in data-limited fisheries [Supplemental 

 information]. Fisheries Research 153: 48–68.  

Carruthers TR, Hordyk AR. 2015. DLMtool: data-limited methods toolkit. Available at: 

 https://cran.r-project.org/web/packages/DLMtool/index.html. 

Carruthers TR, Kell LT, Butterworth DDS, Maunder MN, Geromont HF, Walters C, McAllister 

 MK, Hillary R, Levontin P, Kitakado T, Davies CR. 2015. Performance review of simple 

 management procedures. ICES Journal of Marine Science: Journal du Conseil fsv212.  

Newman D, Carruthers TR, MacCall A, Porch CE, Suatoni L. 2014. Improving the science and 

 management of data-limited fisheries: An evaluation of current methods and commended 

 approaches. Natural Resources Defense Council, NRDC Report R:14-09-B, NY.  

Sagarese, S.R., J.F. Walter III, M.D. Bryan, and T.R. Carruthers. 2016. Evaluating Methods for 

 Setting Catch Limits for Gag Grouper: Data-Rich versus Data-Limited. In: T.J. Quinn II, 

 J.L. Armstrong, M.R. Baker, J.D. Heifetz, and D. Witherell (eds.), Assessing and 

 Managing Data-Limited Fish Stocks. Alaska Sea Grant, University of Alaska Fairbanks. 

SEDAR. 2016. SEDAR 46: U.S. Caribbean Data-Limited Species. SouthEast Data, Assessment, 

 and Review (SEDAR). 373 pp. Available from: http://sedarweb.org/sedar-46.  
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Part 1: Operating model (OM) 

 An OM is a mathematical representation of (1) fish stock dynamics, (2) a fishery that 

harvests the stock, and (3) an observation process that specifies how the simulated collection of 

data will occur (Punt et al. 2014). Implementation error is not incorporated in DLMtool and 

catches specified through an MP are removed without error. In DLMtool, stock dynamics are 

age-structured for ages 1 (recruitment age) to a maximum age at which 1%  of the cohort 

survives. Natural mortality is age- and sex-invariant, spawning stock biomass consists of both 

sexes combined, and maturity is a logistic function of age. DLMtool v3.2 simulates a single 

fishery operating on a fish stock. Vulnerability at age is calculated through a user-specified 

double normal distribution, which offers the flexibility to simulate a variety of patterns including 

dome-shaped and asymptotic vulnerability. Data inputs to MPs are simulated through an 

observation sub-model that introduces imperfect information into the specification of harvest 

decisions. 

 As a numerical simulation, DLMtool can incorporate variation in parameters that represent a 

variety of biological, fishery, and observation processes. It is important to distinguish between 

these sources of variation as inter-annual stochastic events that reflect natural variability and 

inter-simulation variation that allows MP performance to be evaluated across plausible 

parameter ranges. When multiple MPs are compared using DLMtool, simulated variation in 

elements of stock dynamics, observation sub-models, and historical fishing effort are generated 

and retained. Each MP is then subjected to exactly the same sets of simulated conditions, thus 

ensuring performance is measured against equivalent sequences of ecological and observation 

events (Carruthers et al. 2014). In the subsequent sections, the mathematical specification of OM 

components is summarized, including the specification of deterministic and stochastic elements. 
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1.1 Natural mortality 

Stock dynamics 
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Subscripts t, age, and i denote year, fish age, and simulation run, respectively.  

Observation process 

 
2

~ 0,

DLM_data@Mort exp( 0.5Mcv )

i

i i i

Obs Normal Mcv

Obs M


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User inputs 

OM@M=c(a, b) bounds on range of natural mortality used to simulate stock dynamics 

OM@Msd=c(c, d) bounds on inter-annual process variation in M, used to simulate stock 

dynamics 

OM@Mgrad=c(f, g) bounds on slope of M through time, used to simulate stock dynamics 

OM@Mcv=Mcv observation bias for nsims for in observation of natural mortality 

Notes 

User inputs (a and b) define the inter-simulation range of natural mortality considered in 

simulation of stock dynamics. Unique values of M, Msd, Mgrad are drawn from uniform 

distributions for each of nsims. For a given simulation, Marray is an nsim by nyears+proyears 

array that specifies year-specific values of natural mortality according to corresponding values of 

M, Msd, and Mgrad.    
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1.2 Growth parameters 

Linf ~ ( , )
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Subscripts t, age, and i denote year, fish age, and simulation run, respectively.  

Observation process 

 
2

~ 0,Linfcv

DLM_data@vbLinf exp( 0.5Linfcv )Linf

i

i i i

Obs Normal

Obs


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User inputs 

OM@Linf=c(c, d) bounds on range of von Bertalanffy Linf parameter used to simulate stock 

dynamics 

OM@Linfsd=c(f, g) bounds on inter-annual process variation in Linf, used to simulate stock 

dynamics 

OM@Linfgrad=c(j, k) bounds on slope of Linf through time, used to simulate stock dynamics 

OM@Linfcv=Linfcv observation bias for nsims for Linf parameter 

Notes 

Calculations are shown for the von Bertalanffy Linf parameter. Unique values of Linf, Linfsd, 

and Linfgrad are drawn from uniform distributions for each of nsims. For a given simulation, 

Linfarray is an nsim by nyears+proyears array that specifies year-specific values according to 

Linf, Linfsd, Linfgrad. In application, the same approach is taken for the von Bertalanffy K 

parameter. von Bertalanffy t0 does not have inter-annual variation, but all other calculations 

apply. Length-at-age is calculated:    , , , ,Linf 1 exp 0t age i t i t i iL array Karray age t    . 

Length-to-weight parameters are user inputs as constants and correspond to the function: 

, , , ,

b

t age i t age iW aL . There is no observation error on length-to-weight conversion parameters.  
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1.3 Stock-recruitment relationship 

~ ( , )ih Uniform a b , where h is steepness of the Beverton-Holt stock recruitment function 

~ ( , )iprocsd Uniform c d , where procsd is standard deviation of log normal recruitment 

deviation 

~ ( , )iAC Uniform f g , where AC is autocorrelation in recruitment deviations 
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Rt,i is number of age-1 fish, SSB0 is unfished spawning stock biomass, SSBt-1,i is spawning stock 

biomass in year t-1. 

Subscripts t, age, and i denote year, fish age, and simulation run, respectively.  

Observation process 

Re ~ ( , )iccv Uniform j k  
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t i i

t i t i i t i
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~ihObs Beta  with hi as measure of central tendency, and hcv as measure of spread. Beta 

distribution is scaled to produce values between 0.2 and 1.0. 

i iDLM_data@steep hObs  

User inputs 

OM@h=c(a, b) bounds on range of steepness parameter  

OM@Perr=c(c, d) bounds on inter-annual process variation in recruitment 

OM@AC=c(f, g) bounds on autocorrelation of inter-annual recruitment variation 

OM@Reccv=c(j, k) bounds on log-normal observation error on annual recruitment for each nsim  

OM@hcv=hcv observation bias for nsims for steepness parameter 

Notes: 
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Calculations are shown for the Beverton-Holt stock recruitment function, which was 

selected for all 8 species under assessment for SEDAR49. Other stock-recruitment functions are 

also available within DLMtool. 

1.4 Reproductive biology 

~ ( , )ilenM Uniform a b , where lenM is length at 50% maturity  

95 ~ ( , )ilen Uniform c d , where len95 is the growth increment from len50 length at 95% maturity 

   log 1 50 / inf / 0i i i i iageM len L K t    , where ageM is age at 50% maturity 

   95 log 1 95 / inf / 0i i i i iage len L K t   , where age95 is age increment from ageM 

     
,

1
_

1 exp /
age i

i i i

Mat age
ageM age ageM 


 

 , where   is the logistic curvature 

parameter and is calculated using ageM and age95. 

Subscripts t, age, and i denote year, fish age, and simulation run, respectively.  

Observation process 

 
2

~ 0,

DLM_data@L50 exp( 0.5 )

i

i i i

len Normal LenMcv

len LenMcv lenM


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2DLM_data@L95 exp( 0.5 ) 95i i ilen LenMcv len   

User inputs 

OM@L50=c(a, b) bounds on len50 parameter used to simulate stock dynamics  

OM@L50_95=c(c, d) bounds on len95 parameter used to simulate stock dynamics 

OM@LenMcv=LenMcv observation bias for nsims for len50 and len95 

Notes 

User inputs of maturity parameters are in terms of lengths and these values are subsequently 

converted to age-based maturity criteria. For each of nsim simulations, coding ensures that lenMi 

does not exceed 0.8Linfi and that len95i does not exceed 0.9Linfi.  

 

1.5 Cohort equations 

 , , 1, 1, 1, 1,expt age i t age i t age iN N Z     , where N is abundance and C is catch numbers  

, , , , , ,t age i t age i t age iBiomass N W , where B is biomass and W is weight 
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, , , , , ,t age i t age i t age iVBiomass Biomass V , where VBiomass is vulnerable biomass according to 

vulnerability V. 

, , , , , , ,_t age i t age i t age i age iSSB N W Mat age , where SSB is spawning stock biomass and Mat_age is 

maturity at age. 

1, ,
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 , where Depletion is stock reduction relative to unfished state 

Subscripts t, age, and i denote year, fish age, and simulation run, respectively.  

Observation process 
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where Bmsy_B0 is biomass producing MSY as fraction of unfished biomass. 

User inputs 
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OM@Dcv=c(a, b) bounds on annual observation error for depletion observation 

OM@Dbiascv=Dbiascv observation bias for nsims for depletion  

OM@Btcv=c(c, d) bounds on annual observation error for observation of vulnerable biomass 

OM@Btbias=c(f,g) observation bias for nsims for vulnerable biomass 

OM@Iobs=c(j,k) bounds on annual log-normal observation error on biomass index for nsim 

OM@beta=c(u,v) bound on hyperstability/hyperdepletion of index for nsim 

OM@Irefcv=Irefcv observation bias for nsims for biomass index 

 

1.6 Catches and selectivity 
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where C is catch in numbers, CB is catch in weight, Z is total mortality, F is fishing mortality, q 

is catchability, E is effort and V is vulnerability. 

Subscripts t, age, and i denote year, fish age, and simulation run, respectively.  
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Length-based selectivity is inputs, and converted to age-based selectivity within the model, 
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calculated as a double normal: 
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Observation process 
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User inputs 

OM@LFS= a and b are bounds on length at maximum selectivity specified as a fraction of 

length at 50% maturity 

OM@L5= c and d are bounds on length at 5% selectivity specified as a fraction of length at 50% 

maturity 

OM@Vmaxlen= f and g are bounds on selectivity at maximum length. 

OM@LFScv=Dbiascv observation bias for nsims for length at maximum selectivity  

OM@Cbiascv=Cbiascv observation bias for nsims for total catch 

OM@Cobs=c(j, k) bounds on annual observation error for catch 

OM@CAA_nsamp=c(l,m) range of actual sample sizes for catch at age 
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OM@CAA_ESS=c(p,r) range of effective sample sizes for catch at age  

OM@CAL_ESS=c(u,v) range of effective sample sizes for catch at length  

 

1.7 Simulating historic stock dynamics 

 

 Temporal trends are divided into a historical time period and a projection time period. The 

historical time period constructs plausible biological and fishery trends prior to the start of the 

projection time period. At the beginning of the historical time period, the fish stock is initiated in 

an unfished equilibrium state. A user-specified time series of fishing effort provides the basis for 

natural mortality trends during the historical time period. Fishing mortality rates are calculated 

by adjusting a catchability parameter such that corresponding mortality trends produce a user-

specified level of stock depletion at the end of the historic time period. Four user inputs are 

required to describe a temporal effort pattern during the historical time period. Here we use a 

built-in fleet sub-model named “Generic Fleet” to illustrate effort simulation; however, note that 

custom effort trends were used in SEDAR 49. Input parameters using the “Generic Fleet” are: 

OM@EffYear=c(0.0, 0.3, 0.6, 1.0)  

OM@EffLower=c(0.0, 0.4, 0.4, 0.25) 

OM@EffUpper=c(0.0, 0.6, 0.6, 1.00)  

OM@Fsd=c(0.1, 0.4)  

 

OM@EffYear indicates the relative size of each segment of the effort time series. For example, a 

50 year historical time period would have effort segments breaks of 1, 16, 31, and 50. For each 

segment break, a value is drawn from a uniform distribution with minimum and maximum 

values corresponding to OM@EffLower and OM@EffUpper. Linear interpolation is used to 

calculated effort values for years between segment breaks. Finally, inter-annual variation in 
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effort is produced from a log-normal distribution with standard deviation corresponding to 

OM@Fsd. For each simulation run, a unique effort time series is constructed from deterministic 

and stochastic elements (Fig. 1-1).    

1.8 Spatial considerations 

Spatial population dynamics can be simulated in a two-area spatial model. User-defined 

movement between areas allows spatial management strategies to be investigated (Carruthers et 

al. 2014). In SEDAR 49, spatial stock structure was not simulated. Spatial parameter values were 

specified to reflect a fully mixed stock that is equivalent to a single-area operating model.     

1.9 The observation process  

 The “true” simulated values of an OM are connected as inputs to a management procedure 

through an observation sub-model. In proceeding from “true” simulated values to values used in 

management procedures, error is introduced to reflect user-specified levels of imperfect 

knowledge. Imperfect knowledge is introduced in the forms of imprecision and bias. Imprecision 

refers to random inter-annual variation in observable quantities around respective “true” 

simulated values. Bias refers to inaccuracy in a given quantity that occurs for the duration of a 

simulation (i.e. for a unique realization of a historic and projection simulation sequence). 

Simulating bias and imprecision allow measurement of the effects of imperfect information on 

management procedure performance (Carruthers et al. 2014). Error can be specified for several 

parameter types, including natural mortality, the ratios FMSY/M and BMSY/B0, current stock 

depletion, biomass, and catches. Details regarding simulation of imperfect information is found 

throughout the preceding sections.  
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 As an example, log-scale bias in estimation of stock depletion is shown for two built-in 

observation sub-models: “Precise-unbiased” and “Imprecise-biased” (Fig. 1-2A). In each 

simulation run, i, and year, t, estimated depletion is calculated as (see Part 1; section 1.5): 

2 2

, , ,DLM_data@Dt exp( 0.5 )exp( 0.5 ).t i t i t i i iDepletion Derr Derrcv Dbias DBiascv     

Imperfect information is introduced through log-normal error structure, specified as: 

 

 

,

~ ( , )

~ 0,

~ 0, .

i

t i i

i

Derrcv Uniform a b

Derr Normal Derrcv

Dbias Normal Dbiascv





 

In the “Precise-unbiased” scenario, precision ( ~ ( , )iDerrcv Uniform a b ) is specified as a=0.025 

and b=0.100 and bias is specified as 0.20Dbiascv  . In the “Imprecise-biased” scenario, the 

log-normal distribution is modified with a=0.050 and b=0.200 and 0.75Dbiascv  . Introducing 

errors into an MP allows the effects of imperfect information to be propagated into performance 

measures, thus revealing the consequences of data quality on achievement of management 

objectives (Fig. 1-2B). Misspecification of data inputs can also reveal the direction of effects on 

performance measures (Fig. 1-2C).  
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Fig. 1-1. Simulated historical dynamics using the “Generic Fleet” sub-model. (A) Declining 

trend in spawning stock biomass reflects specified depletion range at year 50 of the historic time 

period. (B) Resultant catch relative to year 1 catch. (C) Fishing effort pattern scaled relative to 

year 1 of the historic time period. Solid line is median trend and shaded area is centered 95% of 

simulations.  
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Fig. 1-2. Example distributions of bias (A), management procedure performance in terms of 

biomass relative to biomass associated with MSY (B), and the directionality of the effect of bias 

on long-term catch relative to MSY (C).  
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Part 2: SEDAR 49 operating model modifications 

2.1 Incorporating von Bertalanffy correlation structure 

 

 In DLMtool, OM inputs for inter-simulation variation in von Bertalanffy growth 

parameters are specified by the user as uniform distributions. In generating unique sets of growth 

parameters for a given simulation run, values are drawn from these user specified uniform 

distributions of K, Linf and t0. In building upon this existing framework, it was desirable to 

enable correlated uniform draws for the von Bertalanffy parameters. The OM in DLMtool was 

modified to allow correlated uniform distributions to be simulated using copulas. Copulas are 

functions that join together multiple univariate distributions to form multivariate probability 

distributions (Weisstein). The utility of copulas is that separate univariate distributions (like each 

of the growth parameters) can be joined together though functions that specify dependence 

between these variables, thus enabling simulation of multivariate probability distributions. 

Copulas are used in economics and finance, and credit is provided here to a web source for R 

coding on which the modification to DLMtool was based (Schumann, Embrechts et al. 2001). An 

example of correlated uniform distributions for K and Linf is provided (Fig. 2-1).      

 In DLMtool, runMSE is a wrapper function that carries out MSE. An alternative version 

of this function, named runMSE_LVBcor was coded to allow von Bertalanffy growth parameters 

to be drawn from a multivariate uniform distribution, based on user specified correlations 

between parameters. Verification testing was carried out to check for errors in modified R code. 

First, the performance of runMSE was compared to runMSE_LVBcor when LVB correlation 

parameters were set to 0. The comparison confirmed the expectation that both functions would 

produce equivalent results, suggesting that errors were not inadvertently introduced during 

coding (Fig. 2-2). Second, verification tests were performed to ensure that specified levels of 

correlation between variables were indeed produced in modeling outputs (e.g. Fig. 2-1). 
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Figure 2-1. Example of simulated correlated uniform distribution between K and Linf. Specified 

correlation is -0.76. 
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Figure 2-2. Comparison of MP performance between runMSE (A) and runMSE_LVBcor (B). In 

this verification test, all correlation parameters are set to zero to ensure runMSE_LVBcor 

produces equivalent results to runMSE. nsim=500, reps=1, proyears=40, interval=4, 

Stock=Snapper, Fleet=Generic_fleet, observation=Perfect_info. 

runMSE_LVBcor (B) 

runMSE (A) 
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Part 3: Overview of the role of uncertainty in MSE 

Butterworth (2007) uses the terms management procedure (MP) and traditional approach 

(TA) to setting total allowable catches (TAC) as a means to explain the role of MSE in the 

provision of management advice. The TA may involve the use of “best available science”, 

probably through stock assessment, to estimate current stock biomass and productivity. These 

quantities are translated into TAC recommendations. A MP provides a formula to produce a 

TAC recommendation, and in this context, a MP is similar to the TA  (Butterworth 2007). 

However, these two constructs differ in that a MP (consisting of (i) information collection, (ii) 

data analysis, and (iii) a harvest control rule) is subjected to simulated performance testing 

(Butterworth and Punt 1999, Sainsbury et al. 2000, Butterworth 2007). Importantly, performance 

testing (via MSE) is typically aimed at illuminating trade-offs between the achievement of 

fishery management objectives (Butterworth 2007, Punt 2015).  

Central to formulation of MPs is understanding the consequences of uncertainty for 

achieving management objectives (Punt et al. 2014). For instance, it may be useful to identify 

circumstances under which management objectives may fail to be achieved. It is well established 

that the TA has moved beyond “best fit” or point estimation as the basis for provision of 

management advice, and embraced the evaluation of uncertainty through confidence envelopes, 

sensitivity analysis, and stochastic projections (Hilborn and Liermann 1998, Peterman 2004, 

Butterworth 2007). As a corollary, subjecting MPs to simulation testing enables the 

consequences of management decisions to be evaluated across a broad array of uncertainties, and 

with outcomes evaluated across a variety of management objectives (Butterworth 2007, Punt et 

al. 2014). The following is a non-exhaustive list of some uncertainties that can be incorporated 

into OMs used in MSE:   
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1. Process uncertainty that arises from random variation in ecological systems. Example: annual 

recruitment variability; 

2. Model uncertainty associated with incomplete understanding of the correct structure and 

parameter values used in describing stock dynamics. Examples: natural mortality rate or 

steepness of stock-recruitment function; 

3. Observation uncertainty that arises through imperfect sampling, recording, and measurement 

of data streams. Example: underreporting of catches. 

4. Estimation uncertainty that is typically associated with quantities that are determined through 

statistical analysis. Estimation error arises from observation error and process error in data 

and from structural assumptions associated with statistical analysis. Example: total mortality 

estimation from mean length data. 

Several literature sources provide more extensive lists of scientific uncertainties (Smith 1993, 

Fogarty et al. 1996, Francis and Shotton 1997, Peterman 2004, Haddon 2011, Punt et al. 2014).  

In the context of data-limited fishery management, scientific uncertainties will be a 

substantial consideration in MP formulation (Carruthers et al. 2014, 2015). In DLMtool, 

uncertainties can be represented through specification of alternative OMs using discrete sets of 

parameter values, through Monte Carlo simulation across plausible parameter ranges, or through 

some combination thereof. Developing alternative OMs enables identification of MPs that are 

robust to plausible OM scenarios (Butterworth and Punt 1999, Butterworth et al. 2010). By 

iteratively generating plausible sets of parameter values for one or multiple parameters via a 

Monte Carlo approach, corresponding biological trajectories are produced along with probability 

distributions of performance measures. A combination of discrete scenarios and integration 

across uncertainty in some parameters appears to be a useful approach for precipitating effective 
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management advice about MP selection (Butterworth et al. 2010, Carruthers et al. 2014, 2015, 

Geromont and Butterworth 2015). 

3.1 An example management procedure 

As a demonstration, we implement a MP that calculates a TAC based on an estimate of a 

target harvest rate and current stock biomass (Fig. 3-1). In the discussion of the role of 

uncertainty in MSE that follows, we provide neither a definitive nor exhaustive example and 

recognize that there are alternative approaches to analyzing and interpreting MSEs. This 

demonstration is intended as a simple introduction to MSE within a more complex process of 

providing fishery management advice. The MP we introduce may not be truly “data-limited” in 

any strict sense because biomass estimates are used to calculate TACs. Biomass estimates are 

unlikely to be available in most data-limited circumstances. However, the example is used to 

illustrate some aspects of explicitly considering scientific uncertainties in MP evaluation. In 

addition, actual applications of MSE are most commonly focused on relative performance 

contrasts between several MPs (Smith et al. 1999, Butterworth et al. 2010). For simplicity of this 

demonstration, we focus on a single MP named “Fdem” that is available in DLMtool.   

The Fdem MP is a demographic approach that approximates intrinsic rate of increase using 

estimates of life history parameters and expert judgement about steepness of the Beverton-Holt 

stock recruitment function (Fig. 3-1). The harvest rate associated with MSY (HRMSY) is then 

approximated as ½ of the estimated intrinsic rate of increase. Using an additional input of current 

biomass, a TAC is calculated as: MSYTAC B HR  . TACs are held constant for five years 

between subsequent decisions. This MP is intended to guide stock size towards BMSY and to 

sustain long-term catches in proximity to MSY.  
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3.2 Defining key uncertainties 

In our demonstration, we simulate a generic fish stock that is of concern to resource 

managers because fishing effort continues to increase. In defining key uncertainties, we limit this 

demonstration to model uncertainty and observation and estimation uncertainty.  

Model uncertainty 

The life history of this generic stock is well studied; however the stock-recruitment 

relationship is highly uncertain, including the value of the steepness parameter. In addition, the 

current state of stock depletion is highly uncertain and managers have asked whether long-term 

achievement of management objectives can be obtained using Fdem, regardless of current stock 

status. As a generic approach to data-limited MSE, categorizing uncertainties into scenarios 

reflecting their plausible extents is commonplace (Smith et al. 2009, Carruthers et al. 2014, 2015, 

Geromont and Butterworth 2015). Here, we categorize OM scenarios using a factorial design 

with two levels of depletion (rebuilding status and non-rebuilding status) and three discrete 

levels of steepness that encompass a range of values from 0.4 to 0.99 (Table 3-1). Our plausible 

range for steepness should be assumed to reflect the hypothetical plausibility of this parameter.  

Observation and estimation uncertainty 

 By introducing reasonably realistic levels of observation imprecision and bias into 

parameter inputs, we evaluate whether shifts in MP performance occur as a consequence of 

imperfect information. Since steepness is considered uncertain for our generic stock, there is a 

real possibility that steepness inputs to the Fdem MP would also be highly inaccurate. We use 

the observation sub-model to generate biased inputs to the MP, which enables the influence of 

bias on MP performance to be calculated.  
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3.3 A generic fish stock 

Dynamics for the generic fish stock are age-structured for ages 1 to a maximum age of 19 

years. Natural mortality is 0.18 year-1 and maturity occurs at approximately ½ of maximum fish 

length. A single fishery operates on the stock with full vulnerability occurring at approximately 

½ of maximum fish length. Recruits are generated according to a Beverton-Holt stock-

recruitment function with random recruitment variation specified using a log-normal standard 

deviation SD~U[0.2, 0.4]. Recruitment is the only source of random inter-annual variation (i.e. 

process uncertainty).   

3.4 Understanding management procedure robustness to uncertainty 

Model uncertainty 

 To evaluate the effects of model uncertainty on MP performance, different OM 

configurations are simulated (Table 3-1). Perfect information about “true” simulated value is 

provided to the MP, so that performance measures capture only the effect of different OM 

configurations. Comparison of different steepness scenarios reveals a greater probability of the 

biomass being below BMSY for higher steepness stocks than for lower steepness stocks (Fig. 3-2). 

This lack of robustness to “true” steepness value is explained by recognizing that a positive bias 

between “true” HRMSY and the estimate of HRMSY produced by the Fdem MP appears to be 

magnified at higher steepness values. These discrete scenarios allow performance consequences 

to be teased apart based on current depletion level (minimal) and steepness (potentially 

problematic) (Fig. 3-2). For the rebuilding scenario, we also plot the distributions of terminal 

biomass estimates relative to BMSY to illustrate differences between the use of discrete sets of 

parameter values and the use of Monte Carlo integration across plausible parameter ranges (Fig. 

3-3). The top panel in Figure 3-3 provides a means to calculate the probability of biomass falling 
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below an undesirable threshold as an integrated combination of all plausible steepness values, 

while the lower panels reveal the principle cause of low biomass levels (Fig. 3-3). 

Observation and estimation uncertainty 

When performance of Fdem is contrasted between a scenario that involves perfect 

information and one that involves imprecise and biased quantities, performance measures 

demonstrate the negative effects of data quality (Fig. 3-4). The built-in “Imprecise-biased” 

observation model in DLMtool produces errors on several parameters including a log-normal 

steepness bias that is specified with a standard deviation of 0.3. The distinction between perfect 

information and the imprecise-biased alternative is that observed quantities will no longer retain 

their “true” simulated values when they are used in MP steps that involve analysis or the harvest 

control rule. Demonstrating that an MP can provide satisfactory achievement of management 

objectives even when observed or estimated quantities are in error can be an essential criteria for 

MP selection (Butterworth 2007). As a simple demonstration, our simulated performance under 

imperfect information raises questions about whether the Fdem MP (as currently formulated) 

offers sufficient allowance for scientific uncertainty. The directionality of bias can also be of 

interest (Fig. 3-5). Our simulations suggest that systematic over-estimation of steepness leads to 

biomass decline, which is commensurate with our observation that steepness has a positive 

influence on perceived intrinsic rate of increase, and corresponding estimates of HRMSY. 
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Table 3-1. Operating model scenarios categorized according to current state of stock depletion 

and plausible steepness of the stock-recruitment function. h is steepness, D is stock depletion, U 

is uniform distribution that delineates inter-simulation variation. 

 Steepness scenario 

Depletion scenario low medium high 

Rebuilding phase  ~ 0.4,0.6h U   

 ~ 0.05,0.2D U   

 ~ 0.6,0.8h U  

 ~ 0.05,0.2D U  

 ~ 0.8,0.99h U  

 ~ 0.05,0.2D U  

Non-rebuilding phase  ~ 0.4,0.6h U  

 ~ 0.2,0.6D U  

 ~ 0.6,0.8h U  

 ~ 0.2,0.6D U  

 ~ 0.8,0.99h U  

 ~ 0.2,0.6D U  
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Fig. 3-1. Schematic of a generic management procedure in DLMtool named Fdem. 

 

 

 

 

 

Natural mortality 

Von Bertalanffy parameters 

Age at maturity 

Steepness 

 

Current stock biomass 

 

Demographic 

estimation of: 

HRMSY 

 

Information collection Data analysis Harvest control rule 

TAC = B x HRMSY 

 



27 
 

 

 

Fig. 3-2. Projected performance of Fdem management procedure in terms of biomass level 

relative biomass associated with maximum sustainable yield (B/Bmsy). Shown are median 

trajectories (solid line) and centered 95% of simulation runs. Density plots (solid black) show 

distribution of terminal B/Bmsy. 
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Fig. 3-3. Comparison of terminal B/Bmsy for rebuilding scenario based on different uniform 

distribution ranges used to generate inter-simulation variation in steepness. Contrasted are the 

approach involving generating discrete scenarios (bottom 3 panels) versus the approach to 

integrating across the plausible parameter range (top panel). 
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Fig. 3-4. Comparison of MSE performance when imperfect information is introduced to the 

Fdem management procedure. The rebuilding scenario with steepness integrated across its entire 

plausible range (0.4-0.99) was used in producing two performance metrics: terminal B/Bmsy 

(top panel) and catch relative to MSY (bottom panel). 
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Fig. 3-5. Effect of bias in observed steepness on terminal B/Bmsy Comparison of MSE 

performance when imperfect information is introduced to the Fdem management procedure. The 

rebuilding scenario with steepness integrated across its entire plausible range (0.4-0.99) was used 

in producing two performance metrics: terminal B/Bmsy (top panel) and catch relative to MST 

(bottom panel). 
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