Review of Operating Model Parameters for SEDAR 49: Red Drum

Skyler R. Sagarese, J. Jeffery Isely, and Matthew W. Smith

SEDAR49-AW-04

Submitted: 12 July 2016 Updated: 12 August 2016

This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy.

Please cite this document as:

Sagarese, S. R., J. J. Isely, and M. W. Smith. 2016. Review of Operating Model Parameters for SEDAR 49: Red Drum. SEDAR 49-AW-04. SEDAR, North Charleston, SC. 17 pp.

Review of Operating Model Parameters for SEDAR 49: Red Drum

Skyler R. Sagarese, J. Jeffery Isely, and Matthew W. Smith Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, FL, USA 33149

The first step in a DLMtool data-limited assessment is the development of an operating model (OM) that describes the "true" simulated population dynamics covering the stock and fishing fleet of interest. Within a simulation framework, the operating model represents the biological components of the system to be managed, fisher behavior in response to management actions, how data are collected from the management system, and environmental conditions as well as interactions (Kell et al. 2007; Carruthers et al. 2014; Punt et al. 2014).

During the SEDAR 49 Data Workshop, multiple working groups were convened to review available data and provide recommendations of appropriate life history, stock dynamics and fleet characterizations to aid in parameterizing the OMs. Substantial efforts were also undertaken prior to the workshop which enabled discussion of available literature, data sources, and their reliability at the workshop. A comprehensive literature review of life history parameters was conducted prior to the workshop, with details provided in Adams et al. (2016). A critical component to the Data Workshop was the participation of federal, state, and industry experts in characterizing both stock and fleet dynamics for each of the eight species selected for SEDAR49. Fishermen provided keen insight into potential issues including species misidentification, selectivity patterns, discard mortality, and ecosystem considerations (see SEDAR 49 DW Report, Section 10).

In this working document we describe the parameters recommended and justifications for representing both stock and fleet dynamics within the operating model for Red Drum (*Sciaenops ocellatus*). Although a range of data limitations were discussed at the Data Workshop, our simulation analyses should be able address whether applied data-limited methods perform well under the specified life history type, which is expected to represent Red Drum. It is assumed that the operating model under development, as specified in this document, represents reality and reflects the best available science at this point in time (Table 1). Figures 1 through 8 reveal parameters and their respective distributions, which are provided in Table 2.

Literature Cited:

- Adams, M. S., S. R. Sagarese, and A. B. Rios. 2016. Gulf of Mexico Data-Limited Species Life History Compilation. SEDAR49-DW-05, SEDAR, North Charleston, SC. 36 pp.
- Beckman, D. W., C. A. Wilson, and A. Stanley. 1989. Age and growth of red drum, *Sciaenops ocellatus*, from offshore waters of the northern Gulf of Mexico. Fishery Bulletin 87:17-28.
- Carruthers, T. R., and A. Hordyk. 2016. Package 'DLMtool', version 3.2. 132 pp. Available from: https://cran.r-project.org/web/packages/DLMtool/
- Carruthers, T. R., A. E. Punt, C. J. Walters, A. MacCall, M. K. McAllister, E. J. Dick, and J. Cope. 2014. Evaluating methods for setting catch limits in data-limited fisheries. Fisheries Research 153:48-68. doi: 10.1016/j.fishres.2013.12.014
- Chagaris, D., B. Mahmoudi, and M. Murphy. 2015. The 2015 Stock Assessment of Red Drum, *Sciaenops ocellatus*, in Florida. IHR2015-003, Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, FL. 95 pp.
- Kell, L. T., I. Mosqueira, P. Grosjean, J.-M. Fromentin, D. Garcia, R. Hillary, E. Jardim, S. Mardle, M. Pastoors, and J. Poos. 2007. FLR: an open-source framework for the evaluation and development of management strategies. ICES Journal of Marine Science 64:640-646. doi: 10.1093/icesjms/fsm012
- Punt, A. E., D. S. Butterworth, C. L. Moor, J. A. De Oliveira, and M. Haddon. 2014. Management strategy evaluation: best practices. Fish and Fisheries. doi: 10.1111/faf.12104
- SEDAR. 2015. SEDAR 44: Atlantic Red Drum Stock Assessment Report. SEDAR, North Charleston, SC. 890 pp.
- Then, A. Y., J. M. Hoenig, N. G. Hall, and D. A. Hewitt. 2014. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science: Journal du Conseil:fsu136.
- Thorson, James T., Jason M. Cope, Trevor A. Branch, and Olaf P. Jensen. 2012. Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information. Canadian Journal of Fisheries and Aquatic Sciences 69:1556-1568.
- Wilson, C. A., and D. L. Nieland. 1994. Reproductive biology of red drum, *Sciaenops ocellatus*, from the neritic waters of the northern Gulf of Mexico. Fishery Bulletin 92:841-850.
- Wilson, C. A., and D. L. Nieland. 2000. Variation of year class strength and annual reproductive output of red drum *Sciaenops ocellatus* from the northern Gulf of Mexico. Cooperative Agreement No. NA77FF0549, Coastal Fisheries Institute, Louisiana State University, Baton Rouge, LA. 48 pp.10.1139/f2012-077
- Zhou, S., S. Yin, James T. Thorson, Anthony D. M. Smith, and M. Fuller. 2012. Linking fishing mortality reference points to life history traits: an empirical study. Canadian Journal of Fisheries and Aquatic Sciences 69:1292-1301. doi: 10.1139/f2012-060

Table 1. Operating model parameters for Red Drum. Decisions made at the Data Workshop are color coded for ease of interpretation (red = Life History Working Group recommendation; green = Commercial/Recreational Working Group recommendation; blue = Index Working Group recommendation). Parameters with no color indicate decisions made by the analysts.

OM input	Description	Value or CV	Source
Life-history			
MaxAge	Maximum age of individuals that are simulated (no plus group)	42 y	Maximum age observed (Wilson and Nieland 2000)
R0	Magnitude of unfished recruitment (scaling factor). Normally fixed to some arbitrary value since it simply scales the simulated numbers. Typically can be set to 1000. (Carruthers and Hordyk 2016)	1000	Default value
M	Natural mortality rate	0.160 - 0.184 y ⁻¹	Range based on plausible values of Maximum Age (36 - 42 y) in reliable literature (Beckman et al. 1989; Wilson and Nieland 2000)
Msd	Inter-annual variability in M expressed as a coefficient of variation	c(0,0)	Turned off for now
Mgrad	Mean temporal trend in M, expressed as a percent change in M per year	c(0,0)	Turned off for now
Н	Recruitment compensation (steepness)	0.8 – 1.0	Range considered in SEDAR44 & Chagaris et al. (2015) assessments (Adams et al. 2016)
SRrel	Type of stock-recruitment relationship (1=BH, 2=Ricker)	1	Adams et al. 2016
Linf	Von Bertalanffy asymptotic size	87.8 – 88.3 cm FL	95% Confidence intervals from SEDAR 49 analysis for FL

Linfsd	Inter-annual variability in Linf expressed as a coefficient of variation	c(0,0)	Turned off for now
Linfgrad	Mean temporal trend in Linf, expressed as a percent change in M per year	c(0,0)	Turned off for now
K	Von Bertalanffy maximum growth rate	0.314 - 0.325	95% Confidence intervals from SEDAR 49 analysis for FL
Ksd	Inter-annual variability in K expressed as a coefficient of variation	c(0,0)	Turned off for now
Kgrad	Mean temporal trend in K, expressed as a percent change in M per year	c(0,0)	Turned off for now
vbt0	Von Bertalanffy Theoretical age at length zero	-1.331.25	95% Confidence intervals from SEDAR 49 analysis for FL
a	Length-weight parameter a	1.43E-05	Value from SEDAR49 data analysis from FL (cm) to W Wt (lbs)
b	Length-weight parameter b	3.15	Value from SEDAR49 data analysis from FL (cm) to W Wt (lbs)
D	Current level of stock depletion (Bnow / Bunfished)	c(0.05,0.55)	0.55 based on ratio of SPB in 2013 to unfished from 2015 FWC Red Drum Stock Synthesis model
L50	Length at which individuals are 50% mature	66.5 – 69.5 cm FL	Range of reported values for sexes in Wilson Neiland (1994)
L50_95	Length increment from 50% to 95% maturity (L95-upper L50,L95-lower L50)	c(9,14.5) (original value [11.5, 14.5] results in errors)	Length at full maturity (81.0 cm FL) from Wilson and Nieland (1994)
recgrad	Mean slope in recruitment deviations	c(0,0)	Turned off for now

Perr	Process error in recruitment deviations	0.6 – 0.76	Range considered in SEDAR44 (Adams et al. 2016)
AC	Autocorrelation in recruitment deviations	c(0.19,0.36)	Range derived from Chagaris et al. (2015) FWC red drum assessment. Autocorrelation investigated between: (1) estimated recruits, (2) recruitment deviations, and (3) YOY index
Frac_area_1	Fraction of unfished biomass in area 1 at start of simulation	c(0.095, 0.105)	Default value
Prob_staying	Probability that individuals in area 1 stay there in year	c(0.5, 0.6)	Default value
Fleet			
nyears	Number of years for historical simulation. Should be set as close as possible to the length of time that the fishery has been exploited.	135 y	DW recommended 150 y, but could go with 135 y based on start of 1880 as in other SEDARs
Spat_targ	Distribution of fishing in relation to spatial biomass. 1 = fishers are indiscriminate in where they fish (e.g., bycatch species); > 1 indicates targetting areas of higher biomass	c(1,1)	Default value
LFS	Length at full selectivity (LFS/L50) for representative fleet	c(0.75, 0.78)	52.0 cm; DW Report, Section 8.2
L5	Length at 5% selectivity (LFC/L50) for representative fleet	c(0.62, 0.65)	43.0 cm; DW Report, Section 8.2
Vmaxlen	Vulnerability of oldest age class to representative fleet (controls extent of dome-shaped selectivity)	c(0,0)	Double-logistic (DW Report, Table 8.5.2)
Fsd	Interannual variability in F - determines how much F fluctuates from year to year	c(0.00, 0.71)	Range of interannual variability in annual F for the dominant fleet ("representative") from Chagaris et al. (2015) FWC assessment

qinc	Mean percentage change in fishing efficiency	c(0,0)	Turned off for now
qcv	Interannual variability in fishing efficiency	c(0,0)	Turned off for now
EffYears	Index of effort	Recreational Private	DW Report, Section 6.2.1
Observation			
LenMcv	Bias in length at 50% vulnerability	0.2	Default value for biased, imprecise
Cobs	Log-normal catch observation error	c(0.049, 0.049)	DW Report, Section 5.2.1
Cbiascv	CV controlling the sampling of bias	0.049	DW Report, Section 5.2.1
CAA_nsamp	Number of catch-at-age observations per time step	c(150, 200)	General range of annual composition samples desired; or could use default for biased, imprecise (50,100)
CAA_ESS	Effective sample size	c(10,20)	Default for biased, imprecise
CAL_nsamp	Number of catch-at-length observations per time step	c(150, 200)	General range of annual composition samples desired; or could use default for biased, imprecise (50,100)
CAL_ESS	Effective sample size	c(10,20)	Default for biased, imprecise
CALcv	Lognormal variability in length at age	c(0.29,0.29)	Maximum CV derived from length data for the representative fleet by year
Iobs	Observation error in relative abundance index expressed as a CV	c(1.18,1.18)	Maximum CV for the DISL bottom longline survey, DW Report (Section 7.5.1)
Icv	Observation error in relative abundance index expressed as a CV	1.18	Maximum CV for the DISL bottom longline survey, DW Report (Section 7.5.1)

Mcv	Bias in M sampled from a log- normal distribution with a CV	0.32	Cross-validation prediction error of updated Hoenig (Then et al. 2014); Carruthers et al. (2014) used 0.5
Linfcv	Bias in Linf sampled from a log- normal distribution with a CV	0.001	CV calculated from SEDAR49 analysis: mean = 881 mm FL, SE = 1.123
Kev	Bias in K sampled from a log- normal distribution with a CV	0.01	CV calculated from SEDAR49 analysis: mean = 0.32, SE = 0.003; Carruthers et al. (2014) used 0.2
t0cv	Bias in t0 sampled from a log- normal distribution with a CV	0.03	CV calculated from SEDAR49 analysis: mean = -1.29, SE = 0.033
LFCcv	Bias in length at first capture sampled from a log-normal distribution with a CV	0.65	DW Report, Section 10.4; Carruthers et al. (2014) used 0.5
LFScv	Bias in length at full selection sampled from a log-normal distribution with a CV	0.12	DW Report, Section 10.4
B0cv	Bias in unfished biomass sampled from a log-normal distribution with a CV	4	Default for biased, imprecise
FMSYcv	Bias in FMSY sampled from a log-normal distribution with a CV	0.2	Default for biased, imprecise
FMSY_Mcv	Bias in FMSY/M sampled from a log-normal distribution with a CV	0.11	From meta-analysis (Zhou et al. 2012); Carruthers et al. (2014) used 0.2
BMSY_B0cv	Bias in BMSY/B0 sampled from a log-normal distribution with a CV	0.14	From meta-analysis (Thorson et al. 2012); Carruthers et al. (2014) used 0.2 (default for biased, imprecise)
rcv	Bias in intrinsic rate of increase sampled from a log-normal distribution with a CV	0.5	Default for biased, imprecise (used in Carruthers et al. 2014)

SEDAR49: Gulf of Mexico Red Drum Operating Model Parameters

Dbiascv	Bias in stock depletion sampled from a log-normal distribution with a CV	1	Carruthers et al. (2014) used 1.0
Dcv	Imprecision in stock depletion among years expressed as a CV	c(0.05,0.20)	Default for biased, imprecise
Btbias	Bias in current stock biomass sampled from a log-normal distribution with a CV	c(0.2,5.0)	Default for biased, imprecise
Btcv	Imprecision in current stock biomass expressed as a CV	c(0.2,0.5)	Default for biased, imprecise
Fcurbiascv	Bias in current F sampled from a log-normal distribution with a CV	0.75	Default for biased, imprecise
Feurev	Imprecision in current F among years expressed as a CV	c(0.5,1.0)	Default for biased, imprecise
hev	Bias in knowledge of steepness	0.11	Maximum value of: abs[(range estimate- point estimate)/point estimate]
maxagecv	Bias in maximum age (not currently used)	0.14	Maximum value of: abs[(range estimate- point estimate)/point estimate]
Reccv	Bias in recent recruitment strength	c(0.1,0.3)	Default for biased, imprecise
Irefcv	Bias in relative abundance index at BMSY	0.3	Default for biased, imprecise
Crefcv	Bias in MSY	0.3	Default for biased, imprecise
Brefcv	Bias in BMSY	0.5	Default for biased, imprecise
beta	Parameter controlling hyperstability (< 1)/hyperdepletion (>1)	c(0.33, 3.0)	Default for biased, imprecise

Table 2. Summary of distributions assumed for parameters within the stock, fleet, and observation subclasses within the operating model. Input parameters are as defined in Table 1.

Input Di	istribution		• • • • • • • • • • • • • • • • • • •
		Input	Distribution
Stock subclass		Observation subclass	
MaxAge -		LenMcv	Log-normal
R0 -	• •	Cobs	Uniform
	niform	Cbiascv	Log-normal
	niform	CAA_nsamp	Uniform
U	niform	CAA_ESS	Uniform
	niform	CAL_nsamp	Uniform
SRrel -		CAL_ESS	Uniform
	niform	CAL_cv	-
sd U	niform	Iobs	Uniform
\mathcal{C}	niform	Mcv	Log-normal
	niform	Kcv	Log-normal
sd U	niform	t0cv	Log-normal
grad U	niform	Linfcv	Log-normal
t0 Ui	niform	LFCcv	Log-normal
a -		LFScv	Log-normal
b -		B0cv	Log-normal
D U	niform	FMSYcv	-
L50 Ui	niform	FMSY_Mcv	Log-normal
L50_95 Ui	niform	BMSY_B0cv	Log-normal
recgrad U	niform	rcv	-
Perr U	niform	Dbiascv	Log-normal
AC U	niform	Dcv	Uniform
Frac_area_1 U	niform	Btbias	Uniform
Prob_staying U	niform	Btcv	Uniform
		Fcurbiascv	-
Fleet subclass		Fcurcv	-
nyears -		hcv	-
Spat_targ U	niform	Icv	-
LFS U	niform	maxagecv	-
L5 Ui	niform	Reccv	Uniform
Fgrad -		Irefcv	Log-normal
_	niform	Crefcv	Log-normal
=	niform	Brefcv	Log-normal
_	niform	beta	Uniform

Figure 1. Sampled parameters in the operating model for life history. Parameters include: M =natural mortality, Linf = von Bertalanffy asymptotic size, K =von Bertalanffy growth rate, t0 =von Bertalanffy theoretical age at length zero, ageM =age at 50% maturity (derived from length at 50% maturity), lenM =length at 50% maturity, lenM =15% maturity, Steepness = steepness of the stock recruitment curve, Recr Devs= recruitment deviations.

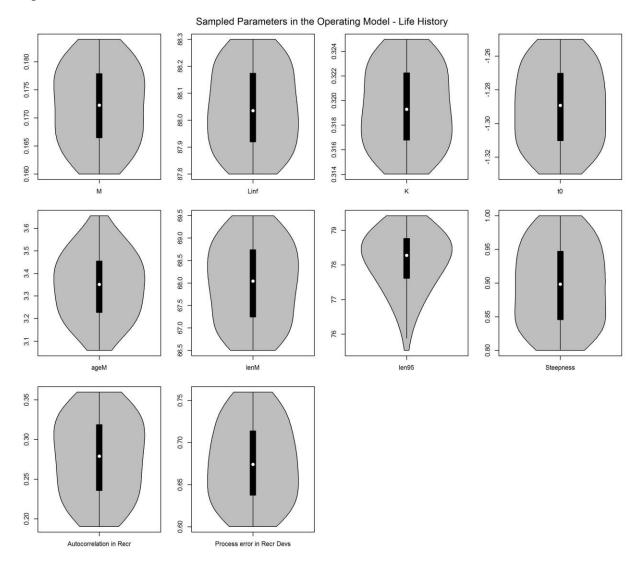


Figure 2. Sampled parameters in the operating model for the fishery. Parameters include: L5 =shortest length corresponding to 5% vulnerability, LFC = length at first capture, LFS = length at full selection, Frac_area_1 = fraction of individuals found in area 1 of a generic two-area model of the simulation framework, Prob_staying = probability that individuals in area 1 remain in that area, F =fishing mortality, Recr Devs = recruitment deviations.

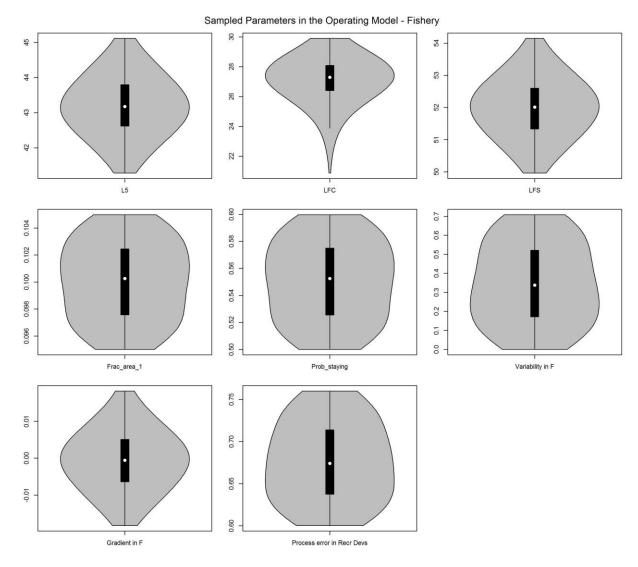


Figure 3. Sampled parameters in the operating model for the reference parameters. Parameters include: RefY = Reference yield (highest long-term yield obtained from fixed F strategy), MSY = maximum sustainable yield, OFLreal = true simulated overfishing limit, BMSY_B0 = most productive stock size relative to unfished, FMSY = fishing mortality rate at maximum sustainable yield, FMSY_M = fishing mortality rate divided by natural mortality rate.

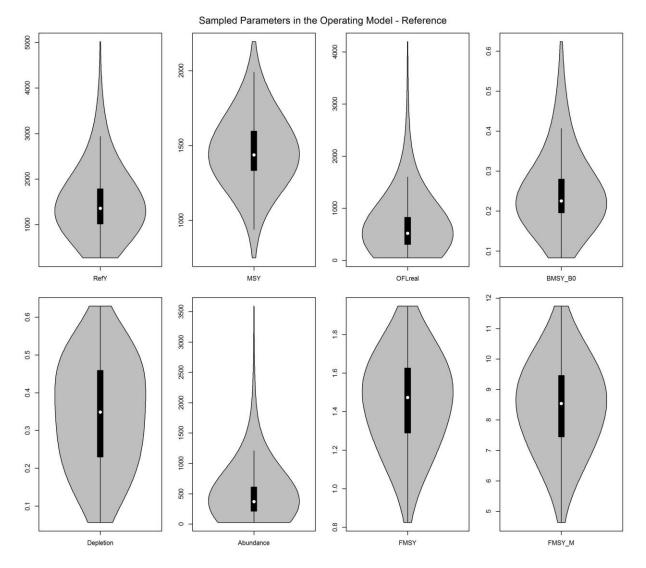


Figure 4. Sampled parameters in the observation model for life history. Parameters as defined in Figure 1 caption, with exception of hbias = bias in steepness parameter. Bias refers to an inaccuracy in an observed parameter that occurs for the duration of a simulation.

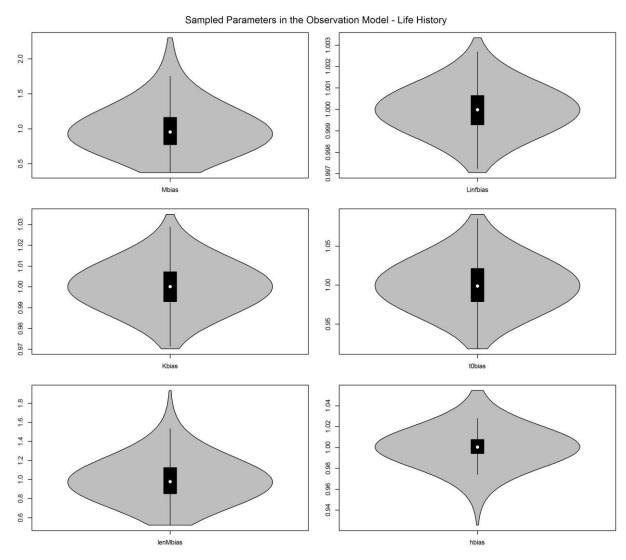


Figure 5. Sampled parameters in the observation model for fishery. Parameters as defined in Figure 2 caption, with exception of Cbias = bias in observed catches. Bias refers to an inaccuracy in an observed parameter that occurs for the duration of a simulation.

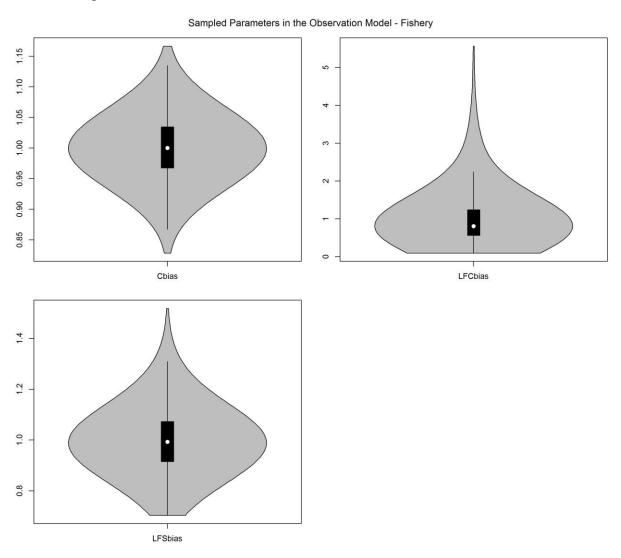


Figure 6. Sampled parameters in the observation model for the index of abundance. Betas is a parameter controlling hyperstability/hyperdepletion.

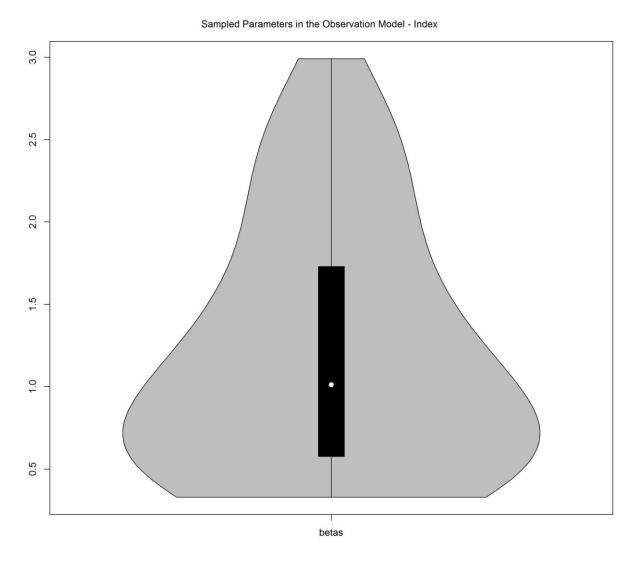


Figure 7. Sampled parameters in the observation model for the size and composition. Parameters include: CAA_nsamp = number of catch-at-age observations per time step, CAA_ESS = effective sample size (independent age draws) of the multinomial catch-at-age observation error model, CAL_nsamp = number of catch-at-length observations per time step, and CAL_ESS = effective sample size (independent age draws) of the multinomial catch-at-length observation error model.

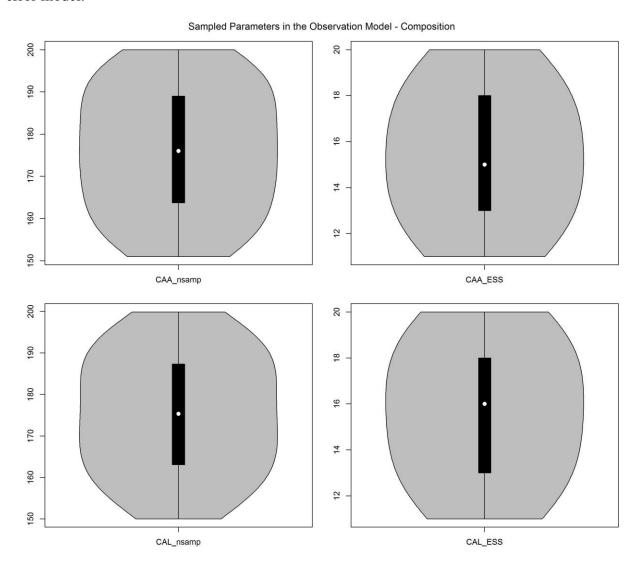
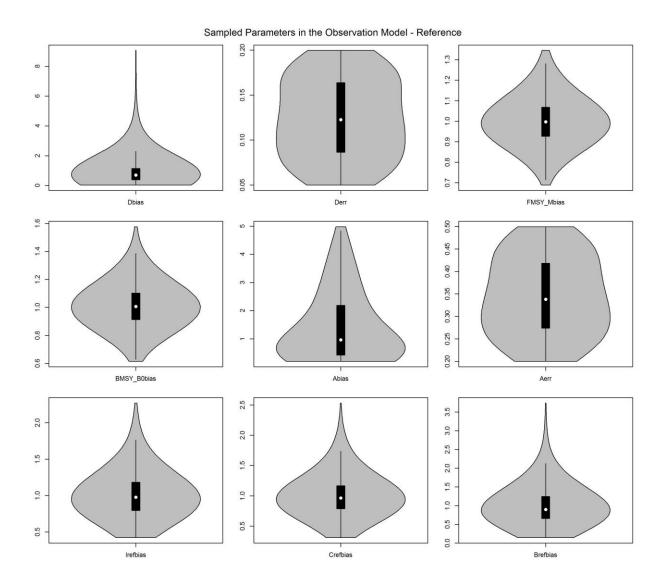



Figure 8. Sampled parameters in the observation model for the reference. Parameters as defined in Figure 3 caption, with exception of D = Depletion, A = abundance, Iref = reference index level, Iref = reference catch level, and Iref = reference biomass level. Bias refers to an inaccuracy in an observed parameter that occurs for the duration of a simulation.

