

SEDAR 46 Stock Assessment Review Workshop

NOAA FISHERIES

Part 1: Introduction

Sustainable Fisheries Division Southeast Fisheries Science Center, Miami, Florida

February 23, 2016

Nancie Cummings and Skyler Sagarese

Outline

- SEDAR 46 Terms of Reference
- Management in the US Caribbean
- Assessment history in the US Caribbean
- Species-island unit selection
- SEDAR 46 stock evaluation approach:
 - 1. DLMtool (Carruthers et al. 2014)
 - 2. Mean Length Estimator

SEDAR 46 Terms of Reference

- 1. Review results of the SEDAR 46 *Data Triage* (SEFSC 2015), documenting available data for US Caribbean species managed by the Caribbean Fishery Management Council.
- 2. Discuss and recommend species with sufficient data for evaluation using data-limited assessment models.
- 3. Apply various data-limited modeling techniques, as appropriate, to the recommended species in order to provide management advice.
- 4. Prepare Workshop report providing complete documentation of workshop actions and decisions in accordance with project schedule deadlines.

SEDAR 46 Terms of Reference (continued)

• TOR1: Review Data Triage results

○ Addressed in Presentation 1: Data Review

- TOR2: *Recommend species* with sufficient data for evaluation using data-limited techniques
 Addressed in Presentation 1: Data Review
- TORs 3-4:

 Addressed in Presentation 2: DLMtool Stock Evaluation and Presentation 3: Mean Length Estimator Evaluation

US fisheries management advice:

Figure modified from National Standard Guidelines 1

• OFLs/ABCs in the US Control

- OFLs/ABCs in the US Caribbean set using data-poor methods (Newman et al. 2015)
- Procedure reliant on recent landings history and catch scalars
 - Often perform poorly in simulation analyses
 - Carruthers et al. 2014
 - ICES 2012
 - Geromont and Butterworth 2014

Catch setting methods in the US Caribbean

SEDAR assessment history in the US Caribbean

Assessment	Year S	pecies	Method
SEDAR 35	2014 Red hind	Epinephelus guttatus	Mean length estimator, Per recruit analyses
SEDAR 30	2013 Queen triggerfish	Balistes vetula	Beverton-Holt length-based mortality estimator
SEDAR 30	2013 Blue tang	Acanthurus coeruleus	Beverton-Holt length-based mortality estimator
SEDAR 26	2011 Redtail parrotfish	Sparisoma chrysopterum	Beverton-Holt length-based mortality estimator
SEDAR 26	2011 Queen snapper	Etelis oculatus	Beverton-Holt length-based mortality estimator
SEDAR 26	2011 Silk snapper	Lutjanus vivanus	Beverton-Holt length-based mortality estimator
SEDAR 14	2007 Yellowfin grouper	Mycteroperca venenosa	None
SEDAR 14	2007 Mutton snapper	Lutjanus analis	None
SEDAR 14	2007 Queen conch	Strombus gigas	None
SEDAR 08	2005 Yellowtail snappe	r Ocyurus chrysurus	Catch-free, ASPIC, yield-per-recruit
SEDAR 08	2005 Caribbean spiny lobster	Palinurus argus	ASPIC, SSASPM, Length-based methods

SEDAR assessment history in the US Caribbean

Assessment Year		Species	Method
SEDAR 35	2014 Red hind	Epinephelus guttatus	Mean length estimator, Per recruit analyses

- Prior to SEDAR 35, no catch limits provided
- Red hind examination was the first to link YPR to an OFL calculation
- Was not used for management advice in the end due to concerns over data in different island platforms

Photos from NOAA Photo Library (http://www.photolib.noaa.gov/).

Species-island unit selection

PR hogfish

PR yellowtail snapper

STT queen triggerfish

STT spiny lobster

STX spiny lobster

STX stoplight parrotfish

SEDAR 46 species assessment history

Species unit assessed	Assessment method	Assessment reference
Puerto Rico hogfish dive	• NA	None
Puerto Rico yellowtail snapper handline	 CPUE trends, examination of changes in length frequency 	SEDAR (2005b)
	Length frequency analyses	Appeldoorn et al. (1992)
St. Thomas queen triggerfish trap	 Length frequency analysis from the pot and trap fishery (Puerto Rico), Gedamke - Hoenig mean length estimator 	SEDAR (2013)
St. Thomas spiny lobster trap	 Stock production model, CPUE examinations, yield per recruit 	SEDAR (2005a)
	CPUE and landings trends	Matos-Caraballo (1999)
	 Landings and length frequency 	Bolden (2001)
	CPUE	Bohnsack et al. (1991)
St. Croix spiny lobster dive	 Stock production model, CPUE examinations, yield per recruit 	SEDAR (2005a)
	CPUE and landings trends	Matos-Caraballo (1999)
	 Landings and length frequency 	Bolden (2001)
	Production model	Mateo and Tobias (2002)
	CPUE	Bohnsack et al. (1991)
St. Croix stoplight parrotfish trap	NA U.S. Department of Commerce National Oceanic and Atmo	None spheric Administration NOAA Fisheries Page 10

Approach #1: Data-Limited Methods Toolkit (DLMtool)

- Collaboration between the University of British Columbia and the National Resources **Defense Council**
- R package consists of a set of peer reviewed data-limited assessment models, control rules and management procedures (MPs)
- Widely available

Improving the Science and **Management of Data-Limited** Fisheries: An Evaluation of Current Methods and Recommended Approaches

AUTHORS

David Newman – Natural Resources Defense Counci hers – University of British Colur nbia, Fisheries Centre ice, Southwest Fisheries Science Center (Retired) National Marine Fisheries Service, Southeast Fisheries Science Center

Subset of management procedures (MPs) in DLMtool

											[Dat	a Ir	npu	ıts								
Method / Management Procedure	Description	Reference		L50	vbt0	vbK	vbLinf	wid	steep	MaxAge	AVC	LFC	LFS	CAA	EMSY M	BMSY BO	Cret	brei Iraf	Ind	Rec	đ	Dep	Mprec
Catch-based																							
CC4	Constant Catch linked to average catches (TAC = 0.7 x C _{average})	Geromont and Butterworth (2014b); Carruthers et al. (2015)																					
SPMSY	Surplus Production MSY	Martell and Froese (2012)																					
Index-based																							
Islope	CPUE slope (maintain constant CPUE)	Geromont and Butterworth (2014b); Carruthers et al. (2015)																					
Depletion-bas	ed																						
DCAC	Depletion-Corrected Average Catch (DCAC)	MacCall (2009); Carruthers et al. (2014)																					
Abundance-ba	ased																						
Fratio	FMSY to M ratio	Gulland (1971); Walters and Martell (2002); Martell and Froese (2012); Carruthers et al. (2014)																					
Data-moderat	Data-moderate																						
DD	Delay-Difference stock assessment model	C. Walters; Carruthers et al. (2014)																					
Length-based																							
LstepCC1	Mean length (Mean length relative to historical levels used to alter TAC; TAC = C ^{average})	Geromont and Butterworth (2014b); Carruthers et al. (2015)																					

Full list of MPs provided in Table 3.2.1

Advantages of the DLMtool approach

- Applies closed-loop management strategy evaluation (MSE) that allows for testing performance of MPs
- Facilitates sensitivity testing of catches to data inputs
- Products provide quantitative guidance on prioritizing data collection in a cost-effective manner
- Promotes transparency, credibility, and increased buy in from fishery managers and stakeholders
- Integrates feedback control into the decision making process not presently considered in the US Caribbean

Applications of the DLMtool

- Being considered for "*interim*" management advice in some regions for data poor species (2 regions)
 - Mid-Atlantic Fishery Management Council

MID-ATLANTIC HISHERY MANAGEMENT

- Black sea bass (Nov 2015) advice used to set catches
- Atlantic mackerel (April 2015)- exploratory
- New England Fishery Management Council
 - Catch Advice Methods for the Northeast Multispecies Fishery

SEDAR 46 Stock evaluation approach using DLMtool

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 15

DLMtool Step 1: Management Strategy Evaluation (MSE)

- Specified species-island unit operating models (OMs) with 3 subclasses:
 - Stock: representative of the stock dynamics
 - Fleet: representative of fishery characteristics
 - Observation: parameters control data quality in simulation
- Parameterized 1) "base" OM and 2) "alternatives" OMs based on varying inputs to address sensitivities
- OMs assumed to capture reasonable ranges of life history and fishery dynamics for each species-island unit

MSE inputs by OM component

Stock: life history and depletion

"Name" "maxage" "R0" "M" "Msd" "Mgrad" "h"

"SRrel" "Linf" "K" "tO" "Ksd" "Kgrad" "Linfsd"

"Linfgrad" "recgrad" "a" "b" "D" "Perr" "Size_area_1"

"Frac_area_1" "Prob_staying" "AC" "L50" "L50_95" "Source"

Fleet: fishery selectivity and index of fishing effort

"Name" "nyears" "Spat_targ" "Fsd" "Fgrad" "qinc" "qcv" "L5" "LFS" "Vmaxlen"

Observation: quality of data inputs

"Name" "LenMcv" "Cobs" "Cbiascv" "CAA_nsamp" "CAA_ESS" "CAL_nsamp" "CAL_ESS" "CALcv" "lobs" "Mcv" "Kcv" "tOcv" "Linfcv" "LFCcv" "LFScv" "B0cv" "FMSYcv" "FMSY_Mcv" "BMSY_B0cv" "rcv" "Dbiascv" "Dcv" "Btbias" "Btcv" "Fcurbiascv" "Fcurcv" "hcv" "Icv" "maxagecv" "Reccv" "Irefcv" "Crefcv"

"Brefcv" "beta"

Stock: Life History

		DLMto					
Input	Definition	MSE stock input range (lower bound, upper bound)	Real world input (point estimate & CV)	Units			
Von Bertalanffy	Asymptotic length	Linf	vbLinf	mm FL			
Growth	Brody growth coefficient	К	vbK	year -1			
	Theoretical age at length 0	tO	vbt0	years			
Weight-length	Weight-length scalar	а	wla	dimensionless			
	Weight-length power	b	wlb	dimensionless			
Maturity	Length at 50% maturity	L50	L50	mm FL			
	Length at 95% maturity	L50_L95	L95	mm FL			
Maximum age	Maximum age	maxage	MaxAge	years			
Natural mortality	Natural mortality	Μ	Mort	year -1			
Steepness Steepness of the spawner-recruitment curve		h	steep	dimensionless			

Life History inputs obtained from SEDAR 46 DW/AW data triage and expert opinion

Stock: Depletion

- <u>Highly uncertain</u> estimate obtained from ML2D function in DLMtool using:
 - Mean length observations obtained from the NOAA Fisheries, Southeast Fisheries Science Center [SEFSC] Trip Interview Program database, TIP samples
 - OM parameters (life history, selectivity)

Rough estimate of depletion obtained from SEDAR 46 DW data triage

Depletion

Fleet: Fleet selectivity & derivation

- Derived from *length composition* of representative fishery
 - LFC = length at first capture
 - LFS = length at full selection

Length Frequency Histogram & Logistic Fit to Cumulative Length Composition

Fleet: Effort

- Index of fishing effort
- Derived from most
 representative fleet
 - Trend in most recent
 5 years (red box)
 sets Fgrad

	80000	
	70000	
	60000	
ours	50000	
Ē	40000	
LISI	30000	
	20000	
	10000	-
	0	α - 7 α - 7
		198: 198: 198: 199: 199: 199: 199: 199:

Inputs: SEDAR 46 DW/AW data triage

Trend in Effort	Fgrad
Decreasing	c(-1,0)
Constant	c(-0.5, 0.5)
Increasing	c(0, 1)

Fleet: Fishery characteristics

- Vulnerability of oldest age class
 - controls extent of dome-shaped selectivity

Asymptotic

Dome-shaped

=1

<1

OM sensitivities – Stock subclass

Examined <u>assumptions on life-history parameters</u> due to concerns raised by the Life History Working Group:

- Difficulty in assigning CVs to parameters
- Parameters from outside U.S. Caribbean
- Base stock: assumed ±15% variability in M, Linf, and K
- Alternative stock: assumed ±5% variability in M, Linf, and K

OM sensitivities – Fleet subclass

Examined <u>assumptions on selectivity</u> due to concerns raised and discussed at the SEDAR46 DW/AW Workshop Juan

- Base fleet subclass:
 - Asymptotic selex: (Vmaxlen = 1.0)
 - PR hogfish, PR yellowtail snapper, STX stoplight parrotfish
 - High dome-shaped selex: (Vmaxlen range = 0 0.5)
 - STT queen triggerfish, STT spiny lobster, STX spiny lobster
- Alternative fleet subclass:
 - Moderate dome-shaped selex: (Vmaxlen = 0.2 0.5)

OM sensitivities – Observation subclass

Examined assumptions on the quality and bias in data inputs

- **Base observation**: Precise, unbiased data inputs
- Alternative observation: Imprecise, biased data inputs
 - Note that observation model parameters are based on assumptions and not analyses

Simulation framework

- DLMtool applied in a simulation framework to aid in identifying applicable management procedures (MPs) meeting specific performance criteria identified by stakeholders (fishers, scientists, managers) at the SEDAR 46 DW/AW workshop
 - Simulations: n=500
 - Repetitions: n=250
 - Projection duration: 40 years
 - Assessment interval: 3 years

MSE performance criteria determined by SEDAR 46 DW/AW Panel and supported by CFMC/SSC

- Explored relative performance among MPs using:
 - Probability of not overfishing (**PNOF**):
 - Restricted results to $Pr[NOF] \ge 50\%$
 - Probability of the biomass remaining above half BMSY (B50):
 - Restricted results to $Pr[B50] \ge 50\%$
 - Average annual variability in yield to remain within 15% (AAVY):
 - Restricted results to $Pr[AAVY < 15\%] \ge 50\%$

MP selection for catch recommendations

Should consider at a minimum:

- Are MP <u>assumptions</u> met or violated
- <u>Tradeoffs</u> in performance metrics
- <u>Sensitivity</u> of catch estimates to input parameters
- Data quality used in interpretation of results
 - E.g., are depletion and/or abundance estimates reasonable?
 - E.g., is the index of abundance representative of trends in the resource?
- *MPs should not be* selected simply on yield results (i.e., which MP produces highest catch recommendation)

DLMtool Step 2: Calculation of catch recommendations (i.e., TACs)

Definition:

• TAC = overfishing limit (OFL) for most MPs

Real world data inputs for catch recommendations

- Total removals
- Index of abundance

- Length composition
- Depletion

• Current abundance:

Abun=Catch/FMSY/M x Mort

- Catch = terminal year catch
- FMSY/M assumed equal to 0.75
- Mort estimated by SEDAR 46 DW/AW life history group

Review: SEDAR 46 DLMtool Approach (MSE and real world application)

Step 1: MSE

- Specify MSE inputs for OMs
- Specify alternatives OMs
- Specify performance criteria
- Identify feasible MPs
- Run MSE
 - Comparison of MP results
 - Convergence
 - Tradeoffs
 - Sensitivities

e MPs

Step 2: TAC

- Calculate real world
 TACs
 - Sensitivities
- Guidance for
 interpretation of results

Approach #2: Mean Length Estimator

- Non-equilibrium extension of the Beverton-Holt mean length mortality estimator
 - Gedamke and Hoenig (2006)
- More detailed methods and results will be presented by Quang Huynh in Presentation 3

Questions & Comments: DLMtool Methods & Approach

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 33

Proceeding to step 2: SEDAR 46 Results

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 34