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a  b  s  t  r  a  c  t

Stock  synthesis  (SS)  is  a statistical  age-structured  population  modeling  framework  that  has  been  applied
in a wide  variety  of  fish  assessments  globally.  The  framework  is  highly  scalable  from  data-weak  sit-
uations  where  it operates  as  an  age-structured  production  model,  to  complex  situations  where  it  can
flexibly  incorporate  multiple  data  sources  and  account  for  biological  and  environmental  processes.  SS
implements  compensatory  population  dynamics  through  use of  a function  relating  mean  recruitment
to  spawner  reproductive  output.  This  function  enhances  the  ability  of  SS  to  operate  in data-weak  situa-
tions  and  enables  it to estimate  fishery  management  quantities  such  as  fishing  rates  that  would  provide
for  maximum  sustainable  yield  and  to employ  these  rates  in  forecasts  of  potential  yield  and  future
stock  status.  Complex  model  configurations  such  as  multiple  areas  and  multiple  growth  morphs  are

possible,  tag-recapture  data  can  be used  to aid estimation  of  movement  rates  among  areas,  and  most
parameters  can  change  over  time  in  response  to  environmental  and  ecosystem  factors.  SS is  coded  using
Auto-Differentiation  Model  Builder,  so  inherits  its  powerful  capability  to  efficiently  estimate  hundreds
of  parameters  using  either  maximum  likelihood  or Bayesian  inference.  Output  processing,  principally
through  a package  developed  in  R, enables  rapid  model  diagnosis.  Details  of  the  underlying  population
dynamics  and  the  statistical  framework  used  within  SS  are  provided.
. Introduction

Fishery stock assessment models are demographic analyses
esigned to determine the effects of fishing on fish populations
nd to evaluate the potential consequences of alternative harvest
olicies. The conceptual framework for these analyses is provided
y simple models of the demographic processes birth, natural and
shing death, growth, maturation, and movement. However, it is
are that sufficient information on all these processes is available
ver the time period during which a fishery has affected the stock
n question. The history of fish stock assessment models was  dom-
nated in early years by two, quite different approaches to this
roblem. One branch of investigation used a time series of an

ndicator of stock abundance, typically based on the standardized
atch rate in the fishery as a proxy for stock abundance, and the
ime series of fish catch to calibrate a simple two-parameter pro-
uction model (e.g. Schaefer, 1954) that could provide inference

bout current and target fish stock abundance and the maximum
ustainable yield. The other approach, cohort analysis or virtual
opulation analysis (VPA), depended on a time series of detailed
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fishery catch-at-age data to reconstruct the virtual abundance of
each annual cohort that had been fished (Pope, 1972; Laurec and
Shepherd, 1983). This virtual population analysis approach works
best when fishing mortality rates have been higher than natural
mortality rates, but only reconstructs the historical abundance and
fishing mortality rates. Population productivity is then estimated
by fitting a functional relationship between the expected value of
annual recruitment and spawning stock abundance.

Over the past 20 years, there has been development of a third
approach to the fishery analysis problem. Integrated analysis (IA)
(Maunder and Punt, in this volume) takes a more inclusive approach
to modeling the population dynamics and utilizing a wide range of
available data. A definitive beginning for IA is the landmark paper
by Fournier and Archibald (1982).  The stock synthesis (SS) imple-
mentation of IA began during the early 1980s (Methot, 1986, 1989)
following Fournier’s pioneering work and adopted many of the
characteristics of his approach.

Why  “stock synthesis”? The term synthesis is used in the con-
text of development of a new product that is more than an amalgam
of its disparate parts. In fish stock assessments, different kinds of

data can provide complementary information about the stock of
fish, but one source may  not be sufficient in itself to provide a com-
plete picture of the stock’s abundance and the impact of fishing on
the stock. SS inherently blends the population estimation paradigm

dx.doi.org/10.1016/j.fishres.2012.10.012
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:richard.methot@noaa.gov
dx.doi.org/10.1016/j.fishres.2012.10.012
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f virtual population analysis with the population productivity
aradigm of biomass dynamics models. The population dynamics
ub-model of SS is quite comparable to the population dynamics
ound in most statistical catch-at-age models. However, the obser-
ation sub-model of SS is highly developed to use a wide range of
vailable types of data to calibrate the model. The observations that
an be included in SS include: fishery CPUE or effort; survey abun-
ance; discards; length-, age- and weight-composition data; and
ag-recapture data. Technical details are provided in Appendix A to
pdate Methot (2000).  The estimation of target fishing mortality
ates and application of these rates in forecasts of potential fishery
ield and stock status have been developed extensively in SS. SS
volved as much from an ecological perspective as from a statis-
ical perspective. Thus, it includes capability to use time series of
nvironmental and ecosystem factors to influence the population
ynamics and observation processes over time.

SS has evolved and grown to meet the needs of the fishery stock
ssessment community over the past near 30 years. 35 stocks in
he US, 10 tuna/billfish in three oceans, four European stocks, and
2 Australian stocks have been assessed using this approach by
012 (Appendix B). Major milestones in this history are recapped

n this paper and the current set of SS features is described. Updates
o the technical description will be made available on the web to
ocument the evolving features of SS.

. History

The stock synthesis assessment approach has progressed
hrough three major stages of development since its beginning 30
ears ago. These stages include an initial development for northern
nchovy, Engraulis mordax, in which the basic concept was estab-
ished, re-development as a generalized model focused on west
oast groundfish, and a third stage in which the computer code
as translated to ADMB (Fournier et al., 2011) to take advantage of

he power of automatic differentiation.

.1. Anchovy synthesis

The original model for northern anchovy (Methot, 1986, 1989)
elded several diverse data sources. Age-composition data were

vailable from the fishery, but fishing mortality rates were low and
ging imprecision was a factor, so virtual population analysis could
ot be used. An egg and larval survey provided a time series of
elative spawning biomass, but surveys were triennial during much
f the time period, thus hampering a production model approach.

 new Egg Production Method had been developed (Lo et al., 1992)
o provide a fully calibrated, direct measure of spawning biomass,
ut only a few estimates by this method had been conducted by the
arly 1980s. The anchovy synthesis model integrated these diverse
ata types into an age-structured history of the anchovy stock off
alifornia.

The anchovy SS model incorporated several factors related to the
iology of this fish. A latitudinal gradient in age composition and
uctuating ocean conditions that shifted this gradient north-south
xposed a varying component of the stock to the relatively station-
ry fishery. Time-varying fishery selectivity was  incorporated in
he model to deal with this phenomenon. Second, biological stud-
es demonstrated a temperature dependence on anchovy maturity
Parrish et al., 1986). Thus, inclusion of environmental effects
ocean temperature) on biological factors (age-specific maturity) in
he model helped to explain the dip and then rapid resurgence of

he larval index during the early 1970s. Third, anchovy are a forage
sh and a known predator, Pacific mackerel Scomber japonicus, was
hanging rapidly in abundance. Thus, time-varying natural mortal-
ty as a function of an external ecosystem driver, the abundance
s Research 142 (2013) 86– 99 87

of Pacific mackerel, was a feature of the model. These concepts
of time-varying factors linked to environmental and/or ecosystem
factors have remained in SS ever since. Unfortunately, situations in
which there has been sufficient information to invoke these fea-
tures have been rare.

A bit of history is worth noting at this point. The anchovy SS was
built at the dawn of the personal computer era. It was written in
FORTRAN for hand-built computers termed the “LaJolla Standard”
running the CP/M operating system with 8-in. floppy disks as the
storage medium. Overnight model runs were normal and the code
was  laced with line printer statements so that something could
be retrieved after various failures. In hindsight, as computers have
become orders of magnitude faster, the complexity of our mod-
eling approaches have kept pace so that weekend long Markov
Chain Monte Carlo (MCMC) runs now represent the frontier of our
patience for waiting for model results.

2.2. Moving to groundfish

The second stage of SS evolution began in 1988 as NOAA’s
Alaska Fisheries Science Center sought improvement to the mod-
eling framework for west coast groundfish, particularly sablefish
(Anoplopoma fimbria) and Pacific hake (whiting) (Merluccius pro-
ductus).

The principle challenge for sablefish was to find a way to take
advantage of the new, but growing, time series of fishery and sur-
vey size-composition data. Aging data were scarce and fraught
with aging imprecision and bias. The modeling concept devel-
oped to deal with this situation treated all composition data as
a proxy for the actual, true age-composition of the fishery catch
or a survey. A matrix in the model transformed the estimate of
true age-composition into an expected value for the composition
as measured. The transformation matrix could be a simple 1:1 rela-
tionship if the fish aging was asserted to be perfect, could be an
age matrix that included aging imprecision and/or bias, or could
be a matrix that transformed the age-composition into a length-
composition estimate using the growth curve (Methot, 1990). Also,
sablefish were caught with fishing gear that was size-selective for
larger sablefish, but older sablefish were known to diffuse into
deeper water out of the range of most fisheries, so the sablefish
SS model incorporated both size- and age-selectivity that could be
applied simultaneously. Finally, use of the size-composition data
required a growth curve, but external estimates of the growth
curve would have been biased by the inability to account for size-
selectivity and aging imprecision. Thus, the sablefish SS model
included the ability to estimate growth parameters while account-
ing for the influence of size-selectivity and aging imprecision. Data
that enabled estimation of growth parameters included modes in
the size-composition data and observed mean size-at-age data.

The situation for Pacific hake was quite different than for sable-
fish. Here there were complete age-composition data from the
fisheries and surveys extending nearly 20 years and a history of
modeling using VPA. The interest was in exploration of alternative
modeling approaches, especially approaches that could address the
strong inter-annual shifts in stock abundance between the US and
Canada in response to el nino – la nina ocean conditions. An SS
model was  constructed using only age-selectivity in the fishery pro-
cess. Its innovation was in allowing for multiple stock areas with
annually varying proportion of the stock in each area (Methot and
Dorn, 1995).

Since the inception of the sablefish and hake SS models in 1988
and 1989, their use expanded beyond sablefish and hake to most

Pacific coast groundfish by the late 1990s. As this usage grew, ADMB
was  being used by numerous researchers to create other statisti-
cal catch-at-age models. The SS models were coded in FORTRAN
and used numerical derivatives to obtain the gradient information
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eeded to iteratively search for the best set of model parameters.
he analytically calculated derivatives available through ADMB
ffered faster and better model performance.

.3. Reborn in ADMB

The SS transition to ADMB provided an opportunity to merge
he features of the FORTRAN-coded models for sablefish and hake
nto a fully generalized framework. SS then inherited the powerful
eatures of ADMB for rapid model convergence and variance esti-

ation through inverse Hessian or Bayesian MCMC  approaches.
his model, termed SS2, began to be used for west coast ground-
sh assessments in 2005. Evolution of SS2 was rapid and a major
e-work of some internal structures in 2009 led to the awkward
enaming as SS3.

A note on SS nomenclature and distribution is worth includ-
ng here. Today, the model executable code is labeled SS3, but the

odel framework itself is generically referred to as SS. Upgrade
ersions are tracked with a specific nomenclature. In 2012, SS is
t V3.24f where the 3.2 refers to a major model update involving
andatory changes to input files, the “.x4” refers to the addition of

ome specific feature usable in particular circumstances, and the “f”
eeps track of minor tweaks and fixes. The history of model updates
s distributed with SS as an annotated, filterable list, and the spe-
ific version information and compile date are output at the top of
ll SS output files.

. Overview of features

The detailed features and formulas found in SS are described in
ppendix A. The sections below provide a brief overview of major

eatures of SS: stock-structure, spawner–recruitment, life history
nd biology, selectivity, fishing mortality, observation sub-model,
shery management targets and forecasting, variance estimation,
nd output processing.

.1. Stock structure

The total population can be divided among one to many bio-
ogical entities, and the numbers-at-age of each entity are tracked
ver time. Some of these can have unique biology (gender, growth
nd natural mortality) and some can have a unique season of birth
ithin a year. The total of all entities born within a year is referred

o as a year-class or cohort. Each of the biologically or birth season-
elineated entities will be referred to as a morph. Each morph can
e divided into males and females with gender-specific growth and
atural mortality rates. In addition, each morph can be sub-divided

nto slow-, medium- and fast-growing entities termed platoons
Goodyear, 1997). The phenomenon of platoons within a morph
s not observable. However, the logic of their existence is as bio-
ogically simple as the concept that a fish that is near the upper
nd of the size-at-age distribution one year will be within that
pper distribution during the following year. Expected values for
ll observations are based on summation over all platoons and
orphs, except male and female data can be kept disaggregated.
To the extent that size-selective fisheries are implemented,

ach slow-, medium- and fast-growing platoon will have unique
ge-specific mortality and survivorship (Taylor and Methot, in
his volume). The age-specific mortality on a platoon is calculated
ccording to the average selectivity-at-age, which is the dot prod-
ct of selectivity-at-size and the normal distribution of size-at-age
or that platoon. Thus, there can be differential survival between
orphs with different growth rates and between platoons within
 morph.

In a multiple area model configuration, each entity can be dis-
ributed across multiple areas at birth and move between areas
s Research 142 (2013) 86– 99

according to the unique age-specific movement rates of their
morph. The model parameters that control the proportion of the
total number of births to each morph and subsequent movement
rates are potentially estimable with sufficient data and, like all
parameters in SS, can be defined to change over time. If the morph
feature is being used with platoons, then the platoons move iden-
tically to their parent morph. Size- and age-specific mortality is
applied within each area to each entity occurring in that area.

In practice, most SS configurations have just two morphs, one for
females and one for males, and only one platoon per morph. More
complex situations can be created to more closely match biologi-
cal reality. For example, a model with two morphs, three areas and
four seasons could have one morph recruit in area 1 and the other
morph recruit in area 2, then both morphs migrate seasonally into
area 3 and then back to their natal area in a later season. Models
with five areas have been created for bigeye tuna Thunnus obesus
(Aires-da-Silva and Maunder, 2012). Another morph-related con-
cept is hermaphroditism. Just as fish of a given platoon can move
between areas at the end of each time step, the hermaphroditic
function allows an estimable fraction of the females to transfer into
the corresponding male platoon at the end of the time step.

3.2. Spawner–recruitment

The spawner–recruitment function defines the linkage between
the reproductive potential (total fecundity) of females and the
expected total number of age zero animals. In a single gender
model, all fish are implicitly female; there is no division into males
and females and only total abundance is modeled and reported.
Male mature biomass is included in the calculation of reproduc-
tive potential in a two-gender model only when hermaphrodicity is
accounted for. The Beverton–Holt spawner–recruitment function is
most commonly used and other available functions include Ricker,
hockey stick and a three-parameter survivorship-based function
(Taylor et al., in this volume). In a multi-area model, the stock’s
reproductive potential is summed over all areas to create a global
spawner–recruitment relationship. All female morphs and pla-
toons contribute to the global reproductive potential which will
create the next global recruitment of a cohort, which is then dis-
tributed among the platoons and morphs. There is no heritability to
carry the surviving proportions among platoons and morphs into
the next generation.

The output of the spawner–recruitment function is the expected
mean number of age-0 animals, not the median number. When
lognormal recruitment deviations are applied, they are added to
a downward bias adjustment from the logarithm of this expected
mean recruitment to account for the expected difference due to
the variability among the estimated recruitments (Appendix A,
Eq. (A.1.7))  (Methot and Taylor, 2011). The magnitude of this bias
adjustment offset can change during the time series being analyzed.
In maximum likelihood estimation, it should approach zero in data-
poor historical eras with insufficient data to estimate the time
sequence of recruitment deviations. The offset should approach the
maximum only where there are sufficient data to estimate the time
sequence of recruitment deviations with high precision. Because
the population’s biomass is dependent on the mean recruitment,
not the median recruitment, this offset approach assures that the
expected biomass will not change as a consequence of having
more data from which to estimate the true recruitment deviations
(Methot and Taylor, 2011; Stewart et al., in this volume). In MCMC
estimation, the bias adjustment is set to 1.0 for all years because the
estimation procedure will integrate over the full lognormal range

of potential recruitments.

The duration of the life stage between spawning and recruit-
ment to the population is not explicitly modeled, so the age 0
animals instantly exist as early as the start of the time step in which
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pawning occurs. The cohort begins to experience age-specific nat-
ral and fishing mortality and to grow according to the defined
rowth function at this time. In a multi-season model, the total
umber of age 0 animals can be distributed among seasons start-

ng with the season in which spawning occurs and ending with
he last season before the next spawning event. Thus, some of the
ge 0 animals have their age 0 event delayed until the start of a
ubsequent season. These later-born morphs are identified by their
irth season. Even if these later-born morphs have the same growth
arameters as early-born morphs, their delayed age zero event will
ause them to be smaller at calendar age than the earlier-born
orphs. However, for the purposes of age determination, all fish

orn in a calendar year are considered to have the same integer
ge and to graduate to the next integer age on January 1 of the fol-
owing year. Care must be taken when assembling data for input
o SS to assure that the manner in which integer ages are assigned
y otolith readers matches this convention in the modeling of age
rogression.

.3. Life history/biology

Fish body weight is needed to convert the modeled numbers-at-
ge into quantities such as total catch biomass or a biomass-based
bundance index. SS provides an approach for inputting empirical
ody weight-at-age observations, but typical applications gener-
te estimated body weight-at-age from biological processes in the
odel. The empirical body weight-at-age approach is common in

tatistical catch-at-age models and appropriate when there is high
recision in these data. However, if these data are not of high pre-
ision, the variance in these empirical body weights-at-age should
ontribute to variance in model estimates. SS provides the capa-
ility to calculate body weight-at-age from a length-at-age growth
unction for each morph, which itself is based on estimable param-
ters, a body weight-at-length function, and size-selectivity of the
shery to which that body weight-at-age pertains. This capability
as critical for the first SS models for Pacific coast sablefish where

ge data were uncertain. In this approach, SS calculates a different
ody weight-at-age for the retained fish versus the discarded fish
f each fishery for which a size-based retention function is applied.
S calculates mean body weight at true age for use in population
ynamics. Mean body weight (or length)-at-age data can be input
o SS for model calibration and will inform the estimation of growth
arameters while taking into account effect of size selectivity and
ging imprecision. Differences in body weight data between fleets
ill influence estimation of size selectivity for these fleets. Differ-

nces in body weight data between retained and discarded fish will
nfluence estimation of the size-retention function. The full integra-
ion of growth estimation, size selectivity and retention estimation,
nd aging imprecision is a major strength of SS.

Body growth in length is calculated according to a growth func-
ion, typically the von Bertalanffy. When the model configuration
ncorporates time-varying growth, the current year’s parameters
re applied to the current size-at-age of each biological entity to
alculate its growth increment toward the current asymptotic size
or that morph. Thus, growth is according to morph and fish can-
ot shrink even if the asymptotic size becomes reduced below their
urrent size, although in the hermaphroditic model configuration
he gender change causes an immediate switch from female size-
t-age to male size-at-age so care must be taken in the setup of the
rowth curves. Another model feature allows for cohort-specific
rowth rates (but not cohort-specific asymptotic size) which could
e relevant if there is density-dependent growth according to rela-

ive cohort abundance. Fish of each morph can be distributed across
reas in a multi-area model. The growth characteristics are asso-
iated with the morph, not with the area in which they reside.
owever, it is reasonable to create a configuration where each
s Research 142 (2013) 86– 99 89

area has its own  predominant morph that then has some degree
of movement to other areas. Expected values for data, such as
the overall size composition of a fleet’s catch in an area, take into
account the combined catch across all morphs.

SS follows Schnute (1981) re-parameterization of the von Berta-
lanffy growth curve to redefine the growth parameters in terms of
size at two reference ages. Below the lower reference age, where
there presumably is little information about the actual size-at-age
trajectory, SS simply applies a linear trend to grow the fish from a
small size at the age zero event until they reach the lower reference
age of the growth curve. More flexibility in the trajectory of growth
can be achieved by using the three parameter Richards growth
function, or even more by invoking age-specific growth rates for
each of several younger ages.

Age-specific natural mortality, maturity, and fecundity can
follow various functional forms or be input empirically (Appendix
A). All of these are defined as model parameters, but only natural
mortality can be treated as estimable because there is currently no
capability to include maturity-at-size or fecundity data in a manner
that would allow internal estimation of functions related to these
processes.

3.4. Selectivity

SS provides a range of options for calculating the age-, size- and
gender-selectivity of each fishing fleet and survey. SS distinguishes
fishing fleets from surveys by specifying that catch is input for fish-
ing fleets, thus the fleet’s catch affects the population, whereas a
survey is for observation only and does not affect the population
dynamics. Most options define a fishery’s or survey’s selectivity by a
smooth parametric function, rather than an age-by-age approach.
In common with growth, this approach was  implemented in the
early model for sablefish where size-composition data were sparse
and age-composition data nearly non-existent. The sablefish situa-
tion also required the capability for a fleet’s selectivity to have age-,
size-, and gender-dependency. Size selectivity against small sable-
fish was logical as they recruited to the longline and pot gear, and
declining age selectivity was logical as older sablefish diffused into
deep water away from the fishing grounds.

SS includes over a dozen size- and age-based selectivity func-
tions as defined in Appendix A, Section 5.6.  These range from
simple logistic, to double logistic and double normal, and typi-
cally have 2–8 free parameters. The simpler the parametric form
for the selectivity, the more the assessment result is constrained
by that parametric structure. Similarly, when assessment configu-
rations assert that fishery selectivity is unchanging over time, this
is a strong assertion that the fishing fleet is a good sample of the
population’s size/age composition as filtered by that time-invariant
selectivity. Sampson and Scott (2012) provide a sound rationale for
doubting time-invariant fishery selectivity. Taylor and Methot (in
this volume) show how time-varying selectivity can be invoked in
SS to more fully explore a plausible range of model outcomes. For
example, selectivity could be near asymptotic during early years
when older/larger fish were more abundant, then transition to a
more dome-shaped pattern as fishing reduces the abundance of
older/larger fish and thus reduces the fraction of the fishing effort
deployed in habitats where older/larger fish typically are found.
A variety of options are available to allow selectivity (and other)
model parameters to change over time. This can be according to
user-specified blocks of years, random deviations in selectivity over
a range of years, random walk changes over a range of years, a time
trend based on a cumulative normal distribution, and as a function

of an auxiliary time series, termed an “environmental index”. These
options are portrayed visually in Fig. 1.

Non-parametric age-selectivity can be used when the maxi-
mum  age is relatively low and there are reasonably good age data.
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andom walk deviations (c), and Gaussian trend (d). Not shown is the fifth option 

ime  series.

owever, the flexibility of size selectivity is not so easily mapped by
 natural granularity (large number of length classes implies many
dditional parameters) to the data. Even more serious an issue
ould be the very large number of parameters needed for time-

arying non-parametric selectivity. The approach of Butterworth
t al. (2003) to apply a selectivity surface smoothed in the age and
ime dimension works well when there are few fleets and reason-
bly complete data. However, parametric forms are necessary when
here are many fleets and sparse data.

A cubic spine selectivity function (Fournier et al., 1998) achieves
 reasonable compromise between non-parametric and paramet-
ic selectivity. SS can create starting values for the parameters of
pline selectivity functions de novo from the characteristics of the
ata by aggregating each fleet’s or survey’s size- (or age-) compo-
ition data over all years, distributing the user-specified number of
ubic spline knots across that cumulative probability distribution
nd creating parameter starting values. This capability emphasizes
hat SS is both a population dynamics model and a software system
o implement that model.

.5. Fishing mortality

SS was designed around an approach that relies on the absolute
evel of catch being known well enough to allow the model to calcu-
ate the level of fishing intensity needed to obtain that level of catch
onditioned on the model’s current estimate of age-specific popu-
ation abundance and age-specific selectivity. Because the model
rst calculates catch-at-age in numbers for each fleet, it is straight-
orward to calculate the total catch for each fleet in terms of both
umbers and weight and to provide the capability to use either as
he metric in which a fleet’s catch is entered into SS. Importantly,
his also allows the forecast catch targets for each fleet to be in
g values. Shown here are options for annual deviations (a), time blocks (b), annual
 links the values for the parameters of the selection function to an environmental

either numbers or weight. This is valuable for recreational fishery
data which typically is available in numbers caught.

SS does not rely upon fishing mortality rate being estimated
as catchability multiplied by fishing effort. Instead, seasonal,
fleet-specific fishing intensity is directly estimated to match the
observed catch. However, fishing effort and catchability can be
brought into the calculations when data on fishery effort or catch
per unit effort, CPUE, are provided for parameter estimation pur-
poses. Here, the expected value for CPUE is estimated catchability
multiplied by available biomass, and the expected value for fishing
effort is 1/catchability multiplied by fishing intensity.

SS provides three approaches for the calculation of apical F for
each fleet in each time step and area. These are Pope’s approxima-
tion, which calculates the harvest rate needed to remove the catch
at the midpoint of a season, continuous instantaneous F, with each F
as a model parameter, and a hybrid approach (Appendix A, Section
1.10) which calculates continuous instantaneous F values through
a differentiable iterative approach. The Pope and hybrid approach
treat the harvest rates or F values as coefficients to be tuned within
each model iteration to maintain the match between observed and
expected catch, whereas the parameter-based F approach requires
ADMB to estimate these F values as model parameters (after getting
starting values using the hybrid approach in early model phases
then converting over to the parameter approach in final stages).
The use of the parameter approach to define fishing intensity means
that the model will be able to account for uncertainty in the catch
data and even allow for missing catch data if there is alternative
information such as an effort time series.
A brief comparison of the performance of these three fishing
mortality approaches in a simple catch-at-age model with 30 years
of catch is informative (Table 1). The overall negative log likeli-
hood and ending biomass are very similar between methods and
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Table  1
Comparison among three approaches for calculating the level of fishing intensity in
each time step of the model.

Pope’s Parameters Hybrid

Number of iterations 458 846 469
−log  likelihood 1327.64 1327.68 1327.68

t
s
u
f
H
a
P
A
i
t
e
q

t
d
w
fi
s
c
s
i
o
a
b
n
i
t
w
t
r
s
i
i
l
a
t

F

w
i

a
c
c
t

3

fi
(
l
t
c
t
m

catch numbers at monthly age. The application of the distribution
of size-at-age from the growth curve results in catch numbers-at-
length for each month. The generalized size frequency feature of
End  year biomass 6017.2 5797.9 5798.1
Standard error of end year biomass 1331.5 1294.0 1293.9

he small difference for Pope’s method is due to selectivity acting
lightly different when used as a mid-year harvest versus contin-
ous harvest (Branch, 2009). The similarity of the standard error
or estimated spawning biomass (as determined by the inverse
essian) is very reassuring, especially given that the parameter
pproach uses 30 parameters mapped to 30 F values, whereas
ope’s and the hybrid method do this using internal coefficients.
lthough the parameter approach was slower (more iterations)

n this example, model convergence can be slow for Pope’s and
he hybrid method in high F situations and the ‘F as param-
ter approach’ is able to creep up on the final solution more
uickly.

The term “fishing intensity” is used because the annual instan-
aneous rate of fishing mortality, F, across all fleets is not easily
escribable by a simple scalar, as it would be in a simple model
ith only a single fishery and with knife-edged selectivity to this
shery. In SS, there can be many fleets operating simultaneously,
ome in different geographic zones, and each with selectivity that
ould vary with age, size and gender. Thus, F has multiple dimen-
ions. Three options are provided in SS for portraying the overall
ntensity of fishing: exploitation fraction, equilibrium reproductive
utput per recruit, and annual numbers weighted F over a range of
ges. Exploitation fraction is simply the total annual catch divided
y the total abundance above a specified age, with biomass- and
umbers-based options provided. The equilibrium-based quantity

s the spawner potential ratio (SPR) (Goodyear, 1993) calculated as
he equilibrium level of spawning biomass-per-recruit (SPR) that
ould occur with the current year’s level of fishing intensity rela-

ive to the unfished level of spawning biomass-per-recruit. This is
eported as 1-SPR to create a metric that increases as fishing inten-
ity increases. All seasonal, geographic, and selectivity issues are
ntegrated into the calculation by focusing on the effect of fishing
ntensity on spawning biomass. The total F approaches the prob-
em differently. Here the total annual fishing mortality for each
ge group (summed over all regions and calculated on a January
o January basis) is calculated by:

a,t = ln(Na+1,t+1) − ln(Na,t) − Ma

here Na,t is population numbers-at-age, and Ma is natural mortal-
ty rate at age.

SS provides the capability to calculate this F statistic for a single
ge, or over a range of ages. The 1-SPR and total F statistics provide
omplementary information on the intensity of fishing; one on the
umulative impact of fishing on the entire stock and the other on
he fraction of fish removed for key ages.

.6. Expected values for data

Integrated analysis models seek to implement the goodness-of-
t calculations using data that are as lightly processed as possible
Maunder and Punt, in this volume). Some other models, particu-
arly VPA, require a complete catch-at-age and body weight-at-age

ime series. In some cases these data are created by slicing size-
omposition data into bins representing the size range believed
o represent an age of fish (Kell and Ortiz, 2011). In other cases,

issing catch-at-age data are imputed through some interpolation
s Research 142 (2013) 86– 99 91

protocol. Unfortunately, the variance associated with these proce-
dures is not calculated and propagated into the assessment results.
The impetus to create catch-at-age data sets has been so pervasive
for some stocks in European waters that the details of the histor-
ical gap-filling have been lost and it may  not be possible to apply
a model such as SS to less processed data for these stocks (ICES,
2012).

There is no expectation in SS that data are in the form of catches-
at-age, nor that data need to be available for all years of the analysis.
Instead, SS takes the data in a lightly processed form and calcu-
lates an expected value while taking the various processes that
are believed to have influenced the creation of each datum into
account. For example, when mean body length-at-age data are
input to SS, calculation of the expected value for these data takes
into account: the estimated population size-at-age, size-selectivity
of the fleet from which the sample was  taken, aging imprecision
which tends to blur information between adjacent ages of fish, and
the estimated recruitment time series.

A powerful feature of SS is its ability to calculate expected values
for a wide diversity of data types. Similar capability is found in the
CASAL assessment program (Bull et al., 2005). The basic approach
is as follows. In each time step, SS tracks the numbers-at-age for
each entity by area. SS also tracks the mean and distribution of
size-at-age for each entity through time. The vector of numbers-
at-age then scales the distribution of size-at-age to create a matrix
of numbers-at-size and -at-age for each morph in each area in each
time step. Age/size/gender selectivity is then used to create a matrix
of selected numbers at size/age for each fishery or survey fleet with
data from that area/time. This matrix forms the basis for calcula-
tion of expected values for any data type. For each morph, the male
and female matrices enable calculation of expected values that are
either for combined genders, single genders, or joint genders with
preservation of the sex ratio information. For a survey index, the
entire selected matrix is simply summed to create the expected
value to which catchability is then applied. The size-retention vec-
tor is applied to the matrix before calculating the expected values
for either the retained or discarded components of the catch if
the data are specific to retained versus discarded catch. The aging
error matrix is applied before accumulating the expected values
into the bins of observed ages if the data are ages. Thus, quantities
such as the mean size-at-age of discarded fish can be calculated
after accounting for aging imprecision. The various forms in which
length, age, weight and abundance data can be represented in SS is
outlined in Table 2. A more detailed technical description is found
in Appendix A.

An example from the assessment for pink shrimp (Fartantepe-
naeus duorarum)  in the Gulf of Mexico1 illustrates the approach
of fitting data in their native units. Previously, Nichols (1986) had
assessed shrimp using a monthly cohort analysis. However, catch-
at-month age data are not collected, in fact shrimp cannot be aged
using conventional methods. The only composition data were the
seven weight categories in which shrimp are sold to the processors.
Nichols used a simulation model of shrimp growth and mortality to
generate expected proportions at size and then used these propor-
tions to slice the monthly weight composition data into monthly
catch numbers-at-age, which were then analyzed using an un-
tuned VPA. SS uses essentially the same process, but in reverse.
Within SS, the simulation of recruitment, growth, selectivity and
mortality using the parameter estimates leads to an estimate of
1 Hart. Richard. 2012. Unpublished report. Stock Assessment of Pink Shrimp (Far-
fantepenaeus duorarum) in the Gulf of Mexico.
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Table  2
The data types that can be included in SS.

Type Units Description

Catch Biomass or numbers For each fishing fleet. Initial catch calculation is numbers-at-age for each fleet, then
can  be aggregated to biomass or numbers. If F is estimated as parameters, then lower
precision can be assigned to each catch value. Catch can be size-partitioned into
retained and discarded portions, with F tuned to match the retained catch amount

Fleet  or survey index Biomass, numbers, effort Is aggregated across ages/sizes according to specified or estimated selectivity, so
age-specific index is feasible; catchability can be estimated as scaling constant or as a
parameter, which can be time-varying or density-dependent; If units are effort, then
expected value is F/q

Discard Fraction, biomass or numbers Created by applying a discard/retention logistic function to the total catch
Mean weight Body weight A simple measure of the mean size of fish in the catch (e.g. total weight/total numbers)
Length composition Proportion From each/any fleet/survey; combined gender, each gender, or split to preserve sex

ratio; from total catch or discard portion or retained portion. Small constant can be
added and tails can be compressed

Age  composition Proportion As with length composition. Also, can be interpreted after applying aging error to
expected values. Can be for entire length range, or for specified subset of length range
(age-at-length approach)

Generalized size composition Proportion As with length composition, but with generalized bins which can be in terms of body
length or weight, and accumulated in terms of numbers or biomass in each bin

Mean  size-at-age Body length or body weight The expected values for these data take into account growth, size-selectivity, aging
imprecision

Tag-recapture Number of tags released and
recaptured

Releases are for a specified age in a specified area at a specified time. Recaptures are
from  a particular fleet (which can only fish in one area) at a particular time

Morph composition Proportion In a set-up with multiple growth types (morphs), the proportion of each morph
observed (e.g. by otolith micro-constituents) by a fleet/survey can be input
Can be
be  use
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Environmental index Time series index

S then accumulates the catch weight at length into the bins of
he catch weight categories to calculate an expected value for the
bserved catch weight categories. Variance in estimated recruit-
ent, growth and mortality is based upon the goodness of fit to

he actual weight composition data. SS is not misled into acting as
f monthly catch-at-age data actually exist. The observation sub-

odel in SS is configured to create expected values for the data,
ather than forcing the data to be manipulated to match the struc-
ure of the model. This preserves the variance characteristics of the
ata and allows for estimation of the variance of the processes that
reated the data.

.7. Fishery management targets and forecasts

SS calculates fishing intensity levels that would satisfy several
ommon fishery management conventions. It does this using a
ynamic pool approach (Mace and Sissenwine, 1993) that first cal-
ulates the equilibrium level of SPR and yield per recruit (YPR)
hat would occur if fishing according to a trial level of fishing
ntensity, then uses this SPR and the unfished level, SPR0, to cal-
ulate the absolute level of recruitment, spawning biomass, and
ield that would occur if fishing intensity were maintained at
his rate. SS then iteratively calculates the level of fishing inten-
ity that would match each of three conditions: (1) SPR – a
ser-specified target level of SPR relative to SPR0, (2) Btarget – a
ser-specified target level of equilibrium spawning biomass rel-
tive to the unfished level, and (3) MSY  – the level of fishing
ntensity that would maximize yield. The latter two conditions
ake the spawner–recruitment relationship into account. These
alculations utilize all the multi-fleet, multi-area, multi-season,
ize- and age-selectivity, complexity in the estimation model, so
roduces results that are entirely consistent with the assessment
esult.

SS, in common with many integrated analysis stock assessment
odels, is basically a simulation of a stock’s age-structured popula-
ion dynamics. This enables SS to utilize a selected fishing mortality
pproach (e.g. harvest policy) to extend into a forecast of the future
ge-structured stock abundance and yield that would occur while
shing according to that harvest policy (Maunder et al., 2006). SS
 input as a “survey” (above) if used as data about recruitment deviations, or can
d as an input driver of a functional parameter relationship

allows the user to specify that forecasting use either the SPR-based
fishing rate, the Btarget rate, the MSY  rate, or a multiple of the recent
average rate when conducting the forecast.

The sequencing within SS calls the fishing mortality target rou-
tine and then the forecast routine in two circumstances. First,
the routines are not called until convergence occurs and ADMB
enters into the variance estimation phase when SS is operating in
ADMB’s estimation phase. Second, the routines are called during
the MCMC  evaluation phase so that the equilibrium and forecast
results become part of the output for each selected set of parame-
ters. This means that all aspects of parameter uncertainty calculated
using the inverse Hessian method in the maximum likelihood esti-
mation, and using the Markov Chain Monte Carlo approach are
propagated into the variance of derived quantities, such as the fish-
ing mortality intensity that would produce MSY, and forecasts of
stock abundance and future yield that would occur while fishing
according to the chosen level of fishing intensity.

Fishery management in the United States has strongly embraced
an approach that utilizes catch quotas (termed annual catch limits),
and expects that the annual catch limit be set according to a pro-
tocol that acknowledges scientific and management uncertainty.
A technical approach has been developed to forecast future catch
levels that would have a specified probability of allowing catch
to exceed the overfishing catch limits (OFL) (Prager and Shertzer,
2010; Shertzer et al., 2010). They calculate an annual acceptable
biological catch (ABC) that takes into account scientific uncertainty
in the estimate of OFL and an annual catch target (ACT) that fur-
ther accounts for management uncertainty in controlling catch
to the ABC, such that there is a pre-specified probability, P*, that
attempting to catch that target would in fact result in the fish-
ing mortality rate exceeding the overfishing rate. The flow of an
ADMB estimation program does not allow for iteratively searching
for target catch levels that would satisfy this probability condition
because the uncertainty is not known until the program completes.
However, SS takes a multiple pass approach (Appendix, Table A.2)

that obtains a nearly comparable result.

The multiple passes in the forecast are needed to mimic  the
actual sequence of assessment to management action to catch over
a multi-year period. The first pass calculates the OFL based on
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atching the OFL each year, so presents the absolute maximum
pper limit to catches. The second pass forecasts a catch based
n a harvest policy, then applies catch caps and allocations, then
pdates the F’s to match these catches. In the third pass, stochastic
ecruitment and catch implementation error are implemented and
he F that would be needed to catch the adjusted catch amount
reviously calculated in the second pass determined. With this
pproach, SS is able to produce estimates of the probability that F
ould exceed the overfishing F, Flim. In effect, it is the complement

f the P* approach. The P* approach calculates the future stream
f annual catches that would have a specified annual probability of

 > Flim, while SS calculates the expected time series of probabilities
hat the F resulting from a designated harvest policy would exceed

 specified level.

.8. Penalized log likelihood

Some data are principally influential in estimating the growth of
ndividuals, others in estimating trends in population abundance,
thers in the level of fishing mortality, and others in fluctuations
n recruitment to the stock. The interactions among these various
opulation and observational factors can be investigated and their
ombined contribution to the variance in assessment results cal-
ulated by including all data in a common framework and using

 single overall weighted penalized log-likelihood. Calculation of
he log-likelihood for each datum requires an observation error
pecification to scale all deviations in equal terms.

The error distribution that is typically used for abundance data
s the lognormal, although the normal and Student’s t-distributions
re also available. The Student’s t-distribution, with a user-specified
ow number of degrees of freedom, provides a tool to reduce the
nfluence of outliers (Chen et al., 2000).

The multinomial is used for composition data because it inher-
ntly assigns more emphasis on fitting data for the composition
ins that have higher expected proportions. The multinomial uses
he assigned sample size to scale the variance of each bin in a com-
osition vector. This sample size is typically in the range of 50–200

ndividuals, which is much lower than the actual number of individ-
als measured because of correlation within the sampling process
Crone and Sampson, 1998). SS allows for a constant to be added to
ach element of the observed and estimated composition vectors,
hus providing increased robustness when data are noisy. SS also
llows for the tails of each vector to be accumulated until there is

 user-specified proportion in the terminal element of the vector.
his tail compression feature causes the model to not make like-
ihood calculations from a large number of vector elements in the
ong tail, each of which is near zero, highly auto-correlated, and

ith low precision. Instead, the accumulated tail will have a higher
roportion and thus will get more influence in model fitting. The
ail compression feature should be used judiciously when data are
parse because an excessive degree of bin accumulation could occur
or composition vectors that are based on just a few fish. A model
utput based on the multinomial distribution is the “effective sam-
le size” (McAllister and Ianelli, 1997). This value represents the
ize of the random sample needed, on average, to achieve a fit that
s as good as the variance in the model’s fit to the composition
ector.

The contribution of each datum to the overall log-likelihood
unction in SS is inherently weighted by the measurement vari-
nce of that datum. The user has options to increase or decrease the
ariances of the input data or, equivalently, the imposed weight-
ng on their contribution to the likelihood function because these

ariances are rarely known exactly and because extra process error
ften must be dealt with as measurement error. For abundance
ata, SS allows for estimation of a parameter for each abundance
ime series to adjust the standard error of all its observations such
s Research 142 (2013) 86– 99 93

that the root mean squared error of the model fit to that abundance
time series is similar to the averaged assigned standard error of
each observation. For composition data, input sample sizes should
be adjusted to be at approximately the same level as the estimated
effective sample sizes to achieve good variance estimates. Tools for
iterative adjustment of these sample sizes are provided, but, follow-
ing Maunder (2011),  it may  be possible to use the effective sample
size calculation in a revised objective function to allow for internal
estimation of a parameter representing a sample size adjustment
factor.

The objective function in SS contains penalties on parameters
and process deviations that are analogous to Bayesian priors, as is
common in integrated analysis models (Maunder and Punt, in this
volume). These penalties are based on the assumed prior variances
for the parameters, and can either be designed to be informa-
tive, or be broadly uninformative. Uninformative priors serve to
stabilize model performance when data are uninformative about
some of the parameters. Examples of informative priors include
those for each annual deviation in recruitment being penalized
according to the assumed or estimated variability among all recruit-
ment deviations, those for the parameters determining the random
walks in a parameter changing over time, and those for parame-
ters such as natural mortality. These penalties are interpreted as
priors when the MCMC  algorithm is used to sample parameters
vectors.

Correct relative weighting among likelihood components is cru-
cial to attain good model performance and good estimates of the
variances of the model results. The model result is a complex
weighting of the information in the data and the penalties (Methot
and Taylor, 2011). For example, when multiple CPUE time series are
used as indicators of stock abundance, the final result is a weighted
average of all their trends. If a particular fleet’s CPUE trend does
not match those for the other fleets, its contribution to the overall
result is not diminished unless the model is configured to allow for
estimation of an extra observation, or process, variance parameter
to account for the needed degree of downweighting. It is situation-
dependent whether the adjustment should be made on the basis of
extra observation variance, which makes the poor fit more likely, or
on the basis of extra process variance, which creates a phantom pro-
cess to bring the ill-fitting data into better conformance with other
information in the model. However, the result may  not stabilize at
an intermediate solution when strongly contradictory information
are included in an assessment. Instead, alternative local minima in
the likelihood surface may  be created and the estimation procedure
could be trapped in a local minima and fail to identify the global
minima. Patterns in residuals should be scrutinized for evidence
that the model configuration has insufficient flexibility to reduce
this pattern to white noise consistent with the variance of the data
source.

3.9. Variance estimation

SS employs several ways to represent uncertainty in the results.
ADMB uses the quadratic curvature of the multi-dimensional
log-likelihood surface around the maximum likelihood set of
parameters to calculate a variance-covariance matrix (Fournier
et al., 2011), then uses a Taylor series approximation to propagate
this measure of parameter uncertainty to the derived quantities.
In SS, the derived quantities include the time series of spawning
biomass, recruitment, fishing mortality index, stock depletion, and
various reference points such as maximum sustainable yield. The
time series of derived quantities extend into the forecast era, pro-

viding a continuous sequence of estimated derived quantities and
their variances. SS can operate in Monte Carlo Markov Chain mode
to provide a Bayesian description of the uncertainty associated with
the parameters and derived quantities. It is possible to automate
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 sequence of SS runs across a range of fixed values for one or
everal parameters to generate a likelihood profile or matrix of
esults.

SS also contains a data generation routine that can provide
arametric bootstrap data sets to assist in investigation of model
erformance and variance estimation (e.g. Piner et al., 2011). The
riginal data are not re-sampled. Instead a new data set is cre-
ted with the same variance properties that were assumed when
nalyzing the original data. For each datum, the form and scale of
he sampling distribution assigned to that datum (i.e. the distri-
utional assumption of the likelihood function) are used to create

 random observation given the expected value for that observa-
ion. For example, a multinomial sample of 89 fish would be drawn
rom the estimated length-composition of a sample that had been
iven an input sample size of 89. Importantly, the observations
n each of these new data sets will not contain any patterns in
heir residuals, except by chance. Consequently, any autocorrela-
ion or unlikely pattern in the residuals of the original data relative
o the model fit will not be propagated into the bootstrap data
ets. It is therefore important to ensure that the assigned variance
f the input data are approximately the same as the variability
etween the observed and expected values before creating boot-
trap data sets. These bootstrap data sets contain measurement
rror only and do not randomize any of the process (e.g. annual
uctuations in recruitment or time-varying selectivity) error that
ay  be a feature of the particular model setup being analyzed.

ome researchers (e.g. Lee et al., 2011) have used this paramet-
ic bootstrap data generation process combined with additional
ode to allow for process error in processes such as recruitment
r selectivity.

It is possible to obtain additional information about the robust-
ess of the model’s fit to the original data using this bootstrap
pproach,. When there is pattern in the residuals to the original fit,
he model will be in a tension between trying to reduce those resid-
als while being restrained from doing so by the fit to all the other
ata in the model and the model structure itself. This tension does
ot exist among randomly generated observations and the param-
ter estimates will then tend to drift away from the values obtained
hen fitting the original data and to a new set of values consistent
ith the independently distributed data. Following this logic, Lee

t al. (2011) and Piner et al. (2011) investigated the robustness with
hich natural mortality rate could be estimated by SS. Methot and

aylor (2011) used this approach to investigate model performance
ith regard to estimation of recruitment deviations.

Variance results from parametric, MCMC,  and bootstrapping
ill be quite similar when the normal approximation is good

nd the residuals in the original model fit are sufficiently random
Figs. 2 and 3). Stewart et al. (in this volume) provides an extensive
omparison of these approaches to variance estimation.

.10. Output processing

SS, and all models that deal with complex and voluminous
ata, needed auxiliary tools to visualize model outputs and quickly
roduce report-ready tables and figures. This done in SS by pro-
iding some output in text tables delimited by keywords and
ome in list format that provides a filterable/sortable database.
his approach allows for parsing by different systems. One is the
S graphical interface developed by Alan Seaver and found in the
MFS Assessment Toolbox (NOAA Toolbox, 2011). A second is an
xcel spreadsheet distributed with SS. Third is an R-based mod-
le, termed r4ss (Taylor et al., 2011). All three work by searching

or keywords, then parsing a table or list of values adjacent to
hat keyword. This approach provides high flexibility with minimal
rogramming. Users are able to quickly examine results for prob-

ematic residual patterns then proceed to produce report quality
s Research 142 (2013) 86– 99

graphics using these data display tools. While the Toolbox and R
modules have successfully co-evolved with SS, future versions of
SS could make the interaction between the input, execution and
output modules more intuitive and efficient.

4. Discussion

Sixty-one stocks worldwide have been assessed using SS to date
(Appendix B), and exploratory applications for many others are
underway. This success is due to the flexible scalability to a vari-
ety of data and life history situations; to the improved efficiency
and communication achieved by use of a consistent, standardiza-
tion approach; and to the continual evolution to meet the needs of
the international fishery assessment community.

4.1. Scalable to data availability

The ability of SS to flexibly and simultaneously deal with many
types of data is a powerful aspect of the framework. SS is essen-
tially completely scalable between statistical catch-at-age analysis
on one extreme, and age-structured, biomass dynamics models
and catch curve analysis on the other extreme. SS can estimate
the selectivity characteristics of each well-sampled fishing fleet
and the time sequence of recruitment to the stock, just like other
statistical catch-at-age models when highly informative catch-at-
age are available. SS can still estimate selectivity and recruitment,
although with less precision, with more reliance on priors and with
less signal being detected when composition data are sparse or
represented only by length composition. SS can use a fishery selec-
tivity asserted by the user, and collapse the estimated catch-at-age
into an expected value for the overall catch and CPUE, thus behav-
ing exactly like an age-structured production model when there is
only a bulk indicator of the trend in stock abundance, for exam-
ple the catch per unit effort (CPUE) of a fishing fleet. If all that
exists is a time series of total catch and expert judgment on the
degree of stock depletion over time, as in the depletion-based stock
reduction analysis (Dick and MacCall, 2011), then SS can use this
depletion estimate as a “survey” of spawning biomass at the end
of the time series relative to the spawning biomass before fish-
ing started (Cope, 2012). If the only datum was  an estimate of the
size composition of the catch at one point in time, SS could gener-
ate an expected value for that observation while estimating growth
parameters and mortality to essentially conduct a catch curve anal-
ysis. However, SS could also directly take any information about
selectivity and could analyze multiple such observations scattered
over the history of the fishery into account, unlike a simple catch
curve analysis.

The scalability of SS is facilitated by its definition of annual
recruitment as a deviation from the expected recruitment given the
spawner–recruitment relationship. All recruitments in a time series
can be estimated because the deviations are penalized according to
the assumed degree of variability among the recruitments. Thus, SS
is essentially a stochastic stock reduction analysis (Walters et al.,
2006). Given this approach, data-poor applications end up with
near-zero maximum likelihood estimates of all the recruitment
deviations, so all the productivity information is just in the two
or three parameters of the spawner–recruitment curve. However,
the recruitment deviations contribute to the variance to the final
result and can take on non-zero posterior values when informa-
tive data are included in the assessment. SS partitions the assumed
total variability in recruitment into a component that is among the

recruitment deviations and a component that is the residual vari-
ance of each recruitment deviation (Methot and Taylor, 2011). This
feature allows SS to span data-poor and data-rich eras within a sin-
gle analysis. Thus, SS is scalable to the range of data quality within
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ig. 2. Bivariate comparison of the estimated growth parameters maximum leng
round the maximum likelihood best estimate. The points are drawn from a conv
hich  the normal approximation does not represent the tails well (b).

he time series being analyzed, as well as between applications with
ifferent data availability.

The value in using a complete model such as SS to analyze
ata-weak situations is that it is not necessary to switch model-

ng approaches as more types of data become available. Further,
t forces attention on each aspect of the biologically structured
opulation (natural mortality, growth, reproduction, selectivity,
tc.) rather than collapsing these processes into a two-parameter
lack box as in biomass dynamics models. An informative sit-
ation was investigated during the 2012 review of assessment
odels for various flatfishes (ICES, 2012). The assessment had

reviously been conducted using ASPIC (Prager, 1994), which
rovides a biomass dynamics approach, with no process error,
or analyzing time series of catch and indexes of stock abun-
ance. Alternate assessment models being considered included SS
nd a biomass dynamics model with process error. SS was used

o demonstrate how the biomass dynamics model with uncon-
trained process error could drift into a high productivity, high
rocess error scenario that fit the abundance index too well. With
S, this phenomenon could be replicated, and then controlled

ig. 3. The MCMC  distribution of relative depletion from the 2006 Pacific whiting asses
ariance in this quantity (a). The right panel (b) shows good comparison between the nor
he  median of the bootstrap estimates.
) and k (a). Ellipses represent multivariate normal confidence regions calculated
 MCMC  chain. Two  parameters, natural mortality and asymptotic recruitment, for

for by using sufficient length-composition data to stabilize the
result to a better compromise between process and measurement
error.

4.2. Model complexity

The complexity of integrated analysis models and their abil-
ity to simultaneously analyze several diverse types of data means
that investigation and control of their performance is challeng-
ing. Without informative data, unconstrained model complexity
will always lead to highly uncertain results. Simpler models fit to
good data can outperform more complex models. However, sim-
ple data do not necessarily imply good data nor does a simple
model necessarily imply an accurate model of the relevant pro-
cesses. Good data must accurately represent the state variable (fish
abundance) with good fidelity, and the contrast in these data over

time must be sufficient to provide information on the dynam-
ics of the system. If data that meet these criteria are available,
which is rare, a model that is just complex enough to represent
the main dynamic processes should be able to track these data and

sment (Helser et al., 2006) is a nearly exact match for the parametric estimate of
mal error in this quantity and the results of 75 bootstrap runs. Dark vertical line is
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rovide reasonable inference about the population. However, dif-
culties in measuring fish abundance mean that the time series of
bundance indices commonly available for stock assessments are
ypically contaminated by other processes (dome-shaped selectiv-
ty, time-varying selectivity, density-dependent catchability, etc.),
nd the ecosystem processes affecting fish populations are more
omplex than a two-parameter parabola. More complex models
re needed to take a structured approach to investigate and then
ccount for the many factors that have created patterns in the
vailable data. SS provides this biologically structured approach in
he form of size-selectivity, aging imprecision, retention functions,
exible approaches to time-varying parameters, and other factors
esigned to extract information on fish stocks from a diversity of
ata types.

SS and all integrated analysis models must be configured
o achieve a good balance between data and model complex-
ty. Results are based on the weighted influence of all the data
ncluded in the model. The model does not ignore data that do
ot fit well. It tries to fit each datum in accord with the mea-
urement error associated with that data type, and it uses all
ree parameters to attempt to improve the goodness of fit. When
he data contain patterns that are more complex than can be
roduced by the model, it will see this complexity as observa-
ion deviations from its too simple structure. It will then tend
o inflate its estimate of the observation error associated with
hese data to resolve the lack of fit, and/or it will use other, inap-
ropriate, parameters to attempt to fit the data. For example,
onsider a model that is presented with complete catch-at-age
ata that comes from a fishery with a trend in selectivity over
ime, but the model is not configured to allow for time-varying
electivity. Two things will happen: the time series of estimated
ecruitments will be biased by trying to mimic  time-varying selec-
ivity, and there may  be an inflated variance estimate for the
ge-composition data because recruitment trends cannot fully cap-
ure time-varying selectivity. On the other hand, attempting to
stimate unconstrained time-varying fishery selectivity in a sit-
ation with weak or no age-/size-composition data will result

n broad confidence intervals, if model convergence can even be
ttained in this over-parameterized situation. Model complexity
ust be appropriate given the available data. One way to accom-

lish this is to allow the model to have substantial flexibility,
ostly as time-varying process error in various parameters, but

o also include informative priors on the extent of variation to
tabilize estimation when data are not informative. Specification
f these informative priors is one of the greatest challenges for
ood practices in the application of complex fishery assessment
odels.
Evaluation of the appropriate degree of model complexity is not

asy. For example, what are the implications of allowing for dome-
haped selection patterns that change over time, ignoring aging
mprecision, or allowing the model to estimate natural mortality
ates? Each of these, and many other, questions can be investigated
y using one model to generate data with known characteris-
ics from a simulated population, and another model to attempt
o estimate that population using the generated data. Ideally, the
ata generating system and the estimation model would be imple-
ented independently to help assure a robust test of the issues

eing investigated. He et al. (2011) and Helu et al. (2000) used such
n approach to investigate the ability of SS to estimate selectivity.
owever, consistency between the data generation and estimation
odels can help ensure that performance is due to the ability of the

stimation model to extract information from the data and not due

o subtle differences between the generation and the estimation

odels when the issues are mostly about the ability of the estima-
ion model to derive information from particular types of data or
o operate in situations with limited data contrast. The parametric
s Research 142 (2013) 86– 99

bootstrap feature in SS provides a tool to generate the needed data
sets.

4.3. Linkage to the ecosystem and the environment

An important feature of SS is its ability to serve as a bridge to
environmental and ecosystem investigations. The earliest applica-
tion of SS (Methot, 1986) included the influence of a predator on
natural mortality as well as a temperature-effect on maturation,
which led to a time-varying linkage between the adult stock and
the expected larval abundance survey. Predators can be included
in SS because they effectively operate as an additional fishing fleet.
If the predator’s total annual consumption is known, then this is
the catch. If the predator abundance time series is known, then this
serves as an index of the predator’s “effort”. If the ages or sizes of
the prey are available from stomach samples, then this serves as
the size-/age-composition of the predator’s catch. Livingston and
Methot (1998) took such an approach in investigating the role of
several predators on walleye pollock Theragra chalcogramma off
Alaska.

The time series of annual fluctuations in recruitment is one of the
key outputs from assessment models and the possibility of includ-
ing environmental covariates in assessment models has attracted
much attention in the literature (Maunder and Watters, 2003;
Haltuch and Punt, 2011). Where sufficient age- or size-composition
data exist, age-structured models such as SS are able to estimate
the time series of recruitment empirically. However, estimation
of recruitment fluctuations degrade when data quality is poor, as
occurs during historical periods and certainly as one extends into
the forecast period (Maunder et al., 2006; Methot and Taylor, 2011).
In some cases, environmental correlates of recruitment have been
surmised and these environmental factors, such as ocean temper-
ature or ocean winds, are often available further back in time than
age-structured fishery data, and are available with only short time
lag up to present. Environmental correlates of recruitment fluctu-
ations can be included in SS in two  ways (Schirripa et al., 2009). In
one approach, the environmental time series drives the expected
recruitment deviation through an estimated link parameter. Most
parameters in SS can have such an environmentally driven link. In
the other approach, the environmental information is treated as
data relevant to the expected magnitude of the recruitment devi-
ation, rather than a causal factor for the deviation. This approach
is more robust when there are missing values in the environmen-
tal time series. Brandon et al. (2007) used such an approach in a
model of the gray whale Eschrichtius robustus population off the
west coast of North America. Conceptually and algebraically, this
is tantamount to asserting that measuring ocean temperature (or
some other relevant environmental factor) is equivalent to con-
ducting a survey of the survival rate of pre-recruit juveniles. In both
cases, the information is interpreted to be an index, with measure-
ment error, of the actual recruitment. With small modification, SS
could evolve to include this “environment as data” approach for
more model processes that exhibit change over time.

4.4. Benefits of standardized models

A comprehensive modeling framework such as SS enhances
communication, efficiency, and education in the fishery assessment
community (Methot, 2009). Communication is enhanced by cre-
ating a familiarity among users, reviewers, and clients regarding
terminology and approach. Reviewers who  are already familiar
with SS can quickly focus on key issues for the assessment being

reviewed, rather than spend time learning the features of a novel
assessment model. Imagine an assessment workshop with three
assessments each with a different modeling system and each with
discards treated in a different manner. Communication chaos will
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nsue and detract from the effectiveness of the workshop. Stan-
ardized models also enhance communication and efficiency by
timulating development of a mature set of tools, such as the out-
ut processing package r4ss. These standardized approaches and
roducts will reduce the time it takes to produce an assessment
eport.

Students and stock assessment training can also be beneficiar-
es of standardized assessment approaches. Numerous students at
chool of Aquatic and Fishery Sciences, University of Washington,
eattle, WA (e.g. Wetzel and Punt, 2011; Garrison et al., 2011) and
lsewhere have honed their programming and population dynam-
cs skills by developing simulation models to test the performance
f SS in various situations, as well as to be involved in stock assess-
ents that use SS (Stewart et al., 2011).
The challenge for the fishery assessment, research and educa-

ion community is to find the right balance between assessment
odel standardization, which enhances communication and effi-

iency, and assessment model development, which provides for
ighly focused investigation and enhances research opportunities
nd education. Achieving the benefits of both standardization and
nnovation will require more discipline from the community to use
nly a core set of models to produce assessment results and to
efrain from conducting research as part of assessments designed to
nform management. The solution also needs to encourage research
nto better assessment approaches and more complete testing of

odel performance to achieve a set of good practices for appli-
ation of the standard models. The third step would be creation
f a pathway by which the results of the research will periodi-
ally be reviewed and integrated into the standardized models. A
uite of standardized models are commonly employed in climate
nd oceanographic settings. It seems advisable for the fish assess-
ent community to move in this direction to achieve improved

hroughput and communication.

.5. Future evolution of SS

The features of SS have never been static for long and continue
o evolve in response to the needs and ideas of the fishery assess-

ent community. All features are contained within one ADMB file
ith approximately 20,000 lines of code; there has been no splin-

ering into divergent pathways to meet individual needs. While it
ight seem that this large internal structure containing numer-

us arrays dimensioned at runtime would result in slow execution,
n fact the speed of execution depends principally on the com-
lexity of the user-defined set-up and the amount of the data. A
imple age-structured production model will run to completion
n a few seconds, while a multi-area model containing rich size-
omposition data from numerous fleets will take several seconds
or each iteration of the estimation procedure and many hours to
onverge. Undoubtedly, customized models for a particular assess-
ent will execute faster than SS on the same problem, but the

verhead to attain full flexibility is small.
A recap of some of the features introduced into SS in 2011 illus-

rates the pace of evolution.

a new survival-based spawner–recruitment relationship was
used for dogfish Squalus suckleyi (Taylor et al., in this volume);
the degree of depletion of the spawning stock can now be used
(Cope, 2012) in the same manner as in Depletion-Corrected Stock
Reduction Analysis (Dick and MacCall, 2011);
a cubic spline selectivity function was introduced to allow more
flexibility and potentially produce multi-modal patterns of size-

selectivity. This feature was used during the 2011 assessment of
west coast sablefish Anoplopoma fimbria (Stewart et al., 2011).
age-specific growth coefficients were introduced to allow eval-
uation of unexpected patterns in mean size-at-age, as observed
s Research 142 (2013) 86– 99 97

in some tuna species, and comparison to results explainable by
size-selectivity alone;

• the capability to create an aging matrix from estimable model
parameters was introduced in recognition of the growing inter-
est in accounting for aging imprecision and bias (Cope and Punt,
2007), and was  used in the assessment of Pacific cod Gadus macro-
cephalus (Thompson et al., 2011).

Evolution will continue to occur to incorporate new research
findings. In some cases, SS itself has been the platform by which the
new concept has been investigated. For example, Piner et al. (2011)
used the parametric bootstrap feature of SS to provide an approach
for investigating robustness of model results. Methot and Taylor
(2011) used SS to investigate the relationship between data quality,
recruitment estimation, and bias in time series. These findings were
made through use of SS, but each is applicable to all integrated
analysis type models.

Many ideas are under development. Some of these are:

• alternative likelihood functions for composition data (Maunder,
2011) that would allow for estimation of the variance;

• area-specific spawner–recruitment relationships, rather than the
current global relationship;

• explicit elapsed time between spawning and recruitment to more
closely match fish life history;

• priors on derived quantities such as selectivity;
• use of environmental time series as indicators of time-varying

processes;
• internal estimation of process error for time-varying processes;
• a smoothing algorithm in the forecast so that the target catch

one year cannot change too rapidly from the previous year’s
catch, as commonly is implemented in management procedure
(Butterworth and Punt, 1999).

While addition of new features is the most common request
from SS users, another is the need for practices to use the flexible
features of SS and other integrated analysis models. Too often, a
new user starts by invoking more SS features than are supportable
by their data and by not taking a structured approach that starts
from a simple set-up and gradually adds complexity and flexibility
to investigate the phenomena that created their data. User guides
to assist in best practices are needed as SS expands to be used by
more broadly.

SS, in common with nearly all fishery assessment models, is the
product of a single researcher who started out to build an analytical
tool for a particular application. While such an approach is common
and well-suited to scientific investigations, the importance of the
results of stock assessment for government regulatory processes
would seem to justify a more concerted effort. As the ADMB-based
version of SS reaches its 10 year mark in 2012, it seems time to
pause and take stock of alternative development pathways. One is
status quo is which gradual evolution of the code is undertaken and
additional scientists slowly get engaged in more aspects of code
development. Another would be to embark on a more concerted
effort to assure that a successor model would even more completely
meet the needs of the assessment community. This effort could
involve a broadly based steering group to provide guidance for
model development, and professional programmers to turn their
ideas into well-written computer code. It would take a serious
look at the pathway from raw data to model inputs so that re-
configuration of model inputs is streamlined and not error-prone. It
would co-develop the model engine with the user interface so that

control of the model is intuitive and straightforward. The model
engine itself would need a strong flexible framework and modu-
lar implementation to ease evolution of new features. Assembling
the funding and infrastructure to implement and maintain such a
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ollaborative model will not be easy. However, highly publicized
ontroversies over assessment results highlight the importance of
utting sufficient effort into building the best tools possible to take
dvantage of the great wealth of fishery and survey data being
ollected today.
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