Review of the early life history of vermilion snapper, *Rhomboplites aurorubens*, with a summary of data from SEAMAP plankton surveys in the Gulf of Mexico: 1982-2002

Joanne Lyczkowski-Shultz and David S. Hanisko SEFSC Mississippi Laboratories

## EARLY LIFE HISTORY

Information on the early life history of *Rhomboplites aurorubens* is limited. Vermilion snapper are oviparous and spawn pelagic eggs during the warmer months of the year. Larvae are planktonic and were first identified and described from field collected specimens by Laroche (1977). Despite this initial description and the additional morphological characteristics described since (Lyczkowski-Shultz and Comyns 1992; Comyns and Lyczkowski-Shultz 1993; Drass et al. 2000; and Lindeman et al. 2005), vermilion snapper larvae cannot be consistently distinguished from the larvae of other snappers at sizes < 3.5 mm in length. Size at settlement is presumably ~20 mm (Lindemann et al. 2005).

Vertical stratification, distribution, diet, growth and mortality rates of vermilion snapper larvae in coastal and shelf waters of the northcentral Gulf of Mexico from east Louisiana to northwest Florida during the period 1983-1993 were described in MARFIN reports by Lyczkowski-Shultz and Comyns (1992), Comyns and Lyczkowski-Shultz (1993), and Comyns (1995). Snapper larvae (all taxa) were, in general, captured more frequently and in greater numbers at depths of 5 and 11 m than at 1 m. Small snapper larvae, too undeveloped to be identified, were present in April samples from this area. Vermilion snapper larvae were first positively identified in May samples. Frequency of occurrence and station abundances were higher in July than in May and remained at similar levels in August. Values of percent occurrence and abundance in September were nearly twice as high as in previous months. Highest abundances were observed between 18 and 37 m water depth and in the central and eastern region of the survey area (Comyns 1997). Diet analyses were inconclusive due to the high incidence of empty guts even among snapper larvae captured in daytime collections.

Growth increments observed on sectioned otoliths of vermilion snapper larvae were similar in appearance to validated daily growth marks on the otoliths of red snapper larvae. Growth rate of vermilion snapper larvae (presuming their otolith growth increments are also daily) was found to be related to water temperature and capture location (Comyns 1995). Significant seasonal differences in larval growth rates were observed. Larvae captured in May were growing at 0.3 mm/day at water temperatures of 24-25° C, while larvae captured in August were growing at 0.5 mm/day at water temperatures ranging from 29-30° C. Larvae captured in May samples attained a length of 8 mm in 22 days while in August larvae reached 8 mm in 16 days. Comyns (1995) noted that vermilion snapper larvae captured in July tend to be longer at age than red snapper larvae in the same collections (over the size range of ~2.5-6.5 mm) but their growth rates as derived from age/length relationships were not significantly different. Significant within-cruise (among station) differences in growth among larvae captured in September were observed that were unrelated to temperature differences (Comyns 1997; Comyns et al. 2003). Small-scale variability in larval growth rates was assumed to have

been caused by variability in as yet undetermined conditions effecting larval growth. Cruise estimates of mortality coefficients for larval vermilion snapper ranged from 0.19 and 0.29 during three September cruises.

Distribution and abundance of vermilion snapper larvae were described in a recent summary of SEAMAP ichthyoplankton data from an area of the northeastern Gulf of Mexico between ~ 88.5° and 84.5° N latitude and from the shoreline to ~1000 m contour (Lyczkowski-Shultz et al. 2004). Vermilion snapper larvae were the second most frequently taken and abundant among snapper taxa identified in NEGOM area samples. Although more total specimens were collected in neuston samples, two-thirds of all occurrences resulted from bongo net samples with all but four occurrences, and 97 % of specimens being taken during fall plankton surveys. Vermilion snapper larvae were widely distributed through the northeastern Gulf but were taken more consistently at localities at or east of 87° W longitude. Larvae were taken relatively more frequently in this region than Gulfwide.

## SEAMAP SURVEYS, METHODS AND MATERIALS

Since 1982 the Southeast Area Monitoring and Assessment Program (SEAMAP) has supported collection and analysis of ichthyoplankton samples during fishery-independent, resource surveys in the Gulf of Mexico (GOM) with the goal of producing a long-term database on the early life stages of fishes (Rester et al. 2000). Surveys are conducted by the National Marine Fisheries Service in cooperation with the states of Florida, Alabama, Mississippi, and Louisiana. The original plan for SEAMAP plankton surveys was to sample both the open (shelf edge to U.S. EEZ) and continental shelf (10 to 200 m) portions of the Gulf in their entirety at least once during each season. This ambitious goal has not been achieved because survey data relevant to fisheries-related issues must encompass the entire geographic extent of spawning which, for most species, includes either the entire open Gulf or continental shelf regions. Furthermore, once established, these surveys must be conducted on an annual basis in order to build a historical database from which population trends can be assessed.

Due to these constraints SEAMAP ichthyoplankton data are collected primarily during four survey periods: spring (April and May, 1982 to present), summer (June and July, 1982 to present), late summer /early fall (typically in September, 1986 to present) and fall (October and November, 1982 to present). The spring survey covers only open U.S. GOM waters, while the summer and fall surveys encompass only continental shelf waters from south Texas to Mobile Bay; and the late summer/early fall survey from south Texas to south Florida. There have been three, winter plankton surveys in open Gulf waters during the SEAMAP time series (in 1983, 1984 and 1996). Samples used in annual estimates of larval fish abundance are collected on both state and federal cruises. Since 1982 the number of samples taken each year during SEAMAP summer and fall shrimp/bottomfish trawl surveys has typically ranged from 30 to 76 samples. In 1998 only 10 samples were collected during the summer trawl survey area includes the continental shelf and coastal waters west of 88° W longitude; although in the earliest years of the time series (1982 to 1988) sampling was conducted further east off northwest Florida. Samples from mid August to mid-October are taken during the SEAMAP fall plankton survey which only became a Gulfwide survey of continental shelf and coastal waters between Brownsville, Texas and south Florida in 1986. This survey has produced from 81 to 150 samples per year since 1986. In 1998 only 35 samples were collected during this timeframe due to vessel breakdowns and tropical storms.

Over the years, plankton sampling has been conducted using standard SEAMAP gear at SEAMAP designated stations that were not part of designated SEAMAP surveys. Data and observations from these sampling efforts are used to better define spawning times and intensity but are not used to estimate annual indices of larval fish occurrence and mean abundance.

The sampling gear and methodology used during SEAMAP surveys (Rester et al. (2000) are similar to those recommended by Kramer et al. (1972), Smith and Richardson (1977) and Posgay and Marak (1980). A 60 cm bongo net fitted with  $0.333 (0.335)^1$  mm mesh netting is fished in an oblique tow path from a maximum depth of 200 m or to 2-5 m off the bottom at depths less than 200 m. A mechanical flowmeter is mounted off-center in the mouth of each bongo net to record the volume of water filtered. Volume filtered ranges from ~20 to 600 m<sup>3</sup> but is typically 30 to 40 m<sup>3</sup> at the shallowest stations and 300 to 400 m<sup>3</sup> at the deepest stations. A single or double 2x1 m pipe frame neuston net fitted with 0.947 (0.950)<sup>1</sup> mm mesh netting is towed at the surface with the frame half-submerged for 10 minutes. Non-standard gear used to collect plankton samples from smaller vessels operated by the states are coded as such in the database and are not used to calculate larval indices.

Catches of larvae from bongo nets are standardized to account for sampling effort and expressed as number of larvae under  $10 \text{ m}^2$  of sea surface. This is accomplished by dividing the number of larvae of each taxon caught in a sample by the volume of water filtered during the tow; and than multiplying the resultant by the maximum depth of the tow in meters and the factor 10. Catches of larvae from neuston nets are standardized to account for sampling effort and expressed as number of larvae per 10 min tow.

Most but not all SEAMAP, standard plankton stations are located at 30 mile or <sup>1</sup>/<sub>2</sub> degree (~56 km) intervals in a fixed, systematic grid across the GOM, although, only every other N-S transect of stations is sampled during spring surveys and during fall plankton surveys in 1988-1991. Occasionally during surveys, samples are taken at non-standard locations or stations are moved to avoid navigational hazards. Samples are taken upon arrival on station regardless of time of day. At each station either a bongo and/or neuston tow are made depending on the specific survey.

Initial processing of SEAMAP plankton samples is carried out at the Sea Fisheries Institute, Plankton Sorting and Identification Center (ZSIOP), in Szczecin, Poland and the Louisiana Department of Wildlife and Fisheries. Vials of eggs and identified larvae, plankton displacement volumes, total egg counts, and counts and length measurements of

<sup>&</sup>lt;sup>1</sup> Mesh size change in database does not represent an actual change in gear but only a change in the accuracy at which plankton mesh aperture size can be measured by the manufacturer.

identified larvae are sent to the SEAMAP Archive at the Florida Marine Research Institute in St. Petersburg, FL. There data are entered into the SEAMAP database and specimens are curated and loaned to interested scientists. Data files containing specimen identifications and lengths are sent to the NMFS Mississippi Laboratories where these data are combined with field collection data and edited according to established SEAMAP editing routines. SEAMAP survey data are currently maintained in dBase file structures but conversion to an Oracle based system is underway.

All specimens of snapper larvae used in these analyses were re-examined by ichthyoplankton specialists at the Southeast Fisheries Science Center, Mississippi Laboratories. A strict identification protocol was followed to assure the accuracy and consistency of vermilion snapper identifications over the time series.

#### RESULTS

# General Description of Occurrence and Abundance from SEAMAP surveys in the Gulf of Mexico:

Use of ichthyoplankton survey data in assessment analyses for snapper species (family Lutjanidae) has proven difficult due to the inability to distinguish the larvae of closely related species at the smallest sizes found in samples. Over 11,000 specimens of snapper larvae collected in bongo and neuston net samples during SEAMAP surveys, 1982-2002 were examined and identified to the lowest taxon possible using recent descriptions of snapper larvae (Drass et al. 2000; Lindeman et al. 2005).

The larvae of vermilion snapper were collected in plankton samples from 138 of over 240 cruises in the NMFS/Mississippi Labs database through the 2002 field season (Table 1). Larvae first appeared in samples from April and were present in samples through November (Table 2). Months of highest occurrence and abundance were August, September and October when vermilion larvae occurred in 17 % and 9%, 25% and 12%, and 15% and 9% of bongo and neuston samples, respectively. Mean abundance in those months was 2.98, 2.87 and 1.87 larvae per 10 m<sup>2</sup> for bongo samples and 1.15, 0.75 and 0.54 larvae per 10 min for neuston samples. By November per cent occurrence was  $\leq 2$  % and mean abundance was <0.2 larvae in samples from either gear.

Mean abundance and occurrence of vermilion snapper larvae by month and survey (including non-SEAMAP sampling effort) indicated that the SEAMAP Fall Plankton survey accounts for the majority of captures (Tables 3 and 4). This survey comprises samples collected within the timeframe, 15 August to 15 October. Summed abundances of vermilion snapper larvae during the only other established, long-term surveys; namely spring plankton and summer and fall shrimp/bottomfish surveys, were an order of magnitude less than summed abundance during the fall plankton survey. The explanation for this difference is that sampling during spring surveys takes place primarily in open Gulf waters, i.e. outside vermilion snapper spawning grounds. Sampling during summer and fall shrimp/ bottomfish surveys apparently misses peak spawning production.

Size frequency distributions (catch curves) of vermilion snapper larvae captured during the three, long-term SEAMAP surveys in shelf waters are shown in Figures 1 and 2. The overall range in body length (BL) of vermilion snapper larvae was 1.5 to 41.0 mm BL

(mean = 4.39, median = 4.10) in bongo net samples and 2.0 to 29.8 mm BL (mean = 3.97, median = 3.80) in neuston net samples. Over 99% of larvae in bongo net samples were  $\leq 8.5$  mm BL and larvae in neuston net samples were  $\leq 6$  mm BL (Tables 5 & 6).

Maps showing distribution and relative abundance of larvae in bongo and neuston samples from the SEAMAP August 1984 plankton survey and SEAMAP Fall Plankton surveys, 1986 to 2002 are presented in Figures 3-20. Vermilion snapper were taken over the entire east-west extent of the survey area but, over the time series, most occurrences were observed at stations on the mid and outer continental shelf between the 50 and 100 m isobaths. In some years larvae occurred at more inshore locations off east Texas and west Louisiana, and southwest Florida. Larvae consistently occurred beyond the 100 m isobath off southwest Florida and at nearshore stations off Alabama and northwest Florida near the northern rim of the De Soto Canyon (~ 87° W longitude and 50-60 m water depth). The region of highest station abundances was observed off central and southwest Florida. Distribution of larvae during other surveys did not markedly differ from the pattern observed during the fall plankton survey.

### Larval Index:

We recommend that the vermilion snapper index of larval abundance be based on bongo net samples from the SEAMAP Fall Plankton survey (Table 7). The time series for this index begins with the 1986 season when the fall plankton survey became Gulfwide, and subsequently, it has been conducted each year from mid August to mid October. Too few samples were taken during the 1998 field season on which to base an estimate of larval abundance due to tropical storms and hurricanes that severely curtailed field work that year. It is evident from a comparison of mean annual abundances, coefficients of variation of mean abundance (CV), and annual per cent occurrence between both gear types that vermilion snapper larvae are taken more consistently in bongo than in neuston samples (Tables 8 & 9). CV's over the time series for bongo net catches are lower and relatively more stable than for neuston net catches. Larvae occurred less frequently and in lower numbers during the summer and fall shrimp/bottomfish surveys than during the fall plankton survey. Geographic coverage during the fall plankton survey includes the west Florida shelf where vermilion snapper larvae are present in moderate to high abundances. Plankton sampling during the summer and fall shrimp/bottomfish surveys does not extend east of Mobile Bay, Alabama and, therefore, does not adequately sample a large portion of the vermilion snapper spawning stock in the Gulf.

The final vermilion snapper larval index of abundance will be based on a single size/age class using a 'trimmed' data set, i.e. utilizing only data from stations consistently sampled at a selected threshold level over the time series see Hanisko et al. SEDAR7-RW 7.

Literature Cited:

- Comyns, B.H. 1995. Early life history of snappers in the northcentral Gulf of Mexico: growth, survival and implications to recruitment. 80 p. +5 tables, 33 figures, 1 appendix. Final Technical Report submitted to the National Marine Fisheries Service, Southeast Regional Office, 9721 Executive Center Drive, St. Petersburg, FL 33702.
- Comyns, B.H., and J. Lyczkowski-Shultz. 1993. Spawning and early life history of snappers in the northcentral Gulf of Mexico. 80 p. +12 tables, 12 figures. Final Technical Report submitted to the National Marine Fisheries Service, Southeast Regional Office, 9721 Executive Center Drive, St. Petersburg, FL 33702.
- Comyns, B.H., R.F. Shaw, and J. Lyczkowski-Shultz. 2003. Small-scale spatial and temporal variability in growth and mortality of fish larvae in the subtropical northcentral Gulf of Mexico: implications for assessing recruitment success. U.S. Fishery Bulletin. 101(2):10-21.
- Comyns, B.H. 1997. Growth and mortality of fish larvae in the northcentral Gulf of Mexico and implications to recruitment. Dissertation, Louisiana State University, Baton Rouge, Louisiana. 199 p.
- Drass, D.M., K.L. Bootes, J. Lyczkowski-Shultz, B.H. Comyns, G.J. Holt, C.M. Riley, and R.P. Phelps. 2000. Larval development of red snapper, *Lutjanus campechanus*, with comparisons to co-occurring snapper species. U.S. Fishery Bulletin. 98(3):507-527.
- Kramer, D., M.J. Kalin, E.G. Stevens, J.R. Thrailkill, and J.R. Zweifel. 1972. Collecting and processing data on fish eggs and larvae in the California Current region. NOAA Technical Report. NMFS Circular 370. 38 p.
- Laroche, W. A. 1977. Description of larval and early juvenile vermilion snapper, *Rhomboplites aurorubens*. Fish. Bull. U. S. 75:547-554.
- Lindeman, K. C., W. J. Richards, J. Lyczkowski-Shultz, D. M. Drass, C. B. Paris, J. M. Leis, M. Lara, and B. H. Comyns. 2005. Lutjanidae: Snappers. In: Richards, W. F. ed. Early stages of Atlantic fishes: an identification guide for the western central North Atlantic. CRC Press, Boca Raton, Fl. (Chapter 137)
- Lyczkowski-Shultz, J. and B.H. Comyns. 1992. Early life history of snappers in coastal and shelf waters of the northcentral Gulf of Mexico late summer/fall months, 1983-1989, 12 p. + 9 tables, 17 figures. Technical Report submitted to the National Marine Fisheries Service, Southeast Regional Office, 9721 Executive Center Drive, St. Petersburg, FL 33702.
- Lyczkowski-Shultz, J., D.S. Hanisko, K.J. Sulak, and G.D. Dennis, III. 2003. Characterization of ichthyoplankton within the U.S. geological survey's northeastern Gulf of Mexico study area: Based on analysis of Southeast Area Monitoring and

Assessment Program (SEAMAP) Sampling Surveys, 1982-1999. USGS Project Report, USGS SIR-2004-5059: 136 p.

- Posgay, J.A. and R.R. Marak. 1980. The MARMAP bongo zooplankton samplers. J. Northw. Atl. Fish. Sci. 1: 9-99.
- Rester, J. K., N. Sanders, Jr., D.S. Hanisko, and B. Pellegrin. (editors) 2000. Seamap Environmental and Biological Atlas of the Gulf of Mexico, 1998. No. 75, 243pp. Gulf States Marine Fisheries Commission, Ocean Springs, MS.
- Smith, P.E. and S. L. Richardson, eds. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Technical Paper 175.

Table 1: Surveys where vermilion snapper larvae were caught in plankton samples. SP=SEAMAP Spring survey; SG=SEAMAP Summer Shrimp/Bottomfish survey; FG=Fall Shrimp/Bottomfish survey; FP=SEAMAP Fall Plankton survey; SQ=Squid/ Butterfish survey; AF=Alabama Fall SEAMAP survey; AS=Alabama Summer SEAMAP; \* donotes sampling outside established SEAMAP surveys

|        | , <b>u</b> onot | co sumpin | No. of  | No. of  | L' non n Surv | eys        |
|--------|-----------------|-----------|---------|---------|---------------|------------|
| CRUISE | VESSEL          | Survey    | Samples | Samples | Cruise Begin  | Cruise End |
|        |                 | Туре      | NEUSTON | BONGO   | Date          | Date       |
| 126    | 04              | SP        | 128     | 127     | 4/15/1982     | 5/25/1982  |
| 821    | 30              | SP        | 0       | 8       | 4/27/1982     | 4/28/1982  |
| 821    | 09              | SP        | 7       | 7       | 5/19/1982     | 5/16/1982  |
| 127    | 04              | SG        | 60      | 66      | 6/2/1982      | 7/13/1982  |
|        |                 |           |         |         |               |            |
| 134    | 04              | SP        | 108     | 110     | 4/22/1983     | 5/23/1983  |
| 135    | 04              | SG        | 46      | 47      | 6/1/1983      | 7/13/1983  |
| 831    | 09              | *         | 8       | 16      | 6/26/1983     | 6/29/1983  |
| 832    | 09              | *         | 0       | 19      | 7/12/1983     | 7/14/1983  |
| 138    | 04              | FG        | 23      | 36      | 10/12/1983    | 10/31/1983 |
|        |                 |           |         |         |               |            |
| 143    | 04              | SP        | 88      | 141     | 4/21/1984     | 5/16/1984  |
| 145    | 04              | SG        | 59      | 60      | 6/8/1984      | 7/22/1984  |
| 841    | 17              | SG        | 10      | 10      | 6/8/1984      | 6/10/1984  |
| 146    | 04              | FP        | 161     | 156     | 8/2/1984      | 8/27/1984  |
| 841    | 30              | FP        | 20      | 20      | 8/25/1984     | 8/29/1984  |
| 148    | 04              | FG        | 0       | 29      | 10/10/1984    | 11/10/1984 |
|        |                 |           |         |         |               |            |
| 851    | 30              | *         | 34      | 34      | 6/5/1985      | 6/14/1985  |
| 153    | 04              | SG        | 36      | 38      | 6/11/1985     | 7/15/1985  |
| 853    | 35              | SG        | 20      | 24      | 7/22/1985     | 7/25/1985  |
| 154    | 04              | SQ        | 46      | 47      | 7/30/1985     | 8/26/1985  |
| 852    | 17              | SQ        | 20      | 20      | 8/2/1985      | 8/13/1985  |
| 854    | 17              | SQ        | 5       | 5       | 8/22/1985     | 8/24/1985  |
| 156    | 04              | FG        | 1       | 1       | 10/19/1985    | 11/2/1985  |
|        |                 |           |         |         |               |            |
| 159    | 04              | SP        | 69      | 69      | 4/22/1986     | 5/21/1986  |
| 160    | 04              | SG        | 43      | 43      | 6/10/1986     | 7/6/1986   |
| 862    | 17              | SG        | 6       | 6       | 6/11/1986     | 6/12/1986  |
| 161    | 04              | FP        | 48      | 48      | 9/4/1986      | 9/12/1986  |
| 862    | 36              | FP        | 29      | 29      | 9/6/1986      | 9/13/1986  |
| 864    | 17              | FP        | 9       | 9       | 9/8/1986      | 9/10/1986  |
| 865    | 28              | FP        | 56      | 55      | 9/13/1986     | 9/22/1986  |
| 862    | 23              | AF        | 10      | 6       | 9/22/1986     | 9/18/1986  |
| 163    | 04              | FG        | 62      | 63      | 10/23/1986    | 11/22/1986 |
| 864    | 36              |           | 28      | 28      | 11/15/1986    | 11/21/1986 |
|        |                 |           |         |         |               |            |
| 873    | 36              | SP        | 16      | 18      | 5/1/1987      | 5/9/1987   |
| 167    | 04              | SG        | 43      | 44      | 6/12/1987     | 7/14/1987  |
| 872    | 35              | SG        | 11      | 22      | 7/7/1987      | 7/11/1987  |
| 875    | 36              | FP        | 35      | 35      | 9/1/1987      | 9/8/1987   |
| 169    | 04              | FP        | 91      | 91      | 9/12/1987     | 9/27/1987  |
| 171    | 04              | FG        | 20      | 24      | 10/23/1987    | 11/14/1987 |
| 1,1    | . ·             | . 0       |         |         | 10, 20, 1907  |            |

|     | ont. |    |     |    |            |            |
|-----|------|----|-----|----|------------|------------|
| 173 | 04   | SP | 4   | 73 | 4/20/1988  | 5/26/1988  |
| 881 | 17   | SG | 5   | 6  | 6/13/1988  | 7/10/1988  |
| 882 | 36   | FP | 36  | 36 | 8/26/1988  | 9/2/1988   |
| 176 | 04   | FP | 80  | 39 | 9/7/1988   | 9/28/1988  |
| 892 | 49   | SP | 121 | 61 | 4/26/1989  | 5/19/1989  |
| 891 | 36   | SP | 24  | 25 | 5/11/1989  | 5/16/1989  |
| 891 | 17   | SG | 7   | 7  | 6/10/1989  | 7/11/1989  |
| 180 | 04   | SG | 21  | 21 | 6/19/1989  | 7/13/1989  |
| 892 | 28   | *  | 30  | 0  | 6/24/1989  | 6/28/1989  |
| 183 | 04   | FP | 75  | 37 | 9/13/1989  | 9/29/1989  |
| 892 | 17   | FP | 5   | 5  | 9/17/1989  | 9/19/1989  |
| 892 | 36   | FP | 34  | 35 | 10/4/1989  | 10/11/1989 |
| 184 | 04   | FG | 39  | 38 | 10/20/1989 | 11/19/1989 |
| 187 | 04   | SP | 138 | 65 | 4/20/1990  | 5/24/1990  |
| 901 | 36   | SP | 4   | 21 | 5/24/1990  | 5/30/1990  |
| 904 | 28   | SP | 129 | 64 | 5/30/1990  | 6/30/1990  |
| 901 | 17   | SG | 3   | 4  | 6/9/1990   | 7/28/1990  |
| 189 | 04   | SG | 0   | 19 | 6/18/1990  | 7/7/1990   |
| 190 | 04   | FP | 100 | 52 | 9/2/1990   | 9/28/1990  |
| 902 | 36   | FP | 30  | 30 | 10/13/1990 | 10/18/1990 |
| 191 | 04   | FG | 39  | 39 | 10/16/1990 | 11/17/1990 |
| 194 | 04   | SP | 141 | 48 | 4/17/1991  | 5/22/1991  |
| 911 | 36   | SP | 13  | 13 | 5/7/1991   | 5/9/1991   |
| 911 | 17   | SG | 2   | 2  | 6/15/1991  | 6/16/1991  |
| 195 | 04   | SG | 37  | 37 | 6/18/1991  | 7/13/1991  |
| 912 | 36   | FP | 22  | 23 | 8/21/1991  | 8/25/1991  |
| 914 | 28   | FP | 95  | 49 | 9/6/1991   | 9/26/1991  |
| 197 | 04   | FG | 40  | 40 | 10/14/1991 | 11/18/1991 |
| 199 | 04   | SP | 146 | 72 | 4/22/1992  | 5/23/1992  |
| 921 | 26   | SP | 14  | 20 | 5/17/1992  | 5/21/1992  |
| 200 | 04   | SG | 40  | 41 | 6/13/1992  | 7/13/1992  |
| 922 | 35   | SG | 7   | 7  | 7/6/1992   | 7/9/1992   |
| 925 | 28   | FP | 72  | 73 | 8/30/1992  | 9/20/1992  |
| 201 | 04   | FP | 25  | 27 | 9/24/1992  | 9/27/1992  |
| 922 | 26   | FP | 13  | 12 | 10/12/1992 | 10/19/1992 |
| 202 | 04   | FG | 30  | 30 | 10/18/1992 | 11/10/1992 |
| 204 | 04   | SP | 120 | 64 | 5/19/1993  | 6/15/1993  |
| 936 | 28   | FP | 72  | 72 | 9/10/1993  | 9/29/1993  |
| 207 | 04   | FP | 10  | 10 | 10/5/1993  | 10/6/1993  |
| 932 | 26   | FP | 36  | 36 | 10/11/1993 | 10/18/1993 |
| 208 | 04   | FG | 36  | 30 | 10/15/1993 | 11/14/1993 |
| 935 | 17   | FG | 2   | 2  | 10/29/1993 | 11/2/1993  |
| 209 | 04   | SP | 88  | 67 | 4/28/1994  | 6/9/1994   |
| 944 | 28   | SP | 60  | 27 | 5/20/1994  | 5/31/1994  |
|     | 36   | SP | 5   | 5  | 5/20/1994  | 5/22/1994  |

| 210 | 04 | SG | 42  | 41  | 6/16/1994  | 7/17/1994  |
|-----|----|----|-----|-----|------------|------------|
| 946 | 28 | FP | 88  | 88  | 9/11/1994  | 9/29/1994  |
| 942 | 36 | FP | 29  | 29  | 9/28/1994  | 10/8/1994  |
| 214 | 04 | FG | 48  | 48  | 10/14/1994 | 11/20/1994 |
| 216 | 04 | SP | 264 | 127 | 4/19/1995  | 6/7/1995   |
| 951 | 26 | SP | 15  | 15  | 4/20/1995  | 4/28/1995  |
| 951 | 17 | SG | 2   | 2   | 6/10/1995  | 6/11/1995  |
| 955 | 28 | FP | 88  | 87  | 9/9/1995   | 9/26/1995  |
| 952 | 17 | FP | 5   | 5   | 9/16/1995  | 9/18/1995  |
| 952 | 26 | FP | 24  | 25  | 9/24/1995  | 9/28/1995  |
| 220 | 04 | SP | 171 | 79  | 4/17/1996  | 5/24/1996  |
| 961 | 26 | SP | 18  | 18  | 5/20/1996  | 5/25/1996  |
| 221 | 04 | SG | 22  | 22  | 6/14/1996  | 7/16/1996  |
| 965 | 28 | FP | 92  | 92  | 9/5/1996   | 9/25/1996  |
| 962 | 26 | FP | 19  | 19  | 9/11/1996  | 9/14/1996  |
| 224 | 04 | FG | 43  | 43  | 10/11/1996 | 11/21/1996 |
| 963 | 17 | FG | 2   | 2   | 10/24/1996 | 10/24/1996 |
| 225 | 04 | SP | 186 | 95  | 4/17/1997  | 6/9/1997   |
| 971 | 17 | SG | 2   | 2   | 6/7/1997   | 6/7/1997   |
| 226 | 04 | SG | 47  | 47  | 6/13/1997  | 7/16/1997  |
| 975 | 28 | FP | 93  | 93  | 9/7/1997   | 9/27/1997  |
| 972 | 17 | FP | 4   | 4   | 9/20/1997  | 9/22/1997  |
| 972 | 26 | FP | 19  | 19  | 10/2/1997  | 10/6/1997  |
| 973 | 17 | FG | 2   | 2   | 11/10/1997 | 11/11/1997 |
| 984 | 28 | SP | 156 | 71  | 4/19/1998  | 5/30/1998  |
| 981 | 26 | SP | 17  | 17  | 6/21/1998  | 6/23/1998  |
| 981 | 63 | FP | 25  | 27  | 9/7/1998   | 9/24/1998  |
| 232 | 04 | FG | 15  | 14  | 10/12/1998 | 10/15/1998 |
| 234 | 04 | SP | 179 | 88  | 4/23/1999  | 5/31/1999  |
| 991 | 17 | SG | 2   | 2   | 6/12/1999  | 6/13/1999  |
| 235 | 04 | SG | 35  | 35  | 6/15/1999  | 7/20/1999  |
| 992 | 63 | FP | 116 | 117 | 9/3/1999   | 9/29/1999  |
| 993 | 17 | FP | 9   | 9   | 9/9/1999   | 9/10/1999  |
| 991 | 26 | FP | 12  | 10  | 9/25/1999  | 9/29/1999  |
| 237 | 04 | FG | 45  | 43  | 10/16/1999 | 11/20/1999 |
| 002 | 63 | SP | 166 | 85  | 4/20/2000  | 5/26/2000  |
| 240 | 04 | SG | 45  | 45  | 6/13/2000  | 7/19/2000  |
| 001 | 17 | SG | 2   | 2   | 6/24/2000  | 6/25/2000  |
| 242 | 04 | FP | 104 | 111 | 9/7/2000   | 10/1/2000  |
| 001 | 26 | FP | 13  | 14  | 9/26/2000  | 9/29/2000  |
| 002 | 17 | FP | 11  | 11  | 10/13/2000 | 10/15/2000 |
| 243 | 04 | FG | 46  | 45  | 10/14/2000 | 11/17/2000 |
| 012 | 63 | SP | 180 | 96  | 4/18/2001  | 5/29/2001  |
|     |    |    |     |     |            |            |

Table 1 cont.

| 013 | 17 | SG | 12  | 11  | 7/3/2001   | 7/10/2001  |
|-----|----|----|-----|-----|------------|------------|
|     |    |    |     |     |            |            |
| 015 | 63 | FP | 131 | 127 | 8/31/2001  | 9/26/2001  |
| 011 | 26 | FP | 12  | 12  | 10/11/2001 | 10/14/2001 |
| 248 | 04 | FG | 5   | 5   | 10/15/2001 | 11/6/2001  |
| 016 | 63 | FG | 42  | 42  | 10/15/2001 | 11/13/2001 |
| 014 | 17 | FG | 2   | 2   | 10/19/2001 | 10/20/2001 |
|     |    |    |     |     |            |            |
| 022 | 63 | SP | 160 | 90  | 4/18/2002  | 5/28/2002  |
| 250 | 04 | SG | 51  | 50  | 6/12/2002  | 7/16/2002  |
| 021 | 35 | SG | 7   | 7   | 7/9/2002   | 7/12/2002  |
| 025 | 63 | FP | 86  | 88  | 8/30/2002  | 9/20/2002  |
| 252 | 04 | FG | 46  | 44  | 10/13/2002 | 11/15/2002 |

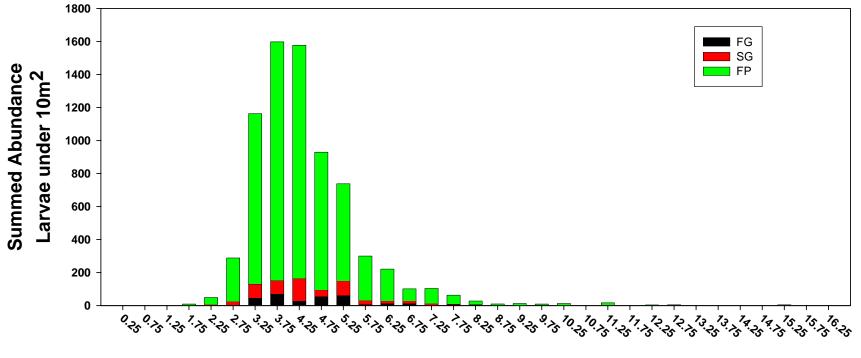
Table 2: Summary of larval vermilion snapper catches by month based on all surveys in the Gulf of Mexico, 1982-2002. CV=coefficient of variation of mean abundance.

# A. Bongo samples

|       | No.     | No.         | No.    | %          | Mean      |        |       | Lower | Upper | Minimum   | Maximum   | Summed    |       |
|-------|---------|-------------|--------|------------|-----------|--------|-------|-------|-------|-----------|-----------|-----------|-------|
| Month | Samples | Occurrences | Larvae | Occurrence | Abundance | Std    | SE    | 95%CI | 95%CI | Abundance | Abundance | Abundance | CV    |
| 1     | 72      | 0           |        |            |           |        |       |       |       |           |           |           |       |
| 2     | 35      | 0           |        |            |           |        |       |       |       |           |           |           |       |
| 3     | 185     | 0           |        |            |           |        |       |       |       |           |           |           |       |
| 4     | 607     | 7           | 13     | 1.15       | 0.11      | 1.317  | 0.053 | 0.007 | 0.218 | 0         | 26.53     | 68.28     | 47.54 |
| 5     | 1361    | 34          | 43     | 2.50       | 0.17      | 1.216  | 0.033 | 0.107 | 0.236 | 0         | 21.61     | 233.84    | 19.18 |
| 6     | 684     | 64          | 119    | 9.36       | 0.71      | 3.399  | 0.130 | 0.459 | 0.969 | 0         | 44.15     | 488.55    | 18.19 |
| 7     | 590     | 51          | 79     | 8.64       | 0.55      | 2.305  | 0.095 | 0.367 | 0.740 | 0         | 30.00     | 326.36    | 17.16 |
| 8     | 329     | 57          | 224    | 17.33      | 2.98      | 10.018 | 0.552 | 1.892 | 4.065 | 0         | 69.88     | 980.02    | 18.54 |
| 9     | 1615    | 401         | 1258   | 24.83      | 2.87      | 8.594  | 0.214 | 2.454 | 3.293 | 0         | 127.07    | 4641.05   | 7.44  |
| 10    | 684     | 105         | 380    | 15.35      | 1.87      | 7.097  | 0.271 | 1.335 | 2.401 | 0         | 92.57     | 1277.90   | 14.53 |
| 11    | 472     | 10          | 11     | 2.12       | 0.12      | 0.914  | 0.042 | 0.041 | 0.206 | 0         | 9.84      | 58.40     | 33.99 |
| 12    | 236     | 0           |        |            |           |        |       |       |       |           |           |           |       |

## B. Neuston samples

|       | No.     | No.         | No.    | %          | Mean      |       |       | Lower | Upper | Minimum   | Maximum   | Summed    |       |
|-------|---------|-------------|--------|------------|-----------|-------|-------|-------|-------|-----------|-----------|-----------|-------|
| Month | Samples | Occurrences | Larvae | Occurrence | Abundance | Std   | SE    | 95%CI | 95%CI | Abundance | Abundance | Abundance | CV    |
| 1     | 76      | 0           |        |            |           |       |       |       |       |           |           |           |       |
| 2     | 33      | 0           |        |            |           |       |       |       |       |           |           |           |       |
| 3     | 50      | 0           |        |            |           |       |       |       |       |           |           |           |       |
| 4     | 890     | 4           | 4      | 0.45       | 0.00      | 0.067 | 0.002 | 0.000 | 0.009 | 0         | 1.00      | 3.99      | 49.92 |
| 5     | 2039    | 55          | 250    | 2.70       | 0.12      | 2.023 | 0.045 | 0.034 | 0.210 | 0         | 82.00     | 249.24    | 36.66 |
| 6     | 768     | 20          | 55     | 2.60       | 0.08      | 0.657 | 0.024 | 0.032 | 0.125 | 0         | 10.00     | 60.45     | 30.10 |
| 7     | 536     | 11          | 35     | 2.05       | 0.06      | 0.667 | 0.029 | 0.003 | 0.116 | 0         | 13.08     | 31.79     | 48.54 |
| 8     | 331     | 29          | 381    | 8.76       | 1.15      | 7.368 | 0.405 | 0.355 | 1.948 | 0         | 83.00     | 381.26    | 35.16 |
| 9     | 1878    | 232         | 1408   | 12.35      | 0.75      | 4.010 | 0.093 | 0.568 | 0.931 | 0         | 65.22     | 1406.82   | 12.35 |
| 10    | 658     | 61          | 356    | 9.27       | 0.54      | 3.497 | 0.136 | 0.269 | 0.805 | 0         | 48.84     | 353.39    | 25.39 |
| 11    | 403     | 7           | 9      | 1.74       | 0.02      | 0.191 | 0.010 | 0.003 | 0.041 | 0         | 3.00      | 8.94      | 42.94 |
| 12    | 188     | 0           |        |            |           |       |       |       |       |           |           |           |       |


Table 3: Summary of larval vermilion snapper catches in bongo net samples by month and survey type based on all surveys in the Gulf of Mexico, 1982-2002. CV=coefficient of variation of mean abundance. \* donotes sampling outside established SEAMAP surveys

|       | Survey | No.     | No.         | No.    | %          | Mean      |        |       | Lower   | Upper  | Minimum   | Maximum   | Summed    |        |
|-------|--------|---------|-------------|--------|------------|-----------|--------|-------|---------|--------|-----------|-----------|-----------|--------|
| Month | Туре   | Samples | Occurrences | Larvae | Occurrence | Abundance | Std    | SE    | 95%CI   | 95%CI  | Abundance | Abundance | Abundance | CV     |
| 1     | *      | 72      | 0           |        |            |           |        |       |         |        |           |           |           |        |
| 2     | *      | 35      | 0           |        |            |           |        |       |         |        |           |           |           |        |
| 3     | *      | 137     | 0           |        |            |           |        |       |         |        |           |           |           |        |
| 6     | *      | 50      | 18          | 41     | 36.00      | 3.14      | 6.755  | 0.955 | 1.221   | 5.061  | 0         | 39.53     | 157.06    | 30.41  |
| 7     | *      | 22      | 6           | 7      | 27.27      | 1.32      | 2.435  | 0.519 | 0.241   | 2.401  | 0         | 8.77      | 29.07     | 39.30  |
| 8     | *      | 13      | 0           | 0      | 0.00       | 0.00      | 0.000  | 0.000 |         |        | 0         | 0.00      | 0.00      |        |
| 11    | *      | 31      | 1           | 1      | 3.23       | 0.14      | 0.789  | 0.142 | -0.148  | 0.431  | 0         | 4.40      | 4.40      | 100.00 |
| 12    | *      | 225     | 0           |        | 0.00       | 0.00      | 0.000  | 0.000 |         |        | 0         | 0.00      | 0.00      |        |
| 3     | SP     | 48      | 0           |        | 0.00       | 0.00      | 0.000  | 0.000 |         |        | 0         | 0.00      | 0.00      |        |
| 4     | SP     | 607     | 7           | 13     | 1.15       | 0.11      | 1.317  | 0.053 | 0.007   | 0.218  | 0         | 26.53     | 68.28     | 47.54  |
| 5     | SP     | 1345    | 34          | 43     | 2.53       | 0.17      | 1.223  | 0.033 | 0.108   | 0.239  | 0         | 21.61     | 233.84    | 19.18  |
| 6     | SP     | 147     | 9           | 10     | 6.12       | 0.40      | 1.675  | 0.138 | 0.130   | 0.676  | 0         | 12.31     | 59.30     | 34.25  |
| 6     | AS     | 2       | 0           |        | 0.00       | 0.00      | 0.000  | 0.000 |         |        | 0         | 0.00      | 0.00      |        |
| 6     | SG     | 485     | 37          | 68     | 7.63       | 0.56      | 3.189  | 0.145 | 0.277   | 0.846  | 0         | 44.15     | 272.19    | 25.80  |
| 7     | SG     | 565     | 43          | 63     | 7.61       | 0.46      | 1.919  | 0.081 | 0.302   | 0.619  | 0         | 24.30     | 260.10    | 17.53  |
| 5     | SQ     | 16      | 0           |        | 0.00       | 0.00      | 0.000  | 0.000 |         |        | 0         | 0.00      | 0.00      |        |
| 7     | SQ     | 3       | 2           | 9      | 66.67      | 12.40     | 15.663 | 9.043 | -26.513 | 51.306 | 0         | 30.00     | 37.19     | 72.95  |
| 8     | SQ     | 69      | 8           | 10     | 11.59      | 0.79      | 2.403  | 0.289 | 0.215   | 1.370  | 0         | 13.16     | 54.67     | 36.51  |
| 9     | AF     | 6       | 0           |        | 0.00       | 0.00      | 0.000  | 0.000 |         |        | 0         | 0.00      | 0.00      |        |
| 8     | FP     | 247     | 49          | 214    | 19.84      | 3.75      | 11.394 | 0.725 | 2.318   | 5.174  | 0         | 69.88     | 925.35    | 19.35  |
| 9     | FP     | 1609    | 401         | 1258   | 24.92      | 2.88      | 8.608  | 0.215 | 2.463   | 3.305  | 0         | 127.07    | 4641.05   | 7.44   |
| 10    | FP     | 269     | 73          | 290    | 27.14      | 3.73      | 10.200 | 0.622 | 2.504   | 4.953  | 0         | 92.57     | 1002.98   | 16.68  |
| 10    | FG     | 415     | 32          | 90     | 7.71       | 0.66      | 3.472  | 0.170 | 0.327   | 0.997  | 0         | 44.78     | 274.92    | 25.72  |
| 11    | FG     | 441     | 9           | 10     | 2.04       | 0.12      | 0.923  | 0.044 | 0.036   | 0.209  | 0         | 9.84      | 54.01     | 35.88  |
| 12    | FG     | 11      | 0           |        |            |           |        |       |         |        |           |           |           |        |

Table 4: Summary of larval vermilion snapper catches in neuston net samples by month and survey type based on all surveys in the Gulf of Mexico, 1982-2002. CV=coefficient of variation of mean abundance. \* donotes sampling outside established SEAMAP surveys

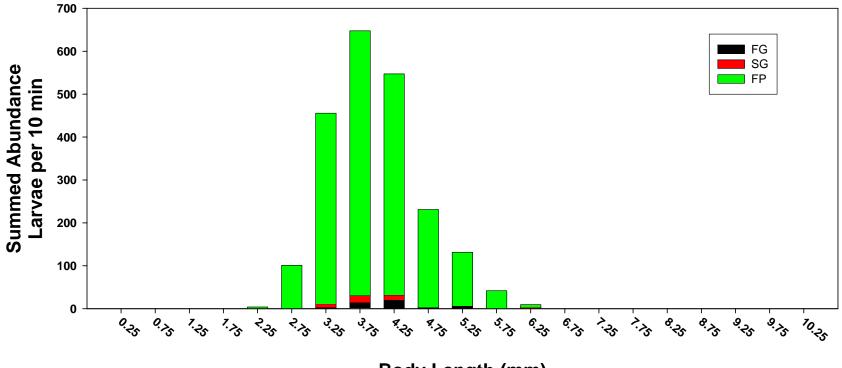

|       | Survey | No.     | No.         | No.    | %          | Mean      |       |       | Lower  | Upper  | Minimum   | Maximum   | Summed    |        |
|-------|--------|---------|-------------|--------|------------|-----------|-------|-------|--------|--------|-----------|-----------|-----------|--------|
| Month | Туре   | Samples | Occurrences | Larvae | Occurrence | Abundance | Std   | SE    | 95%CI  | 95%CI  | Abundance | Abundance | Abundance | CV     |
| 1     | *      | 76      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 2     | *      | 33      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 3     | *      | 13      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 4     | *      | 5       | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 5     | *      | 84      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 6     | *      | 72      | 5           | 10     | 6.94       | 0.21      | 1.217 | 0.143 | -0.071 | 0.501  | 0         | 10.00     | 15.47     | 66.75  |
| 7     | *      | 3       | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 8     | *      | 13      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 11    | *      | 31      | 3           | 5      | 9.68       | 0.16      | 0.583 | 0.105 | -0.053 | 0.375  | 0         | 3.00      | 5.00      | 64.91  |
| 12    | *      | 180     | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 3     | SP     | 37      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 4     | SP     | 885     | 4           | 4      | 0.45       | 0.00      | 0.067 | 0.002 | 0.000  | 0.009  | 0         | 1.00      | 3.99      | 49.92  |
| 5     | SP     | 1941    | 55          | 250    | 2.83       | 0.13      | 2.074 | 0.047 | 0.036  | 0.221  | 0         | 82.00     | 249.24    | 36.65  |
| 6     | SP     | 249     | 7           | 29     | 2.81       | 0.12      | 0.802 | 0.051 | 0.016  | 0.217  | 0         | 9.00      | 29.00     | 43.65  |
| 6     | AS     | 4       | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 6     | SG     | 443     | 8           | 16     | 1.81       | 0.04      | 0.379 | 0.018 | 0.001  | 0.071  | 0         | 7.00      | 15.98     | 49.89  |
| 7     | SG     | 530     | 10          | 28     | 1.89       | 0.05      | 0.598 | 0.026 | -0.004 | 0.098  | 0         | 13.08     | 24.79     | 55.57  |
| 5     | SQ     | 14      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 7     | SQ     | 3       | 1           | 7      | 33.33      | 2.33      | 4.041 | 2.333 | -7.706 | 12.373 | 0         | 7.00      | 7.00      | 100.00 |
| 8     | SQ     | 68      | 7           | 10     | 10.29      | 0.14      | 0.457 | 0.055 | 0.031  | 0.252  | 0         | 2.00      | 9.63      | 39.18  |
| 9     | AF     | 125     | 1           | 1      | 0.80       | 0.01      | 0.079 | 0.007 | -0.007 | 0.021  | 0         | 0.88      | 0.88      | 100.00 |
| 10    | AF     | 18      | 0           |        |            |           |       |       |        |        |           |           |           |        |
| 8     | FP     | 250     | 22          | 371    | 8.80       | 1.49      | 8.451 | 0.534 | 0.434  | 2.539  | 0         | 83.00     | 371.63    | 35.96  |
| 9     | FP     | 1753    | 231         | 1407   | 13.18      | 0.80      | 4.146 | 0.099 | 0.608  | 0.996  | 0         | 65.22     | 1405.93   | 12.35  |
| 10    | FP     | 258     | 40          | 312    | 15.50      | 1.20      | 5.472 | 0.341 | 0.529  | 1.871  | 0         | 48.84     | 309.69    | 28.38  |
| 10    | FG     | 382     | 21          | 44     | 5.50       | 0.11      | 0.634 | 0.032 | 0.051  | 0.178  | 0         | 7.00      | 43.70     | 28.37  |
| 11    | FG     | 372     | 4           | 4      | 1.08       | 0.01      | 0.102 | 0.005 | 0.000  | 0.021  | 0         | 1.04      | 3.94      | 49.86  |
| 12    | FG     | 8       | 0           |        |            |           |       |       |        |        |           |           |           |        |

Figure 1: Overall size frequency distribution of vermilion snapper larvae (0.5 mm size classes) captured in bongo net samples during SEAMAP surveys, 1982-2002. FG=Fall Shrimp/Bottomfish survey; SG= Summer Shrimp/Bottomfish survey; FP=Fall Plankton survey.



Body Length (mm)

Figure 2: Overall size frequency distribution of vermilion snapper larvae (0.5 mm size classes) captured in neuston net samples during SEAMAP surveys, 1982-2002. FG=Fall Shrimp/Bottomfish survey; SG= Summer Shrimp/Bottomfish survey; FP=Fall Plankton survey.



**Body Length (mm)** 

| Size class (BL mm) | Number of Larvae | Adjusted Total<br>Number<br>of Larvae | Adjusted Number of<br>Larvae under 10m <sup>2</sup> | % Cumulative<br>Frequency |
|--------------------|------------------|---------------------------------------|-----------------------------------------------------|---------------------------|
| 0.25               | 0                | 0.00                                  | 0.00                                                | 0.00                      |
| 0.75               | 0                | 0.00                                  | 0.00                                                | 0.00                      |
| 1.25               | 0                | 0.00                                  | 0.00                                                | 0.00                      |
| 1.75               | 2                | 2.00                                  | 9.35                                                | 0.13                      |
| 2.25               | 11               | 11.00                                 | 48.92                                               | 0.80                      |
| 2.75               | 76               | 77.00                                 | 288.33                                              | 4.78                      |
| 3.25               | 304              | 306.56                                | 1163.15                                             | 20.81                     |
| 3.75               | 421              | 433.01                                | 1597.70                                             | 42.84                     |
| 4.25               | 428              | 432.40                                | 1577.56                                             | 64.59                     |
| 4.75               | 254              | 257.49                                | 929.60                                              | 77.40                     |
| 5.25               | 191              | 195.40                                | 737.62                                              | 87.57                     |
| 5.75               | 76               | 79.33                                 | 300.12                                              | 91.71                     |
| 6.25               | 54               | 57.98                                 | 220.91                                              | 94.75                     |
| 6.75               | 21               | 22.60                                 | 100.82                                              | 96.14                     |
| 7.25               | 24               | 25.12                                 | 103.76                                              | 97.57                     |
| 7.75               | 17               | 17.70                                 | 63.40                                               | 98.45                     |
| 8.25               | 7                | 7.70                                  | 27.36                                               | 98.43                     |
| 8.75               | 4                | 4.00                                  | 9.70                                                | 98.96                     |
| 9.25               |                  | 4.00                                  | 12.32                                               | 99.13                     |
| 9.25               | 4 2              | 2.00                                  | 9.24                                                | 99.13                     |
| 10.25              | 4                | 4.00                                  | 9.24                                                | 99.23                     |
|                    |                  |                                       |                                                     |                           |
| 10.75              | 1                | 1.00                                  | 1.31                                                | 99.44                     |
| 11.25              | 4                | 4.00                                  | 16.33                                               | 99.67                     |
| 11.75              | 0                | 0.00                                  | 0.00                                                | 99.67                     |
| 12.25              | 1                | 1.00                                  | 4.07                                                | 99.73                     |
| 12.75              | 1                | 1.00                                  | 4.73                                                | 99.79                     |
| 13.25              | 0                | 0.00                                  | 0.00                                                | 99.79                     |
| 13.75              | 0                | 0.00                                  | 0.00                                                | 99.79                     |
| 14.25              | 0                | 0.00                                  | 0.00                                                | 99.79                     |
| 14.75              | 0                | 0.00                                  | 0.00                                                | 99.79                     |
| 15.25              | 1                | 1.00                                  | 4.51                                                | 99.85                     |
| 15.75              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 16.25              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 16.75              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 17.25              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 17.75              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 18.25              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 18.75              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 19.25              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 19.75              | 0                | 0.00                                  | 0.00                                                | 99.85                     |
| 20.25              | 1                | 1.00                                  | 3.28                                                | 99.90                     |
| 20.75              | 1                | 1.00                                  | 4.73                                                | 99.96                     |

Table 5: Per cent cumulative frequency of vermilion snapper larvae in 0.5 mm size classes caught in bongo net samples during SEAMAP surveys, 1982-2002.

# Table 5 cont.

| Table 5 cont. |   |      |      |        |
|---------------|---|------|------|--------|
| 21.25         | 0 | 0.00 | 0.00 | 99.96  |
| 21.75         | 0 | 0.00 | 0.00 | 99.96  |
| 22.25         | 0 | 0.00 | 0.00 | 99.96  |
| 22.75         | 0 | 0.00 | 0.00 | 99.96  |
| 23.25         | 0 | 0.00 | 0.00 | 99.96  |
| 23.75         | 0 | 0.00 | 0.00 | 99.96  |
| 24.25         | 0 | 0.00 | 0.00 | 99.96  |
| 24.75         | 0 | 0.00 | 0.00 | 99.96  |
| 25.25         | 0 | 0.00 | 0.00 | 99.96  |
| 25.75         | 0 | 0.00 | 0.00 | 99.96  |
| 26.25         | 0 | 0.00 | 0.00 | 99.96  |
| 26.75         | 0 | 0.00 | 0.00 | 99.96  |
| 27.25         | 0 | 0.00 | 0.00 | 99.96  |
| 27.75         | 0 | 0.00 | 0.00 | 99.96  |
| 28.25         | 0 | 0.00 | 0.00 | 99.96  |
| 28.75         | 0 | 0.00 | 0.00 | 99.96  |
| 29.25         | 0 | 0.00 | 0.00 | 99.96  |
| 29.75         | 0 | 0.00 | 0.00 | 99.96  |
| 30.25         | 0 | 0.00 | 0.00 | 99.96  |
| 30.75         | 0 | 0.00 | 0.00 | 99.96  |
| 31.25         | 0 | 0.00 | 0.00 | 99.96  |
| 31.75         | 0 | 0.00 | 0.00 | 99.96  |
| 32.25         | 0 | 0.00 | 0.00 | 99.96  |
| 32.75         | 0 | 0.00 | 0.00 | 99.96  |
| 33.25         | 0 | 0.00 | 0.00 | 99.96  |
| 33.75         | 0 | 0.00 | 0.00 | 99.96  |
| 34.25         | 0 | 0.00 | 0.00 | 99.96  |
| 34.75         | 0 | 0.00 | 0.00 | 99.96  |
| 35.25         | 0 | 0.00 | 0.00 | 99.96  |
| 35.75         | 0 | 0.00 | 0.00 | 99.96  |
| 36.25         | 0 | 0.00 | 0.00 | 99.96  |
| 36.75         | 0 | 0.00 | 0.00 | 99.96  |
| 37.25         | 0 | 0.00 | 0.00 | 99.96  |
| 37.75         | 0 | 0.00 | 0.00 | 99.96  |
| 38.25         | 0 | 0.00 | 0.00 | 99.96  |
| 38.75         | 0 | 0.00 | 0.00 | 99.96  |
| 39.25         | 0 | 0.00 | 0.00 | 99.96  |
| 39.75         | 0 | 0.00 | 0.00 | 99.96  |
| 40.25         | 0 | 0.00 | 0.00 | 99.96  |
| 40.75         | 0 | 0.00 | 0.00 | 99.96  |
| 41.25         | 1 | 1.00 | 2.63 | 100.00 |

| Size class (BL mm) | Number of Larvae | Adjusted Number<br>of Larvae | Adjusted Number of<br>Larvae/10min Tow | % Cumulative<br>Frequency |
|--------------------|------------------|------------------------------|----------------------------------------|---------------------------|
| 0.25               | 0                | 0.00                         | 0.00                                   | 0.00                      |
| 0.75               | 0                | 0.00                         | 0.00                                   | 0.00                      |
| 1.25               | 0                | 0.00                         | 0.00                                   | 0.00                      |
| 1.75               | 0                | 0.00                         | 0.00                                   | 0.00                      |
| 2.25               | 4                | 4.00                         | 3.98                                   | 0.18                      |
| 2.75               | 86               | 99.67                        | 101.08                                 | 4.83                      |
| 3.25               | 393              | 455.95                       | 455.56                                 | 25.77                     |
| 3.75               | 511              | 652.88                       | 647.44                                 | 55.53                     |
| 4.25               | 409              | 548.88                       | 547.13                                 | 80.67                     |
| 4.75               | 154              | 230.58                       | 231.09                                 | 91.30                     |
| 5.25               | 86               | 131.92                       | 131.20                                 | 97.33                     |
| 5.75               | 22               | 41.73                        | 41.95                                  | 99.25                     |
| 6.25               | 9                | 9.40                         | 9.32                                   | 99.68                     |
| 6.75               | 0                | 0.00                         | 0.00                                   | 99.68                     |
| 7.25               | 0                | 0.00                         | 0.00                                   | 99.68                     |
| 7.75               | 0                | 0.00                         | 0.00                                   | 99.68                     |
| 8.25               | 0                | 0.00                         | 0.00                                   | 99.68                     |
| 8.75               | 0                | 0.00                         | 0.00                                   | 99.68                     |
| 9.25               | 1                | 1.00                         | 0.91                                   | 99.72                     |
| 9.75               | 1                | 1.00                         | 1.00                                   | 99.77                     |
| 10.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 10.75              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 11.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 11.75              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 12.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 12.75              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 13.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 13.75              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 14.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 14.75              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 15.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 15.75              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 16.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 16.75              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 17.25              | 0                | 0.00                         | 0.00                                   | 99.77                     |
| 17.75              | 1                | 1.00                         | 1.00                                   | 99.82                     |
| 18.25              | 0                | 0.00                         | 0.00                                   | 99.82                     |
| 18.75              | 1                | 1.00                         | 1.00                                   | 99.86                     |
| 19.25              | 0                | 0.00                         | 0.00                                   | 99.86                     |
| 19.75              | 0                | 0.00                         | 0.00                                   | 99.86                     |

Table 6: Per cent cumulative frequency of vermilion snapper larvae in 0.5 mm size classes caught in neuston net samples during SEAMAP surveys, 1982-2002.

# Table 6 cont.

| 20.25 | 0 | 0.00 | 0.00 | 99.86  |
|-------|---|------|------|--------|
| 20.75 | 0 | 0.00 | 0.00 | 99.86  |
| 21.25 | 0 | 0.00 | 0.00 | 99.86  |
| 21.75 | 0 | 0.00 | 0.00 | 99.86  |
| 22.25 | 0 | 0.00 | 0.00 | 99.86  |
| 22.75 | 0 | 0.00 | 0.00 | 99.86  |
| 23.25 | 0 | 0.00 | 0.00 | 99.86  |
| 23.75 | 0 | 0.00 | 0.00 | 99.86  |
| 24.25 | 0 | 0.00 | 0.00 | 99.86  |
| 24.75 | 0 | 0.00 | 0.00 | 99.86  |
| 25.25 | 0 | 0.00 | 0.00 | 99.86  |
| 25.75 | 0 | 0.00 | 0.00 | 99.86  |
| 26.25 | 1 | 1.00 | 1.00 | 99.91  |
| 26.75 | 0 | 0.00 | 0.00 | 99.91  |
| 27.25 | 0 | 0.00 | 0.00 | 99.91  |
| 27.75 | 0 | 0.00 | 0.00 | 99.91  |
| 28.25 | 1 | 1.00 | 1.00 | 99.95  |
| 28.75 | 0 | 0.00 | 0.00 | 99.95  |
| 29.25 | 0 | 0.00 | 0.00 | 99.95  |
| 29.75 | 1 | 1.00 | 1.00 | 100.00 |
|       |   |      |      |        |

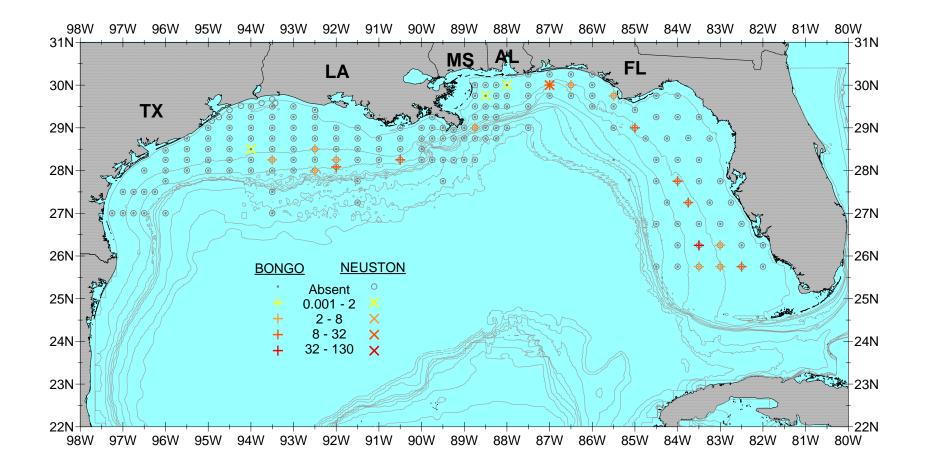



Figure 3. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae during the August 1984 SEAMAP plankton survey, Oregon II cruise 146. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

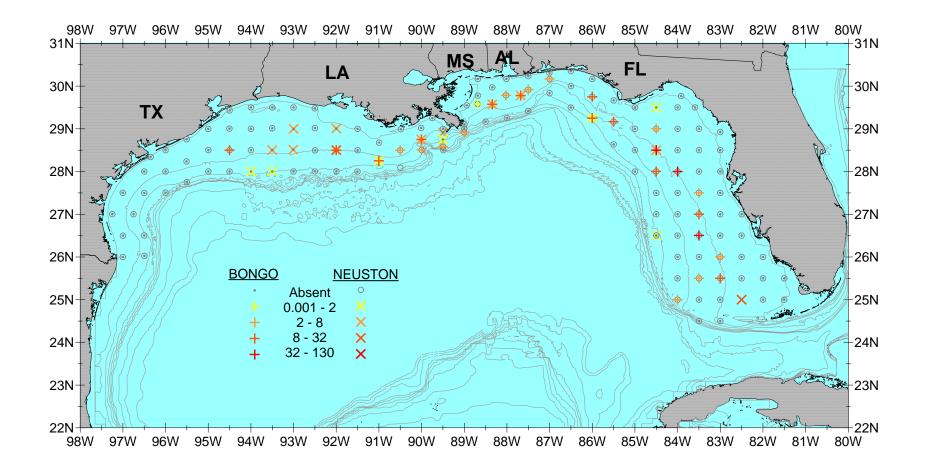



Figure 4. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1986. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

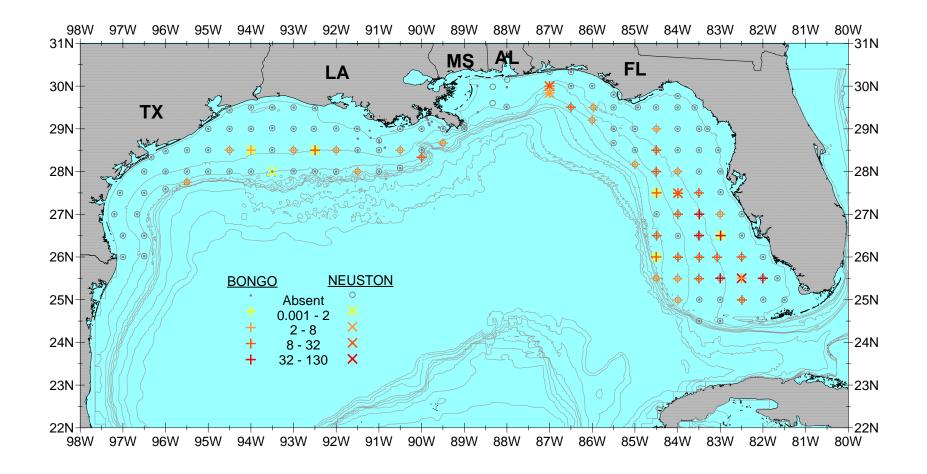



Figure 5. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1987. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

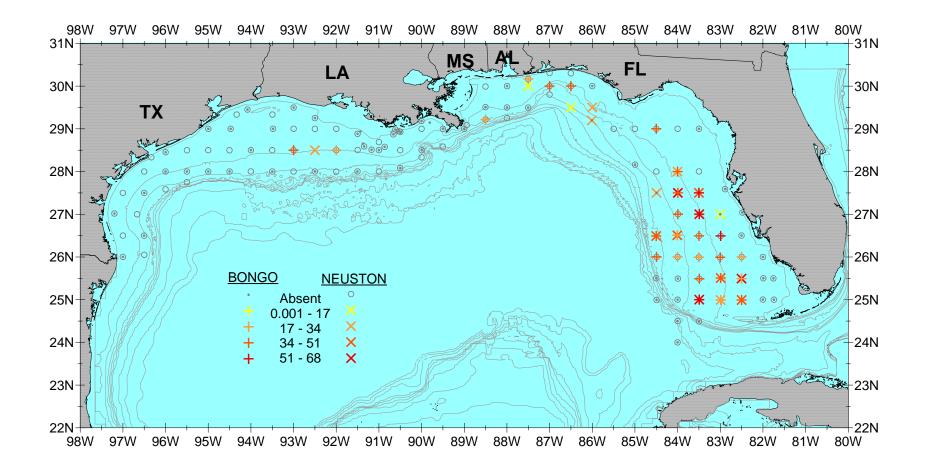



Figure 6. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1988. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

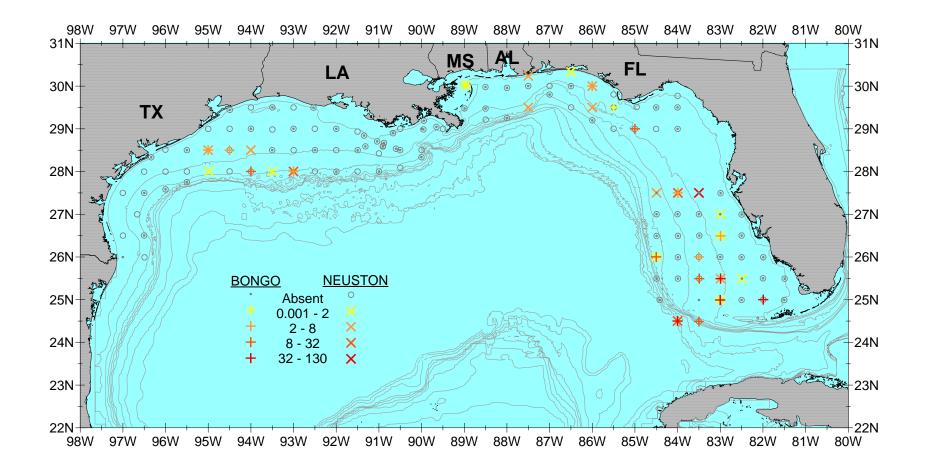



Figure 7. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1989. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

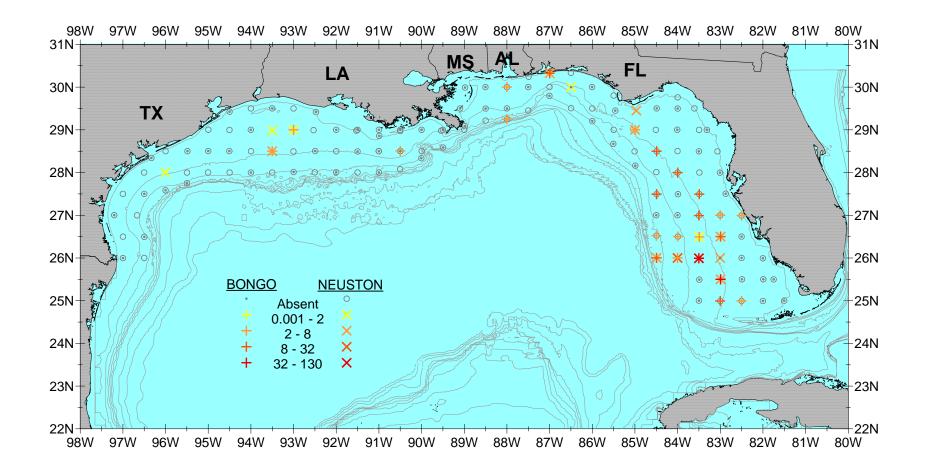



Figure 8. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1990. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

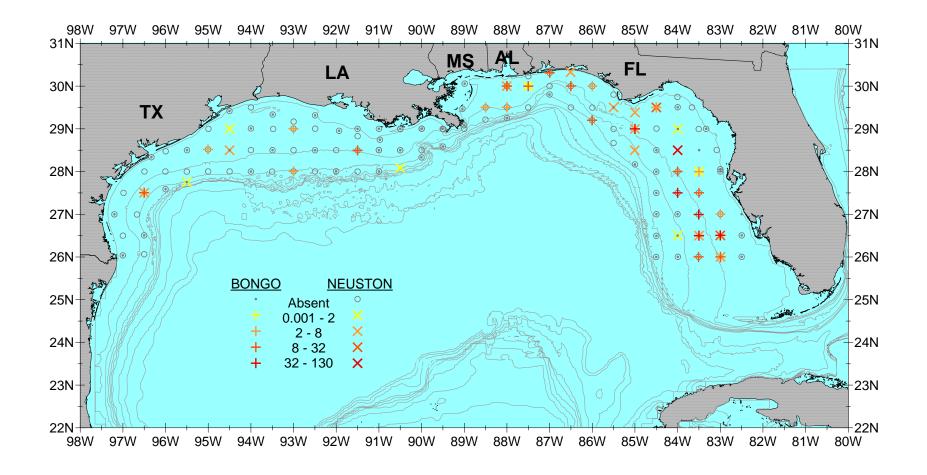



Figure 9. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1991. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

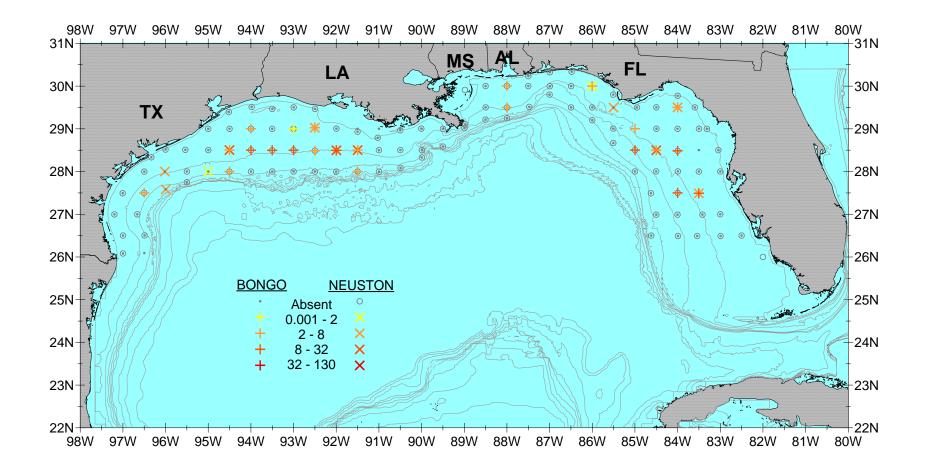



Figure 10. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1992. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

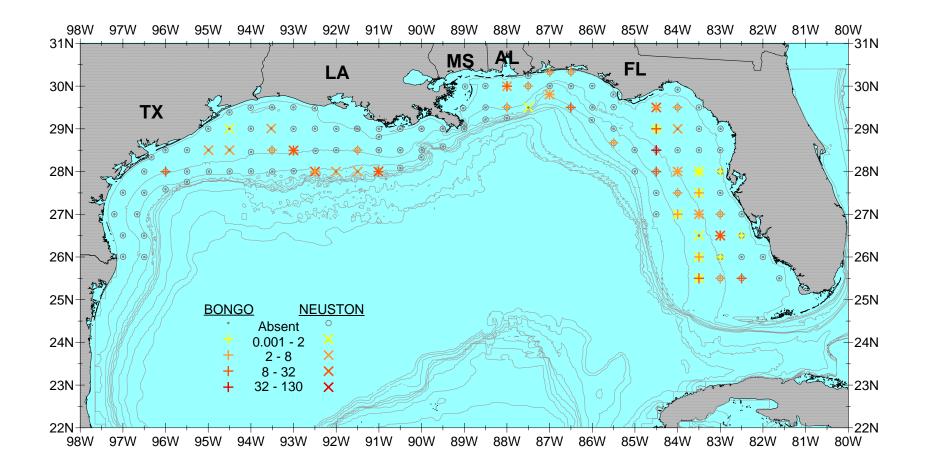



Figure 11. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1993. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

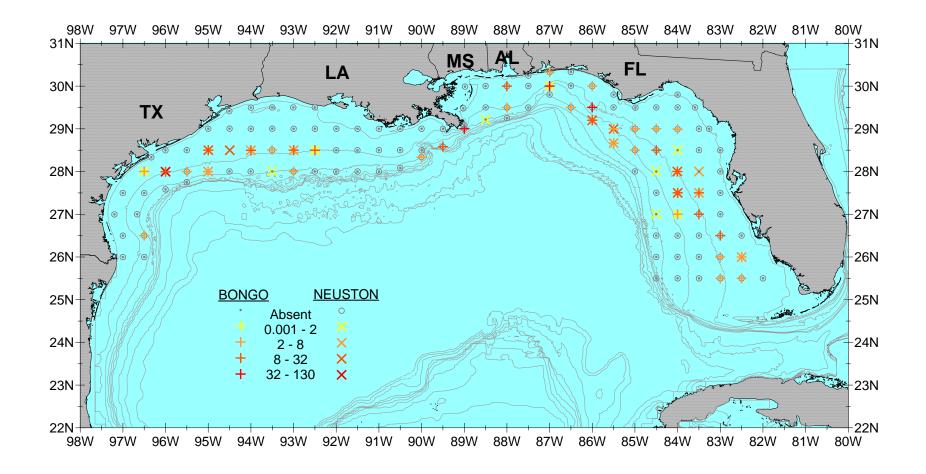



Figure 12. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1994. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

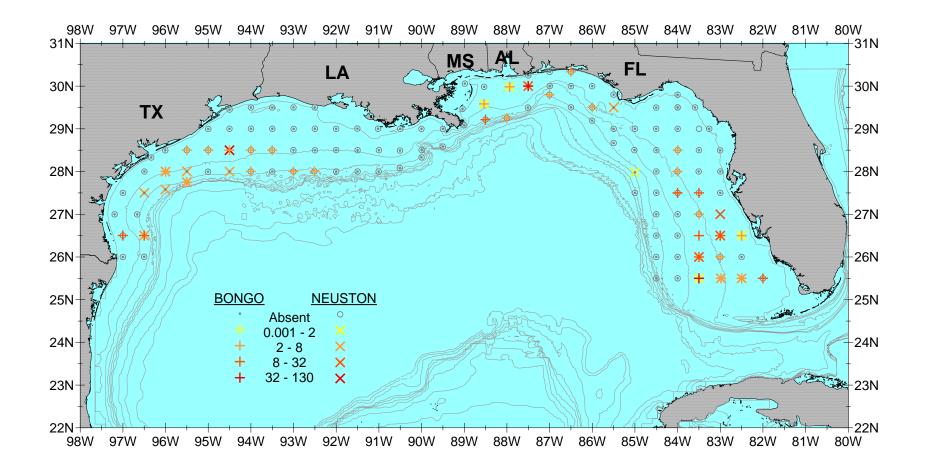



Figure 13. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1995. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

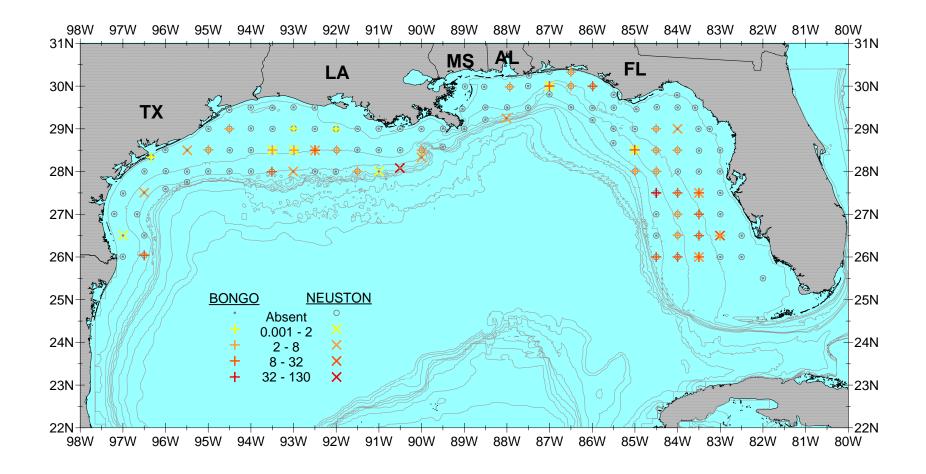



Figure 14. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1996. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

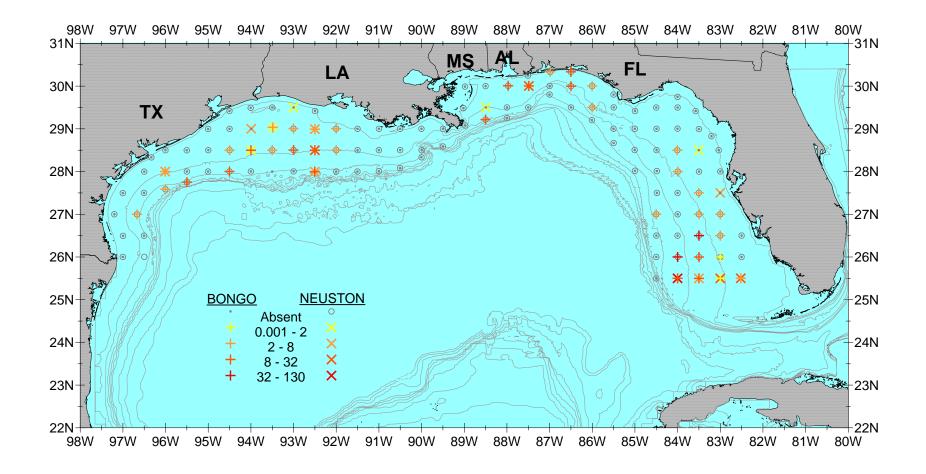



Figure 15. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1997. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

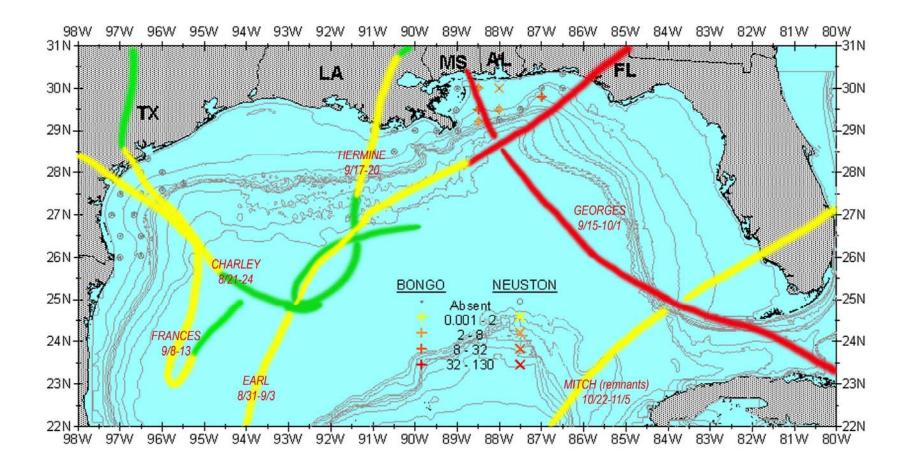



Figure 16. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1998. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min. Green line = Tropical Depression; Yellow line = Tropical Storm; Red line = Hurricane.

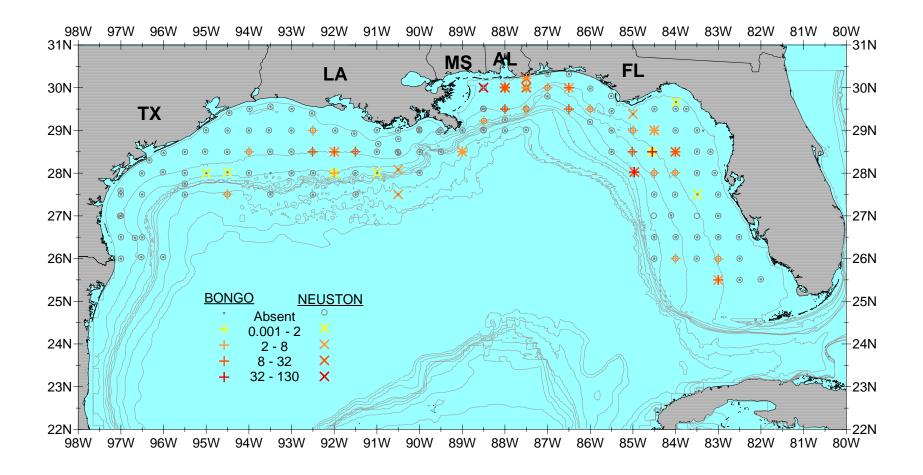



Figure 17. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 1999. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

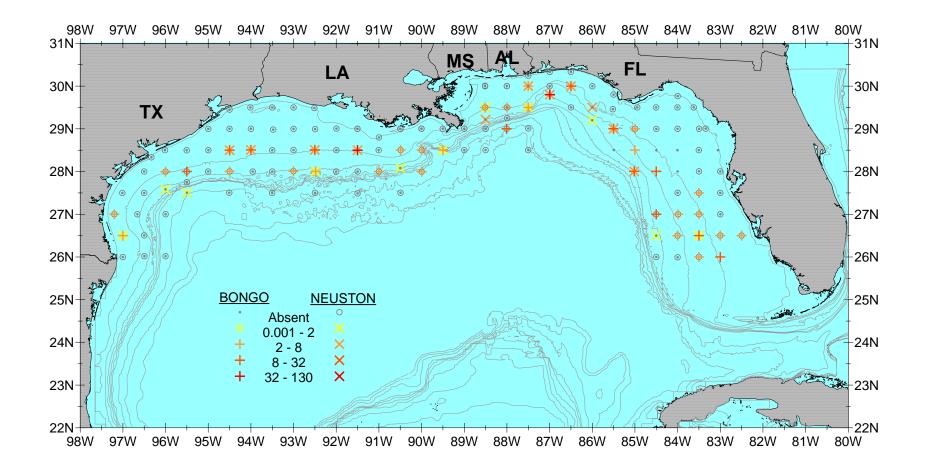



Figure 18. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 2000. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

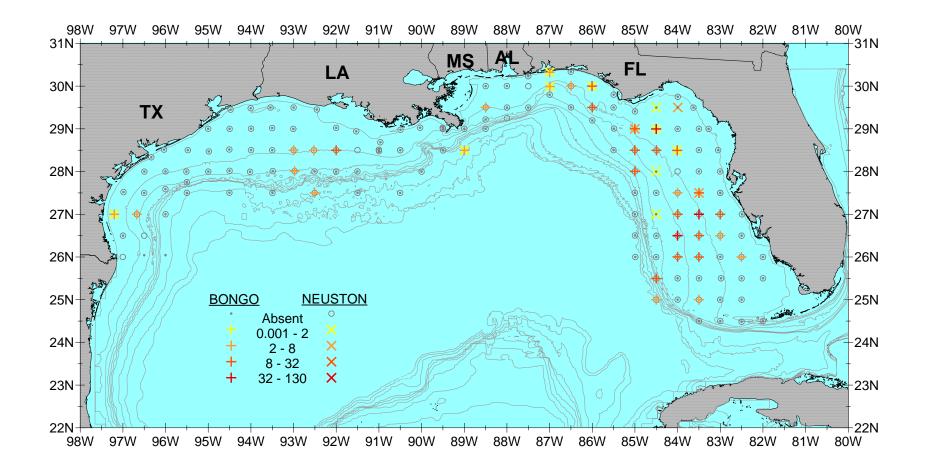



Figure 19. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 2001. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

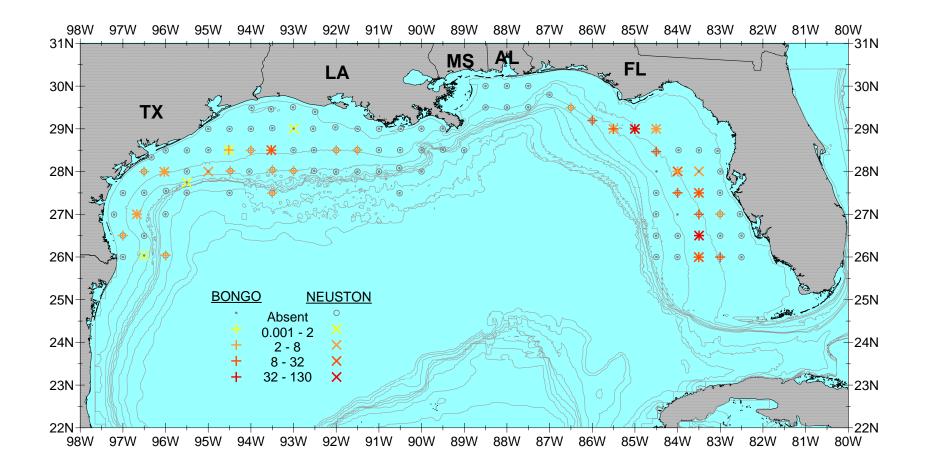



Figure 20. Occurrence and abundance of vermilion snapper, *Rhomboplites aurorubens*, larvae at SEAMAP stations during the fall plankton survey in 2002. Abundance in bongo net samples = Larvae / 10 m<sup>2</sup>. Abundance in neuston net samples = Larvae / 10 min.

Table 7: Summary of cruises and sampling effort during SEAMAP Fall Plankton surveys, 1986-1999 and 2000-2002.

|        |        |        | No.     | No.     |              |            |                   |
|--------|--------|--------|---------|---------|--------------|------------|-------------------|
| CRUISE | VESSEL | Survey | NEUSTON | BONGO   | Cruise       | Cruise     | Vermilion snapper |
|        |        | Туре   | Samples | Samples | Begin Date   | End Date   | present           |
| 161    | 04     | FP     | 48      | 48      | 9/4/1986     | 9/12/1986  | *                 |
| 862    | 36     | FP     | 29      | 29      | 9/6/1986     | 9/13/1986  | *                 |
| 864    | 17     | FP     | 9       | 9       | 9/8/1986     | 9/10/1986  | *                 |
| 865    | 28     | FP     | 56      | 55      | 9/13/1986    | 9/22/1986  | *                 |
|        |        |        |         |         |              |            |                   |
| 875    | 36     | FP     | 35      | 35      | 9/1/1987     | 9/8/1987   | *                 |
| 169    | 04     | FP     | 91      | 91      | 9/12/1987    | 9/27/1987  | *                 |
| 873    | 17     | FP     | 4       | 4       | 9/15/1987    | 9/17/1987  |                   |
| 874    | 35     | FP     | 0       | 11      | 9/29/1987    | 10/1/1987  |                   |
|        |        |        |         |         |              |            |                   |
| 882    | 36     | FP     | 36      | 36      | 8/26/1988    | 9/2/1988   | *                 |
| 176    | 04     | FP     | 80      | 39      | 9/7/1988     | 9/28/1988  | *                 |
| 882    | 17     | FP     | 4       | 3       | 10/1/1988    | 9/30/1988  |                   |
| 884    | 35     | FP     | 7       | 10      | 10/3/1988    | 10/12/1988 |                   |
|        |        |        |         |         |              |            |                   |
| 183    | 04     | FP     | 75      | 37      | 9/13/1989    | 9/29/1989  | *                 |
| 892    | 17     | FP     | 5       | 5       | 9/17/1989    | 9/19/1989  |                   |
| 894    | 35     | FP     | 11      | 11      | 10/2/1989    | 10/5/1989  |                   |
| 892    | 36     | FP     | 34      | 35      | 10/4/1989    | 10/11/1989 |                   |
|        |        |        |         |         |              |            |                   |
| 190    | 04     | FP     | 100     | 52      | 9/2/1990     | 9/28/1990  | *                 |
| 902    | 17     | FP     | 2       | 2       | 9/16/1990    | 9/16/1990  |                   |
| 904    | 35     | FP     | 6       | 7       | 10/1/1990    | 10/4/1990  |                   |
| 902    | 36     | FP     | 30      | 30      | 10/13/1990   | 10/18/1990 |                   |
|        |        |        |         |         |              |            |                   |
| 912    | 36     | FP     | 22      | 23      | 8/21/1991    | 8/25/1991  | *                 |
| 914    | 28     | FP     | 95      | 49      | 9/6/1991     | 9/26/1991  | *                 |
| 912    | 17     | FP     | 2       | 2       | 9/23/1991    | 9/23/1991  |                   |
| 914    | 35     | FP     | 7       | 7       | 9/30/1991    | 10/4/1991  | *                 |
|        |        |        |         |         |              |            |                   |
| 925    | 28     | FP     | 72      | 73      | 8/30/1992    | 9/20/1992  | *                 |
| 201    | 04     | FP     | 25      | 27      | 9/24/1992    | 9/27/1992  |                   |
| 923    | 35     | FP     | 0       | 5       | 9/28/1992    | 10/1/1992  |                   |
| 923    | 17     | FP     | 1       | 0       | 9/29/1992    | 9/29/1992  |                   |
| 922    | 26     | FP     | 13      | 12      | 10/12/1992   | 10/19/1992 |                   |
| /      | -0     |        | 10      |         | 10, 12, 1992 | 10,19,1992 |                   |
| 936    | 28     | FP     | 72      | 72      | 9/10/1993    | 9/29/1993  | *                 |
| 934    | 17     | FP     | 2       | 2       | 9/20/1993    | 9/21/1993  |                   |
| 933    | 35     | FP     | 7       | 7       | 10/4/1993    | 10/7/1993  |                   |
| 207    | 04     | FP     | 10      | 10      | 10/5/1993    | 10/6/1993  | *                 |
| 932    | 26     | FP     | 36      | 36      | 10/11/1993   | 10/18/1993 |                   |
| 154    | 20     | 11     | 50      | 50      | 10/11/1775   | 10/10/1775 |                   |

# Table 7 cont.

| 943        | 17       | FP       | 2        | 2        | 9/10/1994              | 9/11/1994  |   |
|------------|----------|----------|----------|----------|------------------------|------------|---|
| 946        | 28       | FP       | 88       | 88       | 9/11/1994              | 9/29/1994  | * |
| 943        | 35       | FP       | 7        | 7        | 9/26/1994              | 9/29/1994  |   |
| 942        | 36       | FP       | 29       | 29       | 9/28/1994              | 10/8/1994  |   |
|            |          |          |          |          |                        |            |   |
| 955        | 28       | FP       | 88       | 87       | 9/9/1995               | 9/26/1995  | * |
| 952        | 17       | FP       | 5        | 5        | 9/16/1995              | 9/18/1995  |   |
| 952        | 26       | FP       | 24       | 25       | 9/24/1995              | 9/28/1995  | * |
| 953        | 35       | FP       | 7        | 7        | 9/25/1995              | 9/29/1995  |   |
|            |          |          |          |          |                        |            |   |
| 965        | 28       | FP       | 92       | 92       | 9/5/1996               | 9/25/1996  | * |
| 962        | 26       | FP       | 19       | 19       | 9/11/1996              | 9/14/1996  | * |
| 962        | 17       | FP       | 2        | 2        | 9/22/1996              | 9/23/1996  |   |
| 962        | 35       | FP       | 7        | 7        | 9/30/1996              | 10/3/1996  |   |
|            |          |          |          |          |                        |            |   |
| 975        | 28       | FP       | 93       | 93       | 9/7/1997               | 9/27/1997  | * |
| 972        | 17       | FP       | 4        | 4        | 9/20/1997              | 9/22/1997  |   |
| 972        | 26       | FP       | 19       | 19       | 10/2/1997              | 10/6/1997  |   |
| 972        | 35       | FP       | 7        | 7        | 10/4/1997              | 10/7/1997  |   |
|            |          |          |          |          |                        |            |   |
| 992        | 63       | FP       | 116      | 117      | 9/3/1999               | 9/29/1999  | * |
| 993        | 17       | FP       | 9        | 9        | 9/9/1999               | 9/10/1999  | * |
| 991        | 26       | FP       | 12       | 10       | 9/25/1999              | 9/29/1999  |   |
| 994        | 17       | FP       | 5        | 6        | 10/12/1999             | 10/14/1999 |   |
|            |          |          |          |          | - /- /                 |            |   |
| 242        | 04       | FP       | 104      | 111      | 9/7/2000               | 10/1/2000  | * |
| 001        | 26       | FP       | 13       | 14       | 9/26/2000              | 9/29/2000  | * |
| 002        | 35       | FP       | 3        | 3        | 10/11/2000             | 10/13/2000 |   |
| 002        | 17       | FP       | 11       | 11       | 10/13/2000             | 10/15/2000 |   |
| 015        | (2       | FD       | 101      | 107      | 0/21/2001              | 0/26/2001  | * |
| 015        | 63<br>25 | FP       | 131<br>4 | 127<br>3 | 8/31/2001              | 9/26/2001  |   |
| 012        | 35       | FP       |          |          | 10/8/2001              | 10/21/2001 |   |
| 011        | 26       | FP       | 12       | 12       | 10/11/2001             | 10/14/2001 |   |
| 025        | 63       | FP       | 86       | 88       | 8/30/2002              | 9/20/2002  | * |
| 025<br>022 | 63<br>35 | FP<br>FP | 80<br>7  | 88<br>7  | 8/30/2002<br>9/16/2002 | 9/19/2002  | • |
| 022<br>023 | 33<br>17 | FP<br>FP | 6        | 6        | 10/10/2002             | 10/11/2002 | * |
| 023        | 1 /      | ΓĽ       | 0        | 0        | 10/10/2002             | 10/11/2002 | · |

|      | No.     | No.         | No.    | %          |       |       | Lower  | Upper  | Mean      |        |       | Lower | Upper  | Abu  | ndance | Summed    |       |
|------|---------|-------------|--------|------------|-------|-------|--------|--------|-----------|--------|-------|-------|--------|------|--------|-----------|-------|
| Year | Samples | Occurrences | Larvae | Occurrence | Std   | SE    | 95%CI  | 95%CI  | Abundance | Std    | SE    | 95%CI | 95%CI  | Min. | Max.   | Abundance | CV    |
| 1986 | 141     | 28          | 84     | 19.86      | 0.400 | 0.034 | 13.192 | 26.524 | 2.49      | 7.302  | 0.615 | 1.279 | 3.710  | 0    | 47.55  | 351.70    | 24.65 |
| 1987 | 141     | 42          | 220    | 29.79      | 0.459 | 0.039 | 22.146 | 37.429 | 5.04      | 14.164 | 1.193 | 2.678 | 7.395  | 0    | 123.00 | 710.15    | 23.68 |
| 1988 | 88      | 27          | 109    | 30.68      | 0.464 | 0.049 | 20.854 | 40.509 | 5.14      | 11.693 | 1.246 | 2.662 | 7.617  | 0    | 63.26  | 452.30    | 24.25 |
| 1989 | 88      | 18          | 67     | 20.45      | 0.406 | 0.043 | 11.859 | 29.050 | 3.06      | 9.079  | 0.968 | 1.137 | 4.985  | 0    | 42.00  | 269.37    | 31.62 |
| 1990 | 91      | 24          | 79     | 26.37      | 0.443 | 0.046 | 17.146 | 35.602 | 4.03      | 12.688 | 1.330 | 1.389 | 6.674  | 0    | 92.57  | 366.87    | 32.99 |
| 1991 | 81      | 26          | 178    | 32.10      | 0.470 | 0.052 | 21.711 | 42.486 | 6.78      | 16.742 | 1.860 | 3.082 | 10.486 | 0    | 96.04  | 549.48    | 27.42 |
| 1992 | 117     | 23          | 53     | 19.66      | 0.399 | 0.037 | 12.350 | 26.966 | 1.54      | 3.998  | 0.370 | 0.812 | 2.276  | 0    | 23.16  | 180.67    | 23.93 |
| 1993 | 127     | 34          | 97     | 26.77      | 0.445 | 0.039 | 18.966 | 34.578 | 2.12      | 5.080  | 0.451 | 1.229 | 3.013  | 0    | 34.11  | 269.32    | 21.26 |
| 1994 | 126     | 39          | 125    | 30.95      | 0.464 | 0.041 | 22.769 | 39.136 | 3.51      | 8.389  | 0.747 | 2.031 | 4.989  | 0    | 58.90  | 442.21    | 21.29 |
| 1995 | 124     | 34          | 96     | 27.42      | 0.448 | 0.040 | 19.457 | 35.381 | 2.59      | 6.410  | 0.576 | 1.450 | 3.728  | 0    | 43.15  | 321.02    | 22.23 |
| 1996 | 120     | 35          | 80     | 29.17      | 0.456 | 0.042 | 20.916 | 37.417 | 2.85      | 6.006  | 0.548 | 1.769 | 3.940  | 0    | 32.49  | 342.57    | 19.21 |
| 1997 | 123     | 39          | 133    | 31.71      | 0.467 | 0.042 | 23.367 | 40.047 | 3.17      | 6.651  | 0.600 | 1.983 | 4.357  | 0    | 34.94  | 389.91    | 18.92 |
| 1999 | 142     | 31          | 73     | 21.83      | 0.415 | 0.035 | 14.953 | 28.709 | 2.49      | 7.563  | 0.635 | 1.239 | 3.748  | 0    | 57.83  | 354.09    | 25.45 |
| 2000 | 139     | 38          | 82     | 27.34      | 0.447 | 0.038 | 19.836 | 34.840 | 2.82      | 6.781  | 0.575 | 1.680 | 3.955  | 0    | 43.13  | 391.63    | 20.41 |
| 2001 | 141     | 34          | 124    | 24.11      | 0.429 | 0.036 | 16.966 | 31.261 | 3.50      | 9.678  | 0.815 | 1.887 | 5.110  | 0    | 67.56  | 493.29    | 23.30 |
| 2002 | 101     | 28          | 107    | 27.72      | 0.450 | 0.045 | 18.842 | 36.604 | 4.03      | 14.387 | 1.432 | 1.193 | 6.873  | 0    | 127.07 | 407.32    | 35.50 |

Table 8: Annual per cent occurrence and mean abundance of vermilion snapper larvae caught in bongo net samples during SEAMAP Fall Plankton surveys, 1986-1997 and 1999-2002. The dataset recommended as the basis for the larval vermilion snapper index.

|      | No.     | No.         | No.    | %          |       |       | Lower  | Upper  | Mean      |        |       | Lower | Upper | Abun | dance | Summed    |       |
|------|---------|-------------|--------|------------|-------|-------|--------|--------|-----------|--------|-------|-------|-------|------|-------|-----------|-------|
| Year | Samples | Occurrences | Larvae | Occurrence | Std   | SE    | 95%CI  | 95%CI  | Abundance | Std    | SE    | 95%CI | 95%CI | Min. | Max.  | Abundance | CV    |
| 1986 | 142     | 18          | 61     | 12.68      | 0.334 | 0.028 | 7.137  | 18.215 | 0.43      | 1.713  | 0.144 | 0.146 | 0.715 | 0    | 15.00 | 61.10     | 33.42 |
| 1987 | 130     | 10          | 104    | 7.69       | 0.268 | 0.023 | 3.050  | 12.334 | 0.80      | 5.720  | 0.502 | 0.000 | 1.791 | 0    | 59.00 | 103.84    | 62.81 |
| 1988 | 127     | 18          | 375    | 14.17      | 0.350 | 0.031 | 8.024  | 20.322 | 2.97      | 11.859 | 1.052 | 0.885 | 5.051 | 0    | 83.00 | 376.93    | 35.46 |
| 1989 | 125     | 21          | 111    | 16.80      | 0.375 | 0.034 | 10.155 | 23.445 | 0.89      | 4.175  | 0.373 | 0.149 | 1.628 | 0    | 39.94 | 111.06    | 42.03 |
| 1990 | 138     | 15          | 100    | 10.87      | 0.312 | 0.027 | 5.611  | 16.128 | 0.72      | 4.309  | 0.367 | 0.000 | 1.445 | 0    | 46.69 | 99.37     | 50.94 |
| 1991 | 126     | 20          | 107    | 15.87      | 0.367 | 0.033 | 9.404  | 22.342 | 0.85      | 3.517  | 0.313 | 0.234 | 1.474 | 0    | 33.00 | 107.62    | 36.69 |
| 1992 | 111     | 12          | 61     | 10.81      | 0.312 | 0.030 | 4.943  | 16.678 | 0.53      | 1.956  | 0.186 | 0.165 | 0.900 | 0    | 11.00 | 59.11     | 34.86 |
| 1993 | 127     | 24          | 141    | 18.90      | 0.393 | 0.035 | 11.996 | 25.800 | 1.10      | 3.811  | 0.338 | 0.428 | 1.766 | 0    | 27.00 | 139.33    | 30.82 |
| 1994 | 126     | 23          | 183    | 18.25      | 0.388 | 0.035 | 11.416 | 25.092 | 1.44      | 5.273  | 0.470 | 0.515 | 2.374 | 0    | 35.00 | 182.03    | 32.52 |
| 1995 | 124     | 20          | 135    | 16.13      | 0.369 | 0.033 | 9.565  | 22.693 | 1.09      | 4.358  | 0.391 | 0.319 | 1.868 | 0    | 35.00 | 135.58    | 35.79 |
| 1996 | 120     | 17          | 97     | 14.17      | 0.350 | 0.032 | 7.837  | 20.496 | 0.81      | 4.479  | 0.409 | 0.000 | 1.616 | 0    | 47.00 | 96.81     | 50.68 |
| 1997 | 123     | 16          | 144    | 13.01      | 0.338 | 0.030 | 6.979  | 19.037 | 1.17      | 5.377  | 0.485 | 0.207 | 2.126 | 0    | 48.84 | 143.46    | 41.57 |
| 1999 | 142     | 21          | 131    | 14.79      | 0.356 | 0.030 | 8.879  | 20.699 | 0.92      | 3.948  | 0.331 | 0.265 | 1.575 | 0    | 39.00 | 130.59    | 36.02 |
| 2000 | 131     | 24          | 73     | 18.32      | 0.388 | 0.034 | 11.608 | 25.033 | 0.56      | 1.933  | 0.169 | 0.222 | 0.891 | 0    | 18.00 | 72.88     | 30.36 |
| 2001 | 146     | 13          | 23     | 8.90       | 0.286 | 0.024 | 4.229  | 13.579 | 0.15      | 0.591  | 0.049 | 0.057 | 0.250 | 0    | 3.92  | 22.39     | 31.89 |
| 2002 | 99      | 16          | 225    | 16.16      | 0.370 | 0.037 | 8.783  | 23.541 | 2.26      | 9.640  | 0.969 | 0.342 | 4.187 | 0    | 65.22 | 224.15    | 42.79 |

Table 9: Annual per cent occurrence and mean abundance of vermilion snapper larvae caught in neuston net samples during SEAMAP Fall Plankton surveys, 1986-1997 and 1999-2002.