
Maximum reproductive rate of fish at low
population sizes

Ransom A. Myers, Keith G. Bowen, and Nicholas J. Barrowman

Abstract: We examine a database of over 700 spawner–recruitment series to search for parameters that are constant, or
nearly so, at the level of a species or above. We find that the number of spawners produced per spawner each year at
low populations, i.e., the maximum annual reproductive rate, is relatively constant within species and that there is
relatively little variation among species. This quantity can be interpreted as a standardized slope at the origin of a
spawner–recruitment function. We employ variance components models that assume that the log of the standardized
slope at the origin is a normal random variable. This approach allows improved estimates of spawner–recruitment
parameters, estimation of empirical prior distributions for Bayesian analysis, estimation of the biological limits of
fishing, calculation of the maximum sustainable yield, and impact assessment of dams and pollution.

Résumé : Nous étudions une base de données comptant plus de 700 séries géniteur-recrutement à la recherche de
paramètres qui sont constants, ou presque, au niveau de l’espèce ou à un niveau hiérarchique supérieur. Nous avons
trouvé que le nombre de géniteurs produits par géniteur chaque année dans des populations peu abondantes, c’est-à-
dire le taux de reproduction annuel maximal, est relativement constant dans une espèce, et qu’il y a peu de variation
d’une espèce à l’autre. Cette valeur peut être interprétée comme une pente normalisée à l’origine d’une fonction
géniteur-recrutement. Nous avons recours à des modèles de composantes de la variance selon lesquels le log de la
pente normalisée à l’origine est une variable aléatoire normale. Cette approche permet d’obtenir de meilleures
estimations des paramètres du rapport géniteur-recrutement, une estimation des données empiriques avant les
répartitions pour l’analyse bayesienne, une estimation des limites biologiques de la pêche, un calcul de la production
maximale équilibrée, et une évaluation des impacts des barrages et de la pollution.

[Traduit par la Rédaction] Myers et al. 2419

Introduction

Perhaps the most fundamental parameter in population bi-
ology is the reproductive rate at low population size. We will
analyze this parameter in terms of the maximum reproduc-
tive rate, which we define as the average rate at which re-
placement spawners are produced per spawner at low
abundance in the absence of anthropogenic mortality (after a
time delay for the age at maturity). The maximum reproduc-
tive rate is central to the following: the population growth
rate r (Cole 1954; Pimm 1991; Myers et al. 1997b), limits to
overfishing (Mace 1994; Cook et al. 1997; Myers and Mertz
1998), estimation of the dynamic behaviour of the popula-
tion, i.e., whether the population has oscillatory or chaotic
behaviour, extinction models and population viability analy-
sis (Lande et al. 1997), establishment of biological reference
points for management, e.g., most of the commonly used
reference points for recruitment overfishing require esti-
mates of the maximum lifetime reproductive rate (Myers et

al. 1994), and estimation of the long-term consequence of
mortality caused by pollution, dams, or entrainment by
powerplants (Barnthouse et al. 1988).

The purposes of this paper are (i) to provide a comprehen-
sive analysis of the maximum reproductive rate in terms of a
relatively simple statistical model, (ii) to attempt to deter-
mine under what conditions this parameter is invariant, i.e.,
constant for a species or group of species, and (iii) to pro-
vide empirical Bayesian priors for the estimates (Hilborn
and Liermann 1998; Millar and Meyer 2000). We use the ex-
tensive database of stock and recruitment data compiled in
Myers et al. (1995) and Myers and Barrowman (1996).

Formulation

Estimating reproductive rate
Semelparous species, whose members conveniently die af-

ter reproduction, immensely simplify the lives of students of
their population biology. For example, in many insects and
in pink salmon (Oncorhynchus gorbuscha), one generation
follows the next in easy units, e.g., the number of spawning
females. The relationship between the numbers in year t, Nt,
and the numbers in year t plus the age at maturity, amat, is
typically given in the form

(1) N Nt a t
f Nt+

−=
mat

eα ( )

where the density-dependent mortality, f (Nt), is a non-
negative function such that f (Nt) → 0 as Nt → 0.
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The dynamics of iteroparous species are more compli-
cated. Typically, the number of recruits belonging to year-
class t, Rt, is a function of the egg production or a proxy
such as weight of spawners at time t, St, as in the form

(2) R St t
f S t= −α e ( )

where f (St) is the density-dependent mortality as before.
The Ricker model has the form

(3) R St t
S t= −α βe

where α is the slope at the origin (measured perhaps in re-
cruits per kilogram of spawners). Density-dependent mortal-
ity is assumed to be the product of β and the spawner
biomass. Dividing by St and taking logarithms gives

(4) log log
R

S
St

t
t= −α β

i.e., a linear model for log survival.
For the forthcoming calculations, the slope at the origin,

α , must be standardized. First consider

$α α= ⋅ =SPRF 0

where SPRF = 0 is the spawning biomass resulting from each
recruit (perhaps in units of kilograms of spawners per re-
cruit) in the limit of no fishing mortality (F = 0). This quan-
tity, $α, represents the number of spawners produced by each
spawner over its lifetime at very low spawner abundance,
i.e., assuming absolutely no density dependence. The quan-
tity ~α required for our calculations is the number of spawn-
ers produced by each spawner per year (after a lag of a
years, where a is the age at maturity). If adult survival (the
proportion surviving each year, which in the absence of fish-
ing is e–M) is ps, then $ ~α α= =

∞∑ pi
i s0

, or summing the geo-

metric series:

(5) ~ $ ( ) ( )α α α= − = ⋅ −=1 10p pFs sSPR .

This quantity ~α is the maximum annual reproductive rate
and will be the main focus of this study.

A word of warning is needed in the interpretation of the
maximum annual reproductive rate. The above formulation
is for the deterministic case. However, if stochastic varia-
tions in survival are included, then the quantity ~α would be
interpreted as the maximum of the average annual reproduc-
tive rate. In other words, the reproductive rate may be higher
or lower for any given year.

We also provide estimates of “steepness”, denoted by z
and first defined by Mace and Doonan (1988), because this
is the parameter actually used in many assessments (Hilborn
and Walters 1992). The steepness parameter z for the
Beverton–Holt model is defined to be the proportion of re-
cruitment, relative to the recruitment at the equilibrium with
no fishing, when the spawner abundance or biomass is re-
duced to 20% of the virgin level. This is related to the maxi-
mum lifetime reproductive rate $α by

z =
+
$

$

α
α4

where 0.2 < z < 1.

Note that at the limit of small population size, the Ricker
and Beverton–Holt models coincide, i.e., the slope at the ori-
gin, α , is the same. In this context, z can be estimated from
either model; however, it can only be applied directly to the
dynamics of the Beverton–Holt model. Our estimate of steep-
ness should be viewed as conservative (see Appendix 2).

To summarize, we have introduced notations for the three
most common ways that the maximum reproductive rate is
used in the analysis of fish population dynamics. First, we
have defined $α to be the maximum lifetime reproductive rate
(the adjective “lifetime” would not usually be used but is im-
portant here). This quantity is used in many calculations to
determine maximum sustainable yield (MSY) and the limits
of fishing mortality. The second is the quantity of steepness,
z, which is a simple transformation of $α . The third quantity,
~α , is used in calculations where an annual recruitment rate is
needed, e.g., for estimating the maximum population growth
rate (Myers et al. 1997b).

The Ricker model provides a reasonable
model for estimating the slope at the
origin

The simplest form of density-dependent mortality is lin-
ear, i.e., f(S) = βS, in eq. 1. We will show that under reason-
able conditions, this is perhaps the best first approximation.
A simple generalization of the Ricker model is

(6) f S S( ) = β γ

where γ controls the degree of nonlinearity in the functional
form of density dependence (Bellows 1981). For most of the
data sets that we examine, there are not sufficient data to es-
timate γ; however, our purpose is only to ensure that esti-
mates of α are robust to our assumptions about γ. We will
examine data for Atlantic cod (Gadus morhua) because there
are excellent data for these populations and all have been re-
duced to low levels, which will enhance our ability to esti-
mate α . We held γ fixed at values of 0.5, 0.75, 1, 1.25, and
1.5 (Figs. 1 and 2) and estimated ~α and β.

The functional fits are displayed in terms of survival
(log( ))R S versus S, where R has been multiplied by
SPRF=0(1 – ps).

If γ < 1, then survival is a convex function of spawner bio-
mass, and the limit of survival is infinity as S → 0. Thus, this
model is unrealistic for this case. Furthermore, an examina-
tion of the survival versus spawner curve reveals that it does
not become appreciably convex until below the lowest ob-
served spawner abundance (Fig. 1). For γ > 1, survival is a
concave function, and the derivative of survival as S → 0
will always be zero.

In practice, the Ricker model is a reasonably cautious esti-
mate of the limit for management purposes. If γ < 1 is as-
sumed, then a greater α is estimated, while the assumption
of γ > 1 results in only a slight decrease in the estimate of α
(Figs. 1 and 2). If we examine the four cod populations with
the largest range in observed spawner biomass, the estimate
of the slope at the origin appears reasonable in all cases for
the Ricker model, while the estimate for γ = 0.5 is inflated
commensurately with the gap between the origin and the
lowest observation of spawner abundance.

© 1999 NRC Canada
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We also considered another common three-parameter
model, the “Shepherd function,” i.e.:

(7) R
S

S K
=

+
α

δ1 ( )
.

�

This model was first proposed by Maynard Smith and
Slatkin (1973) and was discussed by Bellows (1981). The
parameter K has dimensions of biomass and may be inter-
preted as the “threshold biomass” for the model. For values

of biomass S greater than the threshold K, density-dependent
effects dominate. The parameter δmay be called the “degree
of compensation” of the model, since it controls the degree
to which the (density-independent) numerator is compen-
sated for by the (density-dependent) denominator. If δ = 1,
then the Beverton–Holt model is recovered. However, for
δ < 1, survival is infinity as S → 0; again, in this case the
model cannot be considered as a reliable method for extrap-
olation to low population sizes. For δ > 1, the derivative of
survival as S → 0 will always be zero. However, even in the
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Fig. 1. Survival, log( )R S , versus spawner abundance for six cod stocks. The modeled density-dependent mortality of the form f (S) =
βS γ is shown for γ = 1.5 (dashed line), γ = 1 (Ricker case, dotted line), and γ = 0.5 (solid line). We have standardized recruitment by
multiplying by SPRF=0(1 – ps), which allows survival to be interpreted as the annual replacement of spawners per spawner. Thus, the
extrapolation of the fitted curves to zero spawner abundance provides an estimate of log ~α , i.e., the logarithm of the maximum annual
reproductive rate.
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Beverton–Holt case (δ = 1), many estimates of the slope at
the origin will be infinity. That is, if K → 0, then α → ∞ is a
perfectly feasible solution.

The Deriso–Schnute model (Hilborn and Walters 1992),
an alternative three-parameter model, has the Ricker and the
Beverton–Holt as special cases. However, it suffers from the
same problems that we described above: survival is not con-
strained to be finite except when the model is a Ricker
model, or it has the derivative of survival as S → 0 con-
strained to be zero.

Any estimation of the slope at the origin is necessarily an
extrapolation, since there cannot be observations arbitrarily
close to zero spawner abundance. The simplest extrapolation
is a linear one (in the relationship between log survival and
spawner abundance), while alternative assumptions will of-
ten produce unreasonable estimates.

One situation in which a Ricker model would not give a
reliable estimate would be if mortality increased at low
spawner abundances, known as depensation or the Allee ef-
fect. Myers et al. (1995) carried out a metaanalysis and
could find no convincing evidence that depensation occurred
for exploited fish populations. However, Liermann and
Hilborn (1997), using a Bayesian approach, demonstrated
that the data were consistent with moderate levels of
depensation for several taxa. We conclude that the estimate
of the α from the Ricker model will usually provide a rea-

sonable estimate for both ecological and management needs,
e.g., when Fτ (sometimes called Fextinction), the smallest fish-
ing mortality associated with extinction, is needed.

In this section, we have argued that the Ricker model is
often a reasonable model for the estimation of the ~α (some
alternative approaches are discussed below). For the cod
populations in the North Atlantic, we have seen that the esti-
mates are only slightly modified if survival is a concave
function of spawner biomass. The alternative assumption,
that log survival is a convex function, which usually results
in the assumption that survival greatly increases at low
spawner biomass (Fig. 1), is not strongly supported by the
data and may be very dangerous for management decisions
in extrapolations to low abundance.

Estimation method

Mixed effects models
Our contention is that focusing on one population at a

time can be misleading. In this section, we shall demonstrate
how this can be avoided by incorporating the estimation of
the Ricker model into a standard linear mixed model. Param-
eter estimation is easy using widely available software, e.g.
SAS or S-PLUS.

We will change the notation slightly to put the results in
the standard notation of variance components and mixed
models. We consider p populations, subscripted by i, for
each of which we want to estimate the parameters of a
Ricker model (eq. 4) of the form

(8) log log ~,

,
,

R

S
Si t

i t
i i i t it= + +α β ε

where Ri,t is recruitment to year-class t in population i, Si,t is
spawner abundance in year t in population i, ~α i and βi are
the Ricker model parameters for population i, and εit is esti-
mation error, assumed normal. We assume that log ~α i is a
normal random variable and define µ α+ ai i� log ~ , where µ
is the mean of the log-transformed maximum annual repro-
ductive rates and ai is the random effect for population i.
(Note that we will repeat the above calculations using the
lifetime reproductive rate instead of the annual reproductive
rate.)

We consider the log survival, log( )R S , of a year-class
from a given population as an element of a vector y. If there
are ni observations for population i, then the first n1 elements
of the vector y will be the n1 log survivals for the first popu-
lation, followed by the n2 log survivals for the second popu-
lation, and so on.

We consider the fixed effects of the model first. The
parameters that we estimate are the overall mean, µ, and p
regression parameters, βi. We consider the spawner abun-
dances, Si,t, as known and estimate the density-dependent re-
gression parameter βi for each population. The standard mixed
model notation for the vector of fixed effects parameters is β.
The unknown vector β consists of the overall mean µ and the
pβis. The vector β is related to y by the known model matrix
X, whose elements are 0, 1, and Si,t ; the form of this matrix
is given below.

For the vector of random effects composed of the ai, we
shall use the standard mixed model notation u. The vector u

© 1999 NRC Canada
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Fig. 2. Box plots of the logarithm of the scaled slope at the
origin, log ~α , for the 20 major cod stocks in the North Atlantic
as a function of the form of density-dependent mortality f (S) =
βS γ. For each box plot, the median is marked with a white line
and the gray area shows the 95% confidence interval for the
median location. When γ = 1, the Ricker model is recovered.
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is related to y by a known model matrix Z whose form is
given below.

In standard mixed model notation, we have

(9) y X Zu= + +β ε.

Here, ε is an unknown random error vector. For example,
consider the simple case of two populations, each of which
is observed for 3 years with the first year denoted by 1. The
above equation can then be written as

(10) y =










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



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where yi,t � log( ), ,R Si t i t . The generalization provided by the

mixed model enables one not only to model the mean of y
(as in the standard linear model), but to model the variance
of y as well. We assume that u and ε are uncorrelated and
have multivariate normal distributions with expectations 0
and variances D and R, respectively. The variance of y is
thus

(11) V ZDZ R= ′ + .

One can model the variance of the data, y, by specifying
the structure of D and R. We assume that D I= σa

2 (where I
is the identity matrix), i.e., that the variability among popu-
lations of log ~α i is normally distributed with variance σa

2 . In
the simplest case, one might assume that the error variance
is the same for all populations, i.e., R = σ2I. (Note that
when R = σ2I and Z = 0, the mixed model reduces to the
standard linear model.) However, we estimate a separate es-
timation error variance, σi

2 , for each population. We also test
whether the residuals are autocorrelated. If they are, we can
estimate a separate autocorrelation parameter, ρi, for each
population. This results in a block diagonal structure for R,
with blocks

(12) σ
ρ

ρ

ρ

ρ

ρ
ρ

i
i

i

i

i

i

i2
2

21

1

1

M M M

K

K

K

O





















.

Estimation of variance components
Now that we have transformed the problem into this form,

estimation is trivial because high-quality software exists for
this problem (Appendix 1). The likelihood function for the
data vector y � �N (X β, V) is

(13) L L
N

= =
− − ′ −−

( , | )

( )

( ) ( )

β
π

β β

V y

V

y X V y X
e

1

2

2
1

2

1

2

where N is the number of fixed effects estimated, i.e., N =
1 + p. There are two common approaches to the estimation
of variance components based on this function: maximum
likelihood (ML) and restricted maximum likelihood (REML)
(Searle et al. 1992). REML differs from ML for this model
in that it takes into account the degrees of freedom used for
estimating the fixed effects, whereas ML does not. Further-
more, in the case of balanced data, REML solutions are
identical to ANOVA estimators, which have known
optimality properties. For these reasons, we will use REML
but will consider ML to check sensitivity. Denote the result-
ing estimates of D and R by $D and $R, respectively.

It is possible for the estimate of the variance among popu-
lations, $σa

2 , to be zero. This often occurs when only a few
populations are available for analysis and should not be in-
terpreted as implying that there is no variability among pop-
ulations in the maximum annual reproductive rate.

Estimation of individual population parameters
The use of mixed models allows us to obtain improved es-

timates of parameters for any one population. In general, we
wish not only to estimate the fixed model parameters, but
also to predict the random variables for each population. In
our case, we wish to estimate the density-dependent parame-
ter β and predict the slope at the origin for each population,
which is assumed to be a random variable. The terminologi-
cal distinction between estimation of fixed effects and pre-
diction of random effects is awkward and unnecessary
(Robinson 1991); we will “estimate” both fixed and random
effects, with the understanding that for random effects, we
are in fact obtaining estimates of their realized values.

The best linear unbiased estimators (BLUEs) β
~

of the
fixed effects β and the best linear unbiased predictors
(BLUPs) ~u of the random effects u may be obtained from
the mixed model equations

(14)
X R X

Z R X

X R Z

Z R Z D u

X′

′

′

′ +

























=
−

−

−

− −

1

1

1

1 1

~

~
β ′

′













−

−

R y

Z R y

1

1
.

Without the D–1 in the lower right-hand submatrix of the
matrix on the left, eq. 14 would be the ML equations for the
model treated as if u represented fixed effects, rather than
random effects. Although the above equation has been dis-
cussed in terms of classical methods, the same result is ar-
rived at using a formal Bayes analysis of incorporating prior
information into the analysis of data (Searle et al. 1992).

Since we do not know the variance–covariance matrices D
and R, we substitute $D and $R into eq. 14 to obtain empirical
BLUEs and BLUPs.

The variance–covariance matrix for [
~ ~]β u ′ is

(15) C
X R X

Z R X

X R Z

Z R Z D
=

′

′

′

′ +













−

−

−

− −

−
1

1

1

1 1

where the superscript minus on the above matrix represents
a generalized inverse. An approximate variance–covariance
matrix $C may be obtained by substituting $D and $R into
eq. 15. The approximate standard error for any linear combi-
nation L of the vector [

~ ~]β u ′ may be obtained from
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(16) L CL′ $ .

Note that these standard errors will tend to be underesti-
mates of the standard errors of the empirical BLUPs and
BLUEs (Searle et al. 1992).

Our estimation methods above provide estimates of µ for
each species and (the realized values of) the ai. As long as
the log-transformed values are considered, the interpretation
is simple; however, the interpretation of the values on an un-
transformed scale is more complex. For a species, the me-
dian ~α is exp(µ), and the expectation is exp(µ σ+ 0 5 2. a ),
where the expectation and median are taken with respect to
the distribution of the random effects. This estimate is com-
plicated by the estimation error of the µ and the σa

2 , which
we will ignore here. To keep things simple, we will discuss
our results in terms of the log-transformed values and the
medians of ~a for a species, except where noted.

Data sources and treatment
The data that we used are estimates obtained from assess-

ments compiled by Myers et al. (1995). The database is
available from the first author. For marine populations, pop-
ulation numbers and fishing mortality were usually esti-
mated using sequential population analysis (SPA) of
commercial and (or) recreational catch at age data for most
marine populations. SPA techniques include virtual popula-
tion  analysis  (VPA),  cohort  analysis,  and  related  methods
that reconstruct population size from catch at age data (see
Hilborn and Walters (1992, chaps. 10 and 11) for a descrip-
tion of the methods used to reconstruct the population his-
tory). Briefly, the catch at age is combined with estimates
from research surveys and (or) commercial catch rates to es-
timate the numbers at age in the final year and to reconstruct
previous numbers at age under the assumption that catch at
age is known without error and that natural mortality at age
is known and constant.

For salmon stocks, spawner abundance is the estimate of
the number of fish reaching the spawning grounds, and re-
cruitment is estimated by combining catch and the number
of upstream migrants.

SPA techniques were used for the freshwater species ex-
cept for brook trout (Salvelinus fontinalis). The brook trout
populations were from introduced populations in California
mountain lakes (DeGisi 1994); these populations were esti-
mated using research gill nets and ML depletion estimation.

Time series of less than 10 paired spawner–recruit obser-
vations are not included in this analysis. The SPRF=0 was
calculated using estimates of natural mortality, weight at
age, and maturity at age. Maturity and weight at age were
usually estimated from research surveys carried out for each
population.

A major source of uncertainty in the SPA estimates of re-
cruitment and spawning stock biomass (SSB) is that they
usually assume that catches are known without error. This is
particularly important when estimates of discarding and mis-
reporting are not included in the catch at age data used in
the SPA. These errors are clearly important for some periods
of time for some of the cod stocks (Myers et al. 1997a), and
these errors will affect our estimates of the number of re-
placements that each spawner can produce at low population
densities (~α).

The data for this analysis are available at R.A. Myers’
web site (http://fish.dal.ca/welcome.html).

Results

We first used ML for a standard Ricker model to obtain
single-population estimates of log ~α for each population
(Fig. 3). Then, for each species in our database, we applied
the mixed model to the data from all of the populations be-
longing to that species, obtaining estimates and predictions
as follows. We used REML to estimate σa

2 , the true variabil-
ity among populations in the log-transformed maximum an-
nual reproductive rate, and for each population, σi

2 , the
estimation error variance. These estimated variance compo-
nents were then used to obtain the empirical BLUE of the
mean log-transformed maximum annual reproductive rate, µ,
for the species and the empirical BLUP of log ~α for each
population (Table 1). For completeness, we have given the
mixed model estimates for the mean and variability at the
family level; however, they should be used with great cau-
tion because they may not be representative of any given
species. More detailed results (which include stock-level es-
timates) are available at R.A. Myers’ web site.

Note that there is less variance among the BLUP esti-
mates than among the single-population estimates (Fig. 4).

The estimates for populations with large estimation error
variances (e.g., due to relatively few data points) and that are
far from the mean for the species, e.g. Gulf of Maine cod
(MLE:log ~α = 2.85, BLUP:log ~α = 1.84), are pulled towards
the mean more than those for populations with lower estima-
tion error variance and that are close to the species mean,
e.g. Iceland cod (MLE:log ~α = 1.19, BLUP: log ~α = 1.19).

As expected, the estimate of the true variability in the
maximum annual reproductive rate is much less than the
sample variability because individual estimates contain esti-
mation error. For example, for pink salmon, if ~α is estimated
separately for each stock, then there is an order of magni-
tude range of the estimates. However, if ~α is assumed to be a
random variable, then the mixed model estimates suggest
that the true range is very small, with all the true values be-
ing very close to 3 (Fig. 3). Cod show a similar picture. The
median number of replacement spawners per spawner per
year for cod at low abundance is between 3 and 4, resulting
in a maximum net reproductive rate (if there is no fishing
mortality) of between 15 and 20. The maximum annual re-
productive rate for Atlantic herring (Clupea harengus) ap-
pears to be slightly less, and for hakes of the genus
Merluccius, e.g., silver hake (Merluccius bilinearis) and Pa-
cific hake (Merluccius productus), it is around 1. Some ana-
dromous species, e.g., sockeye salmon (Oncorhynchus
nerka), appear to have a maximum annual reproductive rate
of around 4 or 5, while others, e.g., pink salmon, have a
much lower rate.

The most remarkable aspect of the results is the relative
constancy of the estimates of the maximum annual reproduc-
tive rate. For species for which we have more than one pop-
ulation in our analysis, the median of the estimated
maximum reproductive rate is almost always between 1 and
7 (Fig. 5a).

For the species with multiple populations, only Pacific
ocean perch (Sebastes alutus) and silver hake have an esti-

© 1999 NRC Canada

Myers et al. 2409

J:\cjfas\cjfas56\CJFAS-12\F99-201.vp
Friday, December 10, 1999 7:21:18 AM

Color profile: Disabled
Composite  Default screen



©
1999

N
R

C
C

anada

2410
C

an.
J.

Fish.
A

quat.
S

ci.
Vol.

56,
1999

Fig. 3. Histograms by species of the individual ML estimates of the log of the maximum annual reproductive rate, log ~α , compared with probability densities based on REML
estimates of the true variability in log ~α from our mixed model analysis (dotted line). Note that the top axis of each plot shows the untransformed annual reproductive rate.
The number of populations (n) for each histogram is also given.
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mated maximum annual reproductive rate of less than 1. The
low estimate for Pacific ocean perch results in a very low es-
timate for the expected maximum lifetime reproductive rate,
i.e., it is about 3 (Table 1; Fig. 6a). Relatively low estimates
of the maximum lifetime annual reproductive rate and steep-
ness were estimated for the other Sebastes species (Table 1).
We do not know whether these low estimates are real, e.g.,
are somehow related to their low natural mortality and
oviviparous reproduction, or an artifact. The age-based as-
sessments of the Sebastes species are unusually uncertain
because of aging difficulties. It is also possible that the envi-
ronmental conditions in recent years, when the low estimates
of spawning biomass and recruitment were made, have been
unusual and have resulted in lower than average estimates.
In any case, it is crucial to determine if the assessments are
correct and exploit these species more cautiously than other
species.

The estimates of the maximum annual reproductive rate
for species for which we have only one population are much
more variable than for the species with many populations
(Figs. 5b and 6b). The greater variability in these estimates
is at least partially caused by estimation error. However, sev-
eral species have maximum reproductive rates that suggest
that they cannot sustain intense fisheries. In some cases, this
is certainly true. The southern bluefin tuna (Thunnus
maccoyii) in the Southern Ocean has been greatly reduced
by overfishing. In other cases, there may be serious prob-
lems with the assessments.

Despite the large variation in the individual estimates, our
general conclusion about the relative constancy of the maxi-
mum annual reproductive rate stands; the estimates are usu-
ally around 3. There are exceptions for individual stocks, but
these usually have large standard errors.

Note that herring has a smaller maximum reproductive
rate than many species. The lower mean is due to a few
stocks in the northern North Atlantic that have been reduced
to very low levels (the Iceland stocks, the Norway stock (of-
ten called the “Arcto-Norwegian” stock), and the Georges
Bank stocks).

We also considered a model that allowed the residuals to
be autocorrelated (see Appendix 1 for the computer code
used in the estimation). This approach is probably preferable
if autocorrelation is substantial in the model residuals, but
may pull the individual estimates too far towards the popula-
tion mean.

We repeated the above analysis for the lifetime maximum
reproductive rate and display the results in terms of the ex-
pected lifetime maximum reproductive rate and the steep-
ness. Among taxonomic groups, the lifetime reproductive
rate appears to be more variable than the annual rate; how-
ever, for species with similar natural mortalities after repro-
duction, the results are again relatively constant.

The results for the steepness are displayed as the median,
the 20th percentiles, and the 80th percentiles (Table 1).
These can be be used to approximate priors for Bayesian
analyses that commonly use steepness (Punt and Hilborn
1997).

It is useful to compare the median for a species of the
maximum annual reproductive rate (the uncorrected value)
with the expectation, where the median and expectation are
taken with respect to the distribution of the random effects

(Fig. 7). The corrected estimates are higher by a factor of
exp(0 5 2. σa ). This effect is usually small except for species
where the estimate of the variability among populations is
unusually large, e.g., for blueback herring (Alosa aestivalis).

A generalization
The unexpected generalization that comes from our analy-

sis is that the annual reproductive rate within a species often
shows relatively little variation and that the variation in an-
nual reproductive rate among species is surprisingly small,
usually ranging from 1 to 7 for species for which we have
several populations represented in our analysis.

This is a broad generalization that may have great impli-
cations for the management and conservation of fish popula-
tions. Although the generalization appears to be firmly
established for many well-studied species, these are primar-
ily temperate-zone species.

Possible exceptions
In this section, we will discuss several populations that

appear to have anomalously high or low annual reproductive
rates. It is unclear whether these rates are real or due to limi-
tations in the assessments.

The blueback herring appears to have a relatively high
maximum annual reproductive rate. This relatively high
number is consistent with the fast growth rate experienced
by this species and other Alosa species when they recolonize
former habitat (Crecco and Gibson 1990). However, it is
possible that these high rates of population growth are
caused by movement of fish upstream over obstructions and
not population growth per se. This hypothesis needs to be
evaluated.

Chinook salmon (Oncorhynchus tshawytscha) also appears
to have relatively high maximum annual reproductive rates.
These appear to be real and are probably conservative. The
values that are in the figures for chinook salmon are from the
northern limit of the range. The values for the Columbia
River appear to be much higher, but it is impossible to esti-
mate the “natural” rates because of dam-induced mortality.

The ayu (Plecoglossus altivelis, Plecoglossidae, Salmon-
iformes) from Lake Biwa, Japan, is the only univoltine spe-
cies in the database, and it appears to have a very high
annual reproductive rate (Table 1) (Suzuki and Kitahara
1996). The analysis appears to be sound and is backed up by
fishery-independent survey data, but it is possible that the
application of VPA for this species may have led to biases.

Among the lowest estimates of the maximum reproductive
rates are those for several species on the west coast of North
America: Pacific ocean perch, sablefish (Anoplopoma
fimbria), and chilipepper rockfish (Sebastes goodei). These
stocks all are assessed in a similar manner. The assessments
on these stocks do not have reliable fishery-independent esti-
mates of abundance, do not have a large amount of aging
data, and often assume that the population is at the unfished
equilibrium at the beginning of the fishery. It is critical for
the management of these stocks to determine whether their
actual maximum reproductive rate is as low as it appears to
be, or if the assessments are reliable.

These cases represent anomalies, which may represent
fundamental inconsistencies with our broad generalization
about the reproductive rate, or may well be explained by
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Species n SE $σa
2 ~$α z20 zmed z80

Aulopiformes
Synodontidae 1 0.31 0.07 2 0.34

Bombay duck (Harpodon nehereus) 1 0.31 0.07 2 0.34
Clupeiformes

Clupeidae 34 1.06 0.19 1.16 17.1 0.49 0.71 0.86
Anadromous alewife (Alosa pseudoharengus) 4 1.29 0.09 0 5.7 0.59
Anadromous American shad (Alosa sapidissima) 1 1.65 0.3 18.5 0.82
Atlantic menhaden (Brevoortia tyrannus) 1 2.2 0.12 24.8 0.86
Blueback herring (Alosa aestivalis) 3 2.6 0.55 0.81 31.9 0.71 0.84 0.92
Gulf menhaden (Brevoortia patronus) 1 1.25 0.16 5.3 0.57
Atlantic herring (Clupea harengus) 18 0.73 0.28 1.31 22.1 0.52 0.74 0.88
Pacific sardine (Sardinops sagax) 2 0.66 0.89 1.56 12.7 0.34 0.59 0.81
Spanish sardine (Sardina pilchardus) 1 –0.56 0.75 2.1 0.34
Sprat (Sprattus sprattus) 3 0.87 0.55 0.71 10.7 0.48 0.65 0.79

Engraulidae 4 1.28 0.57 1.14 11.5 0.4 0.62 0.8
Anchovy (Engraulis encrasicolus) 2 0.7 0.13 0 3.6 0.47
Gold-spotted grenadier anchovy (Coilia dussumieri) 1 2.73 0.19 17.6 0.81
Northern anchovy (Engraulis mordax) 1 0.33 0.41 3.1 0.43

Gadiformes
Gadidae 49 1.01 0.12 0.51 19.6 0.67 0.79 0.87

Blue whiting (Micromesistius poutassou) 2 0.59 0.33 0 10 0.71
Atlantic cod (Gadus morhua) 21 1.37 0.15 0.37 26 0.76 0.84 0.9
Haddock (Melanogrammus aeglefinus) 9 0.72 0.21 0.28 13 0.64 0.74 0.82
Hake (Merluccius hubbsi) 1 1.18 0.45 18 0.82
Pacific hake (Merluccius productus) 1 –0.95 0.83 1.9 0.32
Pollock or saithe (Pollachius virens) 5 1.16 0.14 0.05 18 0.78 0.81 0.84
Silver hake (Merluccius bilinearis) 3 –0.18 0.29 0.16 2.7 0.31 0.39 0.47
Walleye pollock (Theragra chalcogramma) 2 0.28 0.24 0.01 5 0.53 0.55 0.58
Whiting (Merlangius merlangus) 5 1.14 0.51 1.16 30.8 0.64 0.81 0.91

Lophiiformes
Lophiidae 1 –0.07 0.32 6.7 0.64

Black anglerfish (Lophius budegassa) 1 –0.07 0.32 6.7 0.63
Perciformes

Carangidae 3 0.27 0.21 0 4 0.5
Horse mackerel (Trachurus trachurus) 2 0.52 0.8 0 12.1 0.75
Mediterranean horse mackerel (Trachurus

mediterraneus)
1 0.25 0.22 3.5 0.47

Lutjanidae 1 1.9 0.9 47.8 0.95
Red snapper (Lutjanus campechanus) 1 1.9 0.9 47.8 0.92

Percichthyidae 1 0.95 0.16 18.6 0.82
Striped bass (Morone saxatilis) 1 0.95 0.16 18.6 0.82

Percidae 2 0.91 0.57 0.28 9.5 0.57 0.67 0.76
Walleye (Stizostedion vitreum) 2 0.91 0.57 0.28 9.5 0.57 0.67 0.76

Scianidae 1 1.88 0.28 26.1 0.87
White croaker (Argyrosomus argentatus) 1 1.88 0.28 26.1 0.87

Scombridae 8 0.34 0.39 1.12 7.5 0.3 0.52 0.72
Atlantic bluefin tuna (Thunnus thynnus) 1 –0.4 0.23 5.2 0.56
Bigeye tuna (Thunnus obesus) 2 0.73 0.08 0 5.3 0.57
Chub mackerel (Scomber japonicus) 1 –0.05 0.33 2.4 0.38
Atlantic mackerel (Scomber scombrus) 2 1.11 0.91 1.29 31.8 0.62 0.81 0.92
Southern bluefin tuna (Thunnus maccoyii) 1 –1.5 0.09 2.9 0.42
Yellowfin tuna (Thunnus albacares) 1 1.43 0.21 9.3 0.7

Sparidae 3 2.48 0.41 0 65.9 0.95
New Zealand snapper (Pagrus auratus) 2 1.34 1.31 0 65.6 0.94
Scup (Stenotomus chrysops) 1 2.6 0.38 74.6 0.95

Table 1. Mixed model estimates at the species and family levels and corresponding estimates of the percentiles of z (the steepness
parameter).
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other factors, e.g., assessment problems or the possibility
that the data for these species come from only a relatively
short time period, which may not be representative of the
average reproductive rate.

Limitations and alternative approaches

Our approach to estimating the standardized slope at the
origin of spawner–recruit functions is based on well-studied
statistical methods and has intuitive appeal and appears to be
a promising method for categorizing species in terms of their
vulnerability to overfishing. However, researchers should be
aware of its limitations and of alternative approaches.

The first limitation is the functional form assumed for
density-dependent mortality. The Ricker model and the non-
linear Ricker model (eq. 6) are not appropriate for some spe-
cies. This is a serious limitation of the methods described
here. For example, we did not consider coho salmon
(Oncorhynchus kisutch) in this analysis because the shape of
the spawner–recruitment curve was clearly asymptotic, simi-
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Species n SE $σa
2 ~$α z20 zmed z80

Xiphiidae 1 1.7 0.05 30.1 0.88
Swordfish (Xiphias gladius) 1 1.7 0.05 30.1 0.88

Pleuronectiformes
Pleuronectidae 14 0.79 0.18 0.34 18.8 0.71 0.8 0.87

European flounder (Platichthys flesus) 1 –0.03 0.42 5.3 0.57
Greenland halibut (Reinhardtius hippoglossoides) 3 0.75 0.68 1.32 29.3 0.59 0.79 0.91
Plaice (Pleuronectes platessa) 8 0.92 0.17 0.08 25.1 0.83 0.86 0.88
Yellowtail flounder (Pleuronectes ferrugineus) 2 0.79 0.34 0.14 13 0.69 0.75 0.81

Soleidae 7 0.66 0.35 0.68 28.7 0.72 0.84 0.91
Sole (Solea vulgaris) 7 0.66 0.35 0.68 28.7 0.72 0.84 0.91

Salmoniformes
Esocidae 2 0.51 0.19 0.03 6.1 0.57 0.6 0.64

Northern pike (Esox lucius) 2 0.51 0.19 0.03 6.1 0.57 0.6 0.64
Plecoglossidae 1 4.73 0.16 123.5 0.97

Ayu (Plecoglossus altivelis) 1 4.73 0.16 123.5 0.97
Salmonidae 106 1.43 0.05 0.18 25.1 0.8 0.85 0.89

Atlantic salmon (Salmo salar) 3 1.46 0.25 0.16 5.1 0.46 0.54 0.62
Chinook salmon (Oncorhynchus tshawytscha) 6 1.99 0.13 0 7.3 0.65
Chum salmon (Oncorhynchus keta) 7 1.31 0.24 0.34 4.4 0.36 0.48 0.6
Freshwater brook trout (Salvelinus fontinalis) 5 1.55 0.24 0.11 27.4 0.83 0.87 0.89
Lake trout (Salvelinus namaycush) 1 0.92 0.08 24.1 0.86
Pink salmon (Oncorhynchus gorbuscha) 52 1.22 0.07 0.12 3.6 0.39 0.46 0.53
Sockeye salmon (Oncorhynchus nerka) 32 1.57 0.08 0.15 5.2 0.47 0.55 0.62

Scorpaeniformes
Anoplopomatidae 1 –2.35 0.47 1.4 0.28

Sablefish (Anoplopoma fimbria) 1 –2.35 0.47 1.4 0.26
Hexagrammidae 1 1.13 0.49 12 0.77

Atka mackerel (Pleurogrammus monopterygius) 1 1.13 0.49 12 0.75
Scorpaenidae 5 –1.57 0.24 0.17 2.8 0.31 0.39 0.48

Chilipepper (Sebastes goodei) 1 –0.85 0.57 2.1 0.35
Pacific ocean perch (Sebastes alutus) 3 –1.93 0.18 0 3 0.43
Deepwater redfish (Sebastes mentella) 1 –1.08 0.18 3.6 0.47

Table 1 (concluded).

Fig. 4. Comparison of the maximum annual reproductive rate, log ~α ,
obtained from individual regressions on each cod population in the
North Atlantic with the empirical BLUPs obtained from a mixed
model analysis. Notice that the mixed model estimates have lower
variance than the individual estimates.

Note: Listed are the empirical BLUE of the mean value of the log-transformed maximum annual reproductive rate ( ), its standard error, the
estimated variance among populations ($σa

2 ) (where possible), the estimated expected maximum lifetime reproductive rate for a species, where the
expectation is taken over the distribution of the random effects ( $$α), the 20th percentile of z (z 20) (where possible), the median of z (z med), and the 80th
percentile of z (z 80) (where possible). The mixed model estimates are given at the species and family levels, but the family-level estimates (shown in
boldface) should be used with caution.
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lar to a Beverton–Holt function. For such functions, nonlin-
ear mixed models are required and will be considered in a
future paper using the methods of Lindstrom and Bates (1990).

The second limitation is that we have assumed that the
distribution of ~α is approximately lognormal. This appears

to be a reasonable approximation in most cases considered
here, but violations of the assumption may cause biases
(Verbeke and Lesaffre 1996).

A third limitation is the assumption that the recruitment
distribution for given spawner abundance is lognormal. This
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Fig. 5. Estimates of the log of the maximum annual reproductive rate for (a) species with multiple populations in the database, where
the error bars represent the estimated standard deviation of the log of the maximum annual reproductive rate (this estimate is
sometimes zero if only two or three populations are used in the analysis), and (b) species with only one population in the database,
where the error bars represent the standard error of the estimate.
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is by far the most common assumption used in fitting
spawner–recruitment models (Hilborn and Walters 1992);
however, it may not always be the most appropriate assump-
tion. The gamma distribution appears to give more reason-
able fits to some stock–recruitment data (Myers et al. 1995;
R.A. Myers, K.G. Bowen, and I.A. Zouros, unpublished data).

A fourth limitation is the assumption that all populations
within a taxon are comparable, i.e., the maximum reproduc-
tive rate for populations within a species (or higher taxon) is
described by a lognormal distribution. It is possible that this
parameter may vary in a systematic way among populations,
e.g., populations in colder conditions may have a lower max-

Fig. 6. Estimates of the log of the maximum lifetime reproductive rate for (a) species with multiple populations in the database, where
the error bars represent the estimated standard deviation of the log of the maximum lifetime reproductive rate, and (b) species with
only one population in the database, where the error bars represent the standard error of the estimate.
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imum reproductive rate. Such hypotheses can be investi-
gated by letting the maximum reproductive rate be a random
variable whose mean is a function of a covariate such as
temperature or latitude.

If any of the above four assumptions appears to be vio-
lated seriously, then an alternative approach is needed. Per-
haps the most convenient alternative framework for this type
of model is either a Bayes or empirical Bayes hierarchical
approach (Efron 1996). Punt and Hilborn (1997) have re-
cently reviewed these approaches in fisheries management.
McAllister (1994) implemented an empirical Bayes ap-
proach to estimating a parameter functionally related to the
slope at the origin, viz. the steepness parameter, using an
earlier version of the database used here.

The ML estimators that we have used to estimate the un-
derlying distribution of annual reproductive rates may result
in estimates that are less “heavy tailed” than they should be
(Searle et al. 1992; Efron 1996).

It should be remembered that this analysis does not cir-
cumvent known biases, e.g., estimation error in spawner
abundance and time series bias in the treatment of spawner–
recruitment relationships (for a review, see Hilborn and
Walters 1992).

Discussion

The analysis presented in this paper suggests a new and
unsuspected finding: the maximum annual reproductive rate
for any of the species examined is typically between 1 and 7.
This number may be less for some species and more for oth-
ers, but the relative constancy of the annual reproductive rate
is an unanticipated, and very important, finding. This analy-

sis is consistent with our preliminary analysis (Myers et al.
1996).

The common belief that there is no relationship between
spawner biomass and recruitment is founded on the notion
that the maximum reproductive rate for fish is essentially in-
finite, a belief based on the observation that fecundity of fish is
often large and cursory examination of spawner–recruitment
plots that often show no strong reduction of recruitment at
low spawner abundances over the range of the observations.
This erroneous belief is caused by the lack of attention paid
to the information content of different data sets (Myers and
Barrowman 1996; Myers 1997).

Hypotheses
This broad generalization demands an explanation. First,

consider the lower limit of the annual reproductive rate at
low abundance. This represents the “average” value that
should occur at low abundance. Clearly, if this value is much
less than 1, then the population may very well go extinct be-
cause the value would probably be below 1 for considerable
lengths of time because of variation in the environment.

Why, then, would the annual reproductive rate be bounded
at the upper end? A reasonable, but speculative, answer is
that a very high value of the reproductive rate would imply
an excess of resources that are not exploited. In this case,
other competitors would be expected to evolve to exploit
these resources.

Reducing uncertainty
The uncertainty of the biological processes underlying the

population dynamics of exploited species can be greatly re-
duced by combining data from many studies. The relative
constancy of the maximum reproductive rate allows for sim-
ple, broad conclusions to be reached on the management of
fish stocks. That the maximum reproductive rate is typically
around 1–7 replacement spawners per spawner per year is a
powerful tool for the management of fish stocks. It allows
the maximum exploitation rate to be estimated quickly
(Mace 1994; Myers and Mertz 1998) and the recovery rates
of exploited fish populations to be calculated (Myers et al.
1997b).

Many of the crucial parameters needed for fisheries man-
agement can be estimated using the maximum reproductive
rate analyzed here together with simple approximations
(Myers et al. 1997b; Myers and Mertz 1998). For example,
the steepness parameter that we compiled is now commonly
used in assessments, and our analysis provides reasonable
ML estimates that can be used in empirical Bayes assess-
ment procedures. All that is required to use these approxi-
mations are data on natural mortality, age at maturity, and
the maximum reproductive rate. These approximate formulas
will require testing and verification, but this approach should
allow progress to be made on critical issues. Thus, even if
the maximum reproductive rate is not known for a species,
the estimates compiled in this paper allow it to be approxi-
mated, or our estimates can be used in forming priors for a
Bayesian analysis.

Acknowledgments

We wish to thank the Killam Foundation, the Canadian Foun-

Fig. 7. Comparison of the uncorrected (simple exponential
transform) and corrected (lognormal) values for the maximum
annual reproductive rate. Notice that without the lognormal
correction, the maximum annual reproductive rate will be
underestimated.

J:\cjfas\cjfas56\CJFAS-12\F99-201.vp
Friday, December 10, 1999 7:21:45 AM

Color profile: Disabled
Composite  Default screen



© 1999 NRC Canada

Myers et al. 2417

dation for Innovation, and the Natural Sciences and Engineering
Research Council of Canada for financial support. We thank
Stacey Fowlow for programming assistance. We thank the hun-
dreds of assessment biologists whose hard work made this meta-
analysis possible. Special thanks to Pamela Mace whose input
was key to developing these ideas. This paper is dedicated to the
memory of my (R.A.M.) great friend, Gordon Mertz.

References

Barnthouse, L.W., Klauda, R.J., Vaughan, D.S., and Kendall, R.L.
1988. Science, law, and the Hudson River power plants: a case
study in envioronmental assessment. Am. Fish. Soc. Monogr. 4.

Bellows, T.S. 1981. The descriptive properties of some models for
density dependence. J. Anim. Ecol. 50: 139–156.

Cole, L.C. 1954. The population consequences of life history phe-
nomena. Q. Rev. Biol. 29: 103–137.

Cook, R.M., Sinclair, A., and Stefansson, G. 1997. Potential col-
lapse of North Sea cod stocks. Nature (Lond.), 358: 521–522.

Crecco, V.A., and Gibson, M. 1990. Stock assessment of river her-
ring from selected Atlantic coast rivers. Spec. Rep. 19. Atlantic
States Marine Fisheries Commission, Washington, D.C.

DeGisi, J.S. 1994. Year class strength and catchability of mountain
lake brook trout. Master’s thesis, University of British Colum-
bia, Vancouver, B.C.

Efron, B. 1996. Empirical Bayes methods for combining likeli-
hoods. J. Am. Stat. Assoc. 91: 538–565.

Hilborn, R., and Liermann, M. 1998. Standing on the shoulders of
giants: learning from experience in fisheries. Rev. Fish Biol.
Fish. 8: 1–11.

Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock as-
sessment: choice, dynamics and uncertainty. Chapman and Hall,
New York.

Lande, R., Engen, S., and Saether, B.E. 1997. Optimal harvesting,
exonomic discounting and extinction risk in fluctuating popula-
tions. Nature (Lond.), 372: 88–90.

Liermann, M., and Hilborn, R. 1997. Depensation in fish stocks: a
hierarchic Bayesian metaanalysis. Can. J. Fish. Aquat. Sci. 54:
1976–1985.

Lindstrom, M.J., and Bates, D.M. 1990. Nonlinear mixed effects
models for repeated measures data. Biometrics, 46: 673–687.

Mace, P.M. 1994. Relationships between common biological refer-
ence points used as threshold and targets of fisheries manage-
ment strategies. Can. J. Fish. Aquat. Sci. 51: 110–122.

Mace, P.M., and Doonan, I.J. 1988. A generalized bioeconomic
simulation model for fish population dynamics. N.Z. Fish. As-
sess. Res. Doc. 88/4.

Maynard Smith, J., and Slatkin, M. 1973. The stability of predator–
prey systems. Ecology, 54: 384–384.

McAllister, M.K., Pikitch, E.K., Punt, A.E., and Hilborn, R. 1994.
A Bayesian approach to stock assessment and harvest decisions
using the sampling/importance resampling algorithm. Can. J.
Fish. Aquat. Sci. 51: 2673–2688.

Millar, R.B., and Meyer, R. 2000. Nonlinear state space modelling
of fisheries biomass dynamics by using Metropolis–Hastings within
Gibbs sampling. Appl. Stat. In press.

Myers, R.A. 1997. Comment and reanalysis: paradigms for recruit-
ment studies. Can. J. Fish. Aquat. Sci. 54: 978–981.

Myers, R.A., and Barrowman, N.J. 1996. Is fish recruitment related
to spawner abundance? Fish. Bull. U.S. 94: 707–724.

Myers, R.A., and Mertz, G. 1998. The limits of exploitation: a pre-
cautionary approach. Ecol. Appl. 8(Suppl. 1): s165–s169.

Myers, R.A., Rosenberg, A.A., Mace, P.M., Barrowman, N.J., and
Restrepo, V.R. 1994. In search of thresholds for recruitment
overfishing. ICES J. Mar. Sci. 51: 191–205.

Myers, R.A., Bridson, J., and Barrowman, N.J. 1995. Summary of
worldwide stock and recruitment data. Can. Tech. Rep. Fish.
Aquat. Sci. No. 2024.

Myers, R.A., Mertz, G., and Barrowman, N.J. 1996. Invariants of
spawner–recruitment relationships for marine, anadromous, and
freshwater species. ICES C.M. 1996/D:11.

Myers, R.A., Hutchings, J.A., and Barrowman, N.J. 1997a. Why
do fish stocks collapse? The example of cod in eastern Canada.
Ecol. Appl. 7: 91–106.

Myers, R.A., Mertz, G., and Fowlow, S. 1997b. Maximum popula-
tion growth rates and recovery times of Atlantic cod, Gadus
morhua. Fish. Bull. U.S. 95: 762–772.

Pimm, S.L. 1991. The balance of nature. University of Chicago
Press, Chicago, Ill.

Punt, A., and Hilborn, R. 1997. Fisheries stock assessment and de-
cision analysis: the Bayesian approach. Rev. Fish Biol. Fish. 7:
35–65.

Robinson, G.K. 1991. That BLUP is a good thing: the estimation
of random effects. Stat. Sci. 6: 15–51. With comments and a re-
joinder by the author.

Searle, S.R., Casella, G., and McCulloch, C.E. 1992. Variance
components. John Wiley & Sons, New York.

Suzuki, N., and Kitahara, T. 1996. Relation of recruitment to the
number of caught juveniles in the ayu population of Lake Biwa.
Fish. Sci. 62: 15–20.

Verbeke, G., and Lesaffre, E. 1996. A linear mixed-effects model
with heterogeneity in the random-effects population. J. Am.
Stat. Assoc. 91: 217–221.

Appendix 1. Estimation in SAS

This appendix demonstrates how to fit the proposed model to data for a single species. In the SAS data step, a data set is
created with three variables per observation: the name of the stock (i.e., population), stock, the number or biomass of
spawners, s, and the survival, surv, respectively. The survival is log (R S), where recruitment, R, has been multiplied by
SPRF = 0(1 – ps), so we will obtain estimates of ~α in the appropriate units.

The SAS code for fitting the model with autocorrelated recruitment is

proc mixed method=reml;
class stock;
model surv= s*stock/solution;
random int /subject=stock;
repeated /subject=stock group=stock type=AR(1);

This model assumes autocorrelated errors and fits a separate first-order autocorrelation parameter and error variance for each
stock. The method of estimation is REML.
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Appendix 2. Robustness simulations

In order to test the robustness of the estimates from our model, we used simulations based on real data. The approach was
to mimic the data for the 20 cod populations in the North Atlantic as closely as possible. In all cases, we used the observed
spawner abundances, the estimated density-dependent parameters ($βi), the estimated residual variance for each population, and
the estimated mean (1.37) and variance (0.37) of the log ~α parameters. For each simulation, we randomly generated values for
log ~α. Then, using the observed spawner abundances, the $βis and the residual error variance that we produced simulated re-
cruitment values that would closely match the actual data. We generated 1000 “realizations” of the 20 populations, randomly
generating new log ~α values and then simulating recruitment in each case.
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Fig. A1. Histograms of estimates of logα and σa
2 from simulations described in Appendix 2. The vertical dotted lines indicate the true

estimates obtained using the data on 20 cod populations. Results from three different simulations are shown: (a) data simulated to
match the model exactly, i.e., residuals and slope at the origin simulated from a lognormal distribution and expected recruitment given
by a Ricker model, (b) residuals and slope at the origin simulated from a gamma distribution and expected recruitment given by a
Ricker model, and (c) residuals and slope at the origin simulated from a lognormal distribution and expected recruitment given by a
Beverton–Holt model.
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We conducted three simulations. In each case, the model that we fit was a Ricker with lognormal distributions for both the
error and the slope at the origin. In the first simulation, we generated data that matched this model exactly, i.e., a parametric
bootstrap. In the second simulation, we generated data that was from a Ricker but had gamma (instead of lognormal) distrib-
uted residuals and slope at the origin. This was done to test the robustness of our inferences to misspecification of the proba-
bility distributions. In the last simulation, we generated data from a Beverton–Holt model with lognormal errors and slope at
the origin. This was done to test the robustness of our inferences to misspecification of the spawner–recruitment model. From
the histograms of the estimated log ~α values, we can see that when our model was matched exactly by the data, the estimates
were unbiased (Fig. A1a). When the distributional assumptions were violated, the value for log ~α was underestimated, while
the variance was overestimated (Fig. A1b). When the form of the model was incorrect, log ~α was underestimated and the vari-
ance was relatively unbiased (Fig. A1c).

© 1999 NRC Canada

Myers et al. 2419

J:\cjfas\cjfas56\CJFAS-12\F99-201.vp
Friday, December 10, 1999 7:21:47 AM

Color profile: Disabled
Composite  Default screen


